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There is an unresolved debate in the scientific community about the shape of the quasistatic

displacement pulse produced by nonlinear acoustic wave propagation in an elastic solid with

quadratic nonlinearity. Early analytical and experimental studies suggested that the quasistatic

pulse exhibits a right-triangular shape with the peak displacement of the leading edge being

proportional to the length of the tone burst. In contrast, more recent theoretical, analytical,

numerical, and experimental studies suggested that the quasistatic displacement pulse has a flat-top

shape where the peak displacement is proportional to the propagation distance. This study presents

rigorous mathematical analyses and numerical simulations of the quasistatic displacement pulse. In

the case of semi-infinite solids, it is confirmed that the time-domain shape of the quasistatic pulse

generated by a longitudinal plane wave is not a right-angle triangle. In the case of finite-size solids,

the finite axial dimension of the specimen cannot simply be modeled with a linear reflection

coefficient that neglects the nonlinear interaction between the combined incident and reflected

fields. More profoundly, the quasistatic pulse generated by a transducer of finite aperture suffers

more severe divergence than both the fundamental and second order harmonic pulses generated by

the same transducer.VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4817840]

PACS number(s): 43.25.Dc, 43.25.Ed, 43.25.Qp, 43.25.Ba [ANN] Pages: 1760–1774

I. INTRODUCTION

A harmonic acoustic tone burst propagating through an

elastic solid with quadratic nonlinearity produces both a

collinear burst of the well-known second harmonic, and an

often neglected quasistatic displacement that is associated

with the acoustic radiation-induced eigenstrain. There is an

unresolved debate in the scientific community about the

time-domain shape of this quasistatic displacement pulse.

Early analytical and experimental studies suggested that the

pulse has a right-triangular shape with the peak displacement

of the leading edge being proportional to the length of the

tone burst. Based on Cantrell’s theoretical analysis of the

acoustic-radiation stress in solids,1 Yost and Cantrell in a

follow-up paper2 predicted that the quasistatic displacement

pulse u0(t) produced by a longitudinal plane wave propagat-

ing through a semi-infinite elastic solid with quadratic nonli-

nearity must be of right-triangular shape as illustrated in

Fig. 1. The leading edge of the quasistatic displacement

pulse detected at x¼ L arrives with an L/c propagation delay

after it was generated at t¼ 0 by an infinitely large harmonic

displacement radiation source located at the surface of the

half-space (x¼ 0). The length of the quasistatic displacement

pulse is equal to the temporal length s of the excitation pulse.

Crucially, Yost and Cantrell also predicted that the slope of

the right-triangular shape is a measure of the nonlinearity

parameter b,

@u0
@t

¼ �
bx2 U2

8 c
; (1)

where U is the displacement amplitude of the harmonic

acoustic tone burst, x is the angular frequency, and c is the

longitudinal sound velocity in the solid.2 Since they also pre-

dicted that the trailing edge of the quasistatic displacement

pulse vanishes, this means that the leading edge of the quasi-

static displacement pulse must be independent of the propa-

gation distance, and proportional to the duration of the pulse

u01 ¼
bx2 U2 s

8 c
: (2)

As pointed out in Ref. 3, this is difficult to reconcile, since it

suggests that information can be carried by an elastic dis-

turbance faster than the speed of sound; an observer sta-

tioned at x¼L cannot instantaneously determine that the

tone burst was turned off at time t¼ s at a transmitter located

at x¼ 0, since this information is not available at the point of

observation (x¼ L) before t¼L/cþ s.

Yost and Cantrell conducted carefully designed and exe-

cuted measurements to validate their analytical predictions

in the [110] crystallographic direction of single crystal sili-

con and isotropic vitreous silica.2 Later, Cantrell et al. suc-

cessfully used the slope of the quasistatic displacement pulse
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to measure the nonlinearity parameter of crystalline silicon

in all three crystallographic symmetry directions.4 Although

these studies did not directly present the experimentally

recorded quasistatic pulse that exhibits the right-triangular

shape with a sharp leading edge and a uniformly decreasing

slope until the end of the pulse, their measurements of the

acoustic nonlinearity parameter using the slope of the quasi-

static displacement pulse did show good agreement with

known values.

Later on, additional experimental, computational, and

analytical evidence emerged which shows that Yost and

Cantrell’s prediction of a right-triangular shape for the quasi-

static displacement pulse cannot be independently verified.

Jacob et al.5 conducted displacement measurements with an

optical interferometer in fused silica and aluminum alloy

samples and found that the quasistatic displacement pulse

produced by a longitudinal acoustic wave exhibited a flat-top

shape with amplitude independent of the duration of the tone

burst, but proportional to the propagation distance. R�enier

et al.6 also found that the amplitude of the quasistatic dis-

placement generated by an ultrasonic tone burst propagating

through water was linearly proportional to the propagation

distance. Narasimha et al.7 conducted similar experiments in

Al7175-T7351 alloy using a piezoelectric receiver and con-

firmed that the detected quasistatic pulse exhibited a flat-top

shape and its amplitude was independent of the duration of

the tone burst. In response, Cantrell8 argued that the experi-

mental results of Jacob et al.5 were the spurious consequence

of uncorrected diffraction and attenuation effects in their

measurements and suggested that the results of Narasimha

et al.7 were a consequence of the characteristics of their

receiving transducer.

In their rebuttal, Narasimha et al.9 conducted one-

dimensional numerical simulations using a finite-difference

method to determine the characteristics of the quasistatic

pulse and confirmed the pulse exhibited a flat-top shape

with the pulse amplitude independent of the duration of the

tone burst and proportional to the propagation distance.

Subsequently, Cantrell and Yost10 further argued that the

ever increasing amplitude of the quasistatic displacement

pulse presented in Ref. 9 would mean that the energy den-

sity must increase uniformly with propagation distance,

thus violating the law of energy conservation. Recently, Qu

et al.3,11 studied this controversial issue of quasistatic pulse

shape by obtaining an analytical solution for the propaga-

tion of tone burst in elastic solids with quadratic nonlinear-

ity. They showed that as the eigenstrain pulse produced by

the nonlinearity moves through the medium at the speed of

sound, it continuously generates a quasistatic elastic wave,

like an airplane flying at the speed of sound, which results

in a cumulative effect and produces a quasistatic displace-

ment pulse that is proportional to the propagation length,

but independent of the duration of the tone burst. They also

analyzed the effects of displacement-prescribed versus

traction-prescribed boundary conditions at the radiating

plane. They showed that the quasistatic displacement

pulse depends on the boundary conditions, so care must be

taken when using the quasistatic displacement to measure

the acoustic nonlinearity parameter of a solid. In their

response, Cantrell and Yost12 suggested that the analytical

solutions derived in Ref. 11 violate the Law of Energy

Conservation.

The publication of Ref. 12 prompted us to carry out a

careful re-examination of our early work.3,11 Our objec-

tives are twofold. First, we want to check the correctness

of our analytical solutions, specifically checking if they

violate the law of energy conservation. Second, we want to

understand the mathematical and physical underlining of

the right-triangular shape of the quasistatic pulses reported

in Refs. 1, 2, 4, 10, and 12. We will accomplish the first

objective by offering a rigorous analytical proof that the

earlier results presented in Ref. 11 are indeed in strict

agreement with the Law of Energy Conservation, and by

conducting a comprehensive numerical study using the

finite element (FE) method. In pursuing the second objec-

tive, we uncovered several interesting phenomena related

to the effects of the finite size of the specimen and the

ultrasonic beam on the propagation of a tone burst in elas-

tic solids with quadratic nonlinearity, although none of

these effects fully explains the triangular quasistatic dis-

placement pulse measured experimentally by Yost and

Cantrell.2

The outline of this paper is as follows. In Sec. II we

review the analytical predictions of Qu et al. for the quasi-

static displacement pulse generated by a plane wave propa-

gating in an elastic half-space of quadratic nonlinearity.11

We also provide a clear physical interpretation of these an-

alytical solutions, and rigorously prove that they do not

violate the law of energy conservation. In addition, we also

present new FE simulation results that unequivocally prove

that these analytical results are correct. In Sec. III we pres-

ent both analytical and FE results to show that the finite

length of the specimen cannot simply be modeled with a

linear reflection coefficient that neglects the nonlinear

interaction between the combined incident and reflected

fields. In Sec. IV we present FE results to show that the

divergence of the quasistatic wave is not negligible, even

when the divergences of the fundamental and second har-

monic are both negligible and illustrate how the lateral

dimension of the acoustic beam affects both the shape and

amplitude of the quasistatic displacement pulse. Finally,

we conclude in Sec. V.

