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Abstract

This report deals with a method for the analysis of phased arrays of reclangular stacked
microstrip antennas. The method of moments is used in combination with the exact spec-
tral domain Green’s function in order to calculate the unknown currents on each array
element. First arrays based on electrically thin dielectric substrates are investigated. Lat-
eron this model is extended to the case of arrays on electrically thick substrates. In this
case a proper model for the feeding coaxial cables has to be used including an attachment
mode that ensures continuity of current at the probe/patch transitions.

When analysing arrays it is extremely important that the asymptotic-form extraction
technique is used. Without this analytical method it is almost impossible to analyse large
arrays accurately with an acceptable computation time. More computation time can be
saved if interactions in the method of moments matrices between basis functions that are
located far away from each other are neglected. In this way these matrices become sparse
matrices.

Mutual coupling measurements were made on a 7 x 7 array with a single patch layer.
The measurements agreed fairly well with our calculations. Two broadband configurations
have been investigated, namely a stacked microstrip array on a thick substrate and an array
with electromagnetically coupled (EMC) microstrip elements. The mutual coupling level
is relatively high in both configurations. Despite of this, it seems that an EMC-microstrip
antenna is a very good candidate for the design of broadband microstrip arrays.

Smolders, A.B.
FINITE STACKED MICROSTRIP ARRAYS WITH THICK SUBSTRATES

Eindhoven: Faculty of Electrical Engineering, Eindhoven University of Technology,
The Netherlands, 1993.

EUT Report 93-E-273, ISBN 90-6144-273-7

Address of the author

Electromagnetics Division

Faculty of Electrical Engineering, Eindhoven University of Technology
P.O. Box 513

5600 MB Eindhoven

The Netherlands




v




Acknowledgements

This research was supported by the Technology foundation (STW). The author wishes to
thank Dr. M.E.J. Jeuken and Ir. E.5.A.M. Lepelaars for the helpful discussions.



vi



Contents

2.1
2.2
2.3
2.4
2.5
2.6
2.7
28
2.9
2.10

3.1
3.2
3.3
3.4

3.5

3.6

Introduction

Finite stacked microstrip arrays with a thin substrate

Introduction . . . . . . .. ...
Model deseription . . . . . . . ... . L
Green’s function . . . . . . . . . ...
Method of moments formulation . . . . . . .. ... ... 0L
Basis functions . . . . ... L
Efficient evaluation of the matrix {Z] . . ... ... ... ... ... . ...
Efficient evaluation of the matrix [VO] . . ... ... ... ..., .....
Port impedance matrix and scattering matrix . . . ... ... ... .. ..
Radiation pattern . . . .. . . . .. ... .. ... .o
Results . . . . . . . .
2.10.1 7x7 single patch test artay . . . . . ... .. . ... ... ... ...
2.10.2 Stacked-element microstrip array . . . .. ... .. ... ...

Finite stacked microstrip arrays with a thick substrate

Introduction . . . . .. .. ...
Model description . . . . . .. . . .. e
Method of moments formulation . . . . .. ... ... ... ... .. ...
Basis functions . . . .. ...
3.4.1 Attachmentmode . . . . . ... .. ... L L.
3.4.2 Basis functions on theprobes . . . . . ... .. ... L.
3.4.3 Basis functionson the patches . . . . . . . ... ... ... ...
Calculation of the matrix [Z) . .. .. ... .. ... ... ... .....
3.5.1 {[Z°%]: attachment modes «— attachment modes . .. ... .. ..
3.5.2 [Z/%]: feed modes «—s attachment modes . .. ...........
3.5.3 [ZP%]: patch modes «— attachment modes . . . . . .. . ... ...
3.5.4 [Z!f]: feed modes +— feed modes . . . ... ... ... .. ....
3.5.5 [ZP/]: patch modes «—— feedmodes . . . . . . . ... ... .....
3.5.6 [Z?"]: patch modes «— patchmodes . . . . . ... ... ... ...
Calculation of the excitation matrix (VO] . . . ... . ... ... ... ...
3.6.1 [V0°]: attachment modes . . . . .. ... ... ... ... ... ...
36.2 [VO/]:feedmodes . ... . ... ... .. ... ... ......
363 [VOP: patchmodes . . . . ... .. ... .

vii



viii

3.7 Port admittance matrix and scattering matrix
3.8 Radiation pattern

3.9.3 Stacked-element arrays

4 Finite array of monopoles embedded in a grounded dielectric slab

5 Conclusions

Bibliography

...............................

3.9 Results. . . . ... . e
3.9.1 Convergence considerations . . .. .................
3.9.2 Single patch layerarrays . . ... . ... ... ... L.

........................

3.9.4  Arrays with EMC-coupled microstrip elements . . . . ... .. ..









Chapter 1

Introduction

Over the past few decades microstrip antennas and -arrays have become very popular
due to features such as light weight, conformability and potentially low production costs.
There are many applications of microstrip arrays ranging from mobile communications (see
figure 1.1) to phased array radar systems. For some of these applications input impedance
bandwidths of only a few percent suffices. However, in most practical systems a larger
bandwidth is needed in order to fulfil the overall system requirements. For mobile satellite
communications, an impedance bandwidth of at least 6.5 percent is required whereas for
certain radar systems bandwidth requirements of more than 20% can be expected.

SWITGHABLE
HEMISPHERICAL
ARRAY

MICROSTRIP
RADIATING
ELEMENTS

Figure 1.1: Mobile satellite communication with microsirip arrays

One way to improve the bandwidth of microstrip arrays is by using an electrically thick
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2 Introduction

dielectric substrate. Another way is by using stacked structures. Both configurations will
be investigated in this report. In order to be able to compute the input characteristics
and the radiation pattern of electrically thick microstrip arrays a rigorous model for the
feeding coaxial cables has to be used in the analysis. Particularly the non-uniform nature
of the current distribution on the probes must be incorporated in our model. For that
purpose the Electrical Field Integral Equation (EFIE) on all patches and probes is solved
with the method of moments. The same approach has already been used in [1,2,3,4,6] for
the analysis of isolated microstrip antennas based on electrically thin substrates. In [5] this
method has been applied to the case of isolated microstrip antennas on electrically thick
substrates.

Microstrip arrays can be analysed with two approaches: 1) element by element approach
(finite array approach) and 2) infinite array approach. Small arrays and edge-array ele-
ments can only be analysed in a proper way by using an element by element approach.
The organisation of this report is as follows. Chapter 2 looks at stacked-element microstrip
arrays on electrically thin substrates. A simple model for the feeding coaxial cables is used.
The currents on the patches are calculated with a method of moments procedure. Once
these currents are known, the scattering matrix and the radiation pattern can be calculated.
Chapter 3 deals with stacked-element microstrip arrays on electrically thick substrates. A
sophisticated model for the coaxial cables will be included in the analysis. In the last
section of chapter 2 and 3 some results are presented. Calculated data will be compared
with measurements. Chapter 4 includes a paper about finite arrays of monopoles that was
previously published by the author in Electronics Letters joctober 1992].



Chapter 2

Finite stacked microstrip arrays
with a thin substrate

2.1 Introduction

In [1],[2] and [3] a method was presented for the analysis of isolated microstrip antennas
with an electrically thin substrate. They all used a spectral domain method of moments in
order to calculate the unknown current distribution on the patch. Because the substrate
was assumed to be electrically thin, a simple model for the feeding coaxial cable could be
used. In this chapter we shall extend this model to the case of a finite array of stacked
microstrip antennas build on an electrically thin substrate. The technique which was used
in [4] to reduce the computation time needed to evaluate certain infinite integrals for
the isolated microstrip antenna case, shall be extended in this chapter to the microstrip
stacked-patch array situation.

2.2 Model description

The geometry of a finite array of identical stacked rectangular microstrip patches, fed by
a coaxial cable, is shown in figure 2.1 along with the notation to be used. Both patches
of each array element are assumed to be embedded in the grounded dielectric slab. The
centre of both the lower and upper patch of antenna element 1 (k = [ = 1) is located at
(z,y) = (0,0). The infinite groundplane and all patches are perfect electric conductors
(¢ = o0). The dielectric material extends to infinity in the xy-plane and is isotropic,
homogeneous and lossy material. The permittivity of the substrate is complex:

€ =€ —j! =€(1 — jtané), (2.1)

where tan § is the loss-tangent of the dielectric substrate. The permeability u of the
material is the same as the permeability in vacuum: g = yo.

Only the rectangular array-grid situation is studied here, but an extension to other grid
forms is straightforward. The x- respectively y-dimensions of the lower patches (z = z})
are Wy, and W;; and the x- resp. y-dimensions of the upper patches (z = z}) are W, and
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Thin substrate arrays

y..:‘;‘/ﬁﬁf T A

S — §
ez

a. Top view

oz substrate

0 LLL Sy Ll Ll P OTVTITSITOSFFISySysyr

infinite groundplane

b. Side view

Figure 2.1: Geometry of a finite array of stacked microstrip antennas embedded in a
grounded dielectric slab



Thin substrate arrays 5

W,2. The feeding coaxial cables with inner radius ¢ and outer radius b, are connected to
the lower patches at a distance (z,,y,) from the centre of each lower patch. The number of
array elements in x- and y-direction is K and L respectively and the array element index
is represented by § = (I — 1) x K 4+ k. We shall assume that the distance between the
lower patches and the groundplane is small compared to the wavelength in the substrate
(21 € A¢). In this case the current along the coaxial probes will be almost constant.
However, when the substrate is electrically thick, the current distribution along the probes
will be z-dependent and therefore a more sophisticated model has to be used. Arrays on
thick substrates are discussed in chapter 3 of this report. Now let’s assume the substrate
to be electrically thin. The probe is represented by a cylinder with radius a. The z-
independent current distribution on the probe of antenna element 1 (j = 1) is then given

by

. - L
Toreer (T, 9, 2) = Il Tpworer (2,9, 2) = ez-z-rl‘;ef (\/(z —24) + (Y — ¥s)? — a) 0<z< 2
(2.2)

where I is the port current of antenna element 1.

2.3 Green’s function

A Green’s function is the vector potential or the electric and magnetic field created by a
unit source. The fields resulting from a general electric current distribution can then be
found by dividing this current distribution into an infinite number of elementary electric
dipoles and then integrating the contributions of all the elementary dipoles. The problem
shall be formulated in the spectral domain, because a closed form expression of the Green’s
function can be found in the spectral domain. So all quantities are transformed according

to {z,y} — {k=, ky}:

F(kz k) = / [ Flz,y)e* =M dzdy,
(2.3)

Fl(z,y) F(k,,,k Ye iRz iRy di_dk,.
¥

In [5],[6] the spectral domain Green s function was given of an electric dipole embedded in
a substrate above an infinite and perfectly conducting groundplane. Using these results,
the electric field in the substrate at (z,y,z) due to a general current distribution in the

substrate is given by

E(z,y,2) = ke, ky, 2)e o2~ Ruv gk dk,

B g
3 8

“"I '“I
L | ol

[ B,
/ / Gplker by 20, 2) - ko, By z0)dzoe= "0V dk, dk,,
z0

with



Qg (ks ky, 20,2) =

QE:rx(kn ky, zo, z)

QE-‘W(kh kln Zg, z)

QEw(kz’ kw Zp, z)

QEI!(kn kw <0, z)

QEW(kxa ky, zo, z)

QEzz(k&‘a kya 29, Z)

Thin substrate arrays

QE::: QEzy QE‘::

Qny QEW QEyz for z S d and Zp S d, (2.4)

QEzz QEzy QEzz

sugsinhs [)(k2 — Ke.)Ne(2)Tm — B2k} e, —1)sinkiz] 20 <2

pasinhia {3(k2 — k3e,)Ne(20)Tm — k2k2(e, — 1)sin kizo] 2 < 20

QEyJ: =

Solh A n Ne(z)Tm - Ki(e — 1)sinkiz] 20 <z

o emsent INe(z0)Tm — k¥(e — V)sinkize] 2 <2

:kog;i"}trm [J(kz - kgfr)Ne(Z)Tm - kﬁk?(e, —1)sin k 2] 20 2

¥

cfkogk:l?‘ffl‘:n [](k?f - kge,.)Ne(zo)Tm - kﬁk?(e, — 1)sin klzo] z <z

]

_QEzz = ‘{

\
f

—QEy = (

L

285(z — 20)
i

Zﬂr‘:ﬁ%m lerkzcos ky(d — 2) + jkysinky(d —2)] z <z
tade oohit (e, ky cos ky(d — z0) + sk sin ki(d — 7)) 2 < 2
W [erk2cos ky(d — 2) + gk sinki(d— 2)] 2 <z
2‘%’:—'5 [e, k2 cos by (d — 20) + skusinki(d — 2)] 2 < =
cos ky1zg [, kz sinky(d — z) — jkycosky(d — 2)] 2z <z

COs k1Z [Crkz sin k] (d - 20) - Jkl cos k] (d - Zo)] Zo 2 z

b}

bJ

?
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and

Ne(z) = ky cos ky(d — zo) + kg sin ky(d — zo),
T'm = ke, cos kyd + 3k, sin k,d,

Te = ky cos kyd + 3k sin kyd,

B = ekl —K -k,

=k - K-k, (Im(k) <0),

where ko = w./Eopio is the free space wave number and w = 2x f is the radial frequency.
The restriction that I'm(k;) < 0 follows from the radiation condition that the fields are
outward propagating waves, decaying with distance from the source. The corresponding
magnetic field at (z,y, z) is given by

ﬁ(z,y,z) = égl / ﬁ(k,,k,,,z)c"k”e""”’dk,dk,
- 1 g e g .
= I3 f / / Qulkz, ky, 20, z) + J(kz, ky, 20)dzoe ™ 2%~V dk dk,
-0 v =00 J x5
with

QH:::: QH.z-y QHa:z

éH(k,,ku,zo,z) =| Quy Quyy Qny: for 2 <dand z < d, (2.5)

QHzr: Qsz Qsz )
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QHzz(kz, ky, 20,2) = ’k‘k”(""lg),;,“nfm“k“ z < 2z,
QHzy(kz, Ky, 20,2) = _Ne;'o:klz + Jkg(cr—%n%t:zomhx z < 2o,
Qﬂyz(kﬁ km 20y z) = N“To:k 2~ ﬂ(lr__lrnil;:;zomh’ z < Zo,
QHW(k&'! kv: zOyz) = _Jk‘k"(t'-lq)-;-nﬂfﬂomhz z < Zg,
Quz:(ke, by, 20,2) = —'-’-’-“if;'—,:l—f[e,kg sin ky (d — 2p) — yk; cos ky(d - 2p)] 2z < zp,

Quys(ks by 20,2) = BENE (e Kysin ki (d — 20) — sk coshi(d = 20)] 2 < 2,

- Jk!Ne!zn!aink z
Qsz(ka" k],n 20,2) = kitTe ! z S 20y

_ ks Ne(z) sink
Qqu(kzs kya 20, z) = —==t% s z < zp,

lee
Qsz(km ky: z0,2) = 0

In this chapter the magnetic field shall not be used. However, in chapter 3 where a
sophisticated model for the feeding coaxial cable is presented, the magnetic field will be
used, with z < z5. The roots of the functions T'e and T'm correspond to solutions of the
characteristic equation for TE respectively TM surface waves in a grounded dielectric slab
[7). These roots correspond to first order poles in the Green’s function and are therefore a
source for numerical problems. In paragraph 2.6 a method is discussed that avoids these
numerical problems.

2.4 Method of moments formulation

The boundary conditions on all the 2 x K x L patches of the stacked microstrip array
are used to formulate an integral equation for the unknown current distribution on each
patch. This integral equation is then solved by applying the method of moments. We will
start with the boundary condition that on all the patches of the array the total tangential
electric field has to be zero, i.e.

-

8:::(3’ Y, z) = ‘ﬁ?n(z’ v, Z) + t‘i_';'a,,(:c,y,z) = 6 on each patch, (2'6)

where f;f::(z, y,z) and & _(z,¥, z) represents the excitation field and scattered field respec-
tively. The scattered field results from the induced currents on all the patches of the array.
The excitation field is the electric field due to the K x L coaxial probes. The next step in
the method of moments formulation is the expansion of the unknown current distribution
on each patch into a set of basis functions
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KxL KxL N1+Ny

j(z,yaz) = 2 j}(:t,y,z) = Z Z IMijmj(x’y1zm)
i=1 j=1 wm=1 (2.7)
X {U(a+(k=1)as+ 550) U (2 +(k=1)as— 258) HUGH1-1)b5+ T2 )-Ulu+ (1-1)b, - H5) },
with
U(z) =0 for <0
U(z)=1 for £ >0,
and
le MSNI Wyl m5N1 Z; mSNl
Wy = Wyt = Im =
W m> N, Wi m>N z, m>N

N, is the number of basis functions used on each lower patch of an antenna element and
N, the number of basis functions used on each upper patch. So the total number of basis
functions is Npaz = K x L x (N1 4+ N3). fm,— represents the m-th basis function on antenna
element j and I,; the corresponding unknown mode coefficient. On each antenna element
the same set of basis functions will be used. The scattered electric field £2,,(z,y,z) can
now be expressed in terms of the unknown mode coefficients, because we may use the
superposition principle. This then gives

KxL Ni+N

g’(zay’2)= Z Z Im'é::i(msy$z)' (28)

i=1 n=1

Substituting expansion (2.8) in (2.6) gives

KxL Ny+N; - - -
€; X (E Z L& + 5”’) =10 on each patch. (2.9)

i=1 n=1

Introduce a residue according to

- KxL Ni+N; .

