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Collective behavior in biological systems is often accompanied by strong correlations. The question has

therefore arisen of whether correlation is amplified by the vicinity to some critical point in the parameters

space. Biological systems, though, are typically quite far from the thermodynamic limit, so that the value of

the control parameter at which correlation and susceptibility peak depend on size. Hence, a system would

need to readjust its control parameter according to its size in order to be maximally correlated. This

readjustment, though, has never been observed experimentally. By gathering three-dimensional data on

swarms of midges in the field we find that swarms tune their control parameter and size so as to maintain a

scaling behavior of the correlation function. As a consequence, correlation length and susceptibility scale

with the system’s size and swarms exhibit a near-maximal degree of correlation at all sizes.

DOI: 10.1103/PhysRevLett.113.238102 PACS numbers: 87.18.Vf, 05.65.+b, 47.54.-r, 87.23.Cc

Intriguing evidence has been presented in the past few

years suggesting that some biological systems are close to

criticality, namely to a special point in the control param-

eters space characterized by unusually large correlation and

susceptibility [1]. Although reminiscent of self-organized

criticality (SOC), this phenomenon is quite distinct, in that

it does not appear to be as essentially dynamical as SOC,

and it finds its natural description in terms of steady-state

ensemble distributions [1]. In all studies where the control

parameter has been reported, though, its value has invar-

iably been the result of inference through a model [2].

Inference is potentially prone to the problem of data

undersampling and therefore the alleged vicinity of the

inferred control parameter to a critical point has been

questioned [3]. Even though direct experimental measure-

ments of long-range correlations and scaling laws provide

inference-free evidence [4–6], one could still object that

conservation laws plus off-equilibrium dynamics can pro-

duce long-range correlations generically, namely without

the need to tune the control parameter [7]. Therefore, the

lack of a direct experimental measurement of the actual

vicinity of the control parameter to its critical value is a

major missing piece of evidence in the debate about

criticality in biological systems. To make things even more

complicated, there cannot be just one critical value of the

control parameter. The critical point is sharply defined only

in the thermodynamic limit. However, all biological groups

have finite size, N, which is often quite different from

group to group. The only finite-size remnant of criticality is

the peak of some susceptibility, whose position approaches

the bulk critical point for large sizes [8,9]. Thus, at finite

size, the effective critical value of the control parameter

depends on N. A value of the control parameter that makes

a small system “critical”will be quite off-critical for a much

larger system, and vice versa. For example, a very small

Ising model at the bulk critical temperature is in fact deeply

magnetized, with very small connected correlation. Hence,

the parameters of a biological system cannot simply be

tuned to their bulk critical value, as this value would not be

critical at all for systems with small N. In order to observe

critical behavior, the control parameters must depend on the

system’s size. Therefore, in the discussion about criticality

in biological systems we lack two crucial pieces of

evidence: (i) a direct experimental measurement of the

control parameter (as opposed to model-based inference)

and (ii) experimental evidence that in systems of different

size N the control parameter varies with N in such a way to

keep the system always close to the maximum of the

susceptibility. The aim of this Letter is to address these two

points.

We study wild swarms of midges in the field (Diptera:

Chironomidae and Diptera: Ceratopogonidae) by recon-

structing the 3d trajectories of individual insects within

swarms ranging from 100 to 600 individuals [10,11]. The

3d reconstruction of a swarm is shown in Fig. 1(a) and in

the Supplemental Material, video 1 [12]. Swarms of diptera

have been also studied in [26–29]. Swarms are in a

disordered phase, characterized by a low value of the

alignment order parameter (average polarization, Φ ¼ 0.2 -

see Table I in [12]), but at the same time swarms exhibit
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significant directional correlations between individuals

[10]. For each configuration, we define the equal-time,

connected velocity correlation function as follows [5,10]:

CðrÞ ¼

P

N
i≠j

~δφi · ~δφjδðr − rijÞ
P

N
i≠j δðr − rijÞ

; ð1Þ

where δ~φi is the dimensionless velocity fluctuation,

δ~φi ¼ δ~vi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1=NÞ
P

kðδ~vkÞ
2

p

, and δ~vi, is calculated by

subtracting from the individual velocity ~vi the contribution
of the instantaneous global translation, rotation, and dila-

tation of the swarm (see the Supplemental Material [12] for

details). The point where the correlation function first

reaches zero, Cðr0Þ ¼ 0, is a finite-size proxy of the

correlation length, ξ [12]. The integrated correlation,

χ ¼
1

N

X

N

i≠j

~δφi · ~δφjθðr0 − rijÞ; ð2Þ

is a finite-size proxy of the standard susceptibility com-

puted from the fluctuations of the order parameter [8] (see

[12]) and for this reason we refer to it as the “susceptibility.”

In a noninteracting system we find, on average, χ ¼ 0.1

[10]. In natural swarms χ ∈ ½0.12∶5.6� (see Table I in the

Supplemental Material [12]). Hence, the most correlated

swarms have a susceptibility over 50 times larger than that

of a noninteracting system. Large velocity correlations

strongly suggest that an effective alignment interaction is

present in swarms. Indeed, when two midges get closer

than their metric interaction range (which is of the order of

a few centimeters [10,30]) they tend to align their direction

of motion [Fig. 1(c)].

Effective alignment, strong correlation, and low-order

parameter are phenomena that find a natural interpretation

within Vicsek’s model of collective motion [31]. In this

model each individual aligns its velocity to that of

neighbors within a metric interaction range, λ. At fixed

low noise, the model exhibits a transition from a disordered

phase (swarming) at low density, to an ordered phase

(flocking) at high density. This density-driven transition is

controlled by the parameter x ¼ r1=λ, namely the nearest-

neighbor distance, r1, rescaled by the interaction range, λ.

Hence, there is a value xc of the control parameter below

which spontaneous alignment emerges [31–33]. In the case

of midges we do not know the interaction range λ.

However, it was suggested in [10] that the interaction

between midges is acoustic, so that λ is likely to be

proportional to the body length, l. For this reason we

can define the control parameter of swarms as x ¼ r1=l (see
the Supplemental Material [12]).

The bulk nature of the Vicsek transition is first order

[33]; however, unless N is very large, a pseudo-second-

order phenomenology is observed, where all correlation

markers (as ξ and χ) peak at the transition [31,34]. This

ordering transition has been indeed observed in animal

groups [35]. Natural swarms of midges always exhibit low

polarization and therefore live on the low-density, disor-

dered side of the transition. Yet correlations are strong,

suggesting that natural swarms are not too far from the

transition. To investigate more precisely this point, though,

we need a finite size scaling approach.

Finite-size scaling (FSS) has been studied in great detail

both in equilibrium [8,9] and in off-equilibrium [36]

systems. In the case of the Vicsek model, a signature of

the first-order nature of the transition occurs above a

crossover size that is typically very large (e.g., N ∼ 106 in

3d; see Ref. [33] and the Supplemental Material [12]).

This means that below this size there exists a wide regime

(the one relevant for swarms) where FSS holds. This has

been shown for the 2d Vicsek model in Refs. [31,34].

Here we present evidence of FSS also in 3d [Fig. 2(a)]: the

susceptibility, χ, has a peak at a pseudocritical value xmaxðNÞ
of the control parameter, marking the finite-size crossover

from a large x disordered phase to a low x ordered one. For
larger N the peak becomes sharper and shifts according to

the FSS equation, xmaxðNÞ ¼ xc þ 1=N1=3ν, where ν is the

critical exponent of the correlation length ξ and xc is the

bulk critical point. The scaling variable (at fixed noise) is

thus y ¼ ðx − xcÞN
1=3ν, so that we expect susceptibility

and correlation length to behave as χ ¼ Nγ=3νfðyÞ and

ξ ¼ LgðyÞ, where f and g are scaling functions. The scaling
behavior of the susceptibility in the 3dVicsekmodel is quite

satisfying [Fig. 2(a), inset], giving xc ¼ 0.421� 0.002.

Identical results hold in the more realistic case of a

Vicsek model with harmonic confinement, which mimics

the presence of the marker (see the Supplemental

Material [12]).

