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Abstract

The exact solution of directed self-avoiding walks confined to a slit of finite width and interacting

with the walls of the slit via an attractive potential has been calculated recently. The walks can be

considered to model the polymer-induced steric stabilisation and sensitised floculation of colloidal

dispersions. The large width asymptotics led to a phase diagram different to that of a polymer

attached to, and attracted to, a single wall. The question that arises is: can one interpolate between

the single wall and two wall cases?

In this paper we calculate the exact scaling functions for the partition function by considering

the two variable asymptotics of the partition function for simultaneous large length and large

width. Consequently, we find the scaling functions for the force induced by the polymer on the

walls. We find that these scaling functions are given by elliptic ϑ-functions. In some parts of the

phase diagram there is more a complex crossover between the single wall and two wall cases and

we elucidate how this happens.

1 Introduction

The problem of a single polymer confined between two walls and interacting with those walls has been

considered for at least 35 years [1]. One reason for this is its use as a model of the stabilization of

colloidal dispersions by adsorbed polymers (steric stabilization) and the destabilization when the poly-

mer can adsorb on surfaces of different colloidal particles (sensitized flocculation). Until recently, even
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when one substitutes directed walks for the more canonical self-avoiding walks in a two-dimensional

lattice model of this phenomenon, the only cases to be considered exactly have been special cases

where the interaction with the two surfaces are equal. Recently, Brak et al. [2] have calculated the

generating functions for a directed self-avoiding walk confined by two horizontal walls on the square

lattice where separate Boltzmann weights a and b were associated with visits to the lower wall and

upper wall respectively, with various restrictions on the end-points of the walks.

The dominant singularity of the generating function of any of the subcases considered by Brak et

al. [2] leads to the calculation of the free energy and the force induced by the polymer to the walls. By

considering the dominant singularity one is effectively considering the infinite walk length limit. The

dominant singularities of the generating functions were analysed asymptotically for large widths. In

the infinite width limit a novel phase diagram was obtained, different to the one obtained by analysing

a polymer in a half-plane geometry. In Figure 1 the phase diagram obtained by Brak et al. [2] is

given. For small a and b the polymer is desorbed from both walls while for large a, respectively large

b, the polymer is absorbed onto one wall or the other. It is interesting to note that new numerical

results [3, 4] and rigorous results [5] show that undirected self-avoiding walks demonstrate very similar

behaviour to the exact solution of the directed walk model. In the infinite width limit, referred to as

Figure 1: Phase diagram of the infinite strip where the separation of the walls is made large after the

limit of infinite walk length is taken. There are 3 phases: desorbed (des), adsorbed onto the bottom wall

(ads bottom) and adsorbed onto the top (ads top). Our notation for the various regions and transition

lines are marked. The transition lines at a = 2, b ≤ 2 and b = 2, a ≤ 2 marking the boundary of the

desorbed region are second order phase transitions with a jump in the specific heat on crossing the

line while the line marking the boundary at a = b, a > 2 of the two adsorbed regions is a first order

transition.
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the infinite slit (in two dimensions), the (reduced) free energy κ(a, b) is given by

κis(a, b) =



















log(2) a, b ≤ 2

log
(

a√
a−1

)

a > 2 and a > b

log
(

b√
b−1

)

b > 2 and a < b

(1.1)

In the half-plane geometry the limit of infinite wall separation is effectively taken before the limit of

infinite walk length (see Figure 2). The results in [2] imply, unusually, that the order of the two limits,

polymer length to infinity and wall separation to infinity, are not interchangable. In fact, the free

energy depends only upon the value of a and is given by

κhp(a, b) =







log(2) a ≤ 2

log
(

a√
a−1

)

a > 2
(1.2)

Hence, for b > 2 and a < b (denoted region T in Figure 1) the infinite slit and half-plane free energies

are different. The question that naturally arises is whether there is a scaling function that interpolates

between these two limits and whether this extends to the region where the free energies differ. To do

this one needs to consider the finite length partition functions rather than the generating functions.

An exact expression for the finite length partition function has now been calculated [6]. However, it is

not easy to see how one could analyse this expression asymptotically, especially for large separations.

Returning to the undirected model, in three dimensions, a scaling theory [4] valid for the desorbed

region D of the infinite slit and its boundaries has been shown (numerically) to hold.

b

aac = 2

des ads

Figure 2: Phase diagram of the half-plane (one wall) problem where the separation of the walls is made

large before the limit of infinite walk length is taken. There are 2 phases: desorbed (des) and adsorbed

onto the bottom wall (ads bottom). The boundary of the two phase is a second order phase transition.