R=¢ x (z Z Li& + 5") =0 on each patch. (2.10)
i=l n=1

The above equation has to be satisfied at all points of each patch. We shall relax this

condition a little bit. The residue is now weighted to zero with respect to some weighting

functions, J.;, such that

— —+

(R; ij)smj = / s .R‘.jm,- dSp; =0 for m=1,2.,. M+ N; 7=1,2,..,K x L,
™ (2.11)
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where Sy,; represents the surface of the lower patch of array element j if m < N; and S,,;
represents the surface of the upper patch of array element j if m > N,. Note that the set
of weighting functions is the same as the set of expansion functions. This choice is known
as Galerkin’s method. Inserting (2.10) in (2.11) gives a set of linear equations:

KxL Ny+N;

3D I,,,-./.[gmjé::,--fmjdSm,-+//Smj£'"’.j'm,-dSm,-=0,

i=l1 n=1

(2.12)
for m=12.,.NM+N,, 7=1,2,...,K x L.

The excitation field £2%, excited by the K x L probes, can be written in terms of the
contribution from each probe:

KxL Ni4+N; KxL

z z Im’/] é;:,jmgdsmg'*'zl'r/f ‘ﬁ‘e::'j'deSmj:O,
i=1 n=1 Sm; =1 Smj (2.13)
for m=12..M+N;, 7=12,..,K x L.
This set of linear equations can be written in a matrix form
(2]} + [VO][I7] = [0]. - (2.14)
with
Zmjni =4m? [/ é-.':‘:.-(:.r:, Y, 2Zm) - j,,,_,—(z, ¥, zm) dzdy,
Smj
Vlpmis = 41r2j E-':F’(z,y,zm) . j,n,-(x,y,zm) dzdy (2.15)
Sy

= 4W2/f./ g:nj(xaysz) - jprobc i(zsyaz) d:l:dydz,
probe 1

where the reaction concept was used [7] to rewrite VOp,;,. j;,,.ob, i(z,y, z) represents the
current distribution along the coaxial probe of antenna element i and is given in (2.2).
The matrix [Z] contains Npay X Npar elements (N = K X L x (N} + N3)), [I] is a
vector containing the N,.,; unknown mode coefficients of the basis functions, [V0] is an
Npaz X (K x L) matrix and [I7] is the K x L-element column vector of port currents. In
paragraph 2.3 a closed form expression was given for the dielectric slab Green’s function
in the spectral domain. The elements of [Z] and [V0] can be expressed in terms of this
.spectral domain Green’s function:
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Tmjoi = 422 f j E2(2,9r 7m) - Toni(:9, 2m) dudy
Sy

4“2 // [21_2 / éE(k-'h km Zny zm) : j:ai(k::, k,,, zn)e_J"“"e‘J"vﬂdk:dky]
Smyj T S0 J -0

'jmj (-’L‘, Y, zmi)dmdy

= /_: /-: F?E(km ky, 2ny 2m) - 'I-;“(k‘"" ky, z,.)]

' U / jm:‘(z,y,zm)e""”e--”‘”dxdy] dkdk,
Sim;
= / f @E(kz: ky; Zny zm) ' j;u'(kzg ky) zu)] ' f:u(kzs ky, Zm)dkzdku

— f f @E(k:m kyy zn’ Zm) . j:ll(kz, ky, zn)] . j;ll(kl'-') kﬂ" zm)e—Jk:Ssji c—JkySyjidkzdkv’

VOmji = 4#2]/] g;;j(x’y: Z) ’ jwobe i(msy$ z) dzdydz
probe

= 4 f / / [4% j CjE(k,,k,,,zm,z)-fm_,-(kx,ky,z,,,)e"""""e"""”dk,,dky]
probe 1 ® —o0 « —00

J,,,,,b, i(z,y,2)dzdydz

/ j f " Qlker Kyy 2y 22 - Foni (ke Kyr 2m) | - T i(ker by kol
)3

]

I

j f f lCjE(lc,_, ky,2m,z)dz - fml(kz, ky,zm)| - €:Jo{ay /K2 + k3)
-00 o =00 o

e;k, (Sxji —xa)eka (Sysi _y‘)dkzdky y

(2.16)
with

Jrote i(ke, ky) = E:do(ay/RTF RJemtelert(bimtelemsbyuntltit),
with i = (- 1)K + &,

where fm,(k,, ky, 2;m) is the Fourier transform of the m-th basis function on antenna element
j and Jy(z) is a Bessel function of the first kind of order 0. We will only use real basis

functions, i.e. mj(:r,y,zm) ij(:c ¥s2m). J, J(k,,,ky,zm) is the complex conjugate of
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Tini(kz, kyszm). Scji and Sy;; are the distances in x- respectively y-direction between the
centre of antenna element j and antenna element i. Qz(k-, ky, zg, z) is the dyadic Green’s
function given by (2.4). The z-integral in (2.16) can be performed analytically. From (2.16)
it is clear that [Z] and [V0] have a Toeplitz-type of symmetry. So only the Z,;.; elements
withm =1, . . NM+N,n=1..,N+Nandi=1,.,K x L have to be calculated.
Similarly, only the V0,1 elements of [V0] have to be evaluated for a maximum of 4 probe
locations namely 1) probe at (z.,¥s) 2) (%4, —¥,) 3) (%4, %,) a0d 4) (—7,, —y,)-

2.5 Basis functions

In general two types of basis functions can be distinguished: 1) entire domain basis func-
tions and 2) subdomain basis functions. With subdomain basis functions arbitrarily shaped.
patches can be analysed whereas with a set of entire domain basis functions usually only
one patch shape can be analysed. From a computationally point of view however, entire
domain basis functions are more efficient, because usually only a few basis functions have
to be used in order to obtain accurate results from a moment method procedure. We shall
only consider microstrip patches with a rectangular shape and therefore a set of entire
domain basis functions shall be used. These basis functions are solutions obtained from
a cavity model analysis [8]. They form a complete and orthogonal set that exists on each
patch of the array. The m-th basis function on antenna element 1 (j = 1) is then given by

Lower patch (2, = 27), m=1,...,. N
jml(z:y,zi) = j.m,mu(xs y1z;) = gz%_‘_: sin (M(I + ﬂ2"L)) cos (%:f(y + —f—))
+8, 55 cos (F=(z + ) sin (R0 + 1),
with |x|< 1 |y|<—'—, m,=0,1,2,....., my=0,1,2,....... ,
Upper patch(zm = 23), m=M+1,.,. M+ N,
mgw x W, ‘
Jml(z$ y’zz) = Jmsmy(x1 yaze) = e,—‘-—sm (Wi;'(z + lV’éﬂ')) cos (%:;’(y + "_gﬂ))
8, = cos (Be=(e + %)) sin (20 + %2)),

with |z| < %22, |y| < %2 m, =0,1,2, .., my =0,1,2,...c....
(2.17)

For every m we have to choose a certain combination (m,,m;). The Fourier transforms of
the basis functions for antenna element 1 are given by
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Lower patch (znm = 2}), m =1,...,, Ny,

fm("’m ky,z1) = fmsmy(km ky,21)

= gzmﬂ(mzy k:, Wzl)F‘c(my, ky: Wyl) + gymFC(mza kz, le)Fl(my, ky: Wyl)s
Wzl Wyl

Upper patch (zn = 25}, m=N+1,..,M + Ny,

j.M(kI’ ky, Z;) = j.m:my(k-lW kﬂ‘! z;)

= é‘zmszn(mz, k:." W::‘Z)Fc(my’ kys Wy?) + é‘ych(mm er Wx?)Fs(mm kw W:ﬂ)i
W Wv‘i
with m;=0,1,2,....., my=0,1,2,.......,

(2.18)
and

2m,x W, cos 5‘%‘ e odd
(mew)? — (ks We)? :

—32m,a Wy sin L“?W“

(mem)? — (kWpe)?

Fs(mzs kz; Wxt) =

m, even

=23 Wik, cosﬁ'%,"l odd
(mym)t — (W )F

e kyWot
—_ w o Bt 13
2 yky sin ]

(mym)? — (k,Wy)?

Fo(my, by, Wy) =

m, EveEn

The definition of the Fourier transformation is given by (2.3). From convergence tests it
was shown in [9] that the x-directed modes with m, = 0 and the y-directed modes with
m,; = ( give good results for linearly polarised patch antennas. The other modes do not
significantly improve the overall result. Therefore we shall use a sub-set of (2.17). For
antenna element 1 this sub-set has the form
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Lower patch (z = 2]), m=1,...,. M
Jml(I, Y, Z;) = Jm,m,(x,y, 2;)

— é‘x-’-"w:-f- sin (._z..(x + )) + e"-J-— sin (%(g + E,f"—)) y

with |z| < ¥, |y| < Z2, m, =0,1,2,....., m, =0,1,2,.......,
(2.19)
Upper patch(zm = 23), m=N,+1,.., N+ N;
TIm(2,4,2) = Tnamy (2,9, 25)
> mzX bii x W, -
= & 3% sin (%‘;(m + p—V,‘fl)) +&, 5 sin (W'E(y + —{3-)),
with |z| < ¥22 |y| < %2 m, =0,1,2,....., My =0,1,2,........
And the corresponding Fourier transforms of these basis functions are given by
Lower patch(z,, = z1), m=1,..., N;,
fm(kt’ km z;) = fm:ﬂly(km kya z;)
. MT
= 6, F (mﬂh kzi WSI)F (0 kva yl) + ey F::(O; k.'n le)Fl(mys kya Wyl )a
W Wyl
Upper patch (z,, = z3), m=Ny +1,...,Ny + Ny, (2.20)

fm(kxa km z;) = frnsmy(km ky, z;)

m,1r
= €g e
Wi

F(mg, by, We)F, (0, ky,, Wia) + e, e(0, ko, Wea) F, (my, ky, Wrﬂ)’

W

with m.=0,1,2,...... y my =0,1,2,........

2.6 Efficient evaluation of the matrix [Z]

In (2.16) an element of the moment method matrix [Z} was expressed in terms of a two
dimensional infinite integral. These integrals have to be evaluated numerically. Several
numerical problems occur when calculating these integrals. Before we shall discuss these
problems, a change to polar coordinates is introduced:
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k: = )
fofjcos (2.21)

ky = kof sin a.

This change to polar coordinates transforms one infinite integral into a finite integral. An
element of [Z] then takes the form

Znioi = [ [ 68yt 5 2m) - T8y 50)] - Faa(r 0 20)

e—:"oﬁoosass,‘i e—JkoﬂamaSw'.-kgﬂdﬂda

(2.22)

The o integration range of the above integral can be reduced to [0, 7] if one uses the even

and odd properties of the dyadic Green’s function QE and of the basis functions Jml, J,.1
Using these properties, an element of [Z] can be written in the following form

= +]

(@8, 20, 2m) - Tua (B 01 20)] - Ts(B, 0 2m) Ss(m, 5, B, )k BdBdex

3
Zrnj,m' = ]
0

/i

o0

f(B,a)dpda.

S S,

(2.23)
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with

- -4
1. my=n, = 0, 1.€. Jml = Jmle,, and Jnl = J,;IE,_-.

(

4 cos k.55 cos &y Sy mg odd, n; odd

~4738in k;S,ji cos kySy;i m. odd, n, even
S,(m,j,n,i,ﬁ,a) = 1

—4j3sin k. Sg;; cos k, Sy m. even, n, odd

4 cos k; Szji cos kySyji m; even, n, even

L

2- my = na; = 0, i-e- Jml - Jmlé‘x &Hd Jnl = n]é‘vu
(
~48in k;5;;:8inky Sy mz odd, ny odd

—478in k5,5 cos kySyji mg odd, n, even
Sz(mvjsnv i’ﬁ)a) = ﬁ

—4jcos k:Szjisin ky Sy m. even, n, odd

4 cos k;Szji cos k, Sy m. even, n, even

\

3. My =Ny = 0, i.e. Jm.l = Jm1é'y and J,u = Jnlé‘z.
f

—4 5in sz,,j,' sin kySyj,' my Odd, ng odd

—43cos ky Sgjisin kS5 my odd, n; even

Sy(m,j,n,i,B,0) = {

—47sin k;S;j; cos kySy;;  my even, n, odd

4 cos k;Sy;; cos ky Syji m, even, n, even
\

4, My =N, = 0, ie. Jml = Jmlgy and J,,l = Jnlgy.
¢

4 cos k, Szji cos ky Sy i m, odd, n; odd

—43c08 k. Sr;i8in kS, m, odd, n, even
Sz(m’lj,n?i?ﬁ'la) = 4

—4jcos k5.5 sin k, Syji m, even, n; odd

4 cos k;Szj; cos ky Sy m, even, n, even
.

The infinite 8 integration interval can be divided into three sub intervals, i.e. [0, 1], [1, /€],
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and [v/€],00]. In the first interval the integrand has an infinite derivative at § = 1. So
much integration points are needed near this point in order to obtain a good accuracy in
the numerical integration. This infinite derivative can be avoided by introducing a change
of variables [10] with 8 = cost:

/og. .Ll J(B, a)dfda = ]f ff f(cost,a)sintdido. (2.24)

In the second integration interval this infinite derivative also occurs. With a change of
variables # = cosh t this infinite derivative can be eliminated [10]:

5 4 T rarccoshq /el
/os /1\/_ (8, a)dBda = jo 4 /o f(cosh ¢, &) sinh tdtder. (2.25)

In the integration interval [1, \/€]] another numerical problem arises due to surface waves
that exist in the grounded dielectric slab. The roots of the functions Tm and Te in (2.4)
correspond to solutions of the characteristic equation for TM and TE surface waves in the
dielectric slab. The roots of Tm and T'e correspond to poles in the dyadic Green’s function.
In [6] it was shown that these poles in the dyadic Green’s function are first order poles and
are located just below the real 8-axis if the substrate is not lossless. Although the poles are
not located on the real g-axis, they do cause numerical problems when integrating along
the real B-axis. In most practical situations there will only be one pole, corresponding to
the T My mode with a zero cut-off frequency. A second mode will occur if kyd\/e. — 1 > 3.
Now lets assume only T'm has one root located at 8 = 8, = o+ v with 1 < fip < /el
and ¥ < 0. The S-integrand in (2.23) may be written in the form

f(B,a)= ;&ﬁ—&;; (2.26)

Because the function T'm has a first order zero at 8 = 8,, f(#,a) will have a first order
pole at this point. In the neighbourhood of this pole f(3, a) can be expanded in a Laurent
series. The singular part of this series is given by

R(a)

sing(B8,0) = ——, 2.27
funelB10) = 32 (227)
where R(a) is the residue of f at § = 8,:
= li - i BB
R(@) = Jim (8~ 4,)f(6,2) = h(Ba) Jim (7=, (228)
Tm(B) can be expanded into a Taylor series in the heighbourhood of 8 = §,:
Tm(B) = dT'm(B) (8 — By) + ....higher order terms (2.29)
df B8=8p

Substituting this expansion in expression (2.28) and neglecting the higher order terms
yields

R(a) = % (2.30)
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Numerical problems associated with surface waves can be avoided by extracting the singular
part, denoted by f,;n,, from the original integrand f:

ff / 7" 18,0 - foi { / Y 1(8,) (BB + / VS ol a).m} do.

(2.31)
The f§ integration over f,;,, can be performed analytically:
Ve R [(/& =) +V*
in, ’ dd= —In . o ]
fl Jung (Br)df = 5 [ (1 - Bo)? + 2 (2.32)
+3Rarctan [\/E{; ﬂo] + jRarctan [ﬁ-o—:—-l-
In the case of a lossless substrate (v T 0) the integral over f,i, takes the form
] famg(ﬂ O-')dﬂ Rin [‘(é’: B)O] j‘rrR (2-33)

The remaining 3 integral in (2.31) is well-behaved and can be calculated with a standard
numerical integration routine.