FIG. 1. (Color online) Schematic illustration of the right-triangular shape

predicted by Yost and Cantrell for the quasistatic displacement pulse (Ref. 2).
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II. PLANE WAVE PROPAGATION IN AN ELASTIC
HALF-SPACE

Assume that a harmonic acoustic tone burst of displace-

ment amplitude U and angular frequency x propagates

through an elastic solid with weak quadratic nonlinearity.

The solid is characterized by its longitudinal sound velocity

c and nonlinearity parameter b. The governing equation is

given in Eq. (A3). Perturbation solutions to Eq. (A3) that are

valid up to the terms proportional to b were derived in

Ref. 11 for both the displacement-prescribed and traction-

prescribed boundary conditions at the surface of the

half-space. In Appendix A, we show that, up to the terms

proportional to b, the energy flux computed based on the sol-

utions in Ref. 11 is the same regardless of the location where

the energy flux is computed. This indicates that energy car-

ried by the tone burst remains the same as it propagates.

Therefore, the law of energy conservation is not violated,

contrary to the claims made in Ref. 12.

The acoustic radiation-induced quasistatic eigenstrain

that accompanies the harmonic tone burst as it propagates

through the elastic medium is3

e� ¼
ð1þ bÞx2 U2

4 c2
: (3)

The nonlinearity parameter b accounts for both the nonli-

nearity of the displacement-strain relationship for finite

amplitude waves, and the nonlinearity of the stress-strain

relationship that gives rise to cubic terms in the strain

energy density. The material effect can be characterized

with the second- and third-order elastic coefficients of the

material. In an isotropic solid, it is customary to use two of

the three Murnaghan coefficients k and m to obtain b as

follows:

b ¼ � 3þ
2‘þ 4m

kþ 2l

� �

; (4)

where k and l are Lam�e constants. Alternatively,

b¼�(3þC111/C11), where C11 and C111 are second- and

third-order elastic coefficients, respectively.

While the eigenstrain is intrinsic to the material under-

going harmonic deformation of given amplitude and fre-

quency, the total quasistatic strain and stress also depend on

the boundary conditions.3 Let us assume that the acoustic

tone burst was produced by a harmonic displacement pre-

scribed on an elastic solid half-space at x¼ 0,

uð0; tÞ ¼ UPðtÞ sinðxtÞ: (5)

Here, the pulse shape is given by

PðtÞ ¼ HðtÞ � Hðt� sÞ; (6)

where H(t) is the Heaviside step function. Later we will

assume that s¼ pT, where p¼ 1,2,… is an integer, T¼ 1/f is

the period of the fundamental harmonic, and f denotes the

cyclic frequency, i.e., x¼ 2pf. The quasistatic displacement

is then defined somewhat arbitrarily as

u0ðx; tÞ ¼

ðtþ T=2

t�T=2

uðx; tÞ dt: (7)

In the particular case of prescribed displacement at the trans-

mitting plane, the quasistatic displacement pulse grows pro-

portionally to the propagation distance x, and exhibits a flat-

top shape of length s as given by11

u0Dðx; tÞ ¼
bx2 U2 x

8 c2
P t�

x

c

� �

: (8)

In the case of prescribed tractions at the transmitting

plane, we can choose the traction vector so that stress pro-

duced in front of the transmitter is11

rð0; tÞ ¼ �q cxUPðtÞ cosðxtÞ: (9)

Although the polarity of the excitation pulse does not affect

the nonlinear terms, the negative sign in Eq. (9) was chosen

so that the polarity of the generated fundamental harmonic is

the same as in the displacement-prescribed case before. The

quasistatic displacement pulse also grows proportionally to

the propagation distance x, but it exhibits a trapezoidal shape

u0Tðx; tÞ ¼
bx2 U2

8 c2
ð2 x� ctÞP t�

x

c

� ��

�c sH t� s�
x

c

� ��

: (10)

We should point out that Eq. (10) was misprinted in Ref. 11.

The leading edge of the quasistatic displacement pulse is the

same as in the previous displacement-prescribed case

u0Tðx; x=cÞ ¼
bx2 U2 x

8 c2
; (11)

but the shape of the pulse is not flat-top in this case. Rather,

the quasistatic displacement decreases with the same slope

as the one predicted by Yost and Cantrell2 and previously

given in Eq. (1),

@u0T
@t

¼ �
bx2 U2

8 c
: (12)

It should also be mentioned that a true static displacement

term is left when the tone burst passes the observer

u0Tðx; t > x=c þ sÞ ¼ �
b U2 x2 s

8 c
; (13)

and the material extension caused by the eigenstrain is in the

region behind the point of observation, therefore it causes a

negative displacement behind the propagating pulse. It does

not matter that the eigenstrain pulse is moving away from

the observer at the speed of sound; there is a remnant of the

negative displacement due to the backwards push of the

eigenstrain pulse. In this way, the drop at the trailing edge of

the quasistatic displacement pulse at t¼ x/cþ s is exactly the

same as the rise at the leading edge given in Eq. (11).

Formally, Eq. (13) is of the same magnitude and conveys the

1762 J. Acoust. Soc. Am., Vol. 134, No. 3, September 2013 Nagy et al.: Finite-size nonlinear effects



same information about the duration of the tone burst, as

Eq. (2), but of course at t¼ x/cþ s this information is legiti-

mately available at the point of observation. We should point

out that, in a practical situation, the remnant static displace-

ment will inevitably decay and ultimately vanish due to the

effects of absorption, scattering, divergence, and reflection.

The difference Du0ðx; tÞ ¼ u0Tðx; tÞ � u0Dðx; tÞ between

the quasistatic displacement pulses produced by traction- and

displacement-prescribed boundary conditions is a tapered step

function

Du0ðx; tÞ ¼ �
bx2 U2

8 c
t�

x

c

� �

H t�
x

c

� ��

� t� s�
x

c

� �

H t� s�
x

c

� �
�

: (14)

In the displacement-prescribed case, a restraining force is

acting on the transmitter that assures that the average dis-

placement during excitation and the remnant displacement

after the end of it remain zero. The difference between the

two quasistatic displacement pulses is the additional quasi-

static displacement pulse produced in the material by this

restraining force acting on the transmitter. This pulse is gen-

erated at the transmitting plane at x¼ 0 and it propagates

through the medium as a purely linear elastic wave

Du0ðx; tÞ ¼ Du0ð0; t � x=cÞ, where

Du0ð0; tÞ ¼ �
bx2U2

8c
½tHðtÞ�ðt�sÞHðt� sÞ�: (15)

After ramping up during the duration of the excitation, this

displacement assumes a truly static nature with a remnant

static value of Du0ð0; t > sÞ ¼ �bx2 U2 s=ð8 cÞ that is

proportional to the duration of the exciting tone burst. It is

well known that when such a downward-step waveform

passes through an alternating current (ac)-coupled (i.e., high-

pass filtering) detection system it will produce an initial neg-

ative slope, which is the behavior observed by Yost and

Cantrell.2

It should be pointed out that the results in Sec. II are

limited to the one-dimensional (1D) plane-wave case.