In this paper we calculate the two variable asymptotics for large wall separation and large polymer

length of the partition function of one of the directed walk models considered by Brak et al. [2]. The

paper is set out as follows. In Section 2 we set the stage for our calculations: we recall the exact

definition of the model and the calculated generating function, and introduce the notation which we
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will use in the remainder of the paper, in particular, a parametrisation in more convenient variables.

Much of the analysis hinges on the understanding of the singularities of the generating function; this

will be discussed in Section 3. In Section 4 we show how the contour integral expression for the partition

function can be reformulated in terms of residues of the singularities of the generating function. We

discuss special cases for specific values of a and b, where one obtains simple expressions for the partition

function, and also give an exact expression for general a and b. In Section 5 we calculate the scaling

function of the partition function for the special cases, and then derive the scaling function in the

various regions of the phase diagram for general a and b. In Section 6 we discuss the results in the

light of finite size scaling theory and, in particular, discuss how in each region of the phase diagram the

scaling results interpolate between the single and double wall models. Importantly, we demonstrate

that in the desorbed region of the infinite slit and on its boundaries the scaling theory proposed for

undirected SAW in a three-dimensional slab holds exactly for our directed model, with appropropiate

exponent substitutions.

2 The model

Brak et al. [2] considered three different end-point restrictions. In this paper we shall restrict ourselves

to the case when both end-points are attached to the same wall: in [2] these were referred to as loops

(see Figure 3). If Ln
w is the set of loops of fixed length n edges in the slit of width w then the partition

w

a

b

Figure 3: An example of a directed path which is a loop: both ends of the walk are fixed to be on the

bottom wall. A Boltzmann weight a is associated with visits to the bottom wall (excluding the first)

and a Boltzmann weight b is associated with visits to the top wall.

function of loops is defined as

Zn,w(a, b) =
∑

p∈Ln
w

au(p)bv(p) (2.1)

where u(p) and v(p) are the number of vertices in the line y = 0 (excluding the zeroth vertex) and the

number of vertices in the line y = w, respectively. The generating function Lw(z, a, b) is then given by

Lw(z, a, b) =
∞
∑

n=0

Zn,w(a, b) zn. (2.2)
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The force Fn,w(a, b) is defined as

Fn,w(a, b) =
log (Zn,w+1(a, b)) − log (Zn,w(a, b))

n
(2.3)

but can be estimated from an asymptotic expression for large w as

Fn,w =
1

n Zn,w

∂Zn,w

∂w
(2.4)

The aim of this paper is to extract the asymptotics of the finite size partition function Zn,w(a, b)

by inverting equation (2.2). Hence we have

Zn,w(a, b) =
1

2πi

∮

Lw(z, a, b)
dz

zn+1
, (2.5)

where the generating function Lw(z, a, b) has been calculated in [2] and is

Lw(z, a, b) =
(1 + q)[(1 + q − bq) − (1 + q − b)qw]

(1 + q − aq)(1 + q − bq) − (1 + q − a)(1 + q − b)qw
, (2.6)

with z =
√

q/(1 + q). The problem is to evaluate the above contour integral for large but finite n and

w.

Before we enter the calculations let us introduce some notation to keep track of the different

regions and transitions in the phase diagram of the infinite slit (Figure 1). We restrict our discussion

to a, b ≥ 1 and label the desorbed region, a < 2, b < 2 as D, the region where the polymer adsorbs

onto the bottom wall, a > 2, a > b as B, and the region where the polymer adsorbs onto the top wall,

b > 2, b > a as T . The boundary where the region D meets region B, a = 2, b < 2, that is, when

the polymer is critically adsorbing onto the botttom wall, we denote as AB. The boundary where the

region D meets region T , b = 2, a < 2, that is, when the polymer is critically adsorbing onto the top

wall, we denote as AT . The boundary where the region B meets region T , a = b, a > 2, that is, when

the polymer is equally adsorbed onto the both walls, we denote as ST B. Finally, the point where all

three regions and all three lines meet at a = b = 2 is denoted AT B.

