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Finite Spectrum Assignment of Unstable Time-Delay

Systems With a Safe Implementation

Sabine Mondié and Wim Michiels

Abstract—The instability mechanisms, related to the implementation of
distributed delay controllers in the context of finite spectrum assignment,

were studied in detail in the past few years. In this note we introduce a
distributed delay control law that assigns a finite closed-loop spectrum and

whose implementation with a sum of point-wise delays is safe. This property
is obtained by implicitly including a low-pass filter in the control loop. This

leads to a closed-loop characteristic quasipolynomial of retarded type, and
not one of neutral type, which was shown to be a cause of instability in
previous schemes.

Index Terms—Delay equations, finite spectrum assignment.

I. INTRODUCTION

Consider the linear finite-dimensional system with input delay

_x(t) = Ax(t) +Bu(t� h) (1)

where the matrices A 2 Rn�n, B 2 Rn�n and h is the delay of the

system. The matrixA is not Hurwitz and the pair (A;B) is controllable.

An approach to stabilize the system (1), called finite spectrum assign-

ment [7], [18], can be interpreted as follows: first a prediction of the

state variable over one delay interval is generated and then a feedback

of the predicted state is applied, thereby compensating the effect of the

time-delay. This results in a closed-loop system with a finite number

of eigenvalues, which can be assigned arbitrarily. Mathematically, with

xp(t1; t2) the prediction of x(t) at t = t2, based on values of x and u

for t � t1, the control law

u(t) =Kxp(t; t+ h)

=K e
Ah

x(t) +
h

0

e
A�
Bu(t� �)d� (2)

yields the closed-loop characteristic equation

det (sI �A �BK) = 0: (3)

The elimination of the delay is employed in the so-called process model

control techniques [19], as for example, the celebrated Smith Predictor

[16]. It can also be interpreted as a model transformation, the Artstein’s

model reduction technique [1].

The finite spectrum assignment feature of these control laws is a sig-

nificant advantage from a design point of view because the stability and

dynamic properties of polynomials can be readily analyzed, while those

of quasipolynomials are usually a complex task. However, a difficulty

in applying a control law of the form (2) consists of the practical im-

plementation of the integral term, which needs to be calculated on-line.

As explained in [7], obtaining this term as the solution to a differential

equation must be discarded because it involves unstable pole-zero can-

cellations when A is unstable. As suggested in [7], a possibility is to

approximate the distributed delay by a sum of point-wise delays by
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using a numerical quadrature rule. In this way, one ends up with a se-

quence of control-laws of the form

u(t) = K e
Ah

x(t) +

q

j=0

hj;qe
A�

Bu(t� �j;q) : (4)

In the past few years the effect of such a semidiscretization on the sta-

bility of the closed-loop system has been examined thoroughly. In [17],

it was demonstrated with a scalar example that for some parameter

values, the control law (4) may not stabilize the system (1), for arbi-

trarily large values of q. In [2], [12], and [9], the underlying instability

mechanism was investigated and various necessary and/or sufficient

conditions for a safe implementation of the distributed delay as a sum

of point-wise delays were provided. These conditions are all related to

stability properties of the functional difference equation

u(t) = K
h

0

e
A�

Bu(t� �)d� (5)

whose spectrum provides information on the position of the high-fre-

quency modes of (1)–(4). They originate the fact that when the control

law is approximated, the closed-loop equation is of neutral type, and

an essential spectrum which is determined by the discretization of (5),

is introduced.

In this note, we present a simple, yet effective way to overcome the

previous instability problems. We will modify the control law in such

a way that a finite closed-loop spectrum can still be assigned through

standard design methods for linear systems, but, when the integral is

approximated, the closed-loop characteristic quasipolynomial is of re-

tarded type and, as we will see, a sensitivity of stability w.r.t. small

implementation errors is not possible. Basically, our approach consists

of including a low-pass element in the control loop.

The note is organized as follows: a motivating example is first given.

Then we presents and analyze a class of control laws which assign a

finite spectrum and allow a safe implementation. The note ends with a

numerical example and concluding remarks.

II. MOTIVATION

If the scalar system

_x(t) = x(t) + u(t� 1) (6)

is subject to the control law

u(t) = �2xp(t; t+ 1) = �2(ex(t) +
1

0

e
�
u(t� �)d�) (7)

there is one closed-loop eigenvalue at s = �1. Approximating the

integral term with a sum of point-wise delays using the trapezoidal

rule

u(t) =�2 ex(t) +
1

q

1

2
u(t)

+

q�1

l=1

e
l=q

u(t�
l

q
) +

1

2
eu(t� 1) (8)

results in the closed-loop eigenvalues, depicted in Fig. 1(a) for q = 10
and q = 20. Clearly, the eigenvalues, introduced by the approximation

make the closed-loop system unstable. Moreover, as shown in [2], [9]

the closed-loop system is unstable for arbitrarily large values of q.