In the third integration interval, i.e. [\/€], 00], no poles or infinite derivatives occur. Several
authors [1],[2] perform this integration numerically for a certain upper integration limit
Bmaz- A great disadvantage of this direct integration strategy is the fact that the §-
integrand is a slowly decaying and strongly oscillating function. The direct integration
strategy works well for isolated microstrip antennas, However, if one wants to analyse
arrays, this strategy will be very time consuming and not very accurate. Because of the
eks52ii ekvSuii term in the B-integrand of (2.22), the number of oscillations increase if the
distance between the two patches under consideration increases. In [4] a technique was
proposed (source term extraction technique) that was applied to the case of an isolated
microstrip antenna. In this report we shall extend this method to the case of an array

with stacked-patch elements. Now let Qg be the asymptotic form of the dyadic Green's
function Qg for large 3 values. Then an element of the matrix [Z] may be written as

Tnsos = [ [ Bet8 ) T8 0] - a8, m) S5, B, )R8 dBde
-/ {7 (@800 20) - B8, 50, ) FatBr2)] -
Tra(B,22m) Sa(m.d,m,i, B,0)k3Pdp
4 [ @06, 500 m) - Fi(,0,50)] - Far(Br5m) o5, By WP}

= (Zm_,-',“v - Emj‘ni) + zmj,ﬂis
(2.34)
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with

~ ¥ ror= - -
ij,m' = /o ‘/0 [QE(ﬁ9 Q, 2Zn, zm) +Jn1 (ﬂ, a, zn)] 'J::;l (ﬁ) a, zm) S, (msj-n n, i$ ﬂ’ a)kgﬁdﬂda
(2.35)

Note that 65 is extracted from the original integrand for all #-values. The asymptotic
form of the Green’s function can be found by substituting k; = —j7kof8 and k; = ~— koS in
expression (2.4). In this chapter only x- and y-directed basis functions are used. So only

QEzzs QEW: QEy:: and QEzy are used.

éEa’z éE.z'y Q'Ezz
éE(k‘-'-"kv:zoiz)‘: éEw éEW Q'Eyz‘ ’ (236)

QEzz QEzy QEzz

with )
—wopo [, 2B cos’a
- _ =d
%o e+l | T
Ve = J —Jwio B cos? a
Exx = —_ =
Q { T 1 - ] z2=zy< d
0 z 75 2o
([ —jwpo 282 sin? a _
kB || a1 | T4
~ 212
Opwy = { o |, _ B%sin® a _
Byy + T 1 . z=z<d
0 F4 -‘,é 2o
( Jwpofsin2a o = d
2koBe- +1) ~
Qny = QE.:y = 1 J———_—_wioki;l: 2a 2=z < d -
0 z# 2

Note that the asymptotic form is not continuous for z = z = d. From (2. 36) it is clear that
Zm; ni 18 unequal zero only if the basis functions JmJ(ﬂ, a, zm) and J,,_T (8, a, z,) are located
both at the same z-coordinate, i.e. if z,, = 2z,. Our task is now to find a closed form
expression for the infinite B-integration over the extracted part of the integrand. We shall
present this method here only for the case of two x-directed basis functions, so Jm: = Jnjéz
and J,._, = Jnj€: with m; and n, both odd. The procedure of determining ZmJ ai for the
remaining basis functions is analogeous. Substituting (2.4) and (2.20) in expression (2.35)
yields
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~ z o0 2 . .2 ,
Foimi = 4,4]2 _ 12 / [1 _ QES_"_]
0 5in- @ Jo €rh .. (2‘37)

cos? % sin® %‘i cas B¢ cos By dpd
(nem — BY)(nom + B7)(mam — Br)(mam + )BT

with
A= —8jwpom*min Wy,
k3
v = ko cos aWy
6 = kg sin Q’Wyg
(= ko cos a5z
n= ko sin a5y
W We if 2z, =2,=2
Tt =
We if zn =2, =2
.
W ) Wy if 2z, =2, = 2]
vt —
L Wyg if ZmIZn:Z;
€r if zp, =2 <d
€rh = <
il =z = d
\

The cos? ﬁz—" sin? %§ cos ¢ cos An term in (2.37) can be expanded into a set of exponential
functions:

cos” 0 sin? £X cos ¢ con fn = =1 {9(8) + 9(~B)) (2.38)



Thin substrate arrays 21

with
g(B) = — 40} _ 4 38(-n) _ 9 38(v+(+n)

—92eP(r(—n) _ 9,38(v=C+n) _ 9 1B(v—C—n)
+2e28EHN) 4 9oaBE+C—m) | 9o 2B(E—C+n)
+2ePE—C=n) | Bl HH(Hn) | 2By +HE+(~n)
$ePOE=CHn) 4 BlrtE—~(-n) 4 aBly—E+CHn)
+ePO-8H-n) o paBlr—E=Cn) 4 aBly=E-C=m)

Because of the fact that the g-integrand of Zp;n; is an even function of 4, the integration
interval can be extended to the range [—oo,00]. This then results in

/ cos a
o sin & oo e,h

cos? & sin? £ cos B¢ cos Ay

vaj,ni = 2A

d 2.39
(e = B £ Bl = Bmer + P dfda (2.39)
= 2Afo i’ Ig(a)da
with
_ oo B ﬂz cos? a] C082 %1 sin2 %{ o8 ﬁc cos ﬂf]
Ip(e) = ,/_m 1 (nem — BY)(n.m + By)(mo1 — BY)(m.7 + B?)ﬂ’dﬂ' (2.40)

Two situations can be distinguished: 1) m, # n, and 2) m, = n,. We shall now take a
closer look at both situations.

1. m; #n,

The integrand of Is(c) is analytical for all 8 values. We may, therefore, modify the §-
integration path as was done in figure 2.2. This figure shows the modified integration path
in the complex §-plane.

Using this modified integration path, the integral /5(a) is given by

_ T tcos’ a cos? %" sin? %{ cos 3 cos Bn
o) = f |1~ | s P e T e, (24D

-0

(= <]
where f denotes the integration path of figure 2.2, If we substitute expansion (2.38)

-0
into expression (2.41) and then divide the B-integral in 36 parts, we have to determine 36
integrals with the general form
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Figure 2.2: Modified integration path if m, # n,

rh ] (nex — By)(ner + By)(mam — By)(mam + Bv)B° ¢ (242)

o= J[i- £t

€
The integrand of the above integral has 4 poles of order 1 at g = :l:ﬂ.'f1 and g = iﬂfyl and
1 pole of order 2 at § = 0. A closed form expression can be found of the integral G,() if
the residue theorem of Cauchy and Jordan’s Lemma [11] are being used. Two situations
have to be distinguished in this case namely i) ¢ > 0 and ii) ¢t < 0.
)t>0
The original integration path of figure 2.2 will be closed with C} as is shown in figure 2.3.
If t > 0 the integral over C} vanishes if p — oo according to Jordan’s Lemma. If t = 0
the integral over C} is also zero if p — o0, because the integrand has a p—l." behavior for
large p values. The integral G;(t) is equal to zero for ¢t > 0, because no poles are located
within the area enclosed by the integration path of figure 2.3:

Gi{t)=0 for t=0. (2.43)

i)t <0
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Complex
g-plane

X n,T 0 n,x

-—1— -

Figure 2.3: Integration path fort > 0

Our integration path is now closed with C, shown in fig. 2.4. Within the area enclosed
by the integration path 5 poles are located. According to Jordan’s Lemma the integral
over C; equals zero if p — oo. Then G;(t) can be expressed in terms of the 5 residues:

Gi(t) = —2my Res + Res + Res + Res + Res

p= =Rzt g==..".3’:1 g=0 p=Dam p= 2

(2.44)

[1 . Beolal st

Era

(nem — BY)(nem + By)(mar — By)(mam + B7)B%

{z—a)P

The residue of a function L with peN at the point z = a, where f is an analytical
function in z = @, can be calcu)lated with the formula

f(z Fr-1)(qa
Re L £0) .19

Using this formula, the residues in (2.44) are given by
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Figure 2.4: Integration path fort <0

e m?r?cos’ a
Res () =g 73 T _ 2 [ 2 ]
5o zmar 21rm[n -m] Y2€n
n2r?cos?
Res ( = 21r5n3[m2 - n3] [ Y€ ]
p= =538
n
Res () =—— (2.46)
Bubd T
Res () = —ye™F [ n2n? cos? a]
oo naz 27&’51'1_,‘,’:[1'1&2 —n3] Teern
Y — = _ mircos’ &
"~ 275m3[n2 ~ m’] Yiern

R

Substituting these results in expression (2.44) gives a closed form expression for the integral

G1(t):
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2t 2y [
minie  m -l [ T e

Gi(t) =

m2x? cos? a] . mpmt
sin
~
(2.47)

t <.

2 n3n2cos’al . n.wt
T 3 d4[yn2 2 - 2 Sin
ndri[m? — n?] ¥ ~

Define a help function G(t) with G;(t) = G:\(t) + Gi(—t). Then according to (2.47) and
(2.43) Gi(¢) is given by

Gi(t) =

=2t 2y _ min? cos? a] sin mewlt|
i
m2n2x3  mdxi[n? - ml) Y€, v

(2.48)

n 7lcosia] . ngxit}
in
n31r4[m2 ] 7 Crh >

Now that G (t) is known, we can also calculate the original integral I5. I5 can be expressed
in terms of the function G(t):

_ Perte] cos” &1 sin® & cos A( cos B
1w = [1 e | (o = B (nem + A7) — B)(man + VB

@ (-G + 1) — 4G —n) - 2GI(v+(+ ) - 2G (v +{ — )
—2Gi(y - (+1) - 2Gi (v - (=) +2G1({ + (+ ) + 2Gi(E + ()
M6~ CHn)+2GE = C—) + U +E+CHn Gy et ) )
TGy +{-(+n)+G(v+E-(—n)+ Gy - £+ +n)
+G(v -+ -+ Gy € - (+M+ Gy €= ()}

with m, # n,

2. m, =n;

The procedure used in the m; # n_ situation will also be used in this case. The integrand
of I, given by (2.40), is in this case also analytical for all A-values. We may therefore use
the modified integration path of figure 2.5 in order to determine I. Iy is then given by



26 Thin substrate arrays

_i_)
xt

&
A

Figure 2.5: Modified integration path for the case that my = n,

(2.50)

Is(a) = 3 _ P oos? a] cos? 22 gin® £ cos B¢ cos Ay p
ola) = f €rh (mem — By)i{m,7 + ﬂ7)2ﬂ2

-0

o0
where the symbol  is used to indicate that the integration path of figure 2.5 is used.
-0
Substitute expansion (2.38) in (2.50) and divide this integral in 36 parts. We then have to
evaluate 36 integrals of the form

eJﬁ t

O e e e

-0

(2.51)

The integrand of Gy(t) has in this case 3 poles of order 2 at § = £ and § = 0. If we
want to use Jordan’s Lemma to find an analytical solution for G,(t), two situations have
to be distinguished, 1.e. i) ¢ > 0 and ii) ¢ < 0.

)t20

The integration path is now closed with Cf, shown in fig. 2.6.

According to Jordan’s Lemma the integral over C} vanishes if p — oco. There are no
poles within the closed integration path of fig. 2.6, so G3(t) will be zero in this case.

Ga(t) =0 for t30. (2.52)
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Complex
g-plane

-~

Figure 2.6: Modified integration path ift > 0

i)t <0

Close the integration path with C; as shown in fig. 2.7.

Again Jordan’s Lemma is used to eliminate the contribution of the integral over C, for
p — 0o. (G3(t) can then be calculated from

G2(t) = —2n; ( Res + Res 4+ Res )

#= SRE A=0 g= Dzt

(2.53)
1_ 2 cos? o e,ﬂf_
1 - e

€rh

(mem — By)¥(mam + B7)?B%

The residues of the three poles can be determined with formula (2.45). Doing this one
finally gets
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Complex
p-plane

Figure 2.7: Modified integration path ift <0

e~ +* [am.x ycos?a [jtm.x
ne 0 = (e [ ] - [P )

g 442 |mix5 | ~ m3nden | 7
i
Res () =—— (2.54)
B=a z
Jmzwi 3 2
e 1 ¥ am.w ycos‘a | gtmgw
Res () = e 5.5 =3 - —= -1
5o mgz ~ min ¥ m3nde.p ¥
Substituting these results in expression (2.53) finally gives
2t t mir?cos?a mgwt
Ga(t) = + [ — = ] cos —
) mird  mird Yexn ~

(2.55)

t <.

5 m2ricos?al . m.wt
-—= 13- 5 sin
m.yT Y €rh

Introduce the help function G%(t) = G3(t) + Ga(—t):
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b 2t _ mir?cos’a mywt
i) = s = s |1 e
(2.56)
¥ mirlicosial . m.w|t]
+—— |3 3 sin
m;® Y Eens 81
I3 can now be expressed in terms of the functions GY:
T 2c0s2a] cos? 22 sin? & cos B¢ cos An
Is(a) = /[1 oy ] : 22 25098
R Crh (mem — By)*(ma.m + By)*8
= 5 {—4GH({ + 1) — 4G (¢ — 1) — 2G(Y + { + 1) —2G(v+( —n)
—2G5(v = C+n) - 2G5(v — ( —n) +2G5(§ + ( + ) +2G5(E + ( — )

(2.57)

26— C+n) +2G(E - (- + Gy + {4+ +m) + GR(Y+E+ (- )
G-+ +G(v+E-C—m+ Gy — €+ (+n)

G-+ (-—n+Gly—€£-(+n+G(y—£{-(—n)}

with mg = n,

Note that the remaining a-integration in (2.39) has to be evaluated numerically. I one
divides the a-integration interval properly into sub-intervals, only a few integration points
are needed in order to obtain a good accuracy. The boundaries of these sub-intervals
correspond to zeros in the arguments of G(t) or G4(t). Fortunately these « integrals need
only to be evaluated for 1 frequency point. As was stated before in paragraph 2.4 not all
elements of [Z] have to be calculated due to the Toeplitz-type of symmetry of [Z]. The
number of elements that have to be evaluated numerically is of order K x L. Computation
time can also be saved by calculating all elements of [Z] simultaneously, because the Green’s
function needs to be evaluated only once in this case. More computation time can be saved
if one neglects the coupling between patches that are far away from each other. The matrix
[Z] is in this case a sparse matrix. In paragraph 2.10 it will be shown that very accurate
results can be obtained with this method even if only a few elements of [Z] are unequal
zZero.

2.7 Efficient evaluation of the matrix [V (]

We shall use the same strategy here as was used in the previous section for the case of [Z]
matrix elements. An element of the matrix [V0] is according to (2.16) given by
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VOmsi = / / U léﬂ(kmkmzm,z)dz-fm(kx,ku,zm)]'é'sJo(a k2 + k2)
—00 o =00 0
eJk:(Szji":l:;)ejk,(sw‘.'—y,)dkzdky
o0 poo o .
B f f Que ey kys 2m) + T ke, iy 2m)| - Endo(ay k2 + B2)
—-o0 J—00

gPbe(Sesi==2) gyl Susi-w) k. dk, .

(2.58)
with

. 5 |
QuE(k?-” kw ZM) = j QE(k.n kw Zm, z)dz.
0

Only 2 components of the dyadic function Qg are needed in (2.58). The z-integrations
can be performed analytically. The two components of @,z are then given by

QuEss (ksy by 2m) = — 248, (e, k; o8 Ky (d — 2m) + gy sin by (d — 2m)] 2.59)

Quiny (ks kyy 2m) = — R (e, K3 o8 ka(d — 2m) + 2y sin b (d — 2m)].

One infinite integral in (2.58) can be transformed into a finite integral by introducing a
change to polar coordinates given by (2.21). The a-integration range can be reduced to

the interval [0, Z] if one uses the even and odd properties of @, 5 and of Jon1. Using the set
of basis functions defined in (2.19) we obtain the following result for the elements of [V0]

VOmi; = /_: jom p”E(ﬂ, a, zp,) - fml(ﬁ, a, z,,,)] - €. Jo(koBa)

ko8 cosa(Syji —:a)choﬁ&nﬂ(svji‘”')kgﬁdﬂda

[5 [°° p,,g(ﬁ,a, Zm) * I (B, @, zm)] - & Jo(koPa) Sy(m, j,i, B, @)k2BdBda
o (2.60)
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with

1. my =0, ie Jui = Jmés

o —~438in ko(Sz;i — x,) cos ky(Syji — y,) Mg odd
S(m, j,i,8,a) =

4 cos k,,(Sz_,',' - .1:.) cos ky(SyJ"' - y,) my even
2. my =0, ie. Jy = Jmé,

~4jcos kz{S;;; — 7,) sin ky(Sy;; — y,) my odd
Su(m,j,i,ﬁ,a)= ’ ) e ’

4 cos ko (Szji — z.)cos ky(Sy5i —y.)  my even

The B-integration interval is divided in three sub-intervals, i.e. [0, 1], [1, V/€]], and [/€], o0].
In the first interval the fB-integrand has an infinite derivative at § = 1, which can be
eliminated by using an appropriate change of variables with 8 = cost (see (2.24)). In
the second interval two numerical difficulties have to be conquered. The first numerical
problem is caused by the infinite derivative at 8 = 1 and the second numerical problem is
due to the existence of surface waves in the dielectric slab. The first problem is eleminated
by a change of variables 8 = cosht (see (2.25)) and the second problem can be treated
with the singularity extraction technique described in paragraph 2.6. In order to accelerate
the convergence of the numerical integration in the third interval, i.e. [/€, oc], the source
term extraction technique that was also used in paragraph 2.6 for [Z] will be applied. The
slowly converging 8 integral is then rewritten into a sum of a closed form expression and
a relatively fast converging integral. This has already been described in [4] for the case of
an isolated single patch microstrip antenna. The results of {4] can also be used here if one
substitutes (Szj; — 2., Syji — ¥.) for (z,,¥,) in the resulting expressions.

