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We study closely packed crystalline structures formed by slow lateral compression of a coll
suspension of hard spheres in a thin wedge. In addition to the known sequence of structural trans
a buckling mechanism was recently proposed to maximize the packing fractionF between one and
two layers. We here confirm this prediction experimentally and present the first evidence tha
more than two layers, buckling, in this case of prism shaped arrays of particles, also takes place.
efficient mechanism may enhanceF by up to 4% and dominates in major regions of the phase diagra
[S0031-9007(97)04068-4]
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The close packing of hard spheres has a long-stand
history in the explanation of natural shapes. Kepl
[1], e.g., was the first who suggested a hexagonal clo
packed arrangement of tiny ice spheres to account
the sixfold symmetry of snowflakes. The importance
closest sphere packings for both fundamental resea
e.g., crystallography and solid state physics, as well
for more applied topics like communication science [2]
modern powder and sinter technology, reflects itself in
immense amount of literature [3].

While it was proven already by Gauss [4] that th
face centered cubic (fcc) crystal structure (besides
derivatives, hexagonal close packing and random clo
stackings) is the closestcrystalline packing (Ffcc 

p

3
p

2
ø 0.74) in three dimensions (3D), only recently ther

is a—still controversially discussed—proof for fcc to b
the closest sphere packing at all [5]. The difficulty is th
partial packings with higherF exist [6] and one has to
prove that this local arrangement cannot be continued i
way that its globalF exceedsFfcc.

The situation gets even more difficult when finite-siz
effects [7], arising from a confined geometry, are cons
ered: Even in the less complicated two-dimensional ca
most finite-size packing problems are not solvable an
lytically and numerical solutions request huge amounts
computer time [8].

A completely different, alternative approach to attac
such problems is to study the crystallization behavior
micron sized colloidal spheres suspended in water. B
cause of their Brownian motion, the spheres are efficien
sampling their configuration space and quickly reach th
modynamic equilibrium. In systems with high interna
pressure this can be expected to maximizeF, and there-
fore colloidals can be utilized asanalog computersto find
dense sphere packings. Furthermore, both the typical t
(seconds) and length scales (micrometers) are access
by video microscopy and allow the accurate determin
tion of structural and dynamic quantities [9].
0031-9007y97y79(12)y2348(4)$10.00
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This method has been used to investigate struct
formation in confined geometries by a number of autho
[10,11], who investigated the transition between 2
and 3D with colloidal particles confined in a wedge
Starting with one hexagonal monolayer at small wa
separations, with increasing wedge height a sequence
morphological transitions was found:

nn ! sn 1 1dh ! sn 1 1dn , (1)

wheren is the number of layers andh andn correspond
to layers of quadratic and hexagonal symmetry, resp
tively. The sequence can be understood considering
fact that the height of a fcc stack with quadratic (10
layers is smaller than that of the corresponding hexago
(111) stack, and thatF rapidly decreases when a particu
lar stack does not exactly match the cell height. Thu
with increasing cell height the (100) stack fits first be
tween the walls and is later replaced by the (111) phase
order to maintain a highF. However, for a quantitative
description of the phase boundaries, also distortions of
fcc lattice have to be considered.

Pansuet al. [12] suggested an additional mechanism
known as buckling, which optimizesF during the transi-
tion between1n and 2h even further: In the presence
of lateral forces, single lattice rows can be vertically di
placed out of a hexagonal monolayer and a folded str
ture forms which leads smoothly into the2h structure
[Fig. 1(a)]. Additionally, the model proposed a smoot
transition between2h and2n via a phase with rhombic
symmetry. Evidence for both features was found expe
mentally [13–15] as well as in Monte Carlo simulation
[16] and in a stability analysis [17] of the 2D hexagon
lattice. However, although the buckling principle turn
out to be an important mechanism to maximizeF during
the transition fromn  1 to n  2, only little is known
about its extension to the transitions with higher n.

In our experiments we investigate the crystallizatio
of a colloidal suspension of nearly hard spheres in
© 1997 The American Physical Society
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FIG. 1. (a) Buckling transition between1n (top) and 2h
(bottom). The middle picture shows the situation when the w
separation is larger than the sphere diameters but not sufficient
to allow for the2h phase. The arrangement of the spheres
the suggested way (buckling) decreases the projection of
sphere distance on thex-y plane byDd and therefore increase
the packing fractionF. (b) Buckling transition involving a
larger number of layers. As in (a), the cell height increas
from the upper to the lower picture. The top, middle, a
bottom pictures show cross sections (111 planes) of the4h,
4P , and5h structures, respectively, and the different shadin
are guides to the eye for a better distinction between the pris
Similar as in the buckling transition in (a) it can be se
from the middle picture that the buckling of the prisms allow
one to pack a considerably larger number of spheres betw
the walls.

wedge geometry. In contrast to the former work,
our experiments a small flow of the solvent was utiliz
to establish a gradient in the particle density and
compress the particles into a dense colloidal solid. W
find a sequence of structural transitions similar to th
described above but with a considerably larger num
of phases. We present evidence for these phases t
an implementation of the buckling principle for structur
with more than one monolayer.