A simple remedy to overcome the previous stability problem is based

on the observation that the instability mechanism is a high-frequency

mechanism, related to the occurrence of unstable eigenvalues with ar-

bitrarily large imaginary parts. A closer look at the problem reveals

0018-9286/03$17.00 © 2003 IEEE
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(a)

(b)

Fig. 1. (a) Eigenvalues of the closed-loop system (6)–(8) for q = 10 (“+”) and q = 20 (“o”). (b) Eigenvalues of (6)–(9) for f = 40 and q = 10; 20.

that the latter are caused by the throughput at infinity of past inputs in

(8) and, therefore, can be avoided by including a low-pass filter in the

control loop. Adding the filter f=s+ f to (8) yields the control law

shown in (9) at the bottom of the page. The closed-loop characteristic

polynomial is now of retarded type and the eigenvalues are shown in

Fig. 1(b) for f = 40 and q = 10, 20. The low-pass filter puts an upper

bound on the values of the imaginary parts of the unstable eigenvalues,

independent of q. Therefore, as q !1 the real parts of the introduced

eigenvalues move to the left half plane (actually their real parts move

off to minus infinity) and stability is obtained.

_z(t) = �fz(t)� 2f ex(t) + 1

q
1

2
u(t) + q�1

l=1 el=qu(t� l
q
) + 1

2
eu(t� 1)

u = z(t):
(9)
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The previous ideas can be generalized. Since any strictly proper

linear system (Af ; Bf ; Cf ; 0) has a low-pass filtering property, one

can construct the following dynamic controller for (1):

_z(t) = Afz(t) +Bf e
Ah
x(t) +

h

0

e
A�
Bu(t� �)d�

x (t;t+h)

u(t) = Cfz(t):

(10)

In this way the sensitivity problem of stability w.r.t. an implementation

of the integral term is avoided. In addition, since (10) involves a pre-

diction of the state, which compensates the input delay, the closed-loop

system is the finite-dimensional system

_x(t) = Ax(t) +BCfz(t)

_z(t) = Afz(t) +Bfx(t)
(11)

and standard design methods can be used.

In the rest of this note, we will perform a detailed stability analysis

of this type of control laws in the special case where Cf = I because

this allows serious simplifications.

III. DYNAMIC CONTROL LAW

We study the multivariable linear time-invariant system with input

delay h

_x(t) = Ax(t) +Bu(t� h); x 2 R
n
; u 2 R

m
; h 2 R

+
(12)

where the pair (A;B) is controllable with controllability indices

ci; i = 1; . . . ;m in nonincreasing order, and the control law

_u(t) = Afu(t) +Bf e
hA
x(t) +

h

0

e
A�
Bu(t� �)d� (13)

where Af 2 Rm�m and Bf 2 Rm�n. Without loosing generality, we

assume thatB has full-column rank. Note that (13) corresponds to (10)

with Cf = I .

The closed-loop system analysis and design procedure is based on

the concept of coprime factorizations or normal external descriptions

(NED) for linear systems; see, e.g., [20].

System (12) and the control (13) are, respectively, described in the

frequency domain by

(sI � A)x(s) = Be
�sh

u(s) (14)

and

Bfe
hA
x(s) = sI � Af �Bf

h

0

e
�(sI�A)�

Bd� u(s): (15)

Let (N(s);D(s)) be a NED for the pair (sI � A;B) such that

(sI �A)�1B = N(s)D(s)�1: (16)

where N(s) and D(s) are right coprime, D(s) is column reduced

with nonincreasingly ordered column degrees ci; i = 1; . . . ;m. The

invariant factors of D(s) and of sI � A are the same up to unitary

invariant factors and the column degrees ofN(s) are smaller than those

of D(s)), see e.g., [20].

Using (16) the characteristic matrix of the closed-loop system

(12)–(13) can be written in the absence of uncertainty as

D
ideal
A ;B (s) sI �Af �Bf

h

0

e
�(sI�A)�

Bd� D(s)

�Bfe
hA
N(s)e�hs: (17)

Substituting

h

0

e
�(sI�A)�

d� = (I � e
�(sI�A)h)(sI �A)�1 (18)

yields

D
ideal
A ;B (s) = (sI �Af )D(s)�BfN(s) (19)

hence, the number of closed-loop eigenvalues is finite. Next, we prove

that it is always possible to find constant matrices Af and Bf so that a

prescribed spectrum consisting of n +m eigenvalues is assigned.