Compared to the fundamental and second harmonics, the

low-frequency disturbance propagates through the medium

with a very large divergence and quickly decays away from

a finite-diameter transmitting source, as will be shown later.

A. FE simulation

The analytical solutions derived in Ref. 11 are asymp-

totic solutions to Eq. (A4) for weak nonlinearity. To further

confirm the validity of these asymptotic solutions, FE analy-

ses were conducted to solve the nonlinear wave equation

Eq. (A4). To this end, we exploited the unique capabilities

of the COMSOL Multiphysics FE simulation software that

has a built-in option called “Murnaghan material” to simu-

late the nonlinear interaction between an acoustic wave and

an isotropic elastic solid of quadratic nonlinearity. The mate-

rial is characterized by two Lam�e constants, k and l, three

Murnaghan constants, k, m, and n, and its density q. Because

of the computational prowess of today’s computers and the

computational efficiency of state-of-the-art simulation soft-

ware like COMSOL, one can easily eliminate any disturbing

artifacts, such as numerical dispersion caused by discretiza-

tion, and obtain irrefutable evidence as to whether an

analytical prediction based on a given model is valid or not.

Specifically, we used the properties of generic aluminum

available from the material library of COMSOL. The rele-

vant properties of the material are listed in Table I.

We ran simulations with the temporal period of the sig-

nal discretized into 1000 time steps and the spatial period

(wavelength of the fundamental harmonic) discretized

into 1000 elements. Earlier studies13 have shown that such

discretization is more than fine enough to eliminate spurious

numerical dispersion. We avoided using any post processing

or filtering that could possibly distort the received displace-

ment signals. As an example, Fig. 2 shows FE simulation

results of a p¼ 8 cycle, f¼ 1MHz frequency, U¼ 100 nm

amplitude tone burst after L¼ 50mm propagation in alumi-

num for the case of a displacement-prescribed plane radiator.

Although such simulations could be readily conducted on a

1D model, we used an axisymmetric two-dimensional model

with rolling boundary (no normal displacement, no tangen-

tial traction) condition on the outside surface of the cylindri-

cal model so that finite-beam effects could be also simulated

with the same model later. In order to obtain the signals pro-

duced by the nonlinear interaction between the material and

the propagating acoustic tone burst without resorting to fil-

tering that might affect these pulse shapes, we recorded the

received signals with both positive and negative polarities of

the transmitted burst and averaged the two signals [Fig.

2(a)]. The average signal suppresses all even harmonics, and

most importantly the fundamental one.14,15 Therefore, the

average signal is entirely due to nonlinear interaction and in

our case it is a superposition of the second-harmonic and the

quasistatic displacement pulses [Fig. 2(b)]. The transient

spikes seen at the beginning and the end of the burst are indi-

cations of the high frequency components of the signal

caused by using an untapered rectangular window function

P(t) to modulate the tone burst. The effect is magnified in

the nonlinear signal partially because the nonlinear effect is

proportional to the square of frequency, and partially

because higher frequencies are less perfectly resolved by

discretization in COMSOL. Finally, we used running time

averaging (smoothing) according to Eq. (7) to recover the

TABLE I. Physical properties of aluminum used in the FE simulations.

Property Symbol Value Unit

Density q 2700 kg/m3

Lam�e constant k 51 GPa

Lam�e constant l 26 GPa

Murnaghan constant k �250 GPa

Murnaghan constant m �330 GPa

Murnaghan constant n �350 GPa

Velocitya c 6176 m/s

Nonlinearitya b 14.67

aCalculated from listed properties.
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envelope of the second-harmonic and the quasistatic dis-

placement pulses [Fig. 2(c)]. The gradual rather than abrupt

transitions at the leading and trailing edges of the pulses are

caused by the averaging scheme used to separate the second-

harmonic and quasistatic displacement components without

the use of filtering. These results are in good agreement with

our analytical prediction previously given in Eq. (8), as both

pulses exhibit flat-top shapes and the amplitude of both

pulses are found to be identical to the predicted

u0¼ 0.9488 nm value within 0.01% numerical truncation

error.

The accuracy of this agreement itself leaves no doubt

about the validity of our analytical prediction of a flat-top

quasistatic displacement pulse in the case of a displacement-

prescribed plane radiator. Still, for illustration purposes, Fig. 3

shows the analytical predictions and FE simulation results

for the amplitude of the quasistatic displacement pulse pro-

duced by an f¼ 1MHz frequency, U¼ 100 nm amplitude

tone burst in aluminum in the case of a displacement-

prescribed plane radiator. For simplicity, the essentially

identical amplitude of the second harmonic is not shown.

The amplitude of the quasistatic displacement pulse is plot-

ted (a) as a function of the duration of the tone burst at a con-

stant observation distance of L¼ 50mm and (b) as a function

of the observation distance for a constant pulse duration of

s¼ 80ls (p¼ 8). As expected for the case of a

displacement-prescribed plane radiator, the amplitude of

the quasistatic displacement pulse is independent of the pulse

duration and linearly proportional to the propagation

distance.

Results of Qu et al. suggested that the shape of the

quasistatic displacement pulse depends on the boundary con-

ditions that prevail in the transmitting plane. Displacement-

prescribed boundary conditions correspond to infinitely high

transmitter acoustic impedance, which is totally unrealistic in

an experimental test. The initial goal of Qu et al. was only to

point out that, although the eigenstrain is independent of the

boundary conditions, the total strain is the sum of the eigen-

strain and the elastic strain, and that the latter is strongly

influenced by the boundary conditions.3 Subsequently, Qu

et al. illustrated the importance of the boundary conditions,

and therefore the acoustic impedance of the transmitter, by

analyzing the case of a radiator of negligible acoustic imped-

ance using traction-prescribed boundary conditions.11 They

found that in this case, although the negative slope of the

quasistatic displacement pulse as given by Eq. (12) is identi-

cal to the slope of the right-triangular pulse shape predicted

by Yost and Cantrell,2 the amplitude of its leading edge is

independent of the pulse duration, and proportional to the

observation distance. Yost and Cantrell used a narrow-band

lithium niobate transducer bonded to the surface of their

specimen.2 Such a transducer is likely to present a low acous-

tic impedance to the elastic solid, especially below its reso-

nance frequency. We also ran COMSOL simulations similar

to the previously described ones for the case of a traction-

prescribed plane radiator. In order to produce the same

U¼ 100 nm amplitude for the fundamental harmonic, we

applied a tone burst of normal traction with qcxU¼ 1.0478

� 107N/m2 amplitude calculated from Eq. (9) without the

negative sign as the traction acting on the half-space with a

negative surface normal. The simulated signals were proc-

essed exactly as before. Figure 4 shows the FE simulation

FIG. 2. (Color online) FE simulation results of tone burst propagation in alu-

minum (displacement-prescribed plane radiator, p¼ 8, f¼ 1MHz,

U¼ 100 nm, L¼ 50mm).

FIG. 3. (Color online) Analytical predictions and FE simulation results for

the amplitude of the quasistatic displacement pulse produced by an

f¼ 1MHz frequency, U¼ 100 nm amplitude tone burst in aluminum (dis-

placement-prescribed plane radiator).
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results for the case of p¼ 8 cycles, f¼ 1MHz frequency,

U¼ 100 nm amplitude tone burst after L¼ 50mm propaga-

tion in aluminum. First, the received signals are recorded

with flipping the polarity of the transmitted signal [Fig. 4(a)].

As before, the average signal is a superposition of the

second-harmonic and quasistatic displacement pulses [Fig.

4(b)]. Finally, time-averaging of the average pulses yields the

envelopes of the second-harmonic and the quasistatic dis-

placement pulses [Fig. 4(c)].