We can now use Fig. 2(a) as a map to interpret our

experimental data. In the disordered phase, x > xc, the
rotational symmetry is unbroken (low polarization); hence,

(a) (b)

(c)

FIG. 1 (color). (a) 3D trajectories for swarm 20120907
−
A1,

N ¼ 169. (b) Velocity correlation function. The correlation

length, ξ ∼ r0, is much larger than the nearest-neighbor distance.

The correlation is averaged over the whole time acquisition.

(c) Alignment event between two midges (real trajectories).
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no Goldstone mode is present [8] and the Vicsek model has

a susceptibility and a correlation length which are finite in

the infinite N limit. Hence, by increasing N at fixed x [red

path in Fig. 2(a)], χ initially grows, but then it saturates to

its finite bulk value for large N [Fig. 2(b)]. Consider two

systems of sizes L1 < L2, both of which are smaller than

the bulk correlation length, ξ∞. When we increase the size

of the group, passing from L1 to L2 all the individuals that

we are adding are within a distance ξ∞ from each other and

they are therefore strongly correlated; hence, in this regime

the finite-size ξ grows with L [Fig. 2(c)] and χ with N
[Fig. 2(b)]. On the contrary, when L > ξ∞ an increase of

the size amounts to adding particles statistically uncorre-

lated from each other, so that both ξ and χ must saturate

with the size [Figs. 2(b) and 2(c)].

In natural swarms, however, we do not observe a

saturation of the susceptibility χ, nor of the correlation

length ξ, with the system’s size. Instead, experimental data

show that the susceptibility scales withN and the correlation

length scales with L up to our largest sizes [Figs. 3(a) and

3(b)]. There is nothing wrong with the aforementioned

explanation, though: the saturation of χ and ξ for large N
should only occur at fixed value of the control parameter,

x. Swarms, however, do not have a fixed value of x, but pick
up their ownvalues ofN and x. The fact that χ and ξ show no

hint of saturation suggests that when N gets larger, x
decreases, as if swarms were following the peak of

the susceptibility, yet remaining on the disordered side of

the transition. This near-critical behavior occurs when the

control parameter x and the system’s size N are related in

such a way to keep constant the scaling variable, y ¼
ðx − xcÞN

1=3ν, which is what happens along the blue path

in Fig. 2(a). In this case, the following relations must hold:

x ∼ xc þ N−1=3ν; ð3Þ

χ ∼ Nγ=3ν; ð4Þ

ξ ∼ L: ð5Þ

Equation (3) defines the near-critical region: it is this mutual

readjustment of x and N that keeps the system scale-free,

hence giving Eqs. (4) and (5). Although the scatter is

significant, the experimental data are compatible with

Eqs. (3)–(5) [Figs. 3(a)–3(c)]. In particular, we observe

a correlation between control parameter x and size N
[Fig. 3(c)]. This is the most prominent evidence that the

data are in the near-critical region: not only the correlation

in swarms is scale-free (ξ ∼ L, χ ∼ N), but a change in the

sizeN of the group is accompanied by a change in the control

parameter x so as to compensate finite-size effects and keep

the system scale-free correlated. If ðx; NÞ are in the near-

critical region defined by (3), the susceptibility must depend

on x as

χ ∼
1

ðx − xcÞ
γ
; ð6Þ

which is the black line in Fig. 2(a). Again, the scatter is large,

but we can see from Fig. 3(d) that the susceptibility of

swarms indeed grows on decreasing the rescaled nearest-

neighbor distance x, with no evidence of amaximum, so that

(6) does a fair job in fitting the data. In the lower panels of

Fig. 3 we report the behavior of the 3d Vicsek model in the

near-critical region, namely in the region defined by a

constant value of the scaling variable y ¼ ðx − xcÞN
1=3ν

[blue path in Fig. 2(a)]. The similaritywith natural swarms is

quite satisfying.

