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We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen

model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears

as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition

numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control:

this significantly improves the computational efficiency. Motivated by these numerical results, we

formulate an effective theory for the model in the vicinity of the phase transition, which accounts

quantitatively for the observed behavior. We discuss potential applications of the numerical method and the

effective theory in a range of more general contexts.

DOI: 10.1103/PhysRevLett.118.115702

Introduction.—Systems far from equilibrium display a

wide spectrum of complex behavior [1,2]. For example,

thermodynamic phase transitions are usually forbidden in

one-dimensional systems, but a variety of dynamical phase

transitions are still observed [3–7]. Such transitions can

appear in far-from-equilibrium states that are defined by

restricting (or conditioning) trajectories so that time-

averaged observables take nontypical values [8]. They can

be related to physical properties of systems where metasta-

bility is important, especially glassy systems [7,9–16].

In some cases these transitions can be studied analyti-

cally [5–7,17,18], but in practical applications one must

often resort to numerical methods: these access the relevant

far-from-equilibrium states by rare-event sampling algo-

rithms [13,19–22], employing, for instance, population

dynamics or path sampling. Such methods tend to perform

poorly in the vicinity of dynamical phase transitions, just

as conventional sampling methods tend to fail close to

equilibrium phase transitions. For the equilibrium case,

advanced methods exist that solve this problem, including

finite-size scaling analysis [23,24] and multicanonical

sampling [25–27]. For dynamical phase transitions, some

progress has been made in this direction [16,21,28] but

accurate calculations are numerically expensive and suffer

from significant finite-size effects.

Here, we analyze a dynamical phase transition [7] in the

Fredrickson–Andersen (FA) model [29]. We combine a

state-of-the-art numerical approach [30] with a theoretical

analysis. We show that numerical results and theoretical

predictions for finite-size scaling near the phase transition

agree quantitatively. By combining these ingredients we

obtain a full description of the transition, at a modest

computational cost. The phase transition is a prototype for

transitions in a range of systems [7,13,16,31], so we argue

that these new methods and insights have broad potential

application in this field.

Model.—The 1D FA model [29] is a kinetically con-

strained model that consists of L spins on a periodic lattice.

The ith spin takes values ni ¼ 0 (down) or ni ¼ 1 (up)

and the configuration is C ¼ ðniÞLi¼1
. We define an

operator Fi that flips the state of spin i, so that

F i½C� ¼ ðn1; n2;…; 1 − ni;…; nLÞ. The kinetic constraint

of the model is that spin i can flip only if at least one of its

neighbors is up. The transition rates between configurations

reflect this constraint; they are

wðC → F i½C�Þ ¼ ½cð1 − niÞ þ ð1 − cÞni�fiðCÞ; ð1Þ

where fi ¼ ni−1 þ niþ1 enforces the kinetic constraint and

c is a parameter that depends on the temperature in the

model [29]. The rates obey detailed balance and the

model’s equilibrium distribution follows a Bernoulli law

peqðCÞ ∝ c
P

i
nið1 − cÞL−

P

i
ni . Despite this trivial distribu-

tion, the kinetic constraint in the model leads to rich

behavior, related to dynamical heterogeneity in glassy

systems [13,14,32].

Dynamical phase transitions.—We define the dynamical

activity KðτÞ ¼ NKðτÞ=τ, where NKðτÞ is the total number

of spin flips during the time interval ½0; τ�. The phase

transitions that we consider take place in ensembles of

trajectories that are restricted to a given value of the activity.

In the limit τ → ∞, the activity converges to its equilibrium
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value Keq: to estimate the probability of rare trajectories

with KðτÞ ≠ Keq, we consider the cumulant generating

function

GðsÞ ¼ lim
τ→∞

1

τ
loghe−sτKðτÞi; ð2Þ

where h·i denotes an ensemble average. Dynamical phase

transitions are associated with singularities in GðsÞ: they
are analogous to thermodynamic phase transitions, with G
corresponding to the thermodynamic free energy [11] and s
corresponding to an intensive thermodynamic field that is

used to drive the system through its phase transition. We

also define

hKis ≡ −
dGðsÞ
ds

¼ lim
τ→∞

hKðτÞe−sτKðτÞi
he−sτKðτÞi

; ð3Þ

which specifies the dependence of the mean activity on the

field s, analogous to the dependence of the order parameter

on its conjugate field in thermodynamics.