Fortunately not all elements of the matrix [VV0] have to be calculated, because of the
Toeplitz type of symmetry of this matrix. It can be shown that only the V0,,;, elements
of [V0] have to be calculated for maximum four probe locations: 1) probe at (z,,y,), 2)
probe at (z,,—Y,), 3) probe at (—z,,y,) and 4) probe at (—z,, —y,). Computation time can
also be reduced if all elements of [V 0] are calculated simultaneously. More computation
time can be saved when the elements of [V(] corresponding to the interaction between
probes and patches that are located far away from each other is neglected. The matrix
[V0] is in that case a sparse matrix. [12] only considers the interaction between probes
and patches that are fysically connected to each other, i.e. probe and patch belonging to
the same antenna element of the array. In paragraph 2.10 the influence on the calculated
results when neglecting these elements of [V0] is discussed.

2.8 Port impedance matrix and scattering matrix

One of the great advantages of a finite array approach (element by element approach) in
order to analyse arrays, is the fact that the port impedance matrix [Z?] and the scattering
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Figure 2.8: K x L-port network

matrix [S] can be calculated directly once the moment method matrices [Z] and [V0)] are
known. If one uses an infinite array approach [9],13],{14] only the active reflection coefficient
is calculated for 1 scan angle. The elements of the scattering matrix can be calculated
with an infinite array method if one performes an inverse Fourier transformation to the
calculated active reflection coefficient. This means that the reflection coefficient has to be
known over the full (8, #o) range. This is of course a very cumbersome way in order to
obtain the scattering matrix.

Figure 2.8 shows an K x L element array represented by an K x L-port network. The
relation between the port currents [I7] and port voltages [V?] is given by

[V?] = {Z°]( ). (2.61)
According to [7] the relation between port voltage V¥ and port current I is given by

1' IP* = _jj/ gp erce i (2'62)

where &7 is the total electric field and J,_'smm,- is the complex conjugate of the current
distribution of source :. In our situation £° is the total electric field due to the currents
on all the patches of the array. The contribution of the currents on the probes to the total
electric field shall be neglected in this chapter. In chapter 3 where we look at microstrip
arrays on thick substrates, this assumption is not made. The current distribution on the
patches can be determined with the moment method procedure described in the previous




Thin substrate arrays 33

part of this chapter. The total electric field can then be expressed in terms of the current
coefficients [I}:

KxL N1+N;y

&=3% Y L&, (2.63)

=1 m=1

where [I] is the solution of the matrix equation (2.14). Inserting the above expansion in
(2.62) gives

KxL Ni+Na

v;P =;_iz Z Imjv/.v/'/awrceia’;‘j.i:mru‘dv

=1 m=1 (2.64)
-1
T — [VOH,;'III + Vozl,ile . ST + VO,,.,-,.vI,,.,- + e + VONma,,iIN,.,“] ’
4=?
with
Npaz=(M+N2)-KxL and :1=1,23...,K x L.
Expression (2.64) can also be presented in a matrix form:
Vel = VoIt
ir (2.65)

= :?[VOIT[Z]'IIVO][IP],

where matrix equation (2.14) has been used. Matrix [V0]7 is the transposed of [V0] and
[Z]7! is the inverse of [Z]. The port impedance matrix [Z?] is found by combining (2.61)
with (2.65):

(2°) = ;?[VO]T[Z]"[VO]. (2.66)

Note that [ZP] can be calculated without solving the method of moments matrix (2.14).
At microwave frequencies one usually uses the scattering matrix rather than the port
impedance matrix. At higher frequencies it is easier to work with incident and reflected
power quantities than with impressed voltages and impressed currents. Incident power will
usually remain constant under varying conditions, whereas it is very difficult to keep the
impressed voltage or the impressed current constant [15). The scattering matrix [S] can
be calculated by means of the well-known relation [15]

(81 = {(2"] - [Z]H[Z"] + [Z]} 7, (2.67)

where [Zy] is a diagonal matrix with elements equal to the characteristic impedance of the
connecting coaxial cables, which is usually 502. When scanning the main beam of the
array at a certain scan angle (y, do), the elements of the excitation vector [a] should have
the form

a; = etollk-Tasw+(=1bys] (2.68)
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with
u=sinfycoso, v=sgindpsingy, j=(I—-1)x K + k.

The active reflection coefficient of array element j can then be written in terms of the
scattering matrix [S):

KxL

Ri(6a, é0) = Sijsj. (2.69)

i=1

Using (2.69) as an input signal at the terminals of all array elements means that the array
is uniformly excitated. The amplitudes of the input signals are the same for each array
element. When not only the phase of the input signals is used for scanning, but also the
amplitude, one speaks of a tapered excitation of an array. In the following sections of
this report we will assume that the array is uniformly excitated. Finally the active input
impedance of array element ¢ is given by
i 1 + Ri(6o, $o)
Z;a(6o, $o) = Zo [1 ~ (6o, %)] (2.70)

2.9 Radiation pattern

Besides the port characteristics of antennas one is usually also interested in the radiation
pattern since antennas are by definition made to radiate power into free space. In this
section we shall assume that the elements of the method of moments matrices {Z] and [V0]
have already been calculated. The easiest way to determine the far field pattern of an array
is by using Huygens’ principle. The sources, which are embedded in the grounded dielectric
slab, are now replaced by an equivalent electric and magnetic current distribution on the
upper surface S of the dielectric slab. We may assume [7] that the infinite plane S is a
perfect electric conductor. In this case only the equivalent magnetic current distribution
is nonzero on S (see figure {2.9). The magnetic current distribution on § is given by

Fn=Exi. (2.11)
In the far field region the electric field is given by [5]

. TR
£7) = LE T st
drr (2.72)
'//2j.m(10, Yo, d)ejh(zcﬂnam¢+mn‘maﬁn¢)d$odyo,
g

where 7 = (o, yo, d) represents a source point on the plane S and 7 = (z,y, 2) an obser-
vation point in the far field region. The coordinate system is defined in figure 2.10.
Expression (2.72) can be written in terms of the spectral domain electric field with k. =
ko sin 8 cos ¢ and k, = ko sin 8 sin ¢:
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Figure 2.9: Fquivalent magnetic current source

Figure 2.10: Coordinate system
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- 1 —jkof . [ —
() =TT omiens g [E(he by, d) x ]

jkoe-jkor ] [ _ KxL N1+Na .
= ™ & Qe ks zmd) - D Y Ik Ky Zm) X a,] :
- j=1 m=1
b (2.73)
wit
77 m<M
Zm =
Z; m> N‘

In (2.73) use has been made of equation (2.4). So once the mode coefficient vector {I]
is known, the far field pattern can be calculated without any numerical difficulties from
(2.73). [1] can be determined from matrix equation (2.14) if one uses the relation

[17] = {[UM] - {$]}{d], (2.74)

where [UM] is the unity matrix. So the impressed port currents depend on the scattering
parameters of the array. Note that for an infinite array [I*]=c[a], where ¢ is a constant
coefficient.

2.10 Results
2.10.1 7x7 single patch test array

In order to check the finite array theory which was presented in the previous sections, a
test array was build of 7x7 square microstrip patches with a single patch layer, i.e. 2] = z3.
The array was designed to operate at L-band frequencies. The dimensions of this array
are:

¢ patch location 2{ = z} = 10mm,

substrate thickness d = 10mm,

permittivity e, = 1.07 tan § = 0.0008,

e patch dimensions W;y, = W, = 97.5mm,
e inner radius coax a = 1.5mm,

e excitation point X, = 26mm, Y, =0,

e array dimensions a; = b, = 115.3mm.
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Figure 1 shows a photograph of the 7x7 test array. The overall size of the array is lm x Im.
All S-parameter measurements were performed in an anechoic chamber and the measure-
ments were made with a Hewlett Packard HP8510B network analyser. In this way the
effect of reflections against objects in the environment is minimized. Because phase infor-
mation is very important if one wants to determine the active reflection coefficient from the
measured scattering parameters, one has to be sure that the reference plane is positioned
very accurately. While measuring the S-parameter between two antenna elements, all the
other antenna elements were terminated with 50§ loads.

Figure 2.11: Photograph of the T x T test array

In figure 2.12 a plot is drawn of the calculated and measured amplitude of the coupling
coefficient between the centre element (k = I = 4,57 = 25) and elements along the I = 4
and { = 3 row with f =1.3 GHz. Calculations were made using three x-directed basis
functions (m; = 1,3,5 ; my, = 0) and one y-directed basis function (m, =0; m, = 2) for
each array element (see also (2.19).

From figure 2.12 it is clear that there is some disagreement between measured and cal-
culated S-parameter data. This is probably due to the finite size of the substrate and
groundplane of the test array. Furthermore, the inaccuracy of the permittivity and the
inaccuracy of the patch dimensions could be a potential source for errors. Another factor
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Figure 2.12: Measured and calculated coupling coefficient between the centre element (j =
25) and elements of the l =4 andl =3 row of a 727 array with j = (I- 1)K + &, f= 1.8
GHz

could be the simple feed model that we have used in our theoretical model, i.e. the cou-
pling between the coaxial probes was not included in the analysis. In chapter 3 a more
sophisticated feed model will be used, including coupling between the coaxial probes of the
array.

At this stage it is interesting to investigate how much computational effort has to be
used in order to obtain accurate results for the calculated scattering matrix. We have
used a numerical strategy that speeds up the numerical analysis: matrix elements of [Z]
corresponding to 2 array elements for which the distance in x-direction is larger than
kimaz X az and the distance in y-direction is larger than l,;maz % b, are neglected. Similarly,
matrix elements of [V0] corresponding to 2 array elements for which the distance in x-
direction and y-direction is larger than k,maz X - respectively lymq- X b, are set to zero. In
this way [Z] and [V0] become sparse matrices. First we shall examine what the influence
is of this method if we apply this method only to the elements of [V0]. Figure 2.13 shows
the calculated coupling coefficients between the centre element of our test array and array
element j = 24, j = 18 and element j = 1 for various (Kkymaz,lymaz) values. Note that
kimaz = lymaz = 7. Quite accurate results can be obtained even if (kumaz, lomaz) = (1,1).
Figure 2.14 shows calculated coupling coefficients between the centre element and array
" element j =24, j = 18 and element 7 = 1 for various (Ksmaz; lrmaz) values. The excitation
matrix (V0] is not altered 30 kymar = lymaz = 7. From this figure it is clear that very
accurate results can be obtained for the coupling between the centre element and all the
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Figure 2.13: Calculated S-parameters for various (kymag, fymaz) values, f =1.8 GHz

other array elements if we choose (ksmaz) {zmaz) = (4,4). If one is only interested in the
coupling between adjacent array elements (kumaz, lzmaz) = (2,2) can be used. In this way
large arrays can be analysed while the overall computation time remains relatively short.
Once the scattering matrix [S] is known, we can calculate the active reflection coefficient
from (2.69). Figure 2.15 shows the E- and H-plane active reflection coefficient of the centre
element of our 7x7 test array, with f =1.3 GHz. The "measured” curve indicates that the
measured S-parameter data was used whereas the "calculated” curve indicates that the
calculated S-parameter data was used.

The disagreement between the measured curve and calculated curve is probably caused by
phase errors in the measured S-parameter data. Phase errors of 10° are normal for this type
of measurements [Pozar|. Another error causing factor could be the difference between the
measured and calculated S;; of the centre element (j = 25). Figure 2.16 shows calculated
and measured Szs 25 versus frequency. We think that the simple feed model which was used
in the analysis is the cause of the disagreement.

2.10.2 Stacked-element microstrip array

In this section the results of a study of an array of stacked patch elements are presented.
Again square microstrip elements are used on a square grid. The dimensions of the stacked
array are

o patch location lower patch 2z} = 1.5Tmm,
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Figure 2.14: Calculated S-parameters for various (kipmaz, lomez) values, f =1.8 GHz

¢ patch location upper patch 2} = 3.14mm,

e substrate thickness d = 3.14mm,

e permittivity ¢, = 2.33 tané = 0.001,

¢ patch dimensions lower patch W;; = W, = 60mm,

¢ patch dimensions upper patch W,y = W3 = 59.7Tmm,
¢ inner radius coax a = 0.635mm,

¢ excitation point X, = 15mm, Y, =0,

e array dimensions a, = b, = 91lmm.

In [14] this array has been used in order to compare results obtained from a finite array
theory {presented in this report) with results obtained from an infinite array theory. For
both theories 3 x-directed basis function (m. =1,3,5 ; m, = 0) and one y-directed basis
function {m; = 0 ; m, = 2) was used on each patch of the array. Figure 2.17 shows the
calculated centre element active input impedance versus frequency with 8, = ¢ = 0°.
This is done for various array sizes including an infinite array size. Two peaks can now be
observed in the active resistance plot, because of the stacked configuration. The agreement
between the finite and infinite theory is quite good for array sizes larger than 7x7.
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In figure 2.18 a plot is shown of the centre element active reflection coefficient in the case
of E-plane scanning {¢o = 0°) for various frequencies. Fig. 2.19 shows the active reflection
coefficient of the centre element (k = ! = 4) and of an edge array element (k = [ = 1) in the
case of an 7x7 array configuration. The calculated infinite array results are also shown in
this plot. The agreement between the finite and infinite array approach is quite good if we
consider the centre element, except for large scan angles (fp > 60°). However, a significant
difference is observed between the calculated reflection coefficient of the centre element
and of an edge array element. So edge array elements can only be analysed properly if one
uses a finite array approach.

In the last part of this chapter we shall take a closer look to the radiation patterns of
stacked microstrip arrays. In paragraph 2.9 a method has been discussed to calculate the
radiation charcteristics of such arrays. Figure 2.20 and 2.21 show the E-plane and H-plane
radiation patterns for broadside scan (8o = ¢o = 0°) of a 7x7 stacked microstrip array.
Note that we have used an uniform array excitation of the form (2.68). In fig. 2.22 the
E-plane radiation pattern is given of a 7x7 stacked array in the case of E-plane scanning
with 8y = 30°.
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Figure 2.15: Cenire element active reflection coefficient, f =1.8 GH:
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Figure 2.16: Calculated and measured S35,25 versus frequency
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Figure 2.17: Centre element input impedance of a stacked array versus frequency, 6o =
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Figure 2.18: Calculated centre element reflection coefficient of a 7r7 stacked microstrip

array, ¢0 =(°
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Figure 2.19: Calculated reflection coefficient versus scan angle 8 of a stacked microstrip

array, f =1.6 GHz, ¢p = 0°
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Figur;_ 2.20: E-plane (¢ = 0°) radiation pattern of a 7z7 stacked microsirip array, 8y =
$o=0° f=1.6 GHz
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Figure 2.21: H-plane (¢ = 90°) radiation pattern of a 7z7 stacked microstrip array, 00 =
$o=0° f =16 GHz
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Figure 2.22: E-plane (¢ = O°) radiation pattern of a 727 stacked microstrip array, o =
30% ¢o=0° f=1.6 GHz
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Chapter 3

Finite stacked microstrip arrays
with a thick substrate

3.1 Introduction

In chapter 2 of this report a method was presented for the analysis of finite stacked mi-
crostrip antennas based on an electrically thin dielectric substrate. Because of this thin
substrate, the current distribution along the coaxial probes was almost constant and there-
fore a simple feed model could be used. This simple feed model fails however if one wants
to analyse electrically thick microstrip arrays. In this case a more sophisticated model
for the feeding coaxial cables has to be used that includes the variation of current along
the probes. Furthermore, a special attachment mode has to be used in order to ensure
continuity of current at the patch-probe transitions. In this chapter the model of chapter 2
is extended to the case of electrically thick substrates. A lot of attention will be paid to an
efficient procedure for the evaluation of the elements of the method of moments matrices.

3.2 Model description

The geometry of a finite stacked microstrip array is shown in figure 2.1. The antenna is
linearly polarised, so only one coaxial cable for each antenna element has to be used. The
feeding coaxial cables, located at a distance (z,,y,) from the centre of each lower patch, are
usually connected to the lower patch, but this is not necessary. The diameter of the inner
conductor is 2a and the diameter of the outer conductor of each coaxial cable is equal 2b.
Figure 3.1 shows a more detailed view of the coaxial cable of antenna element 1. Figure
3.1a shows the most common construction where the probe is connected to the lower patch
of each antenna element. Figure 3.1b shows a configuration where the probe is not fysically
connected to the lower patch, i.e. 2p < 2{. This "electromagnetically coupled” (EMC)
microstrip structure has broadband characteristics [5,16).