Proposition 1: Let a polynomial p(s) of degree
m
i=1(ci + 1) =

n + m be given with leading coefficient equal to that of det(D(s)).
Then, there exist constant matrices Af and Bf such that the charac-

teristic polynomial of system (12) in closed-loop with the control law

(13) is p(s).
Proof: There always exists a polynomial matrixDideal

A ;B (s)with

column degrees ci+1; i = 1; . . . ;m, same highest degree coefficient

matrix as D(s) and determinant p(s) (see, for, instance [20]). This im-

plies that the matrixDA ;B (s)� diag fsgmD(s) has column degrees

smaller are equal than those of D(s). The matrix polynomial (19) can

be written in the form

XD(s) + Y N(s) = D
ideal
A ;B (s)� diagfsgmD(s) (20)

where X = �Af and Y = �Bf . For the previous choice of Dideal
A ;B

it follows from [6] that the matrix polynomial (20) has a constant

solution.

Remark 2: A particular case of the previous design procedure is the

clever choice for Af and Bf made in [7], which clearly illustrates the

filtering property of the dynamic control law, and which decouples the

design in that of a pole placement controller and that of a filter. The

control law (13) with the choice

Af = F +KB Bf = K(A�G) such that FK = KG

where F 2 Rm�m, G 2 Rn�n and K 2 Rm�n yields the

closed-loop characteristic matrix

DF;K(s) = (sI � F )(D(s)�KN(s))

the closed-loop polynomial

detDF;K(s) = det(sI � F ) det(sI �A �BK):

IV. EFFECT OF THE APPROXIMATION OF THE INTEGRAL TERM

When the integral in (13) is approximated with a sum of point-wise

delays, the closed-loop characteristic matrix is

DA ;B (s) = sI � Af �Bf

q

j=1

hj;qe
�� (sI�A)

B D(s)

�Bfe
�h(sI�A)

N(s): (21)

For such approximations based on fixed-step method [8], the sum in

(21) is as follows:

h

0

e
�(sI�A)�

d� �

q

j=1

hj;qe
�� (sI�A)

=

q

p=0

�pe
�p=qh(sI�A)

(22)
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where q is the number of intervals of equal lengthh=q and �p are scalars

that depend on the selected integration rule. The characteristic matrix

(21) can then be rewritten as

DA ;B (s) = fsI � Af � �0BfBgD(s)

�

q�1

p=1

�pBfe
Ap=qhBD(s)e�p=qhs

�Bfe
hA(�qBD(s)+N(s))e�hs

which corresponds to an equation of retarded type. Delay equations of

retarded type have an infinite number of roots of arbitrarily large mag-

nitude, located on logarithmic sectors in the left half-plane. However,

there are only a finite number of roots in any right half plane,<(s) � �,

� 2 , unlike equations of neutral type [5].

We now prove that when the ideal closed-loop system is asymptoti-

cally stable, the approximation of the integral term (22) preserves sta-

bility for large q. We need the following technical result.

Lemma 3: Assume that the parameters Af and Bf in control law

(13) are such that the ideal closed-loop (19) is Hurwitz. Then, the

closed-loop characteristic matrix (21) is asymptotically stable if

� Bf H(s; q; h; A; B)BD(s)Dideal
A ;B (s)�1 < 1 (23)

where

H(s; q; h; A; B)
h

0

e�(sI�A)�d� �

q

p=0

�pe
�p=qh(sI�A)

for all s 2 with <(s) � 0.

Proof: The characteristic equation of the closed-loop system can

be written as

det DA ;B (s) = det Dideal
A ;B (s)

� det I +Bf H(s; q; h; A; B)BD(s)Dideal
A ;B (s)�1 :

Under the assumption of (23) the second determinant has no roots in the

closed right half plane. Dideal
A ;B (s) is Hurwitz by hypothesis, hence,

the lemma is proven.

The main result is as follows.

Proposition 4: Assume that the parameters Af and Bf in the con-

trol law (13) are such the ideal closed-loop (19) is Hurwitz. When

the integral term in (13) is approximated by a fixed step method as

(22), then there exists a precision of the approximation such that the

closed-loop characteristic matrix (21) is asymptotically stable.

Proof: It is sufficient to prove that the condition of Lemma 3 is

satisfied for large q.