The dynamical phase transition that occurs in the FA

model separates a high-activity state [with hKis ¼ OðLÞ]
from an inactive (glass) state [with hKis ¼ oðLÞ�. It is

defined in a joint limit of large time τ and large system size

L. In this work, we first take τ → ∞ and then take L → ∞.

The phase transition is first order, and the order parameter

K∞ðsÞ ¼ limL→∞ð1=LÞhKis exhibits a discontinuous jump

at s ¼ 0 [7]. However, the large-L limit is not accessible

numerically, and for finite L the activity is a smooth

function of s, whose representative behavior is shown in

Fig. 1. The crossover sharpens as L increases: to analyze

the transition, one must consider the finite-size scaling

of hKis.
Cloning algorithm with feedback.—To perform this

finite-size scaling, we require a numerical method that

provides accurate results for a range of system sizes. To this

end, we generalize a recently proposed adaptive method

[30] to Markov jump processes. The method is based on a

cloning algorithm [19,33] that uses a population of Nc

clones (or copies) of the system. We fix a time interval Δt
and the dynamics of the model are propagated over

intervals of length Δt, such that the total time is τ. For

each interval, one calculates a weighting factor for clone a:

γa ¼ expf−s½NK
a ðtþ ΔtÞ − NK

a ðtÞ�g; ð4Þ

where NK
a ðtÞ is the number of spin flips for clone a,

evaluated over the whole time interval ½0; t�; also one

defines KaðtÞ≡ NK
a ðtÞ=t. After each time interval, clones

are duplicated or removed, to enforce the conditioning on

the activity. In this step, each clone a generates a number of

offspring proportional to its weight γa. The mean activity

hKis can then be obtained as the average of KaðτÞ over the
final population [30].

This algorithm provides accurate results when Nc is

sufficiently large [34], but in practice this may require a

very large number of clones, which is computationally

expensive. To avoid this issue, we combine the existing

cloning algorithm [13,19–22,33,34] with a modification of

the dynamics [35–38], following Ref. [30]. In order to aid

sampling of trajectories with nontypical activity, we modify

the transition rates of the model as

wmodðC → F i½C�Þ ¼ e−swðC → F i½C�Þe
1

2
½UðCÞ−UðF i½C�Þ�; ð5Þ

where UðCÞ is an effective potential or control potential

[39]. The weight factors γa are also modified, by replacing

−sNK in Eq. (4) with

Kmod ¼
Z

τ

0

dt½kmodðCtÞ − kðCtÞ�; ð6Þ

where kðCÞ ¼
P

iwðC → Fi½C�Þ is the escape rate from

configuration C, and kmod is obtained in the same way but

using the modified rates (5).

In the limit of large Nc, the results of the algorithm are

independent of the choice of U. However, an appropriate

choice can dramatically improve the accuracy of results

obtained with finite populations. In particular, there exists

an optimal control potential for which a population of

Nc ¼ 1 is already sufficient for convergence. This optimal

potential is given (up to an arbitrary constant) by

U�ðCÞ ¼ 2 log½peqðCÞ=pendðCÞ�, where pendðCÞ is the prob-
ability of observing configuration C within the steady state

of the cloning algorithm [30]. Calculating this optimal

control directly is not feasible in practice: instead we

restrict to control potentials that involve interactions

FIG. 1. The average activity hKis for L ¼ 36 as a function of

sL, estimated using the feedback method described in the text.

As the number of copies Nc increases, the estimators of hKis
converge to the correct result. The solid black line is the analytical

form (11). The parameters A, B, κ, sLc in Eq. (11) are determined

by fitting the data outside of the coexistence region

(sL ¼ 0.06–0.08, 0.12–0.15) for Nc ¼ 400, where the method

converges rapidly. The inset shows a comparison between the

results obtained from the feedback method (blue dashed line) and

from the standard method (blue dotted line) for Nc ¼ 100.
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between each spin and its nearest neighbors at a distance

≤ d, so that the change in the effective potential on flipping
spin i is

UðF i½C�Þ −UðCÞ ¼ udðni−d;…; ni;…; niþdÞ ð7Þ

for some function ud. To obtain the most suitable values

for these potentials, we use a feedback scheme: we run the

cloning algorithm, estimate the probabilities of particular

local arrangements of the spins, and update the effective

potential based on that choice. By repeating this procedure,

one can optimize the choice of the control potential (see

Refs. [30] and [40] for details).

Results.—Figure 1 shows the performance of the algo-

rithm, close to the dynamical phase transition. We plot hKis
as a function of sL, as obtained from the cloning algorithm,

using the feedback method to determine suitable effective

interactions. The interaction range is d ¼ 4, and we take Nc

between 50 and 800. We set τ ¼ 15 000, which is suffi-

ciently large to converge to the large-τ limit. As Nc

increases, the estimates of hKis converge to a smooth

curve, indicating that these clone populations are large

enough to achieve accurate results. By contrast, the inset

to Fig. 1 shows that the original cloning method (with

U ¼ 0) deviates significantly from the correct result,

compared with the feedback method for the same number

of copies. This tendency is observed throughout the whole

range of s, irrespective of the presence of the dynamical

coexistence [41].