These results are again in excellent agreement with our

analytical prediction previously given in Eq. (10), as the qua-

sistatic displacement pulse exhibits the expected trapezoidal

shape. The heights of the leading and trailing edges of the

quasistatic displacement pulse are found to be identical to

the u0¼ 0.9488 nm value calculated from Eq. (11) within

0.01% numerical uncertainty. Furthermore, the slope of the

pulse agrees with the �0.1172 nm/ls value calculated from

Eq. (12) within 0.05% numerical uncertainty. In summary,

COMSOL simulations left no doubt about the validity of our

earlier analytical predictions based on a infinite plane radia-

tor acting on the surface of a semi-infinite elastic solid of

quadratic nonlinearity in both the displacement- and

traction-prescribed boundary conditions.

In Secs. III and IV, we investigate several factors that

may affect the shape of the quasistatic displacement pulse

recorded by the receiving transducer, such as the finite size

of the specimen used in the measurements, and the finite

beam width generated by the transmitting transducer.

III. PLANE WAVE PROPAGATION IN A FINITE-LENGTH
SOLID SPECIMEN

Finite-size specimens are used in most ultrasonic tests.

Typically, a tone burst is generated by a transducer at one

end of the specimen, and is received by a receiving trans-

ducer at the other end of the specimen. If the receiving trans-

ducer’s mass is much smaller than that of the specimen, one

may assume that the receiving end of the specimen is under

traction-free condition. Thus, the signal received is different

from that propagating inside the specimen. This is particu-

larly the case when the signal is received by a capacitance-

based receiver as used in Ref. 2. To interpret such received

signals, solutions to a tone burst reflected at a traction-free

surface are needed.

First, assume that the same harmonic tone burst dis-

placement previously given in Eq. (5) is prescribed at the

transmitting plane at x¼ 0, while the receiver is placed on

the traction-free surface at x¼L. An analytical solution to

this problem is derived in Appendix B. It follows from

Eq. (B20) that the quasistatic displacement pulse at the

traction-free surface is given by

u0DðL;tÞ¼
bx2U2

4c
tH t�

L

c

� �

�ðt�sÞH t �s�
L

c

� �� �

:

(16)

When the spatial extent of the pulse is much less than the

thickness of the specimen (cs � L), the quasistatic displace-

ment pulse amplitude essentially doubles due to the reflec-

tion at the traction-free surface. The slope of the top of the

quasistatic displacement pulse is

@u0D
@t

¼
bx2 U2

4 c
: (17)

The static displacement left at the receiving plane after the

pulse has been fully reflected is

u0DðL; t > L=c þ sÞ ¼
bx2 U2 s

4 c
: (18)

This is understandable because reflection traps the

eigenstrain pulse between the transmitter and the receiver. In

the case of the prescribed-displacement boundary condition

at the transmitting plane, the trapped part of the eigenstrain

pulse produces an additional displacement that increases

with time as more and more of the eigenstrain pulse reflects

from the free surface back to the space between the transmit-

ter, which cannot move, and the receiver, which can move

FIG. 4. (Color online) FE simulation results of tone burst propagation in alu-

minum (traction-prescribed plane radiator, p¼ 8, f¼ 1MHz, U¼ 100 nm,

L¼ 50mm).
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freely. Therefore, the top of the quasistatic pulse will exhibit

a positive slope and a residual static strain remains when the

tone burst fully reflects from the receiving plane and all of it

is trapped. In the case of a traction-prescribed plane radiator,

the situation reverses. The quasistatic displacement pulse

can be obtained by integration from Ref. 11 after accounting

for the presence of the traction-free surface as follows (see

Appendix C for details):

u0TðL; tÞ ¼
bx2 U2 L

4 c2
P t�

L

c

� �

; (19)

which is the flat-top pulse shape obtained for the

displacement-prescribed transmitter on a semi-infinite half-

space except that the amplitude is doubled due to reflection

at the free surface.

In addition to the analytical solutions, we also conducted

COMSOL simulations similar to those shown in Sec. II.

First, assume that the same harmonic tone burst displacement

previously given in Eq. (5) is prescribed at the transmitting

plane at x¼ 0, while the receiver is placed on the traction-

free surface at x¼ L. Figure 5 illustrates the nonlinear signal

for a tone burst propagating through an L¼ 50mm thick

aluminum plate for (a) displacement-prescribed and (b)

traction-prescribed plane radiators (p¼ 8 cycles, f¼ 1MHz

frequency, U¼ 100nm amplitude). Here, and in all that fol-

lows, the nonlinear signal means the two even harmonics

(quasistatic and second harmonic) obtained by averaging the

FE simulation results for opposite polarities of the excitation

tone burst. Only the averaged signals are shown that include

both the second harmonic and quasistatic pulses, but the

main features are very clear. As a result of reflection at the

free surface, the amplitude of the second harmonic doubles,

but its envelope retains its rectangular shape.16 However, in

agreement with our analytical predictions above, the shape of

the quasistatic displacement pulse is dramatically changed by

the reflection at the free surface and cannot be described sim-

plistically by a linear reflection coefficient.

IV. FINITE-DIAMETER BEAMS IN AN ELASTIC
HALF-SPACE

Up to this point we have only considered plane waves

propagating through an elastic medium of quadratic nonli-

nearity. Therefore, the above results do not account for the

divergence of the primary acoustic beam, or that of the

secondary nonlinear components produced by the nonlinear

interaction between the harmonic tone burst and the mate-

rial. This is a serious limitation of the plane wave model that

significantly influences both the magnitude and shape of the

quasistatic displacement pulse. In practice, the finite lateral

dimension of the acoustic beam cannot be neglected because

the divergence of the quasistatic wave is not negligible, even

when the divergences of the fundamental and second

harmonics are negligible.

Assume that the acoustic pulse is generated by a rigid

piston transducer of radius a and received by a similar piston

receiver of the same radius after propagation over a path of

length L. No apodization is considered over the transducer

area, i.e., every element of the transmitter moves at the same

displacement ut and the received electric signal is propor-

tional to an un-weighted average of the vibration displace-

ment ur over the whole aperture of the receiver. Then, the

D¼ ur/ut ratio is a measure of the diffraction loss caused by

beam divergence. For example, attenuation measurements

must be corrected for this diffraction loss to accurately

assess the true attenuation coefficient of the material from

the measured total loss. In linear ultrasonics, the standard

way of obtaining an analytical correction for diffraction

losses is to use the Lommel integral that is exact for fluids.

The Lommel diffraction correction DL can be most conven-

iently written as a function of the normalized separation dis-

tance s¼L/N between the transmitter and the receiver,

where N¼ a2/k is the near field/far field transition distance

of a transducer for an acoustic wavelength k. Rogers and van

Buren derived the following exact analytical solution for the

Lommel diffraction correction17

DLðsÞ ¼ 1� e�i 2p=s ½J0ð2p=sÞ þ i J1ð2p=sÞ�; (20)

where J0 and J1 are zeroth- and first-order Bessel functions

of the first kind.

Although, strictly speaking, the Lommel correction is

limited to fluids, it is also an excellent approximation for

FIG. 5. (Color online) Nonlinear signals generated by a harmonic tone burst

propagating through an aluminum plate for (a) displacement-prescribed and

(b) traction-prescribed plane radiators (p¼ 8, f¼ 1MHz, U¼ 100 nm,

L¼ 50mm).
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most practical cases involving solids and it can be used to

illustrate the underlying physical problem behind the above

described plane wave solutions for the quasistatic displace-

ment pulse produced by a harmonic tone burst. Figure 6

illustrates the magnitude of the Lommel diffraction correc-

tion as a function of transducer radius. The propagation dis-

tance, sound velocity, and inspection frequency are all

chosen to correspond to the harmonic tone burst considered

in the above examples of nonlinear wave propagation in alu-

minum (L¼ 50mm, c¼ 6176m/s, f¼ 1MHz).