For all s with <(s) � 0, we have

Bf

h

0

e�(sI�A)�d� �

q

p=0

�pe
�p=qh(sI�A) B

�
h

0

Bfe
A�B d� +

q

p=0

�p Bfe
p=qhAB �M (24)

where M can be chosen independent of q.

The column degrees of Dideal
F;K (s) are those of D(s) plus one. As a

consequence

D(s)Dideal
A ;B (s)�1 ! 0 as jsj ! 1: (25)

Expressions (24) and (25) imply the existence of a radius R0 such that

sup
<(s)�0; jsj�R

� Bf H(s; q; h; A; B)BD(s)Dideal
A ;B

�(s)�1 < 1 (26)

for all values of q.

Given a value ofR0 satisfying (26) it only remains to prove that there

always exists a precise enough approximation q, so that the condition

(23) is also satisfied for <(s) � 0, jsj � R0. Recall that for a smooth

real function f the error between the integral value I(f) =
h

0
f(�)d�

and its approximation Iq(f), obtained via a fixed-step method, depends

on the value of q and is given by an expression of the form

I(f)� Iq(f) = �
h�+1

�q�
f ()(�0)

where the point �0 belongs to the interval [�h; 0] and where �; � and

 are positive integers that depend on the chosen method (for instance,

in the trapezoidal method, � = 2,  = 2 and � = 12) [8]. It is easy to

extend this result to a smooth function g : IR! and obtain a bound

of the form

jI(g)� Iq(g)j �
�

q�
max

�2[�h;0]
jg()(�)j: (27)

Let �i (i = 1; . . . ; k) denote the eigenvalues of matrix A and �i the

order of multiplicity of �i with respect to the characteristic polynomial

of A, and let Zij (i = 1; . . . ; k; j = 1; . . . ; �i) be the components of

matrix A (see [4, Ch. 5]). We then have

H(s; q; h; A; B) =
0

�h

e�(sI�A)d� �

q

p=0

�pe
�p=qh(sI�A)

=

k

i=1

�

j=1

Zij I �j�1e�(s�� )

�Iq �j�1e�(s�� ) :

Using inequality (27) with g(�) = �j�1e�(s�� ), it is straightforward

to prove that there is a constant m such that

sup
<(s)�0; jsj�R

�(H(s; q; h; A; B)) �
m

q�
: (28)

SinceDideal
A ;B (s) has no roots in the compact set<(s) � 0\jsj � R0,

this implies

sup
<(s)�0; jsj�R

� (Bf H(s; q; h; A; B)BD

�(s)Dideal
A ;B (s)�1 < 1

for large q and the proof is complete.

Remark 5: The proof of the proposition is constructive. Using (24),

(25), and (28), a minimal precision q0 (and the radius R0) can be com-

puted explicitly.

Because the closed-loop characteristic matrix (21) is of retarded

type, the achieved stability will not be sensitive to arbitrarily small per-

turbations of the parameters hj;q; �j;q of the integration rule; see [5].

Proposition 4 extends to other types of quadrature rules under mild con-

ditions, since basically only a generally satisfied convergence result of

Iq(f) to I(f) as q !1 is required in its proof. Notice that these two

properties do not hold in general for the discretization of the classical

FSA controller (4) as a sum of point-wise delays, as shown in [9].
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Fig. 2. Stability region of the closed-loop system (29)–(30).

If the precision of the approximation q is such that the approximation

of the integral is not an issue, the stability of the closed-loop system

when the system’s delay differs from the nominal one can be studied

by using numerical continuation [3]or the analytical approach spelled

out in [11], [13]. It is also possible to perform a robustness analysis

with respect to parameter uncertainty based on the concept of stability

radii [10], [14].

V. ILLUSTRATIVE EXAMPLE

We consider the monovariable system

_x(t) = x(t) + u(t� h) (29)

and the control law

_z(t) = �fz(t) + fk ehx(t) +
h

0
e�u(t� �)d�

u(t) = z(t)
(30)

which corresponds to (13) withAf = f andBf = f:k. This controller

parametrization in (f; k) is used because, for large f , it can be seen as

a cascade of the classical FSA controller u(t) = k xp(t; t+h) and the

prefilter f=(s + f).
When the computation of the integral is exact, the closed-loop

quasipolynomial p(s) = s2 + (f � 1)s� f(k+ 1) is stable for pairs

f; k such that f > 1 and k < �1.

When the integral is approximated, as in (7)–(8), the effect of the

low-pass filtering property of the control law (30) on the introduced

eigenvalues and the effect of increasing the precision q of the

approximation have already been illustrated in Section II. For h =
1 and different values of q, a D-subdivision analysis leads to

the stability-instability boundaries of the closed-loop system in the

(k; f)-plane, depicted in Fig. 2.