The probes are represented by a cylinder with radius a and with perfectly conducting
walls. It is assumed that the z-directed surface current on this cylinder only depends on
the z-co-ordinate. The fields in the coaxial apertures of each array element act as sources.
At frequencies for which kb < 0.1 (k = w,/€fo) only the groundmode, i.e. TEM-mode,

49
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Figure 3.1: Feeding coazial structure of antenna element 1
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exists in the coaxial cables. The field in the aperture of the coaxial cable connected to
antenna element 1 is then given by

VP
L 2, a<r'<bh

G0 Eroulr) = e e <r's

(3.1)

P

- - r
Hy(r) = Hyrem(r) = 2;7_,%: a<r<b

where ¥’ = (2’ cos ¢, y' sin ¢/ ) = F—7, with 7, = (z,,y,). V{ is the port voltage between the
inner and outer conductor of the coaxial cable connected to antenna element, 1 and I} is the
total current at the base (z = 0) of the probe. The electric fields in the coaxial apertures
will be used as sources. So for a known set of port voltages V? ( = 1,2,.., K x L) we have
to determine the corresponding port currents If . The K x L sources can be represented
by a magnetic current distribution at the aperture of each antenna element. For antenna
element 1 this magnetic current distribution in the coaxial aperture takes the form

}(:-tilll = Mfrilllvlp = sr X e, = —Tnl(é'-)“&y a S r S b (32)
113

In literature this source model is often called the "Magnetic frill excitation model”.

3.3 Method of moments formulation

We can use the same strategy here as the one that was used in section 2.4. The only
difference is that apart from x- and y-directed currents on the patches, we now also have
to calculate the z-directed current distribution on the K x L coaxial probes. The boundary
conditions on the 2 x K x L patches and on all the K x L probes of the stacked microstrip
array are used in order to obtain an integral equation for the unknown currents on the
patches and probes. The total tangential electric field has to be zero on all patches and on
all probes:

é‘tt::;(zayaz) = -;e:n(:l” y,2)+ E’-';,an(m$y!z) =0 on each patch and probe, (33)
where £ (z,y, z) is the excitation field which is excited by the magnetic current distribu-
tion at the coaxial apertures. The term _,:m(z, ¥, z) represents the tangential component of
the scattered field that results from the induced currents on all the patches and probes of
the array. The unknown current distribution on each array element will now be expanded
into a set of basis functions that exist on both patches and a set of basis functions that
exist on the outer surface of the coaxial probe. In addition a special attachment mode
shall be used that exists on the probe and on the lower patch of each array element. This
attachment modes ensures continuity of current at the transition between the probe and
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the lower patch. The expansion of the unknown current distribution on each array element
can be written in the following form

. KxL . KxL 14N+ Ny+N> .
J(x,y,z) = E J,‘(x,y,z) = Z Z ij(‘t’yaz)
i=1 =1 m=1
KxL . Nitl 14N+ N1 4N, .
= Z {Ilijlaj(z’ y,2)+ Z Inj ,,!,J-(m,y,z) Z ImJ'J;j(w’y,zm)} ’
i=1 m=2 m=N+2

(3.4)
with

zi N;+42<m< N, +1+ N,
2; m>N,+1+N;

where the basis functions j{; represent the attachment modes, f,ﬁj are the basis functions

on the probes and j:fl_,,- represent the N; basis functions on the lower patch and the Nj
basis functions on the upper patch of each array element. I,,; are the corresponding
unknown mode coefficients of the basis functions. The total number of basis functions is
Noaz = K x L x (14 N+ N1+ N3). More details about the type of basis functions that we
shall use are given in section 3.4. The method of moments is applied to find the unknown
mode coefficients I,;. The method of moments has already been discussed in section 2.4,
Using the strategy of section 2.4 we finally obtain a set of linear equations, which is in
matrix form given by

(Z2][1] + [Vo)[v?] = [0], (3.5)
with

Lynjmi =41I'2/// f;i(z}ys z)'jmj(xaysz) dzdydz,
Sen;

VOmj;i =4w2j// E._:f’(:r,y,zm)'fmj(:ﬂ,y,zm) dzdydz (3.6)
Smj

_ _4W2]f ﬁ;‘j(z,y,o) + Myrin i(z,,0) dzdy,
frill i

where the reaction concept was used to rewrite V0,;: [7]. M sriti i{z,¥,0) is the magnetic
current distribution in the coaxial aperture of antenna element : and is given by expression
(3.2). The matrix [Z] contains Nz X Nmes elements, [I] is a vector containing the Ny,
unknown mode coefficients, [V0] is the N, X (K x L) excitation matrix and [V?] is the
K x L-element column vector of port voltages. The difference between expression (3.5)
and matrix equation (2.14) is that in (3.5) the port voltage vector [V?] is used whereas in
(2.14) the port current vector [I?] was used. The method of moments matrices {Z] and
(V0] have the following structure
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[Z°2] [2*] {Z°%]
(Z1=| [2%] [2/1) {27 |, (3.7)

(27 [2%] [27]

and

voe]
Vo= [vo/] | (3.8)

[Ver]

where the superscript a denotes an attachment mode, f a basis function on one of the
coaxial probes and p a basis function on one of the patches. Note that we have used current
expansion (3.4). A method for the calculation of [Z7P] has already been discussed in chapter
2. In this chapter a method is presented in order to calculate the other submatrices of [Z]
and [V0} in an efficient way. Note that {V0?] is not the same as the matrix [V0] that was
used in the previous chapter, because a different source model is used in this case. The
matrix [Z] is a symmetrical matrix because of the reciprocity concept. The elements of [Z]
can be expressed in terms of the spectral domain Green’s function (see also (2.16))
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zze

1

] / @i (ker by 20,2) - Tk by, 20)] dro - 2 (e, By, 2)d

e =Szii o= FvSuii gk dk,,

Z,‘f;“ / / [f [QE(E,, ky,, 20,2 Jl (kg Ky, zo)] dzo - Joy(kzy by, z)dz

¢~ = Seii o= kv Suii ik dk,,

Zrli-..;,iu / / /f [Q=E(k== ky, 2o, z) - jzl(kza ky, 20)] dzp - j:{"a:(kﬂ” ky, z)dz
—coJ—oJz 2z g

e~ = Sji g=tky Syji dk.dk,,

(39)
Zne = [ [ [ ook zn) - itk b)) - T b 5m)

— ke Seji ,—akySyii
e~ =Szji g=tkvSuii gk dk, |

Zhoi = [ [ [ sk o) - Tl by 20)] o T2 ke By 2m)
—00 o —00 J 2o

e~ ke Suii g thvSusi g dk,

Zs;’z.m ]_ j [Q=E(k=s ky,2n, 2m) - J?:l(kz, ky, zn)] : j:’:l(km ky, Zm)

¢~ ke Sssi g=MvSvit dk dk,,

where J-"1 (kx, ky, 2) is the Fourier transform of the attachment mode on antenna element 1

and J: 7 (ke k,, z) represents the Fourier transform of the n-th basis function on the probe
of antenna element 1. S;;; and S,,_,, are the distances in x respectively y-direction between
the centre of antenna element j and antenna element ¢. Lateron it will be shown that
the fourfold integrals in 222, Z/%.. Z!! . can be reduced to a one dimensional integral,

J0? mi,e mjni

The z-integrations of Z% . and 7v, can also be evaluated analytically. The elements of

mji mi.ni
the excitation matrix [V0] can also be expressed in terms of the spectral domain Green’s

function:
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Vo, = _4”2/ ﬁ:nj(xay,o)'/‘;[frm i(z,y,0) dzdy
frill d

1 o] o0 .
= —4r? / / [H / / Qu ke, ky, 20,0) - J7 (kz, ky, z0)dzoe™ ="~ ¥ dk, dk,
frill § -6 o —00

M i iz, y,0)dzdy
B _/m ./.oo [/ Qurlke, by 20,0)- j;q(k“szﬂ)dzﬂ] - Mj oy ik, by )dkadk,
N
= — ./_Z '[: [/; éf{(kx,ky,zo,o) . ﬁ(kx,ky,zu)dzo] .M}rﬂ_“ (kay k)
St haSusi gl

o poo _ - .
Vo;fnj,i = _/ / [/ QH(kz‘v ky: 20,0) : J:{-;l(km ky,ZO)dzﬂ] : M_Friu l(kz: ky)

ks Sxii 2kySyji
ks Seis cthuSun gk

VO = = [ [ [Butherby s 0) Tl by )] - W5 (s )5 oS

(3.10)
where My, i(k, ky) is the Fourier transform of the magnetic current distribution in the
coaxial aperture of antenna element i and is given by

1 . —2mysina

ﬁfﬂ'” ke, ky) = —be’k’((k"_1)“’+”’)eJ"y((“'l)b”+y’) {e
kof (3.11)

in2
o(koBb) — Jo(koﬂa)]} ,

L 2mcos @
o(koBb) — Jo(keBa)] + &, o2

ko3
with k; = koficos @, k, = ko sin @ and where ¢ is the array-element counter with ¢ = (I; —
1)K + k;. Two of the three integrations in V0¢; and Vol ;; can be performed analytically
(see section 3.6).

3.4 Basis functions

3.4.1 Attachment mode

An attachment mode is introduced to ensure continuity of current at the transition from
probe to the lower patch of each antenna element. We shall use the attachment mode
that was presented in [5] for the analysis of isolated thick substrate microstrip antennas.
This attachment mode has an exact 1 dependence near the patch-probe transition. In

T
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[5] very good results have been obtained with this type of attachment mode. Another
great advantage of this mode is the fact that the overall computation time is not increased
significantly. The complicated attachment mode used by [17] needs a lot of computation
time while the final results are not better then with our attachment mode. The attachment
mode consists of two parts, namely a part on the probe and a part on the lower patch of
each antenna element. If one considers only antenna element 1 then the attachment mode
is given by

Fi(z.9,2) = TyP(z,9,2) + T (2,9, 2) (3.12)
with
(_r
—waﬂ 0 < 'l’" <a
-+ b
T (=, y,2) = (_2;52 + 51%'—’) €+ a<r <b, »
\ 0 _ r > b,

-‘d - 1 2 h
Folay )=ty 5 (VE-alP+-w)i-a);(-#4+3) A-i<z<4,

2ra

where ¥ = ¥ — 7,, ¥ = (z,y) and 7, = (z,,¥,). A three-dimensional plot of the patch-part
of the attachment mode is shown in figure 3.2.
The Fourier transform of the attachment mode is known in closed form and is given by

j{‘(k,,,ky,z) = flap(krakmz;) + j‘;f(kzakmz)’ (3'13)
with
- _2 .
JP(keyky, 7)) = [6:cosa+ &, sinaler=Teeve { JE:: 1}53’632!95 ) + JJOE::}‘BQ) }
7t h
Fllkakyz) = Edlkofa)e=cbnd(z =5 + ) 4-b<zge

3.4.2 Basis functions on the probes

On the K x L probes of the array piecewise linear subdomain basis functions {also called
rooftop functions) will be used. On the probe of antenna element 1 these basis functions
have the form

Thr(zy2) = 58 (VE— 2l + (- ) - ) gm(2) (3.14)
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Figure 3.2: Three dimensional representation of the patch-part of the attachment mode

with

Im(z) = J

\

14 _2) m=1 0<z¢&

n>

%(z_zm-—l) m22 zZpm 1528 2m

%(zmﬂ —2) m>2 23 <2< Zmp

In figure 3.3 the z-dependent part of the basis functions is shown. The total number of
basis functions on each probe equals N,.
The Fourier transform of this set of basis functions is given by

Th 1 (kzy by, 2) = Edo(koBa)gm(2)e™ s ethve, (3.15)

with k262 = k2 + k2.

3.4.3 Basis functions on the patches

The unknown current distribution on both patches of each array element are expanded into
a set of entire domain basis functions. The set of basis functions that has also been used
in chapter 2 will be applied here. So the basis functions and their corresponding Fourier
transforms are given by expression (2.17) and (2.18) respectively.



58 Thick substrate arrays

9m(2)

Figure 3.3: Rooftop basis functions along the probe

3.5 Calculation of the matrix [Z]

The structure of the method of moments matrix [Z] is given by (3.7). Because [Z] is a
symmetrical matrix we only need to calculate 6 of the 9 submatrices. An efficient method
to calculate the elements of the submatrix [Z"P] has already been discussed in chapter 2 of
this report. In this section similar numerical techniques will be applied in order to calculate
the elements of the remaining 5 submatrices, i.e. [Z2*], [27%], [27], [2/] and [Z%/].

3.5.1 [Z*%]: attachment modes «—— attachment modes

This submatrix contains (K x L) x (K x L) elements. [Z°%] is symmetrical and has a
Toeplitz structure. So only K x L elements need to be calculated. According to {3.9) an
element of [Z°?] is given by

Z;g = / / /j @E(ktakmzmz)'j'{:(kmszo)] dzo‘cf:‘(kz:kmz)dz
—oJ=Jzd2

e ks Szji g —2kySyji dk, dkm

(3.16)

where J2(k,, k,,z) is given by expression (3.13). Now let’s introduce a change to polar
coordinates according to (2.21). This results in
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i = [ [ [ Resb.amn) RG] b Frpana:

e-_-,ko,ﬁcmaS,ﬁ e tkoBsinaSy; kgﬂdadﬂ,

The two z-integrations and the a-integration can be performed analytically [5]. An ex-
tra term Jo(koB4/SZ%; + SZ%;) is introduced here compared with the case of an isolated
microstrip antenna (see [5, section 3.7.1]). The resulting expression has the form

—jwitoky sin ky 2y

Zi} = 21r/omJo(koﬂ 5§,-.-+535-){ kie, Tm

, 1 [2J1(koBb. 2
[ka€, cos ki(d ~ 21} + gk sin ki (d — 2] 27 [ Ib( }:f; ) _ Jo(koﬁa)]
(1] a4
4 :
+Zlg;L_;fn [er k2 cos by (d — 2}) + gky sinky (d — 2)] (3.18)
hsink;z, cosk;z, cosk(z,—2
T kfl "o l.(kfl 2)} Jo(kofa)
1 [2J;(koBba o
o [ZE) _ sa(kosa)] + 35081 ko) | 53,
with
sayQ\ _ Jwpoh 4jwpof?
Ti5(8) = 6k3(B2 —¢,) €R2k3Tm
{e b (_hcos ki(d—2})coski(z{ — ) 2sinki(d —2}) cosky(z] — §
r ky k]
+sink1(d- Z} + 2)cos ki (2] — &) N h cos ky(d — 22))
k? 2k
h? cos ky(d — z)sinkyz; | sink(d — z]) cos ky 2
+ 2 + %)
st (h sinky(d — z{) cos ki (2, — &) 2cos ku(d — 24) cos ky (2} — &)
— 7k -
ky k2
L cos ki(d— 21 + §)coski(zf — §)  hsink(d - 22})
k? 2k,
h?sink(d — 2})sinky 2] = cos ky(d — 21) cos ky 2
- 2 + %2 '

In the derivation of the above expression the following relation has been used

/ ghoPReine gy — 9 / cos(kofRsin a)da = 2 Jo(kofR). (3.19)
0

-
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Apparently an element of the submatrix [Z°°] can be calculated by performing only one
infinite integration numerically. The numerical difficulties that occur when performing this
integration are similar to the numerical problems that has been discussed in section 2.6 for
the case of [Z**] elements. Again the B-integration interval is divided in three sub intervals,
i.e. [0,1], [1,+/€7] and [\/€], 0o]. In the first and second interval an infinite derivative occurs
at § = 1, which can be eliminated by using an appropriate change of variables (2.24) and
(2.25). In the second interval another numerical problem occurs due to surface waves that
exist in the grounded dielectric slab. The numerical problems associated with these surface
waves can be avoided if one uses the pole extraction technique of section 2.6. In the third
integration interval a convergence acceleration technique will be applied. This technique
was also used in section 2.6. Now let Z#? be given by

75 = [ 008, (3.20)

This can also be written in the form

zg = [“rep= [ rpevss [ res
= [ s+ [ e -Feoas+ [ Freas G
= [z - 7]+ 22,

with
Zp = [ Fneores,

and A}j—'(ﬂ) is the asymptotic form of the original f-integrand f2¢(8) for large B-values.
The asymptotic form of f3(8) can be found by substituting &, = —sko8 and k; = —3kof
in the original expression. Doing this we finally obtain

i /“’ Jwpon Jo(koSR) (4Ji"(koﬁba) _ 8J1(kofbs)Jo(koPa) N erJ3 (kofa)
v ko €. b2k 5 &b hkg 3 lip
4J2(koBa)  kohJ2(koBa)  8J2(koPa) ,
YoohkB T 38 aWRE )dﬂ a e
Zaa(ﬁ) l
/w Jwpor Jo(koBR) ( 8JF(koBbs) 1641 (koBba)Jo(koBa) | 26 J3(koBa)
v ko (e + 1)B2k3 52 (er + 1)bahk3 52 (e +1)p*
4J02(k0,6a) _ kthg(koﬂa) _ (46,- + 12)J3(kuﬁa) dﬁ Z' _
| ¢ hkof 33 (€ + 1)h2k2H? 1=

(3.22)
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where R = /52, + S2..