Similar diffraction corrections are not available for the

nonlinear second harmonic or quasistatic displacement

pulses. Therefore, COMSOL simulations were used to con-

duct fast and accurate numerical “experiments” to examine

the divergence behavior of the tone burst in elastic solids

with quadratic nonlinearity. In particular, we are interested

in whether the quasistatic pulse is more divergent than the

cumulative second harmonic that propagates. In practice, the

main reason why the second harmonic exhibits lower magni-

tude than expected based on the previously described plane

wave model is not divergence, but significant losses due to

material attenuation at higher frequencies. In extreme cases,

the attenuation induced loss is so high that the accumulation

of the second harmonic is limited by the characteristic

attenuation length, i.e., the inverse of the attenuation coeffi-

cient, rather than the total propagation length.18 In our study

the frequency-dependent attenuation of the material is com-

pletely neglected, therefore the second harmonic is propor-

tional to the propagation distance and its diffraction loss is

expected to be fairly well described by the Lommel diffrac-

tion correction shown in Fig. 6.

In the plane wave approximation, the quasistatic

displacement pulse was also found to exhibit a cumulative

effect in the sense that its magnitude was proportional to the

propagation distance. Although the eigenstrain remains con-

stant as the harmonic tone burst propagates through the me-

dium, the elastic part of the total strain exhibits a cumulative

effect since the elastic strain pulse propagates at the same

acoustic velocity as the constant eigenstrain that generated it

in the first place. Since the quasistatic strain pulse might ex-

hibit very strong divergence in the case of finite-diameter

transducers, its contribution to the total strain at the distant

point of observation might become all but negligible.

Therefore, for a slender collimated acoustic beam

(k< a<L< a2/k) the diffraction loss of the quasistatic pulse

reaching the observer will be much stronger than that of the

fundamental and second harmonics. In this section we will

present COMSOL simulation results to illustrate the signifi-

cant diffraction loss of the quasistatic displacement pulse

even in cases when the second harmonic is barely affected

by the divergence of the acoustic beam that generated both.

Figure 7 shows an example of two acoustic tone bursts

of opposite polarity generated by a displacement-prescribed

finite aperture radiator in an aluminum half-space (p¼ 6,

f¼ 1MHz, U¼ 100 nm, a¼ 15mm). The snapshots were

taken at t¼ 8 ls just before the leading edge of the tone burst

reached the receiver located at L¼ 50mm (only halves of

the axisymmetric distributions are shown). In this example,

the wavelength is k � 6.2mm and the near field/far field

transition distance is N � 36mm, slightly less than the dis-

tance between the transmitter and the receiver, therefore

some signs of divergence and interference in the near field

are visible.

Figure 8 shows examples of the received nonlinear sig-

nals for three different transducer radii. Due to the high-pass

filtering effect of the frequency-dependent diffraction correc-

tion, the small-diameter case (a) appears to be ac coupled

with the weak quasistatic component while the large-

diameter case (c) appears to be direct current coupled with

the quasistatic pulse having the same amplitude as the second

harmonic. Quantitative assessment of the diffraction loss

is made difficult by the fairly complex waveforms of the

received nonlinear signals. We further separated the quasi-

static pulse from the second harmonic tone burst by averag-

ing the nonlinear signal over half a period of the fundamental

signal, i.e., over a full period of the second harmonic. Since

the fundamental harmonic is already sufficiently suppressed

FIG. 6. (Color online) Lommel diffraction correction as a function of trans-

ducer radius (L¼ 50mm, c¼ 6176m/s, f¼ 1MHz).

FIG. 7. (Color online) Example of two acoustic tone bursts of opposite po-

larity generated by a displacement-prescribed finite aperture radiator in an

aluminum half-space (p¼ 6, f¼ 1MHz, U¼ 100 nm, a¼ 15mm,

L¼ 50mm, t¼ 8 ls).
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by averaging the two received signals for opposite excitation

polarities, this choice of integration length represents a good

compromise between the rejection of unwanted harmonics

and retaining subtle features of the quasistatic pulse shape.

Figure 9 shows examples of the (a) envelope of the sec-

ond harmonic tone burst and (b) quasistatic displacement

pulse for four different transducer radii and the infinite plane

wave prediction. In the infinite case, for the parameters cho-

sen in this example (b¼ 14.67, c¼ 6176m/s, f¼ 1MHz,

U¼ 100 nm, L¼ 50mm), the amplitude of the second har-

monic and the peak of the quasistatic displacement pulse are

both equal to u0¼ 0.9488 nm. As the transducer radius

decreases, the envelope of the second harmonic essentially

retains its rectangular shape, though there is a perceivable

drop in its amplitude. In contrast, the drop in the amplitude

of the quasistatic displacement pulse is much more signifi-

cant and the shape of the pulse also gets distorted with a

mostly negative slope for small transducer radii. The highly

complex shape of the quasistatic displacement pulse is due

to the frequency-dependence of the relevant diffraction loss,

and the downward slope of the top of the quasistatic dis-

placement pulse indicates increasing diffraction loss at very

low frequencies. It should be mentioned that the numerically

computed waveforms shown in Fig. 9(b) are similar to the

experimental waveforms observed by R�enier et al. in water.6

Until similar measurements are conducted in solids, this

good qualitative agreement can be considered as initial

experimental proof of the described diffraction effects on the

quasistatic displacement pulse.

Because of the complex shape of the quasistatic dis-

placement pulses detected for small transducer radii, it is

difficult to quantitatively characterize the diffraction loss as

a function of transducer radius using a single parameter.

Still, in order to indicate the main trends, we chose the aver-

age of the envelopes between 10 and 12 ls, i.e., in a 2-ls-

long window around the center of the received pulse. Using

FIG. 8. (Color online) Examples of the received nonlinear signals for three

different transducer radii.

FIG. 9. (Color online) Examples of the (a) envelope of the second harmonic

tone burst and (b) quasistatic displacement pulse for four different trans-

ducer radii and the infinite plane wave prediction.
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this definition, Fig. 10 shows the mean displacement ampli-

tudes of the first (fundamental) and second harmonics and

the quasistatic pulse as functions of the transducer radius for

L¼ 50mm transducer separation. The fundamental harmonic

was normalized to the amplitude of the prescribed displace-

ment at the transmitter (ut¼ 100 nm) while the amplitudes of

the two nonlinear components were normalized to their com-

mon plane wave asymptotic limit (u0¼ 0.9488 nm).

The first harmonic behaves exactly the way one would

expect based on the Lommel diffraction correction previ-

ously shown in Fig. 6. The second harmonic behaves simi-

larly, but exhibits slightly larger oscillations, which is not

surprising considering that its level is proportional to the

square of the amplitude of the fundamental wave. At the

a¼ 10mm transducer radius, the normalized amplitudes of

the first and second harmonics are both 80% based on the

nonlinear COMSOL simulation while the linear prediction

based on the Lommel correction of the fundamental har-

monic is about 76%. In comparison, the normalized ampli-

tude of the quasistatic displacement pulse is only 22%,

which clearly indicates the increased role of beam diver-

gence in the magnitude (and shape) of the quasistatic dis-

placement pulse. It should be mentioned that the higher

diffraction loss of the quasistatic displacement pulse relative

to the first and second harmonics also means that the differ-

ence between the displacement- and traction-prescribed

cases will be suppressed for finite transducer diameters.

V. CONCLUSIONS

This paper re-examined the controversial issue related

to the shape of the quasistatic displacement pulse produced

by nonlinear acoustic wave propagation in an elastic solid of

quadratic nonlinearity. Early results suggested that the quasi-

static displacement pulse has a right-triangular shape with a

peak displacement of the leading edge proportional to the

length of the tone burst; this is in contrast to a flat-top shape

with a peak displacement that is proportional to the propaga-

tion distance suggested by recent researchers. This study

uses a numerical simulation to settle this debate, and then

analyzes the finite-size effects in this problem.