VI. CONCLUSION

We proposed a distributed delay control law for multivariable input

delay systems that assigns a finite closed-loop spectrum and allows a

safe implementation of the integral term with point-wise delays. This

robustness property is obtained by dynamic feedback, which makes the

control law behave as a low-pass filter. The idea of adding low pass

elements to overcome the problem of sensitivity with respect to ap-

proximation method and to infinitesimal delay variations also applies

to other predictor-based control laws such as the Smith Predictor.
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On Global Tracking Control of a VTOL Aircraft Without

Velocity Measurements

K. D. Do, Z. P. Jiang, and J. Pan

Abstract—This note develops a nonlinear output-feedback controller to
force a nonminimum phase, underactuated vertical take-off and landing
aircraft to globally asymptotically track a reference trajectory generated

by a reference model. The control development is based on a global expo-
nential observer, some global coordinate transformations, Lyapunov’s di-

rect method and an extension of the backstepping technique. Interestingly,
the proposed methodology also yields new results for the previously studied

problems of stabilization and output tracking or regulation. Numerical sim-
ulations illustrate the effectiveness of the proposed controller.

Index Terms—Backstepping, Lyapunov’s direct method, output-feed-

back, vertical take-off and landing (VTOL).

I. INTRODUCTION

Over the last few years, controlling a vertical take-off and landing

(VTOL) aircraft has received a lot of attention from the control com-

munity. The main difficulty with controlling VTOL aircraft is that it is

underactuated and nonminimum phase. An approximate input-output

linearization approach was used in [1], [4], [8], and [9] to develop a

controller for stabilization and output tracking/regulation of a VTOL
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aircraft. In these papers, the controller was initially designed by ig-

noring the coupling between rolling moment and thrust. The controller

parameters were then selected to take into account the effects of the

coupling. In [2], by noting that the output at a fixed point with respect

to the aircraft body (Huygens center of oscillation) can be used, an

interesting approach was introduced to design an output tracking con-

troller. However, the proposed controller is not defined in the whole

space. A simple approach was developed in [3] to provide a global con-

troller for the stabilization of a VTOL aircraft. An optimal controller

was provided in [6] for robust hovering control of a VTOL aircraft.

In [5], dynamic inversion and robust control techniques were used to

deal with the nonminimum phase dynamics. However, this approach

imposed restrictions on the desired reference trajectories. Recently, a

dynamic high-gain approach was used in [7] to design a controller to

force the VTOL aircraft to globally practically track a reference tra-

jectory generated by a reference model. In all of the aforementioned

papers, all of the VTOL aircraft states are required for feedback.

From the above discussion, it is clear that the design of an output-

feedback tracking controller for a VTOL aircraft without velocity mea-

surements is an open problem. Under this controller, the VTOL aircraft

should globally asymptotically track a reference trajectory generated

by a reference model. Indeed, this tracking control problem should also

include stabilization and output tracking/regulation problems studied

in the above-mentioned papers.

This note provides a simple positive answer to the above challenging

problem. The new result is facilitated by a global exponential observer,

some nonlinear global coordinate transformations, Lyapunov’s direct

method and an extension of applying the backstepping technique.

Numerical simulations illustrate the soundness of the proposed

methodology.

II. PROBLEM FORMULATION

A scaled mathematical model of a VTOL aircraft can be described

as [1]

_x1 =x2

_x2 =� u1 sin(�) + "u2 cos(�)

_y1 =y2

_y2 =u1 cos(�) + "u2 sin(�)� g

_� =!

_! =u2 (1)

where x1, y1, � denote position of the aircraft center of mass and roll

angle, x2, y2, ! denote linear and roll angular velocities of the aircraft,

respectively, u1 and u2 are the vertical control force and rotational mo-

ment, g > 0 is the gravitational acceleration and " is the constant cou-

pling between the roll moment and the lateral force. It is seen that the

aircraft model (1) is underactuated and that its zero dynamics are non-

minimum phase for " 6= 0 at the steady state when considering (x1; y1)
as the output and � as an internal state. This phenomenon can be seen

from (1) by setting x1 = y1 = x2 = y2 = 0. We assume that the

reference trajectory to be tracked is generated by

_x1r =x2r

_x2r =� u1r sin(�r) + "u2r cos(�r)

_y1r =y2r

_y2r =u1r cos(�r) + "u2r sin(�r)� g

_�r =!r

_!r =u2r (2)
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