Mathematically it is advantageous to re-parametrise Lw by introducing a = 1 + λ2, b = 1 + µ2

with λ, µ ≥ 0 and q = p2. Hence z = p/(1 + p2). In what follows, we will thus work with

Lw(z, a, b) = Lw(p, λ, µ) =
(1 + p2)[(1 − µ2p2) + (µ2 − p2)p2w]

(1 − λ2p2)(1 − µ2p2) − (λ2 − p2)(µ2 − p2)p2w
, (2.7)

so that equation (2.5) becomes

Zn,w(a, b) =
1

2πi

∮

Lw(p, λ, µ)(1 − p2)(1 + p2)n−1 dp

pn+1
. (2.8)

3 Singularities

Of crucial importance for the understanding of the structure of the generating function are its singu-

larities, i.e. the zeros of the denominator polynomial

Dw(p) = (1 − λ2p2)(1 − µ2p2) − (λ2 − p2)(µ2 − p2)p2w . (3.1)
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It is convenient to look at some special cases first, where Dw(p) simplifies considerably. We have

Dw(p) =















1 − p4+2w for λ = 0, µ = 0 ,

(1 − p2)(1 + p2+2w) for λ = 0, µ = 1 or λ = 1, µ = 0 ,

(1 − λ2p2)(1 − λ−2p2)(1 − p2w) for λµ = 1 .

(3.2)

For these special cases, all zeros are simple with the exception of the case λ = 1 and µ = 1, in which

case p = ±1 is a multiple zero. For general values of λ and µ, we have the following result on the

multiplicity of zeros.

Lemma 1. If (λ, µ) 6= (1, 1), the polynomial

Dw(p) = (1 − λ2p2)(1 − µ2p2) − (λ2 − p2)(µ2 − p2)p2w (3.3)

has simple zeros except possibly at p = ±1 for a single value of w.

Proof. The polynomial Dw(p) is simply related to the orthogonal polynomials, Pw(z), defined in [2].

In particular

Dw(p) = (1 − p2)(1 + p2)w+1Pw

(

p

1 + p2

)

. (3.4)

Note that Pw(z) is a polynomial of degree w + 1 in z, so the above expression is indeed polynomial in

p. The zeros, pi, of Dw(p) are therefore either p = ±1 or images of the zeros, zi, of Pw(z) given by

p =
1 ±

√

1 − 4z2
i

2zi
(3.5)

A standard result on orthogonal polynomials (see Theorem 5.4.1 in [7] for example) implies that the

zeros of Pw(z) are simple. Hence the images of these zeros under the above mapping are simple,

except possibly when z = ±1/2. If Pw(z) has a zero at z = ±1/2, then it follows that Dw(p) may

have multiple zeros at p = ±1.

We now show that such multiple zeros at p = ±1 can only occur for a single value of w. The

derivative of Dw(p) at p = ±1 is given by

D′
w(±1) = ∓4(λ2µ2 − 1) ± 2(λ2 − 1)(µ2 − 1)w. (3.6)

If (λ, µ) 6= (1, 1) then this derivative is zero when

w = 2
λ2µ2 − 1

(λ2 − 1)(µ2 − 1)
. (3.7)

Hence it is only at this single value of w that Dw(p) can have multiple zeros at p = ±1.

Under the transformation (3.5), the zeros of Dw(p) are related to the zeros of the orthogonal

polynomial Pw(z), which are all real. The transformation from z to p then implies that Dw(p) can

only have roots on the unit circle or the real axis. Thus it makes sense to introduce the parametrisation

p = eit for roots on the unit circle. A straightforward calculation leads to the results summarised in

the next lemma.
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Lemma 2. The zeros of the polynomial Dw(p) are given by pk = eitk , where

tan wtk =

(

λ2 − 1

λ2 + 1
+

µ2 − 1

µ2 + 1

)

tan tk
(

λ2 − 1

λ2 + 1

)(

µ2 − 1

µ2 + 1

)

− tan2 tk

. (3.8)

Additionally, for λ = 1 or µ = 1, Dw(p) = 0 at p = ±1. If λ = µ = 1, p = ±1 is a triple zero of Dw(p).

In particular, for w sufficiently large, the numbers of zeros of Dw(p), including their multiplicity, are

given as follows:

1. If λ < 1 and µ < 1, equation (3.8) has 2w + 4 real solutions. Dw(p) has 2w + 4 zeros on the

unit circle.

2. On the line segments λ < 1 and µ = 1, respectively λ = 1 and µ < 1, equation (3.8) has 2w + 2

solutions. Dw(p) has 2w + 4 zeros on the unit circle.

3. If λ = µ = 1, equation (3.8) has 2w solutions. Dw(p) has 2w + 4 zeros on the unit circle.

4. If λ > 1 and µ < 1 or λ < 1 and µ > 1, equation (3.8) has 2w solutions. Dw(p) has 2w zeros

on the unit circle and 4 zeros on the real line.

5. On the line segments λ > 1 and µ = 1, respectively λ = 1 and µ > 1, equation (3.8) has 2w − 2

solutions. Dw(p) has 2w zeros on the unit circle and 4 zeros on the real line.