2ji + 82 is the distance between the centre of antenna element ; and

antenna element :. In order to calculate Z““ 5 types of integrals need to be known:

I Jz(keﬂa);o(koﬁR)dﬁ,
I = / Jz(koﬁb ;;Io(koﬂR) 2, (323)
I = / A koﬂba)Jo(koﬂa)Jo(koﬂR) a8,

All five integrals can be approximated by a closed form expression. As an example we will
now take a closer look at the integral I;. The other four integrals can be calculated with
the same procedure. For large 8 values, the Bessel functions in the integrand of I; can be
replaced by their asymptotic form, so

Jo(z) = ‘/% {cos(z - E) + %i) + higher order terms} . (3.24)

For the sake of symplicity only the first term in the above expansion will be used here.
However, more accurate results can be obtained if more terms of the asymptotic expansion
of the Bessel funtions are being used. The number of terms that have to be used in order
to obtain an accurate result for the integrals depends on R and a. Now using only the first
term of (3.24) we get

- [ Rk lkoi)

B
_ f°° 2 2 cos?(koafl — %) cos(koRB — %)dﬂ
- v TkoaV whoR ﬂ%
= 2v2 2 (koa)?
81rkoa ‘KkgR
j°° 2sin £ + 2cos 22 + cos (& — 2) — cosz(£ + 2) +sinz(2 +2) —sinz(2 _2)d
5 m’
va 7
(3.25)
with
/°° sin &= 2sin BZm 4R cos Bim 4\/5; (R Rz,
. dr = . a a
tm T2 321 3a./z, 3 R a
/°° cos% 2cos BZm  4Rgin Zm 4\/2_1r(R) Rz,
- dr = - a_ _ a
zm L2 322 da/z, 3 a
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where S(z) and C(z) are Fresnel integrals defined by

x 2
S(z) = / sin

, 2

z 2
C(z) = ] cos ™ at.

o 7y

Fresnel integrals can be calculated with standard numerical routines [18]. When using
more terms in the asymptotic expansion (3.24) we can also find a closed form expression
for I, similar to the above result. If the distance between element j and : is zero, i.e.
R =0 and j = i, the integrals I, and I, can also be determined from [5]

_ [® J3(koPa)
I = / S dp

—log %ko'va -C- / o Jg(—?t—ldm,
0
oo 72
Jg(kova)  4ko

= o ﬂ_a+2k§a2v[J12(kova)+Jg(kova)]

—2koaJo(kova)Jy(kova),
with C = 0.577215.... is Euler’s constant.

3.5.2 [Z/9): feed modes +— attachment modes

The submatrix [Z/°] contains (K x L x N,} x (K x L) elements. Fortunately this matrix has
a Toeplitz type of symmetry. Therefore only K x L x N, elements need to be calculated.
According to (3.9) an element of the matrix [Z/°] is given by

Zv{:'.i = j / // [@E(kmszosz)'j‘f(kz:szﬂ)] dzﬂ'fr{;;(kmsz)dz
-0 J—coJz 2

e ~MheSesi g ~tha Susi df_dlk,

(3.27)

where j{’(kx, k,,z) is given by (3.13) and the Fourier transform of a basis function on the
probe, J,‘;l(k,, ky, z), is given by expression (3.15). Again a change to polar coordinates,
given by (2.21) is introduced. Substituting this in the above expression gives

7, = /OW f_: f L [ch(ﬁ,a,zo,z)-ﬂ'(ﬁ,a,zo)] dzo - JI4(B, o, 2)dx

e—JkﬂﬁCOﬂdS;ji e—JkOﬁ!inaSUj'. kgﬁdﬂda-

(3.28)



Thick substrate arrays 63

The a- and the two z- mtegratlons can be performed analytically. Doing this, one finally

arrives at the following expression for Zm': ;

Zl =2 /0 Jo(koBy/ 82 + S2:)Jo(koBa) (IL22(8) + 112 (B)Jo(koBa)) K3AdB, (3.29)
with

I,{:p(ﬂ) = leuoﬂ 1 2J1(k0)8b0)

koe. Tm le. k2 cos ky(d — 2}) + ky sin ky(d — 21)] B TV Jo(koBa)
hi’ [ — cos(k; )] m=1
2 ?

YY) [2cos kyzm — coskyzmyr —coskyzm—y] m 22
1

and form < N, — 1

—2popoff” inky(d—2) 2sinky(d—z+2
[or(g) = 2B {ﬁrkz {hcoskl(d_z;)_l_%mkl(d #)  2sink zl+2)]
1

& h2k{Tm : -
- ! 2 k _ h
+yky | hsink;(d — 2]) — 2cosky(d —2) | 2cos (d— 2 +1)
kl kl
[1 - cos(klg)] e 1

[2cos k12 — cOS kyZmyr —coskizmo1] 2<m < N, -1

and for m = N, (overlap between feed mode m and the attachment mode):
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faf Jw _ hfr _ 2ﬂ2
L78) = €r { 12k3(8% —¢,) A2Tm

[erk2(—2 cos ky 2y sin ky (d — 2}) — kyhsin ky 2] sin ky (d — z1)

+2cos ky (2] — h)sink,(d — 2} + g) —4cosky(z; — g)sin ky(d — 27 + %)
—kyhcos ki(2y — k) cos ky(d — 27) + 2kyh cos ky(z) — %) cos ky(d — ;)
—2cos ky(, — h)sin ky(d — 2) + 6 cos ky (] — g) sin ky(d — 2))
—gk1(—2cos k2] cos ky(d — z}) — kyhsin ky 2 cos ki{d — z;)

+2cos ky(zy — h)cos ky(d — z} + g) —4cosky(z — g) cos ky(d — 2y + =)
+kyh cos ky(2), — h) sin ky(d — ) — 2kyh cos ky (2] — %) sinky (d — 1)

h
—2cos ki(zy — h) cosky(d — 21} + 6 cos ky (2] — 5) cos ki(d — 7))] } s

where 2, Zn—1 and z,,41 are the z-coordinates of subdomain m on the probe of antenna
element j (see section 3.4.2). If m = 1, i.e. N; = 1 then z} — k and z] — 2 should be
set to zero in the above expression for I7°f(3). The numerical problems that occur when
calculating the above infinite #-integral are similar to the numerical problems discussed in
the previous section for [Z°%]. We will therefore only discuss the asymptotic form extraction
techmque here for the integration interval [\/€], c0]. Applying this extraction technique to
(2 ;i) results in

Z " fie (B)dp = | " (BB + / " 1o (B)dp
= [ taoas+ [T [t - Fou) s+ [ rioas 330)

|28, - 25s,] + 21,

mjs mjt mji?

with
e o ] 7= (8)dB,

where E;,-(ﬂ) is the asymptotic form of the original integrand for large 8 values. This
asymptotic form is unequal zero only if subdomain m on the probe touches or overlaps the
attachment mode:
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[ [ —2Jo(koSR)J2(kofa)
/., : szg)ﬁf 4p m= Nt

]°° (__e,hJoz(koﬂa) + 2J1(koBb) Jo(kofia)

i 125 bah B3
a2 2 ;
Tia= TEEL A - ) dkeands m=N Ad<z

| /w (__ erhJ3(kofa) | 4erdi(koBba)Jo(koBa)
A 123 bahB2k3(€r + 1)
(4¢, + 8)J3(kofia) _ 2J3(koPa)

T KR +1) kAR

) Jo(koBR)dB m =N, A d=2
(3.31)

with B = /52, + S2... The three types of integrals in (3.31) can be approximated by a

vii-
closed form expression. These three integrals are of the same type as the integrals of (3.23)
and can be calculated with the same technique as discussed in the previous section.

3.5.3 [Z"]: patch modes «+— attachment modes

The submatrix [Z7%] contains (K x L x (N1 + N2)) X (K x L) elements. Due to the Toeplitz
type of symmetry only 4 x K x L x (N; + Nz) elements need to be calculated. An element
of [ZP®] can be calculated from

2o = [ [ [ stz ) T b 20)] o T (ke )

e~ kaSesi g~ kv Suii dfe, dk,,

(3.32)

where J2(k,, k,, z) is given by (3.13) and the Fourier transform of a patch basis function
J? 1 (ksy ky, 2) is given by (2.18). Introduce a change to polar coordinates according to
{2.21). The basis functions that are being used on the rectangular patches of the array do
not have a radial symmetry and therefore the a-integration cannot be performed analyti-
cally. However, the o-integration can be reduced from [—, 7] to the interval [0, 1], because
of symmetry considerations. The zo-integration in (3.32) can be performed analytically.
Doing this, we finally get

pa -"jklﬂSlﬂklz —2]J1(koﬁba) ]Jo(koﬁa)
mis = f / { 1( N )

my,¢ k2ﬂ2 koﬂ
2kof3? coskz, cosky(2]— %)
- 3.33
BT \ g Sinka + = i Jo(koBa) (3.33)

(k2€, cos ky(d — zm) + gy sinki(d — 2,,)) Sps(m, 3,1, B, a)dBda,
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with

z; if basis function m on lower patch
Zm =

z3 if basis function m on upper patch,

and with
1. my =0, ie Jb = J'¢,

o 4) cos a8in k(S5 — 2.) cos ky(Syji — ya) i (8, @, 2m) mz odd
Spf(m,J,l,ﬂ,ﬂ’) =
4 cos a cos kz(S.ji — z,) cos ky(Sysi — ya) I (8,0, 2m) M, €ven

2. me=0, ie. 2, = J2E,

o 47sin a cos k;(Szji — z,) sin ky(Syji — )0y (B, 2m) my odd
SPI(”"J’I)B,Q) =
4 sin acos ko(S; 5 — z.) cos ky(Syji — ya)Jo1(B,a,2m) my even

The B-integration interval is divided in three sub-intervals, i.e. [0,1], [1,/€]] and [/€, o0].
In the first two intervals the same numerical techniques will be used as discussed in section
2.6. In the last interval the asymptotic-form extraction technique is applied in order to

accelerate the convergence of the S-integral. ZJ. is rewritten in the following way:

zz, = ] [ mpisaa
- [ ( [ a0~ do+ [ Brorap)aa 630

(225 7] + 72,

with I
Zog= [ [ Frdorapae,

where f::}.‘-(ﬁ) is the asymptotic form of the original integrand for large 8 values. This
asymptotic form is only unequal zero if z,, = 2| (basis function m on lower patch). By

algebraic manipulations, it is rather simple to show that ZF:; is given by

Jw#o ] j ( 24 koﬁba) +J-Io$:;lﬁ“)

Zmii = —’—"—J"—-—z(ﬂk"ﬂ—‘-‘—)) Sps{m, j,i,B,a)dfda zm =2, »  (3:35)

— ot
0 Zm = 23
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with
€ 7 <d
€Enh =
e+1 , d
7 77

There are three types of integrals in expression (3.35):

L(a) /0 " T (koBa)S,s(m, 31, B, a)dB,

Lia) = / " Jo(koBa)S,y(m, 3,5, B, @)dB, (3.36)

Ia) = /:, J"('j;‘ﬁ 95, ,(m,3,i, B, a)dp.

Integral I;(a) and integral I5(a) can be calculated with the same procedure as the proce-
dure that has been used in section 2.7. The remaining integral I(a) has to be calculated
with an other technique, because the B-integrand of I3(a) is an odd function of 5. We
shall present a method to calculate I;(a) for the case of an x-directed basis function on the
lower patch of antenna element j; with m, odd and m, = 0. The procedure for the other
basis functions is analogeous to the one presented here. Substituting (2.18) into expression
(3.36) gives

Acosa cos&smp-{sm By cos fu
o) = =2 f e e ) (3.37)
with
163m2m?
A - IkOI’V:,vl ’

7= kocosaWp,
6 = kgSiﬂ aWyl,
v=kocosa(S:; — z,),

p = kosinalS,;i —y,)-
The Bessel function Jo(kof¢) can be represented by an integra,l as

Jo(koBa) = - ] Hoseinty = - " ebrag,

T Jo

with 7 = koasin 8. The Jy(kofa) cos %’l sin %§ sin v cos By term in (3.37) can be expanded
into a set of exponential functions:

-1

32r w {9(8,0) + 9(—5,0)} b, (3.38)

Jo{kofa) cos % sin fﬁ sin Brcos Bp =
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with
4(8,8) = (eJﬁ(§+§+v+n+f) _ 1) + (em(;+§+v-u+f) - 1) _ (cJﬂ(§+§-v+u+'r) _ 1)
_ (eJﬁ(§+§-v—u+f) - 1) _ (e:ﬂ(‘;‘- f4vbutr) _ 1) - (eas(g—§+u-u+r) - 1)
4 (e,g(;_g_mm - 1) + (eJﬁ(i‘i‘-u—uh—) _ 1) ,

where the integral representation for Jo(koBe) has been used. The residue theorem of
Cauchy and Jordan’s Lemma [11] will now be applied in order to find a closed form expres-
sion for I3(a). The modified integration path of figure 3.4 will be used here. The integral

r | _
0 mx B
Y
Figure 3.4: Modified integration path for I{a)
I3(a) is then given by
b Ei
L{a) = Acosa cos EX sin £ sin fv cos Bu d (3.39)

sin e f 0(k'”ﬁa)( M — ﬁ7)(mz1r+ﬂ'r)ﬁ ’

where f denotes the integration path of figure 3.4. If we substitute expansion (3.38)

o
into expression (3.39) and then divide this integral in 16 parts, we have to determine 16
integrals with the general form:
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eBt 1

G(t) = f (mor = P7)(mar T BB

(3.40)

Two situations can be distinguished in this case, namely i) ¢ > 0 and i) £ < 0.

i)t>0
The original integration path is closed with C} and with C} as shown in figure 3.5.

Complex
g-plane

Figure 3.5: Integration path fort >0

If t > 0 the integral over C} vanishes for p — oo, because the integrand behaves as 15—3
e

for large p values. Furthermore, there are no poles located within the area enclosed by t
integration path of 3.5. So the only contribution to the integral G(t) is the integration
over C:

¥

0 et _ 1 .
0= [ om0 (3.41)

This may also be written in the form
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0 Bt _q
G(t) = ¢
) /,w (o = By Yo 4 BB

_ /Jm ] — e ”
o (mem — By)(mer + Bv)8 (3.42)

o 1—e
/ a
o (mam — gy7)(mam + Jy7y)y

| e 1 — et
ey 4
7 Jo (ﬂ:ﬂ—Jy) (ﬂfﬂy)y
Divide the integrand of the above integral in two parts and use relation 3.4.3.5 of [19)].
This then gives

1 [® 1—e%
@ = ?fo (ﬁ:l - Jy) (’—“:,'— +Jy) ydy

1 Jmgwt ymgmi mgnt o mgTi pmgmt . jmgwt
=3 1 {2C+ln(— " )+ In( " )— E 531 ” )—e v Ei(— o
1 momi | mgt mgnt Arngmt] | | mewt
= C+ln —ct cos —s sin )
mix? v 7 v v v
for t > 0,

(3.43)

where C is Euler’s constant and where Ei(z) is the exponential-integral function [19, p. 925]
and si(z) and ci(z) are the sine respectively cosine integrals [19, p. 928]. The exponential-
integral function Ei(z) can be expressed in terms of the sine and cosine integral:

Ei(z) = a(z) £ ys1(x). (3.44)
This property has been used in (3.43).
ii)t<o
The integration path for this situation is shown in figure 3.6.
There is one pole located within the area enclosed by the integration path. The contribution

of the integral over C vanishes if p — co. So G(t) can in this case be expressed in terms
of the residue at # = ™% and the integral over Cy:

G(t) = -2 et -1 ° e — 1 d
O (=) * | e 5

’ (3.45)
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Complex
g-plane

Figure 3.6: Infegration path fort <0

The residue at § = 2% can be calculated with formula (2.45). Doing this we find

et — 1

-1 mgmt
= v o —=1]). !
et (Tt 5m8) = e =) (346)
The integration over C can be rewritten in the following form
0 ePt — 1 1 [> 1—et
—Jo0 (mxﬂ- - ﬂ7)(mﬂ7r + ﬁ’Y)ﬂ T Jo (m—i’rl — ]y) (-”l‘-‘;i +J’y) Yy

This is exactly the same integral as in (3.42), because in this case ¢ < 0. So we can use
(3.43) as a result of the integral over C-. Combining (3.46) and (3.43) with (3.45) gives

2
mir

G(t) = -2 (e”‘v‘"“ —1)+

1 =t | mgmt =Tt .| mamt z

C+lnm1r _ctmvr cos my™ _szmvr Smmvrt ’ (3.48)
min? ¥ v g
for ¢t < 0.

Define a help function G'(t) = G(t) + G{(—t). Then according to (3.43) and (3.48) G'(t) is
given by
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’ _ J _!m_-;ﬂ']ll _
@) = miT ( 1)
2 mmit |\ memt mywit  imgmt mqmt
+—= C+ln —ct cOs — st sin .
mzw v v v v v
(3.49)
The original integral I>(e) given by (3.37) can now be expressed in terms of G'(¢)
Acosa cosélsm Eismﬁvcos Bu
He) = S, R
—Acosa [ ( { 0, €
= m[) {G‘( togtvtptn)+G(o+o+v—p+r)
-G l—l—-g-—r/—l-,u-{-'r -G l—i-é—u—,u-l-‘r
a ? )-¢(] ? ) 50)
_o(r s XS4, -
G(2 2+u+#+'r) G(2 g T B+ T)
IS b,
+G(2 5 V+,LL+T)+G(2 5~V ,u-l-‘r)}df)

with m, odd and m, = 0.