To obtain a well-defined wedge we used two optica
flat quartz glass plates and placed 4.5mm polystyrene
(PS) spheres as spacers along a rim of one of th
Then the plates were assembled and fixed with ep
glue, leaving several small holes. Afterwards we appl
a droplet of suspension to one of the holes and wai
until the wedge had filled due to capillarity. Finally th
complete cell was sealed with epoxy. We used surfac
stabilized PS spheres with a diameters of 842 nm (Bangs
Labs Lot: 20PS196). A videomicroscopic measurem
of the radial distribution functiongsrd of a single fluid
monolayer showed an effective hard spherelike behav
with the first peak located at 1.2s. To determine the
absolute height profile the wedges were characteri
by means of two-wavelength laser interferometry. T
wedge angle typically was on the order of1024 rad
corresponding to a height variation of only 20 nm ov
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a distance of 100s. Therefore the cell walls can be
considered to be locally parallel. Since the epoxy se
as prepared in our experiments has a small permeabi
for water, the diffusion of liquid through the seal produce
an—albeit very small—flow of the suspension toward th
edges of the wedge, whereF increases because the epox
is impenetrable for the spheres. When the volume fractio
exceeds the hard sphere freezing concentration the sys
starts to crystallize and during the evaporation proce
(taking up to one week) the phase boundary moves slow
through the cell.

The resulting solid consists of small crystallites with
typical sizes between 10 and 50 particle diameter
The structures were investigated with an inverse optic
microscope and a scanning electron microscope (SEM
For the latter, after complete evaporation of the solven
we carefully removed the top plate of some wedges a
sputtered a thin layer of gold on top of them. It turne
out that the cohesion forces between the particles a
larger than those between the particles and the substra
so that sufficiently large areas of the sample remain
undamaged by this procedure.

The observation of the sample with the optical micro
scope shows that the microstructure of the crystallites d
pends on the local wedge heightz. Starting with small
wall separations we find a monolayer with hexagon
symmetry (1n). When z increases, a smooth transition
into the quadratic phase (2h) via the above mentioned
buckling mechanism (1B ) is observed [cf. Fig. 1(a)]. In
the1B phase the hexagonal layer is split into two sublay
ers separated by a fraction ofz2h, the height of the2h
phase. Within each sublayer the particles are arranged
rows. In the range of the buckling transition the distanc
of the sublayers increases and the separation of adjac
rows within a sublayer gets smaller. The whole scenar
is depicted in Fig. 1(a). The exploitation of the additiona
volume, produced by the increasing wall separation, a
lows one to decrease the projection of the sphere sepa
tion onto thex-y plane and therefore to increaseF. The
buckling process is completed when adjacent rows in ea
sublayer touch each other, corresponding to the2h phase.

In agreement with the phase diagram given by Schmi
and Löwen [16]2h then is followed by the rhombicR
and the2n phase, as identified by microscopy. Withz
increasing further we find the situation shown in Fig. 2
where the wedge height increases from right to lef
There is a sharp boundary between2n and a region with
quadratic symmetry. Directly at the phase boundary
pronounced stripe pattern is visible which, with increasin
distance from the boundary, decays continuously into
purely quadratic structure (3h). Similar stripe patterns
are found each time a new monolayer is added. In th
following we discuss the structure of the striped region
in detail: Figure 3(a) shows a SEM picture of the
transition region between4n and 5h. The surfaces of
the crystallites correspond to (100) planes, being disrupt
2349
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FIG. 2. Optical micrograph of the transition region betwee
2n and 3h. The wedge height increases from right to le
and the black lines in the upper right corner indicate the sha
boundary betweenn and P which is followed by the smooth
decay of3P into 3h. The insets show more detailed view
of the n, P , and h regions as observed with the optica
microscope.

every four particles along one direction by a row o
spheres which lies below the others and which is a
displaced by half a particle diameter in the direction
the rows. On the left side, where the spheres have b
removed during the disassembly of the wedge, a cro
section of the structure is revealed. The enlargem
of this region [Fig. 3(b)] shows that the structure
composed of triangular shaped prisms (four spheres
each side) which are interlocked. We found such prism
with side lengths ranging between two and up to eig
particle diameterss, at locations where the wedge heigh
allow for two to eight monolayers. In the following they
will be referred to asn-layerprism phasesnP .