6. If λ > 1 and µ > 1, equation (3.8) has 2w − 4 solutions. Dw(p) has 2w − 4 zeros on the unit

circle and 8 zeros on the real line.

This corresponds to (2w + 4)− 4σ zeros pk of Dw(p) on the unit circle, where σ ∈ {0, 1, 2}, depending

on the values of λ and µ. The other 4σ zeros pk are located on the real line. If pk is a real zero, then

so is −pk, 1/pk, and −1/pk.

Proof. Equation (3.8) is obtained from Dw(p) by substitution of p = eit, followed by routine simpli-

fication. The number of real solutions is most easily obtained by considering the graphs of the LHS

and RHS of (3.8) over the interval [0, 2π). The function tan wtk is monotonic and has 2w simple poles,

whereas the behaviour of the RHS depends on the values of λ and µ. For example, if both λ < 1

and µ < 1, the RHS is monotonically decreasing and has 4 poles, leading to a total number of 2w + 4

intersections of both graphs. The other cases can be obtained similarly.

Remark. The real roots pk can be obtained correspondingly from pk = esk , where now

tanh wsk =

(

λ2 − 1

λ2 + 1
+

µ2 − 1

µ2 + 1

)

tanh sk

(

λ2 − 1

λ2 + 1

)(

µ2 − 1

µ2 + 1

)

+ tanh2 sk

. (3.9)
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4 Partition function identities

In this section we derive explicit expressions for the partition function which are especially suited for

an asymptotic analysis of the finite-size scaling behaviour. The key is the following Lemma.

Lemma 3.

Zn,w(a, b) = −1

2

∑

pk

Res (f ; pk) , (4.1)

where

f(p) =
(1 − p2)[(1 − µ2p2) + (µ2 − p2)p2w]

Dw(p)

(

1 + p2

p

)n
1

p
(4.2)

and pk are the zeros of Dw(p).

Proof. From equation (2.8) it follows that

Zn,w(a, b) =
1

2πi

∮

f(p)dp , (4.3)

with f(p) given in equation (4.2). The integrand is a rational function in p so that the sum over all

its residues on the Riemann sphere is equal to zero. From this it follows that

Zn,w(a, b) = Res (f ; 0) = −
∑

pk

Res (f ; pk) − Res (f ;∞) , (4.4)

where the pk are the zeros of Dw(p).

Due to the symmetry

f(1/p) = −p2f(p) (4.5)

the singularities pk come in pairs (pk, 1/pk) and the paired residues are equal, i.e.

Res (f ; pk) = Res (f ; 1/pk) . (4.6)

It therefore follows that

Zn,w(a, b) = Res (f ; 0) = −1

2

∑

pk

Res (f ; pk) . (4.7)

It is convenient to first look at the special cases already considered above (see equation (3.2)).

Proposition 4. We have

Zn,w(1, 1) =
2n+1

w + 2

w+1
∑

k=1

sin2 kπ

w + 2
cosn kπ

w + 2
, (4.8a)

Zn,w(1, 2) =
2n

w + 1

2w+1
∑

k=0

sin2 (2k + 1)π

2w + 2
cosn (2k + 1)π

2w + 2
, (4.8b)

Zn,w(2, 1) =
2n

2(w + 1)

2w+1
∑

k=0

cosn (2k + 1)π

2w + 2
, (4.8c)

Zn,w(2, 2) =
2n

w

w−1
∑

k=0

cosn kπ

w
, (4.8d)
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and

Zn,w

(

1 + λ2, 1 + λ−2
)

=
1 − λ2

2λ2

λ2w

1 − λ2w

(

λ + λ−1
)n

(1 + (−1)n)

+
2n

λw

w−1
∑

k=1

λ+λ−1

2 sin2 kπ
w

(λ−λ−1

2 )2 + sin2 kπ
w

cosn kπ

w

(4.8e)

for λ 6= 1.

Proof. Equation (3.2) allows for an explicit calculation of the zeros of Dw(p). An application of

Lemma 3 gives the result.

We note that the expression for Zn,w(1, 1) is a special case of results in [8]. For general values of

λ and µ, we arrive at the following result.