The 6-integration interval can be reduced to [—%,%]. From numerical tests we concluded
that when j # t, the radius e in (3.37) can be set to zero. This then eliminates the # integral
in (3.50). Doing this very accurate results can be obtained for /;(a) while the computation
time is reduced significantly, because the §-integral doesn’t has to be calculated.

Now that we have found a way to compute I1{a), Io(a) and I3(a), we can calculate Zﬁw
by evaluating the remaining « integral in (3.35). By dividing the « integral properly into
sub-intervals, only a few integration points are needed in order to obtain an accurate result.
The boundaries of these sub-intervals correspond with zeros in the arguments of G'(t) in

expression (3.50). The a-integral needs only to be evaluated for 1 frequency point.

3.5.4 [Z//]: feed modes «—— feed modes

The submatrix [Z/f] is a symmetric matrix containing (K x L x N, ) x (K x L x N,) elements.
This matrix has also a Toeplitz type of symmetry and therefore only (K x L x N?) elements
need to be calculated. According to (3.9) an element of [Z//] is given by
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Zf{{i.m' = f ] j/ ﬁE(kxskmzmz)'j;{1(kx,km20)] dzg-j,{:i(k,,ky,z)dz
—x Joo Sz Sz

e~ e Sust gty Ses g dk,

/ / // [QEzz(kza ky,zo,z)é', : jr{l(kz's ky,zo)] dzo€, - j‘r{:i(kmsz)dz
—co v =00 Jz Sz

g™ k= 5wt g=IkvSvii 0k dk,,

(3.51)

where JJ, (k,, k,, z) is given by (3.15) and Qg (k., k,, z0, z) and Q.2 (kz, ky, 20, z) are defined
in (2.4). Introduce a change to polar coordinates (2.21) and use relation (3.19) to eliminate
the a-integral. The two z-integrations can also be done in closed form (see [5, chapter 2]).
What remains is an one-dimensional integral that has to be calculated numerically:

L — ] Jo(koB[SZ; + S%:) I3 (koBa) K5 A1LL(B)dB, (3.52)

where I// () is calculated for three situations:

l.ifm=n

J o
I, =—{

€ (-_3’63({32 - &)

[erka (coS k1 Zpy—1 sin by (d — 2pn—p) ~ 4 €OS k1 21 8i0 Ky (d — 2m)

he, 442 442
+ F{E?) n = BAkTm

42 cos k1 zpm—1 8in k1 (d — zmy1) + 4 €08 kyzm sin Ky (d — 2,,)
~4¢08 k12 8in k1(d — 2 q1) + €08 k12 sin by (d — 2p41))
—pky (cos kyzm—1 cos ky{d — z;,_1) — 4 08 kyzm—1 co8 ky(d — 2m)
+2cos k1 zm—1 cos k1(d — 2m41) + 4 cos k2 cos ki (d — 2p,)

—4 cos k12, cos ky (d — Zm41) + €08 k1241 cO8 kr{(d — 2m41)) |},

with ¢, = 1 form > 2 and ¢,, = % for m = 1. In the m = 1 case (half rooftop basis
function) z,, and z,,_, should be set to zero.
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2. ifn-::m—l

7 L. he, R AYR S
mm-t =T W\ TBRIg =) R T ETm

[e, k3 (cos ky 2~z 8in ki (d — 2m—1) — 2 cOs ky 23 sin ky(d — 2p)
+cos ky 22 8inky(d — zpm41) + 5cos kyzp_1 8in ky (d — z,)
—2cos kyzpm—1 sinky(d = zp5_1) — 208 ky2m—1 sin by (d — z,,,;H)
—2c08 k12 sin ky (d — 25) + cos kyzm sin by (d — 2 41))
—3k: (cos kyzm—2 cos ky(d — zm—1) — 208 k12 _3 cos k1(d — 2m)
+c08 k1 Zm—2 €08 k1 (d — zpm41) + 508 k121 cos by (d — 2z )
—2cos ky zm—1 cos by (d — 2p—1) — 2c08 ky 21 cos ky(d — Zme1)
—2c08 ky zm 08 ky(d — 2,) + €08 kyzm cos ky{d — zm41) )] }-
Hm—-1=1, i.e. m=2, 2,2 and 2z,,-; should be set to zero.

J.ifn<m-2

it — _JWho 43

o WRTm 2008 F1zn = os kuzney — 05 by 2]
r 1

[ &bz (2sin ky(d — zpy) — sinky(d — zm—1)} — sinky(d — 2 41))

—gk1 (2cos ky(d — z,) — cos ky(d — zm—1) — cos ky(d — zm41))] -

If n =1, z, and z,_; should be set to zero.

The B-integration interval is again divided into three regions, i.e. [0,1], [1,+/€]] and
[V€l,00). The numerical problems at # = 1 and the problems caused by the surface
waves can be avoided by using the techniques of section 2.6. The convergence of the nu-
merical A-integration in the third integration interval can be accelerated if one uses the
asymptotic-form extraction technique (see (3.21)). The extracted part is given by

Zimi =2 f " Jo(kef S%; + 52:)Ja (koBa) KBTI (B)dp, (3.53)

with
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Lifm=n

( 12 he,
hzk“ﬂ? koﬁ 3ﬁ'~’k2 m>2Azp41 <d

m>2Azp=d

10¢, + 14 h) __he

h’k‘ﬁ"' koB(er +1) 367k
14 he.
hi’k‘ﬂ"‘ kB ) 36%k3 m=2Aimp <d
T’{‘ jm J‘:#o )

h’k“ﬂ’ koB(e- +1 3B2k3

6 he,
h2k4ﬂ2 m ) 6ﬁ2k2 m—ll\zm+1<d

(125,4-16 h)_ he, m=2A s =d

de, +8 2h)—~—hf—' m=1Aznsa =d,

‘ h2k4ﬂ2 koB(e, + 1) 652K

2. ifn=m-—1,

THf _]wﬂo _ 1 _ 8 _ hf,-
s =22 { =g [~ 23] - g

3.ifn<m-—2,

__2jwpo
Hp)=| P

=m-—2

0 otherwise.

So Z,{é i 18 non-zero only if subdomain m overlaps or touches subdomain n. Apparently

two types of integrals have to be calculated:

oo JE(koBa)J; S2.. + S
/ O(koﬂ ) O(k(lﬂ ::J=+ ij)dﬁ

I, =
1 B (3.54)
oo Jg(kgﬂa)Jo(koﬂ Sg;: + S!?J')
12 = / ﬂ2 ﬂ
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These integrals correspond with Iy and I, of (3.23). A method to calculate I; and I; has
already been presented in section 3.5.1.

3.5.5 [Z?/]: patch modes «— feed modes

The submatrix [Z?f] contains (K x L x (Ny + Np)) x (K x L x N,) elements and has a
Toeplitz type of symmetry. Therefore only 4 x K x L x (N; + Nz) x N, elements need to
be calculated. According to (3.9) an element of [Z?/] is given by

Z:{i.ni = ] / j @E(kﬁ km zﬂ,z’n) : j:{l(kzv kw ZO)] dzg - f,’::l(k,, szm)
—o0 J—oo J2g

e~k Seii g~ thuSusi gk dE,,

(3.55)

where J7, (k,, k,, z) is given by expression (3.15) and the Fourier transform of a basis func-
tion on the patch, J%,(ky, ky, zm), is given by (2.18). Again a change to polar coordinates
in introduced. The zp-integration can be performed analytically. With some algebraic
manipulations, it is relatively simple to show that an element of [Z?/] is given by

Z roo V]
7z = j Zotiokof” (K2, cos ky(d — z,) + gk1 sin ki (d — z,)) Jo(kofa)
0

mjni s hkeTm

[1 — cos{ky ﬁ)] dfda n=1 (3.56)
Spf(ma J'-: is ﬁ, a) 2

[2 cos k] Zy — CO8 klz,,_1 -— CO8 klz,,.,,l] dﬂda n Z 2,

with

z; if basis function m on lower patch

zy if basis function m on upper patch,

where Sys(m, j,1, 8, ) is given in (3.33). When evaluating the above integral numerically,
the f-integration interval is divided in three parts, i.e. [0,1], [1,+/€] and [/e],00}. In
the first two intervals the numerical techniques of section 2.6 will be applied. In the third
interval the asymptotic-form extraction technique (see also (3.35)) is used in order to speed
up the convergence of the S-integration. This technique has only to be used for the case
that n = N, and z,, = 2|, i.e. if the last subdomain on the probe touches the lower patch.
For this situation the extracted part is given by

~ 0 Zn41 < Zm
V2 - (8.57)

mjni e
Wito /’ f Jn(knﬂﬂ)sp;(m,j,i,ﬁ,a)dﬁda Zop1 = z;’
hfrhk() 0 0
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with

The §-integral in (3.57) has exactly the same form as integral I:(a) in (3.36). So we can use
the method of section 3.5.3 to calculate the above B-integral. The remaining o-integration
is performed with a standard numerical integration routine.

3.5.6 [Z"F): patch modes «—— patch modes

The matrix [ZP?] contains (K x L x (N; + N2)) % (K x L x (N1 + N,)) elements. An efficient
method for the calculation of the elements of this matrix has already been discussed in
section 2.6 of the previous section.

3.6 Calculation of the excitation matrix [V 0]

The general structure of the excitation matrix [V0] is given by (3.10). The elements of
[V0] can be calculated in an efficient way if one uses the same numerical approach that
has been used in the previous section for the calculation of [Z].

3.6.1 [V07: attachment modes

This submatrix contains (K x L) x (K x L) elements. [V0°] has a Toeplitz structure, so
only (K x L) elements need to be calculated. According to (3.10) an element of [V0°] can
be calculated with

Ve = = [ [T ] Qa0 0) otk by iz - s
oo L (3.58)

e?*s 5211 ethvSuii gk dk,,

where ﬁ}"ﬂ-" 1(kz, k) is given by expression (3.11) and the Fourier transform of the at-

tachment mode, fl“(k;,, ky, z0), is given by (3.13). The magnetic field Green’s function @H
has already been calculated in chapter 2 and is given by (2.5). If we use a change to polar
coordinates (2.21), it can be easily shown that the a-integral can be performed analytically.
Furthermore, the zo-integration in (3.58) can also be done in closed form. We finally obtain
the following expression for V05,
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VO:," =

2, foo Jo(koBy/SZ + S2)
4k, / 0 [Jo(koBb) — Jo(koBa)]

In(®) Jo Tm

[—23’60;(;5’60)30) {Erkz[ézil- cos ky(d — 2z}) —sinky(d — 2] + E) + sin k3 (d — 21)]
1 2
—hk; . , , h ,
—7ki| 5 sin ki(d— z) — cos ky(d — 2] + 5) + cos ki (d — 1)}
—23J; ba J; , . ,
+; { Jb 116(2’25 ) +2 oi’:%ﬂa)} (k2€, cos ky(d — ;) + gk sin ky(d — zl))] dg,
a Ko

(3.59)
where we have used relation (3.19) in order to eliminate the « integration. The remaining -
integral can be calculated with a numerical integration routine. The S-integration interval
is divided in three parts, i.e. [0,1], {1,,/€]] and [\/e],0]. The numerical problems due
to the infinite derivative at 8 = 1 and due to surface waves in the interval [1,/€]] can
be avoided by using the techniques discussed in section 2.6. The B-integral in the third
interval converges very quickly in most practical situations. However, if the probe part
of the attachment mode touches the groundplane, i.e. if & = z{(N, = 1), the B-integral
converges very slowly. For this situation the asymptotic-form extraction technique will be
used to speed up the convergence of the B-integration. V0%, is now written in the form

voy = ["res= [ rusus+ [ 1o
= [ rors+ [ (500~ Fw) as+ [ Tetoras (3.60)
- [Vo;.',,- -~ 171'];,-] + V0,

with

V= [ Fueys,

where }':;’,(ﬁ) is the asymptotic form of the original S-integrand for large f values. %:, is
unequal zero only if 2 = 2{:

0 3<4
Voj. - : :
i —4x2k2 [o° 2Jo(kofa)Jo(kof Szj.' + Syj') |
’n(%)o / hk3p? [Jo(koBb) — Jo(koPa)]dB % = 74
(3.61)

The above integral has the same form as the integrals in (3.23). Therefore the same
techniques as discussed in section 3.5.1 can be used in order to approximate the above
integral with an analytical expression.
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3.6.2 [V0/]: feed modes

The submatrix [V0/] contains (K x L x N,) x (K x L) elements and has a Toeplitz type
of symmetry, so only (K x L x N,) elements have to be calculated. According to (3.10) an
element of [V0/] is given by

Lo a) o ] _ - -
VU{nj,i = '—] / [/ QH(krr ky, ZU!O) . J:{u(krr ky, zo)dzo| - M;rill 1(kzs kv)
—o0J—o0 LSz

e?*= =it ghoSuii gk dk,,
(3.62)
where JI,(k,,k,,20) is given by (3.15) and M;, ., (ks ky) is given by (3.11). Using a
change to polar coordinates and after performing the a- and zp-integrations analytically,
we obtain the following expression for an element of [V0/]

an2k2 [ 2BJo(koBa)Jo(koBy/ STy + STyi)
Vs = iy |, T Wolkafb) = Jo{koB)]

{ek2[2sin k1(d — 2,) — sinky(d — zn—1) — sink;(d ~ 2m41)] (3.63)

—gk1[2cos ki (d — z2pm) — cos k1(d — zm—1) — cos k1(d — zm41)] }dB,

where zm, Zm—1 and zp,4; are the z-coordinates of subdomain m (see figure 3.3). If m =1,
2, and z,_; are both equal zero. The B-integration interval is again divided into three
regions, 1.e. [0,1], [1,1/€]] and [/€],o0]. The numerical techniques used in the first two
intervals are the same as those of section 2.6. In the third interval the asymptotic form
extraction technique is used to speed up the convergence. The extracted part is given by

= f Ar*kE >

VO,,,J-‘,- = F(é-)— Jo(koﬁa)Jo(koﬂ ng; + ng,') [Jg(koﬁb) - Ju(koﬁa)]
2 2
— ——=_\d ~1
(kﬁﬁ kﬁﬁ“h) pom (3.64)
{2 _
kgﬁ?hdﬂ m=72
0 m2=>3.

The extracted part is only unequal zero if subdomain m touches the groundplane. The
B-integral in (3.64) has the same form as the integrals in (3.23) and can therefore be
approximated by an analytical expression.
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3.6.3 [V0P]: patch modes

This matrix contains (K x L X (N1 + N;)) X (K x L) elements. Again the Toeplitz type of
symmetry can be used to reduce the number of elements that have to be calculated. An
element of [V07] is according to (3.10) given by

mm' - / / P}f kn k,,,zm,O) (kx:kyszm)] ' M;ﬂ'll l(kz’kv),

eJksSsji ekuSyii dk,. dk,,

(3.65)

where jfﬂ(k,,, ky, 2;) is given by (2.18). If we use a change to polar coordinates given by
(2.21), the o-integral can be reduced to the interval [0, Z]. We finally obtain

Yrko 2 [F P
Vs = sy [ (ko) — d(koB)] s

Tom [ka€r cos ky(d — zpm) + 3k1 sinky(d — z,,)] dadf,

where S,¢(m, ,1,8,a) is defined in (3.33). The B integration interval is again divided
into three parts. The asymptotic form extraction technique doesn’t has to be used now,
because the B-integrand converges very fast to zero for large B-values (~ e~#).

(3.66)

3.7 Port admittance matrix and scattering matrix

If we compare matrix equation (3.5) with matrix equation (2.14), we see that in (3.5)
the port-voltage vector [V?] is used while in (2.14) the port-current vector {I7] is used to
excite the array. So instead of looking at the port impedance matrix [Z?] we are going
to determine the port admittance matrix [Y?] in this section. The relation between port
currents and port voltages is given by

177} = [Y?][V?]. (3.67)

The relation between port current I7 and port voltage V7 is given by [7)

P P /]/ H‘ M:owr:e: ¥ (3'68)

where H! is the total magnetic field and M?,,, . ; is the complex conjugate of the magnetic
current distribution in the coaxial aperture of source i (see (3.2). Note that H! is the
magnetic field due to the currents on all the patches and probes of the array. We may
therefore write

L, KxL L N 14N 4N +Ny
Hf = Z {IIJH:J + Z ImJH{nJ + Z ITHJanJ} ’ (3.69)
i=1 m=2 m=Nz+2
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where the superscript a refers to an attachment mode, f to a basis function on a coaxial
probe and p to a basis function on one of the patches. If we substitute the above expansion
into expression (3.68) we get the matrix equation

] =5 VorizI volv, (310)

where matrix equation (3.5) has been used. The port admittance matrix can be calculated
with

[¥?] = —-#[VO]T[Z]‘I[VO]. (3.71)

In literature another approach is often used to calculate the admittance matrix. One often
uses the formula

L0
Y)= ’—‘(/‘l with V; =0 for 7 # i, (3.72)
where 7;(0) is the current at the base of probe j (2 = 0) which can be determined by
solving matrix equation (3.5). Formula (3.72) can be derived from (3.71) if one uses the
approximation

5(0)

3
2nr

H(2,y,2) = (3.73)
where r is the distance from the point (z,y,z) to the centre of probe j. In the case
of electrically thick substrates formula (3.73) gives quite accurate results. However, the
error between the exact expression {3.71) and (3.72) becomes very large (> 25%) if the
substrate of the antenna under consideration is thin. We shall therefore always use the
exact expression (3.71). Once the port admittance matrix is known, we can also calculate
the scattering matrix with the relation [15]

5] = {[¥o] - (Y"IH[¥a] + [Y*)} 7, (3.74)
where [Y] is a diagonal matrix with elements equal to the characteristic admittance Yq
of the coaxial cables. Usually ¥ = #- = g (§)- The main beam of the array can be

scanned at a certain angle (6o, ¢o) by using the type of excitation vector given by (2.68).
The active reflection coefficient and active input impedance can then be expressed in terms
of the elements of the scattering matrix (see relation (2.69) and (2.70).