The results of Fig. 1 show the expected crossover from

high to low activity, consistent with the existence of a

dynamical phase transition near s ¼ 0. To analyze the

finite-size scaling of this transition, we define κ as the

maximal susceptibility

κ ≡
1

L2
max
s

�

�

�

�

∂hKis
∂s

�

�

�

�

: ð8Þ

Let the finite-size transition point sLc be the value of s at

which this maximum occurs. For large systems, we expect

κ → ∞ and sLc ¼ OðL−1Þ [7,43]. Figure 2 shows the

dependence of κ on the system size L: the results are

consistent with an exponential divergence of κ as L → ∞,

in contrast to traditional finite-size scaling at thermody-

namic transitions, where κ scales as a power of L [24,31].

To gain insight into these phase transitions and explain the

numerical results in Figs. 1 and 2, we now present some

theoretical arguments.

Analogy with a two-dimensional thermodynamic system
on a cylinder.—These dynamical phase transitions in one

dimension can be mapped to thermodynamic transitions

in two dimensions (2D) [31,35]. Recalling that we have

taken the limit τ → ∞ before taking L → ∞, the relevant

geometry for the 2D system is a long cylinder, with the

system size L in the dynamical system corresponding to the

perimeter of the cylinder. For equilibrium systems in such

geometries, the behavior near phase coexistence is sketched

in Fig. 3 [44,45]: the two phases form domains arranged

along the cylinder. The typical domain length scales

exponentially in L: the reason is that these 2D domains

are separated by domain walls of length L that run around

the cylinder, and the associated interfacial free-energy cost

scales as αL, so the density of domain walls is of order

e−αL. From Eq. (8), κ is analogous to a susceptibility in the

thermodynamic transition; it is also equal to a time integral

of the autocorrelation function of kðCtÞ=L [11]. Hence, κ

scales with the relaxation time of the system. Identifying

this relaxation time with the domain size in Fig. 3, the

susceptibility therefore diverges as κ ¼ OðeαLÞ for large L.
The numerical data in Fig. 2 are consistent with such a

divergence, indicating that the thermodynamic analogy can

predict properties of the dynamical transition.

Effective interfacial model of the dynamical phase
transition.—We now introduce a simplified effective model

for the domains in Fig. 2. Following Sec. IV 1 of Ref. [46],

FIG. 2. Exponential divergence of the dynamical susceptibility

κ, defined in Eq. (8). We plot log κ as a function of L, as obtained
from the feedback method (points) together with the theoretical

prediction (10) (straight lines).

FIG. 3. Schematic picture of the domain wall dynamics at

dynamical phase coexistence, which is analogous to equilibrium

phase coexistence on the (2D) surface of a long cylinder [44,45]

(in this latter case the horizontal axis is a spatial coordinate).

In the effective model, the fluctuating variable x ∈ f1; 2;…; Lg
represents the width of the active phase.
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we assume that typical configurations in the model include

a single active domain of size x (Fig. 3). Within this

domain, the system is close to its active (equilibrium) state;

in the remainder of the system, the system is inactive and

there are no up spins. The system contains at least one up

spin so 1 ≤ x ≤ L. We will show that this simplified model

makes quantitatively accurate predictions for the dynamical

phase transition. (For thermodynamic transitions, similar

results may be available via spectral properties of the

transfer matrix [44,45]: our analysis here is different, and is

based on the dynamical nature of the phase transition.)

The dynamical rules of the FA model mean that the value

of x increases with rate 2cð1 − cÞ and decreases with rate

2c [46]. We take reflecting boundary conditions at x ¼ 1,

L. [For systems that are predominately active, we interpret

(L − x) as the size of the largest inactive domain in the

system, which has a typical value of order 1=c.] The

activity in this effective model is obtained by assuming that

the spins in the active domain flip with typical rate

k̄ ¼ 4c2ð1 − cÞ, but there are no spin flips outside this

region, due to the kinetic constraint. Hence, the analog of

KðτÞ is ðk̄=τÞ
R

τ

0
xðtÞdt.

The result is an effective model where x undergoes a

random walk whose hop rates are biased to the right

(positive x), but conditioned on a relatively small time-

averaged position. In the limit of large L, the model can be

solved exactly, as shown in the Supplemental Material [47].