Proposition 5. For λµ 6= 1 and w sufficiently large,

Zn,w(a, b) =
1 + λ2

4

∑

pk

(1 − p2
k)

2

(λ2 − p2
k)(1 − λ2p2

k)

(

1 + p2
k

pk

)n
1

w + εk
, (4.9)

where pk are the zeros of Dw(p) and

εk = p2
k

[

λ2

1 − λ2p2
k

− 1

λ2 − p2
k

+
µ2

1 − µ2p2
k

− 1

µ2 − p2
k

]

. (4.10)

Proof. Using Lemma 3, we write f(p) = r(p)/Dw(p) with

r(p) = (1 − p2)[(1 − µ2p2) + (µ2 − p2)p2w]

(

1 + p2

p

)n
1

p
. (4.11)

According to Lemma 1, all roots of Dw(p) are simple for w sufficiently large, and p = ±1 are removable

singularities of f(p) due to the occurrence of the factor (1 − p2) in r(p). Using that

Res (f ; pk) = r(pk)/D
′
w(pk) (4.12)

for simple poles at pk, we find that

Res (f ; pk) = −
(1 − p2

k)[(1 − µ2p2
k) + (µ2 − p2

k)p
2w
k ]

(

1+p2
k

pk

)n

2w(λ2 − p2
k)(µ

2 − p2
k)p

2w
k + 2p2

k[(λ
2 + µ2 − 2λ2µ2p2

k) − (λ2 + µ2 − 2p2
k)p

2w
k ]

. (4.13)

Eliminating p2w
k using Dw(pk) = 0 gives

Res (f ; pk) = −1 + λ2

2

(1 − p2
k)

2

(λ2 − p2
k)(1 − λ2p2

k)

(

1 + p2
k

pk

)n
1

w + εk
. (4.14)

where εk is given by (4.10).

Remark. The condition λµ 6= 1 is necessary because when λµ = 1 a root, pk, is located at pk = λ,

making the expression for Zn,w(a, b) invalid as it is written. However, in this case we already have

given a much more explicit expression for Zn,w(a, b) above.
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5 Asymptotics

If we consider the scaling behaviour of long walks in wide strips, the behaviour of our model should

depend on the relation between average vertical displacement of an unrestricted polymer and the

width of the strip, w. We therefore expect the occurrence of the scaling combination
√

n/w in the

asymptotics, and this is indeed what a mathematical analysis shows.

As in the previous sections, it is convenient to first consider the special cases.

Proposition 6. For n even,
√

n/w fixed and n → ∞,

Zn,w(1, 1) ∼ 2n

n3/2
f0,0(

√
n/w) , (5.1a)

Zn,w(1, 2) ∼ 2n

n3/2
f0,1(

√
n/w) , (5.1b)

Zn,w(2, 1) ∼ 2n

n1/2
f1,0(

√
n/w) , (5.1c)

Zn,w(2, 2) ∼ 2n

n1/2
f1,1(

√
n/w) , (5.1d)

for λ < 1 we have

Zn,w

(

1 + λ2, 1 + λ−2
)

∼ 1 − λ2

λ2
λ2w

(

λ + λ−1
)n

+
2n

n3/2
fλ,λ−1(

√
n/w) , (5.1e)

while for λ > 1 we have

Zn,w

(

1 + λ2, 1 + λ−2
)

∼ λ2 − 1

λ2

(

λ + λ−1
)n

+
2n

n3/2
fλ,λ−1(

√
n/w). (5.1f)

The functions fλ,µ are given by

f0,0(x) = 2π2x3
∞
∑

k=−∞
k2e−

π2k2

2
x2

= 2π2x3e−
π2x2

2 ϑ′
3

(

e−
π2x2

2

)

, (5.2a)

f0,1(x) = 2π2x3
∞
∑

k=−∞
(k + 1/2)2e−

π2(k+1/2)2

2
x2

= 2π2x3e−
π2x2

2 ϑ′
2

(

e−
π2x2

2

)

, (5.2b)

f1,0(x) = x

∞
∑

k=−∞
e−

π2(k+1/2)2

2
x2

= x ϑ2

(

e−
π2x2

2

)

, (5.2c)

f1,1(x) = x
∞

∑

k=−∞
e−

π2k2

2
x2

= x ϑ3

(

e−
π2x2

2

)

, (5.2d)

for λ 6= 1,

fλ,λ−1(x) =
(λ2 + 1)

(λ2 − 1)2
2π2x3

∞
∑

k=0

k2e−
π2k2

2
x2

=
(λ2 + 1)

(λ2 − 1)2
2π2x3e−

π2x2

2 ϑ′
3

(

e−
π2x2

2

)

, (5.2e)

Here, ϑ2(q) =
∑∞

n=−∞ q(n+1/2)2 and ϑ3(q) =
∑∞

n=−∞ qn2
are elliptic ϑ-functions.
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Proof. We shall only discuss the case λ = µ = 1, as the argument applies mutatis mutandum to the

other cases. Upon introducing the variable x = n1/2/w, we can write

Zn,w(2, 2) =
2nx

n1/2

w−1
∑

k=0

cosn

(

kπx

n1/2

)

. (5.3)

For fixed k we find that

lim
n→∞

cosn

(

kπx

n1/2

)

= e−
π2k2

2
x2

, (5.4)

and a similar contribution comes from the upper boundary of the summation for k′ = w − k fixed.