To analyze the properties of the new phases
considered rigid prisms with an equal number of particl
at each side: If, as implied by Fig. 3(b), the base
a prism is a (100) plane, then the side planes have
be (111) planes in order to obtain an equal number
particles on each side of the prism. Therefore there
two possibilities to interlock the sides of two adjace
prisms. On one hand one can keep the fcc stack
schemesabca . . .d leading to a quadratic symmetry. On
the other hand, introducing a stacking fault, the prisms c
also be interlocked in the hcp schemesaba . . .d. It is the
latter that reproduces the structure of Fig. 2. The heig
of thenP phase is then calculated to be

znP  znh 1
1

3
p

2
s , (2)

wheres is the diameter of the spheres andznh the height
of the nh structure. An analysis ofFnP shows that
some prism phases (e.g.,F4P  0.668, F4n  0.627,
and F4h  0.624 at z4P ) are more closely packed than
the n and h phases at the same cell height but othe
(e.g., 3P ) are not. We point out that the smooth deca
2350
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FIG. 3. (a) SEM image of two crystallites of the4P phase
separated by a phase boundary. The material missing in
left part of the image has been removed during preparation
the SEM. (b) Magnified view of the cross section visible in th
lower left corner of (a). The contours of the prisms are add
as a guide to the eye.

of the stripe pattern into theh phase shown in Fig. 2
directly suggests a smooth transition between prism a
h phases. By use of a model of rigid prisms it ca
be visualized that a continuous transition amongnh,
nP , and sn 1 1dh is possible. This is sketched in
Fig. 1(b) for the transition of4h ! 4P ! 5h, where
the prismlike buckling units are indicated by brighter an
darker spheres, respectively. The sequence first sho
the situation where the cell heightz exactly matches the
condition for the4h structure. With increasingz the
brighter marked parts of the structures are dislocat
somewhat in the vertical direction. This allows one t
decrease the distance of adjacent prisms and therefor
increaseF. Finally (bottom), whenz is increased further
this smooth transition leads to the5h structure.

To determine where these phases are expected to oc
in the wedge, we calculated their packing fractionsF and
plotted them in Fig. 4 as a function of the cell heigh
z. The symbols denote the situation when a particu
structure exactly matches its optimum wedge heightz.
The dotted lines are taken from [12] and indicate ho
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FIG. 4. Packing fraction vs height. The symbols indica
the height of a particular structure; the dotted lines sho
the decay ofF when a structure does not match the wedg
height (cf. [12]). The dash-dotted lines indicate the1n ! 2h
buckling transition and the rhombic phase taken from [16]. T
full line is our calculation for the buckling transition betwee
the h and the prism phases.

F for different structures decreases in the vicinity of the
optimum z, and the dash-dotted lines are those for t
buckling transition (1n ! 2h) and the rhombic phase
(2h ! 2n) taken from [16]. Finally, the solid lines
show the packing fractions of the prism phases, calcula
according to our model. They show that the continuo
transition is smoothing out the large fluctuations ofF,
which are present when onlyn and h phases are taken
into account. Above this line there are peaks of then
phases, because none of the buckling structures exce
their F when they match the wedge height exactly. Th
maximum increase ofF is 4% (4h ! 4n) emphasizing
the efficiency of the buckling process.

From Fig. 4 one obtains a prediction for the sequen
of closest packed structures as a function of the c
height: 1n,1B ,2h,2r ,2n,2P ,3h,3P ?,3n,3P ,4h,4P ,
4n,4P , . . . . This agrees well with the sequence foun
in the experiment pointing out that under our expe
mental conditions the packing fraction is maximize
The only exception is that the first appearance of t
3P phase, marked with a star (?), is not found in the
experiment. Furthermore, a quantitative comparison w
the experiment shows that the stability regime of then
and h phases is underestimated in Fig. 4. There a
several reasons which may explain the deviations: Fir
the model is solely based on geometrical consideratio
and therefore cannot account for hysteresis effects a
entropic contributions. However, according to Pan
et al. [12] the latter is qualified due to the fact that
hydrostatic pressure imposed on the particles larg
reduces the influence of the entropic contributions to t
free enthalpy and then the equilibrium configuration
that of maximumF. In our case the pressure is no
hydrostatic but stems from the evaporation of the solve
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during the experiment. Second, we added just one n
class of structures to the model and of course there mi
be others. During our experiments we found hints on
buckling of structures with hexagonal basis which ma
account for the underestimated stability range of then
phases.

In conclusion we made experiments with nearly ha
colloidal spheres subject to lateral compression within
wedge. We found a new buckling process, interpolatin
betweennh andsn 1 1dh via a new intermediate prism
phasenP . The prism phases can be interpreted as f
stacks with a periodic pattern of stacking faults. B
means of this buckling process the system can adapt
structure to the local wall separation in order to mainta
a high packing fraction.
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