3.8 Radiation pattern

The radiation pattern of a thick stacked microstrip array can be determined with the
method that was also used in section 2.9. The only difference is the fact that apart from
currents on the patches we now also have to incorporate the current distribution on the
coaxial probes.
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3.9 Results

3.9.1 Convergence considerations

A great disadvantage of the rigorous method presented in this chapter for the analysis
of electrically thick microstrip arrays, is the fact that a lot of one- and two-dimensional
integrals have to be calculated numerically. It is therefore interesting to investigate how
much computational effort has to be used in order to obtain accurate results. In section
2.10 a strategy was proposed that speeds up the numerical analyses. The idea behind this
method is the fact that the coupling between array elements located far away from each
other is negligible compared to the coupling between array elements that are located close
to each other. In this way [Z] and {V0] become sparse matrices. We shall distinguish three
sets of parameters

® (kymaz,lwvmaz): All interactions in the matrix [V0] between modes and sources for
which the distance in x- and y-direction is larger than kyme, X a; respectively l,mqz X by
are zero. This affects [V0°], [V0/] and [V07).

o (kfta 1f*a ). All interactions with modes on the probe or with attachment modes

zmar® "zma
in the matrix [Z] for which the distance in x- and y-direction is larger than k{%_ xa,

respectively I/+2_ x b, are zero. This affects sub matrix [Z°], {Z2/9], [ZP¢], [ZP/] and
[241].

o (k2__.,I7  .): All interactions with modes on one of the patches in the matrix {Z]
for which the distance in x- and y-direction is larger than k%, .. X a, respectively
2 xb, are zero. This affects sub matrix [Z77], [Z7*] and [Z71).

zmar

The 7 x 7 array of section 2.10.1 will be used to investigate the above method. In figure
3.7, 3.8 and 3.9 the results are shown when varying one of the three sets of parameters
while the other are equal (7,7).

From these three figures it is clear that a lot of computation time can be saved if not
all the interactions between the basis functions are calculated. Quite accurate results for
the calculated coupling coefficients can be obtained if one chooses (kynazy lymaz) = (1,1),
(klFs 12 ) = (1,1) and (k... Emas) = (4,4) for the 7 x 7 single-patch array config-

zZmax?

uration. If one is only interested in the coupling between a,d_lacent. array elements, one
can even use (k% )} = (2,2). The above method results in a dramatic reduc-

rmaz? zmu:r:

tion of computation time. If we look at the above example with (kymaz, lvmaz) = (1,1),
(kf¥e,, 1+ ) = (1,1) and (kP (4,4), the total number of elements of [Z] and

zmaz? ‘zmaz mazr? zmaz) -

[V0] that have to be calculated is reduced from approximately 49(2 + 2N, + N? + 2(Ny +
No)+ N, (N1+ N2)+(N1+ N3)%) to 242N, + N2 +-2(Ny + Np) + N, ( Ny + N2 )+ 16( Ny + Np)2.

With N, = 3, N} = 5 and N; = 0 this corresponds to a reduction of the total number
of non-zero elements in [Z] and [V0] by a factor 228 = 7.5. Using this method relatively

large finite arrays can be analysed while the overall computation time remains limited.
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Figure 3.7: Calculated S-parameters for various (kumaz, lumaz) values, f=13 GH:

3.9.2 Single patch layer arrays

So far as we know no measured data is available from literature concerning finite stacked-
element microstrip arrays made on electrically thick substrates. We will therefore validate
our model with measured data from microstrip arrays with only one patch-layer, i.e. with
7 = z,. The first array that will be investigated is the 8 x 1 linear array presented in f23).
This array is based on foam material and has a relatively thick substrate with (7\"-'; = 0.08).

The array dimensions are given by

o patch location patch z{ = 2} = 7.03mm,

¢ substrate thickness d = 7.03mm,

¢ permittivity ¢, = 1.089 tané = 0.0008,

¢ patch dimensions W,; = W,; = 31.9mm,

¢ dimensions coax a = 0.635mm, b = 2.1mm,
e excitation point X, = 1lmm, Y, =0,

o array dimensions @, = 60mm, b, =0,

e number of elements K =8, L =1.
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Figure 3.8: Calculated S-parameters for various (kf}a_ 1f+2) values, f =1.3 GHz

Zmar? "Zmar

This configuration is often called an E-plane array configuration. Figure 3.10 shows a plot
of the calculated and measured coupling coefficient |S; ;| between the last element (j = 8)
and the other 7 elements of the linear array. The frequency is 3.3 GHz. The agreement
between the calculated data and measured data is excellent. Note that the spacing between
the elements of this array is approximately 0.66)y. So if one wants to use this antenna as
an active phased array, a grating lobe will appear at § = 42°.

Next the 7 x T array of section 2.10.1 is analysed. This array has been measured in the
antenna laboratory at the Eindhoven University of Technology. More details about this
array can be found in section 2.10.1. The array is also based on foam and has a relatively
thickness of (f; = (.04). The spacing between the elements is approximately 0.5A0. Figure
3.11 shows the calculated and measured coupling coefficients between the centre element
(7 = 25) and the elements along the [ = 4 and | = 3 row, with f =1.3 GHz.

3.9.3 Stacked-element arrays

In this section an example is presented of a stacked-element finite microstrip array, based
on a relatively thick dielectric substrate. One could use the model of chapter 2 if the
distance between the first patch layer and the groundplane, i.e. zi, is very short. However,
the array that we are going to investigate in this section has a long probe, so we have to
use a sophisticated model for the coaxial cables. The antenna dimensions are

e patch location lower patch z; = 1.57mm,
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Figure 3.9: Calculated S-parameters for various (K .z, ¥mas) values, f =1.3 GHz

e patch location lower patch zj = 3.14mm,

o substrate thickness d = 3.14mm,

e permittivity ¢, = 2.33 tané = 0.001,

¢ lower patch dimensions W,y = W,; = 24mm,

¢ upper patch dimensions W, = W2 = 23.9mm,
¢ dimensions coax a = 0.635mm, b = 2.1mm,

e excitation point X, = 6mm, Y, =0,

¢ array dimensions a, = 37.5mm, b, = 37.5mm,
o number of elements K =5, L = 5.

Figure 3.12 shows a plot of the calculated input impedance versus frequency of the centre
element when the array is not scanned, so (fy,4) = (0°,0°). Two peaks in the input
resistance plot can be observed, because of the stacked configuration. In figure 3.13 a plot
is shown of the calculated mutual coupling coefficients between the centre element and the
other elements of this 5 x 5 array (see figure 2.1 for the element numbering).

The H-plane coupling is far stronger than the E-plane coupling for this configuration.
Compare this with the results of the 7 x 7 single patch layer array, where the E-plane
coupling was more dominant.
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[Say | (dB)
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Figure 3.10: Measured [23] and calculated coupling coefficient belween element 8 and the
other elements of a 8 x 1 linear E-plane array, f =3.3 GHz.

3.9.4 Arrays with EMC-coupled microstrip elements

One way to improve the bandwidth of a microstrip antenna or -array is by using thick
substrates. However, electrically thick substrates give rise to an inductive shift in the
input impedance and therefore the use of a compensating network would be necessary.
A solution for this problem could be the so-called electromagnetically coupled (EMC)
microstrip structure [5]. In this case the patch is not fysically connected to the probe, i.e.
zp < 2 (see figure 3.1). We will now investigate if such an element can be used in an array
configuration. A 7 x 1 E-plane linear array is considered with dimensions:

e patch location z} = z} = 6.61mm,

substrate thickness d = 6.61mm,

length of probe zr = 6.36mm,

permittivity ¢, = 2.33 tané = 0.001,

lower patch dimensions Wy, = Wy, = 11.5mm,

dimensions coax a = 0.635mm, b = 2.1mm,

e excitation point X, = 4.6mm, Y, =0,
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Figure 3.11: Measured and calculated (thick substrate model) coupling coefficient between
the centre element (j = 25) and elements of the l = 4 and | = 3 row of a 7z7 array with
i=(-1)K+k f=13GH:z

¢ array dimensions a, = 32.mm,

e number of elements K =7, L =1.

Figure 3.14 shows a plot of the calculated coupling coefficient between the first element
of the array (k = 1) and the other six array elements for three frequencies. Figure 3.15
shows the corresponding active reflection coefficient of array element 1. From these figures
it 18 clear that this EMC-coupled microstrip structure can be used in order to design a
broadband microstrip array.
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Figure 3.12: Centre element input impedance of a 5 x 5 stacked array versus frequency,
Qo=¢o=0
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Figure 3.13: Celculated coupling coefficient between the centre element (7 = 13) and ele-
ments of the l=1,1=2and[=3 rowof a5 x5 array with j = (I- 1)K +k, f= 3875
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Figure 3.14: Calculated coupling coefficient between element 1 (k = 1) and the other ele-
ments of a 7T x 1 linear EMC-array.
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Chapter 4

Finite array of monopoles embedded
in a grounded dielectric slab

Note: This section was published as a paper in Electronics Letters, Vol.28 (1992), p.2079-
2080. The numbering of its equations and references has been changed, so that they corre-
spond with the numbering of the previous part of this report

Finite array of monopoles embedded in a grounded dielectric slab.

Indexing terms: Phased array, monopoles

Abstract

A finite array of monopoles embedded in a dielectric slab is studied using a rigorous yet
efficient spectral domain moment method. Computed input impedance data are compared
with data from an infinite array analysis. Significant differences are observed, even for
relatively large arrays.

Introduction

In this letter a method is presented for the analysis of finite two-dimensional arrays of
vertical monopoles embedded in a grounded dielectric slab. The radiation pattern of such
an array has a null at broadside. Previously, this type of arrays has been investigated by
Pozar [20], who analysed an infinite array of monopoles. Fenn {21] studied a finite array of
monopoles in free space. We have investigated finite arrays of monopoles embedded in a
dielectric slab by using a spectral domain moment method. A sophisticated magnetic frill
source model is used in order to account for the feeding coaxial cables. Both Pozar [20]
and Fenn [21] use a more simple and less accurate source model.

3
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Theory

In figure 4.1 the geometry of a finite two-dimensional array of monopoles embedded in a
grounded dielectric siab is shown. The length of a monopole is d.

Figure 4.1: Geometry of a finite array of vertical monopoles embedded in a grounded di-
electric slab

An antenna element is represented by a cylinder with radius a and with perfectly conducting
walls. It is assumed that the z-directed surface current on this cylinder only depends on
the z-coordinate. The fields corresponding to the TEM-mode in the coaxial aperture act
as a source. The electric field in the coaxial aperture of antenna element 1 then takes the
form [5,7]:

P
() =—t58, a<rsh (4.1)
rin= '

where V" represents the impressed port voltage at monopole 1 (=port 1). The unknown
currents on the antenna elements can be found by applying the well known method of
moments. The problem is formulated in the spectral domain, i.e. all quantities are {rans-
formed according to {z,y} — {k.,k,} . This finally results in the matrix equation:

(2]l + V] =[] (4.2)

with



Monopole arrays 93

Zpjni = 27 /°° kgﬁJo(kuﬁRﬁ)Jg(koﬂa)] [/ QE2:(8, zos z)gn;(zg)dzg] gmj(2)dzdB
0 2 Lz

4n?k3VF [~ B

T In(}) fo ky Tm

/ gmj(zo)[frk2 sin kl(d - Zn) — jkl Ccos kl(d - zo)]dz(;dﬁ

20

Vi =

Jo(koB Rji)Jo(koBa) [Jo(kofb} —~ Jo(kofa)]

QEzz(ﬂa 2, Z) = Chudald 6(2 - ZO)

€k
Jwpef? | cos krzg [erkysinky(d — 2) ~ ghycoski(d — 2)] 2 < 2
ek T'm cos ky z [e ko sin ky(d ~ zp) — gk1 cos ky(d — zp)] 202> =
Tm = kye,coskid+ jkysinkd

B = ook

B = R-R_g

kaB? = k4 k] k3 = wleopio

R;; is the distance between monopole j and i. g¢n;(z) represents the z-dependent part
of the m-th basis function on monopole j. Subdomain rooftop basis functions are used.
The two z-integrations can be performed analytically for this type of basis function. The
mode coefficients [/] are found by solving equation (4.2). The main disadvantage of the
spectral domain moment method for the analysis of finite arrays is the long computation
time needed to evaluate the elements of {Z] and [V]. Especially when the distance between
monopole j and ¢ is large. This problem is mainly due to the numerical evaluation of
infinite integrals over slowly decaying and strongly oscillating functions. Fortunately we
have found a way to rewrite these infinite integrals as a sum of a closed form expression
and a relatively fast converging integral. In Smolders [22] this approach was used for
the analysis of microstrip patch antennas. Using this analytical method, the computation
time can be reduced significantly. Once the elements of [Z] and [V] are known the port
admittance matrix [¥?] can be easily calculated. An element of the port admittance matrix
is given by:

I; : .

Yi = W"’p , with V2=0 for m#1: (4.3)
where I? is the current at the base of monopole j and is calculated with (4.3), V7 is the
impressed port voltage at monopole i. Once the port admittance matrix is known, the
scattering matrix [S?] and the active reflection coefficient can be determined. Note that
with the infinite array approach of [20], the scattering matrix cannot be calculated.
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Results

We have checked our method and computer program with the results obtained by Fenn
[21], who analysed finite arrays of monopoles in free space (¢, = 1). The agreement between
our calculations and the measurements of Fenn [21] is excellent. Next we considered the
array configuration of Pozar ([20], fig. 4), with ¢, = 2.5, d = 10mm, a = 0.565mm,
a; = b, = 60.6mm and ¢ = 45°. Pozar [20] measured the input impedance using a

. In fig. 4.2 the calculated

waveguide simulator in the TM;; mode, with § = arcsin

a
centre element reflection coefficient against frequency for this configuration is shown for
three array sizes. The characteristic impedance is 50Q2. Note that the reflection coefficient
of the centre element can become larger than 1 for a finite array.

—3x3 array + 7x7 array Y€ 9x9 array
0 ] 1 1
4 4.5 5 55 6

Frequency (GHz)

Figure 4.2: Calculated centre element reflection coefficient magnitude versus frequency for
three finile arrays of monopoles embedded in a diclectric slab

A significant difference can be observed between the calculated reflection coefficient of figure
4.2 and the results obtained by Pozar ([20], fig. 4) using an infinite array approach, even
for relatively large arrays. In Fig. 4.3, the corresponding calculated coupling coefficients
between the center element and the elements of row 5 {see fig. 4.1 of a 9 x 9 array are
given.
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Coupling coefficient in dB

0 1 2 3 4
Distance/ay from centre element

Figure 4.3: Coupling coefficient of center element and the elements of row 5 in @ 9 X 9
array of monopoles embedded in a dielectric slab, f =4 GHz

Conclusion

A rigorous yet efficient method is presented for the analysis of a finite array of monopoles
embedded in a dielectric slab. Significant differences in calculated input impedance data
between our finite array method and the infinite array approach of Pozar [20] are observed,
even for relatively large arrays.
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Chapter 5

Conclusions

Chapter 2 has dealt with finite stacked microstrip arrays based on electrically thin dielec-
tric substrates, whereas in chapter 3 we investigated finite stacked microstrip arrays on
thick substrates. In the case of an electrically thick substrate a proper model for the feed-
ing coaxial cables has to be incorporated in the analysis, including an attachment mode
between the probes and patches.

A lot of computation time can be saved if one uses the asymptotic form extraction tech-
nique. Without this analytical technique it would be almost impossible to analyse large
finite arrays, because the overall computation time would become extremely long. More
computation time can be saved if interactions in the method of moments matrices between
basis functions that are located far away from each other are neglected. In this way these
matrices become sparse matrices.

Mutual coupling measurements were made on a 7 x 7 planar array with a single patch layer.
The measurements agreed quite well with our calculations. Two broadband microstrip
structures have been investigated, namely a stacked array on a thick substrate and an array
with electromagnetically coupled (EMC) microstrip elements. As could be expected, the
mutual coupling deteriorates when thick substrates are being used. Despite of this, it seems
that an EMC-microstrip antenna is a very good candidate for the design of broadband
microstrip arrays.
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