Even thoughwehavedata for smaller swarms (N ≪ 100),

we find that surface effects are too strong for these cases and

that the statistical approach we use here is not justified

anymore. On the other hand, at the moment it is technically

hard to record swarms with N ≫ 103. The span of our

experimental data is therefore limited and different fits

would work equally well. Hence, the value of the critical

exponents is far from conclusive (also see the Supplemental

Material [12]). Therefore, we simply claim that data are

compatible with the FSS scenario of the Vicsek model and

that the data show scaling. It is important to note that the

result that natural swarms live in the near-critical region at the

edge of an ordering transition is independent of the data fit.

What distinguishes our results about near-criticality from

previous studies is that: (i) we measure, rather than infer,

the control parameter, and (ii) we do not simply find a

generic vicinity of the control parameter to its bulk critical

x
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(a) (b)
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fixed y
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FIG. 2 (color). (a) Vicsek model in 3d. Susceptibility χ as a

function of the rescaled nearest-neighbor distance, x ¼ r1=λ
for different swarm sizes, N. The maximum of χ occurs at the

finite-size critical point, xmaxðNÞ, marked by the black line.

Inset: rescaled susceptibility χN−γ=3ν vs scaling variable y ¼

ðx − xcÞN
1=3ν. (b) Susceptibility as a function of N at fixed

x. (c) Correlation length as a function of the linear system size,

L, at fixed x. By increasing N (and L) at fixed value of x we are

moving along the red path in panel (a), so that we end up being

further away from the position of the maximum of χ. Simulations

have been performed using the Vicsek update rule in 3d:
~viðtþ1Þ¼v0Rηð

P

rij<λ~vjðtÞÞ=j
P

rij<λ~vjðtÞÞj; ~riðtþ1Þ¼~riðtÞ þ

~viðtÞ, where Rη is a random uniform rotation in ½−2πη;2πη�.
v0¼0.05, λ¼1, η ¼ 0.45 (see the Supplemental Material [12]).
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value, but we actually observe a mutual adjustment of

control parameter and system’s size that grants the system

scale-free correlations. This second result seems to rule out

the generic scale invariance of [7]. Note that when N is

rather small the pseudocritical value of the control param-

eter, xmaxðNÞ, can be quite far from the bulk critical point,

xc. What matters is the balance between N and x, not just
the vicinity to xc. When dealing with biological groups,

where N is never as large as in condensed matter, it is

essential to keep in mind this finite-size scaling description

of criticality. It is the pair ðx; NÞ that needs to be in the

scaling region, not simply the control parameter.

There are two different ways of interpreting our results.

The first possibility is that, given the size N, the control

parameter x is tuned close to xmaxðNÞ, so that the group is

endowed with large correlation. This mechanism requires

individuals in the group to be able to assess global

correlation by means of some local proxy, so that the

control parameter x can be readjusted if N is varied. There

is, however, an other interpretation. Instead of asking what

is the optimal x given N, we can ask what is the optimal N
given x. For each value x of the control parameter, there is

an optimal size NmaxðxÞ [obtained by inverting Eq. (3)] for

which the maximum of the curve χðxÞ occurs precisely at

that x [Fig. 2(a)]. Hence, it is possible that given the control
parameter, x > xc, a group grows up to its maximum

sustainable size, NmaxðxÞ. For all values of N < NmaxðxÞ
the system is in the ordered phase, where the correlation

length scales with the system’s size (due to Goldstone’s

mode). Hence the swarm can grow maintaining a constant

level of relative correlation, ξ=L. On the contrary, for

N > NmaxðxÞ, the group would lose correlation with

increasing size (ξ=L → 0), leading to statistically indepen-

dent clusters and a deterioration of collective response.

Swarms have a mating purpose and male are naturally

attracted to them [38]. Hence, an aggregation mechanism

that leads to a maximum sustainable size is plausible. This

might also explain why swarms do not order: the tendency

to maximize the size of the group without decreasing

correlation may drive the swarm away from the ordered

phase; see also the Supplemental Material [12].

Scale-free correlations similar to those we have reported

here for midges have been found in biological groups as

diverse as bird flocks [5] and bacteria clusters [39]. Novel

experiments trying to link correlation to collective response

are needed to understand why correlation seems to be so

widespread in biological systems.
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