We summarize the main results: there is a dynamical phase

transition at a field s� ¼ μ
3=ðL

ffiffiffi

k̄
p

Þ, where μ solves

1

2
μ
3=2 þ FðcÞ ¼ 4c2 − k̄þ 2c

ffiffiffi

k̄
p

Ψðc; μÞ
4c2 þ k̄ − 2c

ffiffiffi

k̄
p

Ψðc; μÞ
: ð9Þ

Here, FðcÞ ¼ ð1=2Þ log ½c=ð1 − cÞ� and Ψðc; μÞ ¼ −μ3 þ
2½coshFðcÞ − 1�. Also, the susceptibility κ diverges as

κ ∝ eαL; α ¼ 2

3
μ
3=2: ð10Þ

Finally, the scaling form of the activity near the phase

transition is

hKis
L

∼ A −
κLðs − sLc Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bκ2L2ðs − sLc Þ2
p ; ð11Þ

where A and B are specified in Ref. [47]. This last result is

similar to that obtained in a mean-field FA model [48] and

that for 2D equilibrium phase coexistence of ferromagnets

on a cylinder geometry [45]. These similarities indicate that

the scaling function (11) might be a general property of first-

order phase transitions with exponentially diverging suscep-

tibilities. We also remark that our effective model yields the

interfacial free-energy cost α (9), (10), which is not available

from the 2D equilibrium approach of Refs. [44,45].

The theoretical predictions (9)–(11) are shown in Figs. 1

and 2, together with the numerical results. The agreement

is excellent, despite the simplicity of the model. The

conclusion is that the finite-size scaling of the phase

transition is dominated by the dynamical properties of

the interface between the active and inactive regions, and

this interface is accurately described by the effective model.

Moreover, in the analogy with the classical phase transition

on a cylinder, we can interpret the parameter α in terms of

an interfacial tension between the active and inactive

domains shown in Fig. 2.

Discussion.—There are two key outcomes of this work.

First, we have shown that the cloning-with-feedback

algorithm used here allows accurate characterization of

dynamical phase transitions for a range of system sizes,

with much greater computational efficiency than the

original cloning scheme. Second, we have shown how

the finite-size scaling of first-order dynamical phase tran-

sitions can be understood qualitatively by mapping them to

classical phase transitions in cylindrical geometries; it can

also be analyzed quantitatively by mapping to the effective

interfacial model.

We expect both the numerical and theoretical methods to

apply generally for dynamical phase transitions of this type:

for example, application to other kinetically constrained

models [7,31] should be straightforward. We also anticipate

application to atomistic systems that support similar phase

transitions [13,16,20–22]. Moreover, the transitions consid-

ered here are directly related to quantum phase transitions in

spin chains, for which results similar to Eq. (9) have been

derived [49]. The effective interfacial model presented here

provides a clear physical interpretation of such results, whose

implications for quantum systems remain to be explored.

We also highlight several useful features of the numerical

algorithm used here. The computational cost of the cloning

algorithm scales linearly in the time τ. This allows the large-τ

limit to be converged numerically. Hence, the only parameter

in the finite size scaling is L, which allows direct comparison
with the theory presented here. This analysis is significantly

simpler than finite-size scaling via path sampling, where

both τ and L must be varied together [13,21]. The cloning

algorithm can also be applied in systems where detailed

balance is broken, where path-sampling methods are not

directly applicable. Cloning methods are also related to

diffusion quantum Monte Carlo calculations [50]; it would

be interesting to investigate how the cloning-with-feedback

method might be applied in that context [51].

Another advantage of this method is that the control

potential U determined numerically provides physical

insight into these dynamical phase transitions. In the active

phase close to the transition, the control potential acts to

suppress the number of up spins (reducing the activity), but

one also finds an effective attraction between up spins [52].

This attraction is weak but decays slowly in space, which

acts to stabilize the large spatial domains shown in Fig. 3

[53,54]. Based on the effective model, we expect that the

optimal control potential U� should depend primarily on
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these domain sizes, so it naturally includes long-range

interactions. It would be interesting to obtain a better

understanding of optimal control potentials close to

dynamical phase transitions, especially since incorporating

such information into numerical methods now has the

potential to significantly improve their performance. For

example, one might consider transitions in other spin

models [11] as well as exclusion processes [6,54,55]. In

any case, we stress that while the ansatz (7) is much simpler

than the optimal control, it still results in a significant

improvement of the computational efficiency.

In conclusion, we have shown how a combination of

numerical and theoretical methods provide a detailed insight

into thedynamical phase transition in theFAmodel. Thebasic

ideas of themethod are quite general, such as themodification

of the cloning algorithm with a feedback procedure to

determine the optimal force, or the interfacial model as a

coarse-grained description of systems near coexistence. For

first-order dynamical transitions, we believe that effective

interfacial models should apply rather generally. The numeri-

cal method has even broader potential application, although

the choice of a suitable control potential will depend on the

problem of interest—this remains to be explored.
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