The contribution to the sum from other terms can be easily shown to be negligible, so that

lim
n→∞

n1/2

2n
Zn,(n1/2/x)(2, 2) = x

∞
∑

k=−∞
e−

π2k2

2
x2

. (5.5)

In Figure 4 we have plotted the scaling functions at the points λ, µ ∈ {0, 1}. These show that the

partition functions converge rapidly to the scaling functions even at quite modest widths (w ranges

from 16 to 80 and the maximum length is 16w2). The non-monotonic behaviour of f01(x) has also

been observed in the three dimensional self-avoiding walk model at a comparable point in the phase

diagram [4].

Remark. We note that even though we have only considered the scaling limit of x =
√

n/w fixed,

the above scaling forms permit asymptotic matching to the limits w → ∞ with n fixed, and n → ∞
with w fixed. For example, we obtain

2n

n1/2
f1,1(

√
n/w) ∼







1
w2n n → ∞

√

2
πn2n w → ∞

(5.6)

which agrees with the known asymptotic behaviour of Zn,w(2, 2) for fixed w or n, respectively.

In order to discuss the case of general a and b, let us consider equation (4.9) more closely. Note

that for large w the terms εk given by (4.10) become negligible in comparison with w if pk is a root

on the unit circle, as εk is then uniformly bounded in k, w and n. Also note that in this case the

dependence of (4.9) on µ in enters only through the roots pk.

However, if pk is a real root it needs to be treated individually, and we therefore split the partition

function into two sums,

Zn,w(a, b) = Z(e)
n,w(a, b) + Z(s)

n,w(a, b) , (5.7)

where

Z(e)
n,w(a, b) =

1 + λ2

4

∑

|pk|6=1

(1 − p2
k)

2

(λ2 − p2
k)(1 − λ2p2

k)

(

1 + p2
k

pk

)n
1

w + εk
(5.8)
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Figure 4: The scaling functions (solid lines) at (µ, λ) = (0, 0), (1, 0), (0, 1) and (1, 1) respectively. Also

plotted is numerical data (dashed lines) for widths ranging from 16 to 80; these show that the partition

functions converge rapidly to the scaling forms.

and

Z(s)
n,w(a, b) =

1 + λ2

4

∑

|pk|=1

(1 − p2
k)

2

(λ2 − p2
k)(1 − λ2p2

k)

(

1 + p2
k

pk

)n
1

w + εk
(5.9)

Here, Z
(e)
n,w(a, b) is a sum over zero, four, or eight terms, depending on the value of w, λ, and µ. While

it turns out that Z
(s)
n,w(a, b) admits a scaling form, Z

(e)
n,w(a, b) does not. The following propositions give

asymptotic estimates for Z
(e)
n,w(a, b) and Z

(s)
n,w(a, b) for large w.

The analysis of Z
(e)
n,w(a, b) uses an asymptotic estimate of the zeros for which pk > 1, analogous to

equations (7.7) and (7.10) in [2]. If λ > 1 and µ 6= λ, we find

p2 ∼ λ2 + (λ4 − 1)

(

λ2µ2 − 1

λ2 − µ2

)

λ−2w , (5.10)

and if µ > 1 and λ 6= µ, we find

p2 ∼ µ2 + (µ4 − 1)

(

λ2µ2 − 1

µ2 − λ2

)

µ−2w , (5.11)
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while for λ = µ > 1 we find

p2 ∼ λ2 ± (λ4 − 1)λ−w . (5.12)

1

AB

AT

D B
(1)

B
(2)

µ

λ1

T
(1)

T
(2)

ATB

STB

Figure 5: Regions that have different scaling forms. The definitions via inequalities occur in equa-

tion (5.14). The region T (1) includes the dashed line segment λ = 1, µ > 1 and the region B(1)

includes the dashed line segment µ = 1, λ > 1

In Figure 5 we introduce a finer division of the regions of the phase plane which will be needed

below; essentially we split the regions T and B into two parts.

From the considerations above we arrive at the following result.