These numerical simulation results unequivocally show

that a quasistatic displacement pulse has a flat-top shape

with a peak displacement that is proportional to the propaga-

tion distance, confirming the analytical results of Qu

et al.3,11 We also present a new analytical proof that, in con-

trast to the statement in Ref. 12, these analytical results do

obey the Law of Energy Conservation. In an effort to under-

stand the experimentally observed right-triangular shape of

the quasistatic displacement pulse reported by Yost and

Cantrell,2 we explored several other aspects of the problem

that might potentially be responsible to such observations.

Specifically, we investigated the effects of finite specimen

length and finite beam diameter, two practical aspects of the

experiment of Ref. 2. First, we found that the finite axial

dimension of the specimen cannot be simply modeled with a

linear reflection coefficient that neglects the nonlinear inter-

action between the combined incident and reflected fields.

These computational results are in agreement with new ana-

lytical results presented for the nonlinear reflection phenom-

enon at a traction free surface of a finite-length specimen.

Second, we determine that the finite lateral dimension of the

acoustic beam cannot be neglected since the divergence of

the quasistatic wave is not negligible, even when the diver-

gences of the fundamental and second harmonic are both

negligible. Under certain conditions, both of these finite-size

effects can influence the shape of a quasistatic displacement

pulse. However, neither effect can lead to a right-triangular

shape of the quasistatic displacement pulse.
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APPENDIX A: ENERGY CONSERVATION

This appendix proves that the perturbation solution

derived for the propagation of an acoustic pulse in an elastic

medium with weak quadratic nonlinearity satisfies the condi-

tion of energy conservation. To begin, consider a half-space

defined by x � 0, where x is the Lagrangian (or material)

coordinate describing the location of the material particle in

the initial (t ¼ 0) state. At any given time t, the displacement

of the particle x from its initial position is denoted by uðx; tÞ.
Deformation of the elastic body can then be described by the

Lagrangian strain

e ¼
@u

@x
þ
1

2

@u

@x

� �2

: (A1)

We assume that the half-space is made of an elastic solid

with quadratic nonlinearity, i.e., the normal (first Piola-

Kirchhoff) stress is related to the Lagrangian strain/displace-

ment gradient in the x-direction through

r¼qc2 e�
bþ1

2
e2

� �

¼qc2
@u

@x
�
b

2

@u

@x

� �2
" #

; (A2)

where q is the mass density, c is the longitudinal phase

velocity, and b is the acoustic nonlinearity parameter, all for

the elastic solid in the undeformed (initial) state.

FIG. 10. (Color online) The mean displacement amplitudes of the first and

second harmonics and the quasistatic pulse as functions of the transducer ra-

dius for L¼ 50mm transducer separation.
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The displacement equation of motion governing the

wave propagation in the x-direction is

1

c2
@2u

@t2
�
@2u

@x2
¼ � b

@u

@x

@2u

@x2
: (A3)

By a standard perturbation procedure, one may write the so-

lution to Eq. (A3) as

uðx; tÞ ¼ u1ðx; tÞ þ u2ðx; tÞ; (A4)

where ju1ðx; tÞj 	 ju2ðx; tÞj, or u2 ¼ Oðu21Þ, and

1

c2
@2u1

@t2
�
@2u1

@x2
¼ 0;

1

c2
@2u2

@t2
�
@2u2

@x2
¼ �b

@u1
@x

@2u1

@x2
:

(A5)

Making use of the constitutive law Eq. (A2), one may

expand the stress into

rðx; tÞ ¼ r1ðx; tÞ þ r2ðx; tÞ; (A6)

where jr1ðx; tÞj 	 jr2ðx; tÞj and

r1ðx; tÞ ¼ q c2
@u1
@x

;

r2ðx; tÞ ¼ q c2
@u2
@x

�
b

2

@u1
@x

� �2
" #

: (A7)

The solution to the first of Eq. (A5) that represents a forward

propagating wave can be written as

u1ðx; tÞ ¼ f ðt� x=cÞ: (A8)

It then follows that the second part of Eq. (A5) can be writ-

ten as

1

c2
@2u2

@t2
�
@2u2

@x2
¼ gðt� x=cÞ; (A9)

where

gðsÞ ¼
b

c3
f 0ðsÞ f 00ðsÞ; (A10)

and the prime denotes the derivative with respect to the argu-

ment of the function.

By a direct substitution, one can show that the solution

to Eq. (A9) is given by

u2ðx; tÞ ¼
b x

2 c2

ðt�x=c

0þ
f 0ðsÞ f 00ðsÞdsþ Dxþ Bðt� x=cÞ;

(A11)

where BðyÞ is an arbitrary function of y and D is an integra-

tion constant, both need to be determined by the boundary

conditions and/or the consistency condition

@u

@t
¼

2 c

3 b
1� b

@u

@x

� �3=2

� 1

" #

: (A12)

If f ðsÞ is a smooth function for s 2 ð0; t� x=cÞ, the integral

in Eq. (A11) can be carried out

u2ðx; tÞ¼
bx

4c2
ð½f 0ðt�x=cÞ�2�½f 0ð0þÞ�2ÞþDxþBðt�x=cÞ:

(A13)

This is the general solution to the second order governing

equation Eq. (A5), which was previously derived as Eq. (11)

of Ref. 11.

1. Energy flux

To demonstrate that the solution we have obtained does

not violate energy conservation, we consider the energy flux

Fðx; tÞ. If the time integral of Fðx; tÞ over the duration of the

pulse is independent of x, then the total energy is conserved,

because it means that energy is not added nor subtracted

from the wave packet as it propagates along the positive

x-direction.

The energy flux in the positive x-direction is defined by

Fðx; tÞ ¼ � rðx; tÞ _uðx; tÞ: (A14)

Thus, the total energy that passes through location x over the

duration of the pulse s is given by

E ¼

ðs

0

Fðx; tÞdt ¼ �

ðs

0

rðx; tÞ _uðx; tÞ dt : (A15)

In what follows, we show that E is independent of the loca-

tion x for the solution derived in Qu et al.11 To this end, we

make use of Eqs. (A4), (A6), and (A7) in Eq. (A14) to arrive

at the asymptotic expression

Fðx; tÞ ¼ F1ðx; tÞ þ bF2ðx; tÞ þ 
 
 
; (A16)

where

F1ðx; tÞ¼�qc2 _u1ðx; tÞ
@u1ðx; tÞ

@x

¼�qc2 _u2
@u1
@x

�
_u1

2

@u1
@x

� �2

þ _u1
@u2
@x

" #

: (A17)

Since the wave is non-dispersive, one can easily show that

for the u1 given by Eq. (A8),

E1 ¼

ðs

0

F1ðx; tÞ dt ¼ q c

ðs

0

½f 0ðsÞ�2ds (A18)

is independent of x. Furthermore, one can write

E2¼

ðs

0

F2ðx; tÞdt¼
qx

3c
ð½f 0ðsÞ�3�½f 0ð0Þ�3Þ

þ
q

4

ðs

0

ð½f 0ð0Þ�2 f 0ðsÞþ½f 0ðsÞ�3þ8cB0ðsÞf 0ðsÞ

�4Dc2f 0ðsÞÞds: (A19)
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Clearly, E2 is also independent of x if f 0ðsÞ ¼ f 0ð0Þ, i.e., the
slope of the pulse is the same at the front and trailing edges.

This is obviously the case when the excitation is time-

harmonic.

To verify the above derivation, consider the displacement-

prescribed boundary condition,

uð0; tÞ ¼ f ðtÞ ¼ UPðtÞ sinðx tÞ: (A20)

It follows from Ref. 11 that BðtÞ ¼ 0 and D ¼ b ½f 0ð0Þ�2=
ð4c2Þ. Thus,

E1¼
1

2
qx2U2 sc;

E2¼
q

4

ðs

0

½f 0ðsÞ�3dsþ
qx

3c
ð½f 0ðsÞ�3�½f 0ð0Þ�3Þ¼0: (A21)

Thus, the total energy that passes through any location is the

same.