Proposition 7. For n even and n → ∞,

Z(e)
n,w(a, b) ∼























































































(λ2 + 1)(µ2 − 1)2(µ4 − 1)

µ2(µ2 − λ2)2
µ−2w

(

µ + µ−1
)n

in the region T (1),

[

(λ2 + 1)(µ2 − 1)2(µ4 − 1)

µ2(µ2 − λ2)2
µ−2w

(

µ + µ−1
)n

+
λ2 − 1

λ2

(

λ + λ−1
)n

]

in the region T (2),

λ2 − 1

λ2

(

λ + λ−1
)n

on the line ST B,

[

λ2 − 1

λ2

(

λ + λ−1
)n

+
(λ2 + 1)(µ2 − 1)2(µ4 − 1)

µ2(µ2 − λ2)2
µ−2w

(

µ + µ−1
)n

]

in the region B(2), and

λ2 − 1

λ2

(

λ + λ−1
)n

in the region B(1).

(5.13)

where
ST B = {(µ, λ) | µ = λ > 1}
T (1) = {(µ, λ) | µ > 1 ≥ λ} T (2) = {(µ, λ) | µ > λ > 1}
B(1) = {(µ, λ) | λ > 1 ≥ µ} B(2) = {(µ, λ) | λ > µ > 1}.

(5.14)
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The asymptotic estimate for Z
(s)
n,w(a, b) is done in two stages. First, we present an estimate for

large w which is uniform in n.

Proposition 8.

Z(s)
n,w(a, b) =

(

λ + λ−1

4λ

)

2n

w

∑

tk







sin2 tk
(

λ−λ−1

2

)2
+ sin2 tk

cosn tk







[

1 + O(w−1)
]

(5.15)

uniformly in n, where tk are the roots of (3.8) in [0, π).

Proof. Apart from substituting pk = eitk and simplifying, the main effort lies in obtaining an estimate

for εk. For λ, µ 6= 1, we can estimate it directly from (4.10)

|εk| <
λ2 + 1

|λ2 − 1| +
µ2 + 1

|µ2 − 1| . (5.16)

If λ = 1, we find that

|εk| <
µ2 + 1

|µ2 − 1| , (5.17)

and analogously for µ = 1. Finally, if both λ = 1 and µ = 1 then εk = 0.

For the scaling behaviour of Z
(s)
n,w(a, b), we find identical scaling behaviour as in the special cases

discussed above (except for λ-dependent pre-factors).

Proposition 9. For n even,
√

n/w fixed and n → ∞,

Z(s)
n,w(a, b) ∼



















2n

n3/2
f(
√

n/w) for λ 6= 1,

2n

n1/2
f(
√

n/w) for λ = 1.
(5.18)

where

f(x) =























































x ϑ3

(

e−
π2x2

2

)

for λ = 1 and µ = 1.

λ2 + 1

(λ2 − 1)2
2π2x3e−

π2x2

2 ϑ′
2

(

e−
π2x2

2

)

for λ 6= 1 and µ = 1,

x ϑ2

(

e−
π2x2

2

)

for λ = 1 and µ 6= 1, and

λ2 + 1

(λ2 − 1)2
2π2x3e−

π2x2

2 ϑ′
3

(

e−
π2x2

2

)

for λ 6= 1 and µ 6= 1.

(5.19)

Here, ϑ2(q) =
∑∞

n=−∞ q(n+1/2)2 and ϑ3(q) =
∑∞

n=−∞ qn2
are elliptic ϑ-functions.

Proof. The derivation is done in complete analogy to the special cases discussed above. The only

additional consideration is that now tk is only known asymptotically for w large. If either λ 6= 1 and

µ 6= 1 or λ = µ = 1, then for large w we find

tk ∼ k
π

w
(5.20)
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and otherwise (i.e. if λ = 1 or µ = 1 but not λ = µ = 1) for large w we find

tk ∼ (k + 1/2)
π

w
. (5.21)

We point out that these functions, which are effectively multiples of the scaling functions (see

below), are elliptic ϑ-functions. Further they are independent of λ and µ, apart from that overall

multiplicative factor, which is dependent only of λ (as it depends on the half-plane limit). Finally we

note that the result for λ = µ = 0 is equivalent to asymptotic results of Flajolet et al. [9] concerning

the distribution of heights of binary trees since there is a correspondence between directed paths and

binary trees.