Next, consider the case when a traction is prescribed on

the boundary

rð0; tÞ ¼ r0ðtÞ ¼ �q cxU PðtÞ cosðxtÞ: (A22)

In this case, according to Qu et al.,11

u1ðx; tÞ ¼ �
1

q c

ðt�x=c

0

r0ðsÞ ds; (A23)

and

D ¼
b

4q2 c4
½r0ð0

þÞ�2; BðtÞ ¼ �
b

4q2 c3

ðt

0þ
½r0ðsÞ�

2
ds:

(A24)

Thus,

E1¼

ðs

0

F1ðx; tÞdt¼
1

qc

ðs

0

r20ðsÞds¼
1

2
qx2U2cs (A25)

and

E2 ¼
1

6 q2 c3
½r30ðsÞ � r30ð0Þ� �

q x

3 q2 c4
½r30ðsÞ � r30ð0Þ�

�
1

4 q2 c3

ðs

0

½r00ðsÞ�
3
ds ¼ 0: (A26)

Again, the total energy passing through any location x is the

same. Further, we notice that in both cases, the energy asso-

ciated with F2 is zero, indicating that the net energy associ-

ated with u2ðx; tÞ that passes through any given location over

the duration of the pulse is zero. This means that E1 must be

equal to the work done by the traction on the surface at

x ¼ 0 over the pulse’s duration, i.e., E1 ¼
Ð s

0
r _ujx¼0dt. This

can be easily verified by carrying out the integral.

APPENDIX B: REFLECTION ATA FREE SURFACE,
DISPLACEMENT-PRESCRIBED TRANSMITTER

To begin, consider a slab defined by 0 � x � L,

where x is the Lagrangian (or material) coordinate describing

the location of the material particle in the initial (t ¼ 0) state.

First, let us now assume that a harmonic displacement pulse

is prescribed at the slab’s left surface x ¼ 0, and the traction

remains zero at the slab’s right surface x ¼ L. Thus, the

boundary conditions can be written as

uð0; tÞ ¼ UPðtÞ sinðxtÞ; rðL; tÞ ¼ 0; (B1)

where PðtÞ ¼ HðtÞ � Hðt� sÞ with HðtÞ being the

Heaviside step function and s represents the duration of

the pulse. For practical interest, we assume that c s � L. In

terms of the expansions, it follows from Eqs. (A4) and (A6)

that

u1ð0; tÞ ¼ UPðtÞ sinðxtÞ; u2ð0; tÞ ¼ 0; r2ðL; tÞ ¼ 0:

(B2)

By making use of Eq. (A7), the last two equations in Eq.

(B2) can be written as

@u1
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�
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�

�

x¼ L

¼ 0;
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@x

�

�

�

�

x¼ L

¼
b

2

@u1
@x

� �2�
�

�

�

x¼ L

¼ 0: (B3)

Summarizing the above, we have the following boundary

value problems for u1ðx; tÞ and u2ðx; tÞ, respectively,

1

c2
@2u1

@t2
�
@2u1

@x2
¼ 0; u1ð0; tÞ ¼ UPðtÞ sinðxtÞ;

@u1
@x

�

�

�

�

x¼L

¼ 0; (B4)
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@2u2
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�
@2u2

@x2
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@u1
@x

@2u1

@x2
; u2ð0; tÞ ¼ 0;

@u2
@x

�

�

�

�

x¼L

¼ 0: (B5)

The solution to Eq. (B4) can be found in many standard

textbooks,

u1ðx; tÞ¼Usin x t�
x

c

� �� �

P t�
x

c

� �

þUsin x tþ
x

c
�
2L

c
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P tþ
x

c
�
2L

c

� �

: (B6)

The solution to Eq. (B5) is a little more complicated. To pro-

ceed, we substitute Eq. (B6) into the first part of Eq. (B5),

1

c2
@2u2

@t2
�
@2u2

@x2
¼ gf ðx; tÞ þ gbðx; tÞ þ gmðx; tÞ; (B7)

where

gf ðx; tÞ ¼�
bx3U2

2c3
sin 2x t�

x

c
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P t�
x

c

� �

; (B8)

gbðx; tÞ¼
bx3U2

2c3
sin 2x tþ

x

c
�
2L

c
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P tþ
x

c
�
2L
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� �
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(B9)

gmðx; tÞ ¼
bx3 U2

c3
sin

2x

c
ðL� xÞ

� �

� P t�
x

c

� �

P tþ
x

c
�
2L

c

� �

: (B10)
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To obtain a general solution to Eq. (B7), one may write

u2ðx; tÞ ¼ u
f
2ðx; tÞ þ ub2ðx; tÞ þ um2 ðx; tÞ; (B11)

where ua2ðx; tÞ satisfies

1

c2
@2ua2
@t2

�
@2ua2
@x2

¼ gaðx; tÞ; a ¼ f ; b;m: (B12)

Let us now consider the solutions to Eq. (B12) one at a

time. The solution to um2 ðx; tÞ can be easily obtained by

observation of

um2 ðx; tÞ ¼
bxU2

4 c
sin

2 ðL� xÞx

c

� �

P t�
x

c

� �

� P tþ
x

c
�
2 L

c

� �

: (B13)

The solution to u
f
2ðx; tÞ is essentially that for a half-space with

a prescribed displacement boundary condition at x ¼ 0, i.e.,

u
f
2ðx; tÞ ¼

bx2 U2 x

8 c2
cos 2 t�

x

c

� �

x

� �

þ 1

� �

� Pðt� x=cÞHðL=cþ s� tÞ: (B14)

The step function is added to emphasize that once the trail-

ing edge of the pulse reaches the right surface x ¼ L, it will

disappear, i.e., will become fully converted to ub2ðx; tÞ, for-
ever. The solution to ub2ðx; tÞ is essentially that of a half-

space with prescribed traction boundary condition at x ¼ L,

representing a backward (toward the negative x-direction)

propagating wave

ub2ðx; tÞ ¼
bx2 U2 x

8 c2
cos 2x t þ

x

c
�
2 L

c

� �� �

þ 1

� �

� P t þ
x

c
�
2 L

c

� �

þ bB t þ
x

c
�
2 L

c

� �

;

(B15)

where BðsÞ is an arbitrary function of s that needs to be

determined from the boundary condition at x ¼ L. Making

use of Eqs. (B13)–(B15) in the second part of Eq. (B5) leads

to the following ordinary differential equation for BðsÞ,

4 c B0ðsÞ ¼ x2 U2 ½1� cosð2 sxÞ�PðsÞ: (B16)

Carrying out the integration yields

BðsÞ ¼
xU2

8 c
ð½2 sx� sinð2 sxÞ�Hðs� sÞ þ 2 sxPðsÞÞ:

(B17)

Substituting Eq. (B17) into Eq. (B15) yields

ub2 ðx; tÞ¼
bxU2

4c
sxHðu�sÞ

þ
bx2U2

8c2
ð2ctþ3x�4LÞPðuÞ

þ
bxU2

8c2
ðxxcosð2xuÞ� csinð2xuÞÞPðuÞ ;

(B18)

where

u ¼ tþ
x

c
�
2 L

c
: (B19)

If the displacement is measured at x ¼ L, the time-domain

signal should be

u2ðL; tÞ ¼
bx2 U2

4 c
t P t�

L

c

� �

þ sH t�
L

c
� s

� �� �

þ
bx2 U2 L

4 c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
k

4p L

� �2
s

� cos 2x t�
L

c

� �

þ u0

� �

P t�
L

c

� �

;

(B20)

where k is the wavelength of the fundamental harmonic and

u0 ¼ tan�1½k=ð4 pLÞ�. Note that the amplitude of the second

harmonic is bx2 U2 L=ð4 c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2=ð4p LÞ2
q

. If one

assumes that k=L � 1, this amplitude can be approximated

as �bx2 U2 L=ð8 c2Þ ½2þ k2=ð4 p LÞ2�, which is slightly

more than double that of the second harmonic generated by

the incident pulse inside the slab. Furthermore, the static dis-

placement is given by

u0DðL; tÞ¼
bx2U2

4c
tH t�

L

c

� �

�ðt�sÞH t � s�
L

c

� �� �

:

(B21)

Specifically,

u0DðL; tÞ ¼

0 for t < L=c

bx2 U2 t

4 c
for L=c < t < L=cþ s

bx2 U2 s

4 c
for L=cþ s < t:

8

>

>

>

>

>

<

>

>

>

>

>

:

(B22)

Unlike inside the slab, the static pulse measured at the free

surface no longer has a flat-top. It increases linearly from

bx2 U2 L=ð4 c2Þ at t ¼ L=c to bx2 U2 ðLþ c sÞ=ð4 c2Þ at

t ¼ L=cþ s. After the reflected pulse leaves the free surface,

there is a residual displacement bx2 U2 s=ð4 cÞ. The magni-

tude of the residual static pulse measured at the free surface

is proportional to the pulse length, but independent of the

slab’s thickness L.