6 Discussion

We now return to the issue of how the scaling forms calculated above interpolate between the half-plane

and the infinite-slit. For the half-plane we have (recalling a = 1 + λ2 and b = 1 + µ2)

Zhp
n (a) = lim

w→∞
Zn,w(a, b) ∼



























[

2(1+λ2)
(1−λ2)2

√

2
π

]

2n

n3/2 0 ≤ a < 2 (0 ≤ λ < 1),
[
√

2
π

]

2n

n1/2 a = 2 (λ = 1),
[

(λ2−1)
λ2

]

(

λ + λ−1
)n

a > 2 (λ > 1),

(6.1)

as n → ∞. Note that the scaling is independent of b, as it should be for w > n. For any finite w we

expect that

Zn,w(a, b) ∼ Bw(a, b) µw(a, b)n (6.2)

where as w → ∞ we have

µw(a, b) →



















2 0 ≤ a, b ≤ 2,
(

λ + λ−1
)

a ≥ b and a > 2,
(

µ + µ−1
)

a < b and b > 2.

(6.3)

If we denote the right-hand side of equation (6.1) as Shp(n) for each value of a then a canonical

general scaling Ansatz is

Zn,w(a, b) ∼ Shp(n) fphase

(

nν⊥

w

)

. (6.4)

The scaling function fphase depends on which phase or phase boundary of the infinite slit the values of

a and b correspond (so as to match with the infinite slit phases).The exponent ν⊥, on the other hand,

should depend on the phase of the half-plane problem.

We immediately note that there is something unusual here and that while ν⊥ is expected to be

1/2 for 0 ≤ a ≤ 2 it is expected to be 0 for a > 2 ! In Martin et al. [4] it was proposed that a scaling

theory like that in equation (6.4) (see equations (3.5), (3.6) and (3.7) of that paper) should only hold

in the desorbed region of the infinite slit or on its boundaries. That is, we should expect a scaling
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theory only when 0 ≤ a, b ≤ 2 — this is precisely when ν⊥ = 1/2 > 0. This is what we have found for

the directed walk case.

Now, to match the scaling in equation (6.1) (half-plane matching) one would require that

fphase(x) ∼ 1 as x → 0 . (6.5)

This is a similar requirement to that of equation (3.6) of Martin et al. [4]. On the other hand the

scaling of fphase as x → ∞ needs to be considered in order to match the scaling of the infinite slit

(equations (6.2) and (6.3)).

Our results show that the partition function Zn,w(a, b) can be found as two parts Z(e) and Z(s) as

given in equations (5.13) and (5.18) respectively. Importantly, for 0 ≤ a, b ≤ 2 we have Z(e) = 0 and

the form (5.18) for Z(s) is precisely that of (6.4) with the half-plane matching behaviour (6.5) obeyed

by (5.19). The functions (5.19) also obey the required infinite slit matching behaviour: that is,

fphase(x) ∝















































x for a = b = 2

x3e−π2x2/8 for a < 2 and b = 2,

xe−π2x2/8 for a = 2 and b < 2, and

x3e−π2x2/2 for a < 2 and b < 2

(6.6)

as x → ∞. This large x behaviour allows for the recovery of (6.2) with (6.3). They also give us the

first correction to the free energy as a function of w (see equations (7.3) and (7.6) of Brak et al. [2]).

From equation (3.7) of Martin et al. [4] we find that the above results also agree with that generic

prediction.

For any value of (a, b) such that either a > 2 and/or b > 2, Z(e) 6= 0 and furthermore Z(e) >> Z(s)

as n → ∞. As far as we can calculate, Z(e) cannot be written in the scaling function form (6.4). We

note that the scaling form of Z(s) acts as a correction to scaling to that of Z(e) which allows for a

matching of the total form Z(e) + Z(s) with the half-plane and infinite slit limits. Since the dominant

part of the form of Z(e) in (5.13) is that of (6.2) with the connective constant as in (6.3) the infinite

slit behaviour is clearly adhered to (although the coefficient Bw(a, b) may go to zero in this limit).

Consider equation (5.13). For b > 2 and a ≤ 2 (region T (1)) Z(e) ∼ µ−2w → 0 as w → ∞ (n fixed

and large) so for the half-plane one is left with Z(s) with x → 0. For a > 2 and b ≤ 2 (region B(1))

the scaling form in (5.13) coincides with that of (6.1) for a > 2 so that half-plane limit is simple. For

a = b > 2 (line ST B) this is also true. For a > 2 and b > 2 with a 6= b (regions T (2) and B(2)) there are

two parts of the scaling form of Z(e) with one part going to zero for w → ∞ leaving the appropriate

scaling corresponding to the half-plane.

The above shows how complicated, though mathematically complete, the scaling picture can be

for this problem. To summarise, we have calculated the scaling for large widths and large lengths

of directed walks confined between two walls that interact with the walk. We explicitly demonstrate

that the conjectured scaling theory [4] for polymers confined in such a manner holds exactly for this

model. This theory holds when the polymer is in a desorbed state, or on the boundaries of this region

in the parameter space, that is critically adsorbing.
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