APPENDIX C: REFLECTION ATA FREE SURFACE,
TRACTION-PRESCRIBED TRANSMITTER

Let us now assume that a harmonic traction pulse is pre-

scribed at the slab’s left surface x ¼ 0 and the traction

remains zero at the slab’s right surface x ¼ L. Thus, the

boundary conditions can be written as

rð0; tÞ ¼ r0ðtÞ ¼ � q cxUPðtÞ cosðxtÞ; rðL; tÞ ¼ 0:

(C1)

It then follows from Eq. (A7) that
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@u1ðx; tÞ

@x

�

�

�

�

x¼ 0

¼
r0ðtÞ

q c2
;

@u2
@x

�

�

�

�

x¼ 0

¼
b

2

@u1
@x

� �2�
�

�

�

x¼ 0

¼
b

2

r0ðtÞ

q c2

� �2

; (C2)

@u1
@x

�

�

�

�

x¼ L

¼ 0;
@u2
@x

�

�

�

�

x¼ L

¼
b

2

@u1
@x

� �2�
�

�

�

x¼ L

¼ 0: (C3)

Summarizing the above, we have the following boundary

value problems for u1ðx; tÞ and u2ðx; tÞ, respectively,

1

c2
@2u1

@t2
�
@2u1

@x2
¼ 0;

@u1ðx; tÞ

@x

�

�

�

�

x¼ 0

¼
r0ðtÞ

q c2
;

@u1
@x

�

�

�

�

x¼ L

¼ 0; (C4)

1

c2
@2u2

@t2
�
@2u2

@x2
¼ � b

@u1
@x

@2u1

@x2
;

@u2
@x

�

�

�

�

x¼ 0

¼
b

2

r0ðtÞ

q c2

� �2

;
@u2
@x

�

�

�

�

x¼ L

¼ 0: (C5)

The solution to Eq. (C4) can be found in many standard

textbooks,

u1ðx; tÞ ¼ f ðt� x=cÞ

¼ �
1

qc

ðt�x=c

0

r0ðsÞds�
1

qc

ðtþx=c�2L=c

0

r0ðsÞds:

(C6)

The solution to Eq. (C5) is a little more complicated.

To proceed, we substitute Eq. (C6) into the first part of

Eq. (C5)

1

c2
@2u2

@t2
�
@2u2

@x2
¼ gf ðx; tÞ þ gbðx; tÞ þ gmðx; tÞ; (C7)

where

gf ðx; tÞ¼�
bx3U2

2c3
sin 2x t�

x

c

� �� �

P t�
x

c

� �

; (C8)

gbðx; tÞ¼
bx3U2

2c3
sin 2x tþ

x

c
�
2L

c

� �� �

P tþ
x

c
�
2L

c

� �

;

(C9)

gmðx; tÞ¼
bx3U2

c3
sin

2x

c
ðL�xÞ

� �

P t�
x

c

� �

P tþ
x

c
�
2L

c

� �

:

(C10)

To obtain a general solution to Eq. (C7) one may write

u2ðx; tÞ ¼ u
f
2ðx; tÞ þ ub2ðx; tÞ þ um2 ðx; tÞ; (C11)

where ua2ðx; tÞ satisfies

1

c2
@2ua2
@t2

�
@2ua2
@x2

¼ gaðx; tÞ; a ¼ f ; b; m: (C12)

Let us now consider the solutions to Eq. (C7) one at a

time. The solution to um2 ðx; tÞ can be easily obtained by

observation

um2 ðx; tÞ ¼
bxU2

4 c
sin

2 ðL� xÞx

c

� �

� P t�
x

c

� �

P tþ
x

c
�
2L

c

� �

: (C13)

The solution to u
f
2ðx; tÞ is essentially that for a half-space

with a prescribed traction boundary condition at x ¼ 0, i.e.,

u
f
2ðx; tÞ¼

bx2U2

8c2
½ð2x�ctÞPðt�x=cÞ

�csHðt�s�x=cÞ�HðL=cþ s� tÞ

þ
bxU2

16c

2xx

c
cos½2xðt�x=cÞ�

�

� sin½2xðt�x=cÞ�

�

Pðt�x=cÞHðL=cþ s� tÞ :

(C14)

The step function is added to emphasize that once the trail-

ing edge of the pulse reaches the right surface x ¼ L, it will

disappear forever since it becomes fully converted to

ub2ðx; tÞ. The solution to ub2ðx; tÞ is essentially that of a half-

space with prescribed traction boundary condition at x ¼ L,

representing a backward (toward the negative x-direction)

propagating wave

ub2ðx; tÞ¼
bx2U2x

8c2
cos 2x tþ

x

c
�
2L

c

� �� �

þ1

� �

P tþ
x

c
�
2L

c

� �

þbB tþ
x

c
�
2L

c

� �

; (C15)

where BðsÞ is an arbitrary function of s that needs to be

determined from the boundary condition at x ¼ L. Making

use of Eqs. (C13) and (C14) in the third part of Eq. (C5)

yields

BðsÞ¼
xU2

16c
ð½2sx�3sinð2sxÞ�PðsÞþ2sxHðs� sÞÞ:

(C16)

Substituting Eq. (C16) into Eq. (C15) yields

ub2ðx; tÞ

¼
bx2 U2

8 c2
½c sHðu� sÞ þ ðc tþ 2 x� 2 LÞPðuÞ�

þ
bxU2

8 c2
xx cosð2xuÞ �

3 c

2
sinð2xuÞ

� �

PðuÞ;

(C17)

where

u ¼ tþ
x

c
�
2 L

c
: (C18)

If the displacement is measured at x ¼ L, the time-domain

signal is
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u2ðL; tÞ ¼
bx2U2 L

4c2
P t�

L

c

� �

þ
bx2U2 L

4c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
k

2pL

� �2
s

� cos 2x t�
L

c

� �

þu0

� �

P t�
L

c

� �

; (C19)

where k is the wavelength and u0 ¼ tan�1½k=ð2p LÞ�. Note

that the amplitude of the second harmonic is bx2 U2 L=

ð4 c2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2=ð2p LÞ2
q

. If one assumes that k=L � 1, this

amplitude can be approximated as � bx2 U2 L=ð8 c2Þ

½2þ k2=ð2 p LÞ2�, which is slightly more than double that of

the second harmonic generated by the incident pulse inside

the slab. Furthermore, the static displacement is given by

u0TðL; tÞ ¼
bx2 U2 L

4 c2
P t�

L

c

� �

: (C20)

Unlike inside the slab, the static pulse measured at the free

surface has a flat top. Its magnitude is proportional to the

slab’s thickness L, and is twice the value measured inside

the slab. Furthermore, there is no residual displacement left

after the reflected pulse leaves the free surface.
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