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Abstract 

This report deals with a method for the analysis of phased arrays of rectangular slacked 

microstrip antennas. The method of moments is used in combination with the exact spec

tral domain Green's function in order to calculate the unknown currents on each array 

element. First arrays based on electrically thin dielectric substrates are investigated. Lat

eron this model is extended to the case of arrays on electrically thick substrates. In this 

case a proper model for the feeding coaxial cables has to be used including an attachment 

mode that ensures continuity of current at the probe/patch transitions. 

When analysing arrays it is extremely important that the asymptotic-form extraction 

technique is used. Without this analytical method it is almost impossible to analyse large 

arrays accurately with an acceptable computation time. More computation time can be 

saved if interactions in the method of moments matrices between basis functions that are 

located far away from each other are neglected. In this way these matrices become sparse 

matrices. 

Mutual coupling measurements were made on a 7 x 7 array with a single patch layer. 

The measurements agreed fairly well with our calculations. Two broadband configurations 

have been investigated, namely a stacked microstrip array on a thick substrate and an array 

with electromagnetically coupled (EMC) microstrip elements. The mutual coupling level 

is relatively high in both configurations. Despite of this, it seems that an EMC-microstrip 

antenna is a very good candidate for the design of broadband microstrip arrays. 
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Chapter 1 

Introduction 

Over the past few decades microstrip antennas and -arrays have become very popular 

due to features such as light weight, conformability and potentially low production costs. 

There are many applications of microstrip arrays ranging from mobile communications (see 

figure 1.1) to phased array radar systems. For some of these applications input impedance 

bandwidths of only a few percent suffices. However, in most practical systems a larger 

bandwidth is needed in order to fulfil the overall system requirements. For mobile satellite 
communications, an impedance bandwidth of at least 6.5 percent is required whereas for 
certain radar systems bandwidth requirements of more than 20% can be expected. 

Figure 1.1: Mobile satellite communication with microstrip arrays 

One way to improve the bandwidth of microstrip arrays is by using an electrically thick 
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2 Introduction 

dielectric substrate. Another way is by using stacked structures. Both configurations will 

be investigated in this report. In order to be able to compute the input characteristics 

and the radiation pattern of electrically thick microstrip arrays a rigorous model for the 

feeding coaxial cables has to be used in the analysis. Particularly the non-uniform nature 

of the current distribution on the probes must be incorporated in our model. For that 

purpose the Electrical Field Integral Equation (EFIE) on all patches and probes is solved 
with the method of moments. The same approach has already been used in [1,2,3,4,6] for 
the analysis of isolated microstrip antennas based on electrically thin substrates. In [5] this 
method has been applied to the case of isolated microstrip antennas on electrically thick 
substrates. 

Microstrip arrays can be analysed with two approaches: 1) element by element approach 
(finite array approach) and 2) infinite array approach. Small arrays and edge-array ele
ments can only be analysed in a proper way by using an element by element approach. 

The organisation of this report is as follows. Chapter 2 looks at stacked-element micros trip 

arrays on electrically thin substrates. A simple model for the feeding coaxial cables is used. 

The currents on the patches are calculated with a method of moments procedure. Once 
these currents are known, the scattering matrix and the radiation pattern can be calculated. 

Chapter 3 deals with stacked-element microstrip arrays on electrically thick substrates. A 

sophisticated model for the coaxial cables will be included in the analysis. In the last 

section of chapter 2 and 3 some results are presented. Calculated data will be compared 

with measurements. Chapter 4 includes a paper about finite arrays of monopoles that was 

previously published by the author in Electronics Letters [october 1992]. 



Chapter 2 

Finite stacked microstrip arrays 

with a thin substrate 

2.1 Introduction 

In [1),[2) and [3) a method was presented for the analysis of isolated microstrip antennas 

with an electrically thin substrate. They all used a spectral domain method of moments in 

order to calculate the unknown current distribution on the patch. Because the substrate 
was assumed to be electrically thin, a simple model for the feeding coaxial cable could be 

used. In this chapter we shall extend this model to the case of a finite array of stacked 
microstrip antennas build on an electrically thin substrate. The technique which was used 

in [4] to reduce the computation time needed to evaluate certain infinite integrals for 
the isolated microstrip antenna case, shall be extended in this chapter to the microstrip 

stacked-patch array situation. 

2.2 Model description 

The geometry of a finite array of identical stacked rectangular microstrip patches, fed by 

a coaxial cable, is shown in figure 2.1 along with the notation to be used. Both patches 

of each array element are assumed to be embedded in the grounded dielectric slab. The 
centre of both the lower and upper patch of antenna element 1 (k = 1 = 1) is located at 

(x,y) = (0,0). The infinite groundplane and all patches are perfect electric conductors 

(17 -> 00). The dielectric material extends to infinity in the xy-plane and is isotropic, 
homogeneous and lossy material. The permittivity of the substrate is complex: 

I ." '( 1 . t <) fr = f - Jf = f - J an v , (2.1) 

where tan 6 is the loss-tangent of the dielectric substrate. The permeability JJ of the 

material is the same as the permeability in vacuum: JJ = JJo. 

Only the rectangular array-grid situation is studied here, but an extension to other grid 

forms is straightforward. The x- respectively y-dimensions of the lower patches (z = z;) 

are W . .t and W. t and the x- resp. y-dimensions of the upper patches (z = z~) are Wx2 and 
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Thin substrate arrays 

Figure 2.1: Geometry of a finite array of stacked microstrip antennas embedded in a 
grounded dielectric slab 



Thin substrate arrays 5 

Wy2 • The feeding coaxial cables with inner radius a and outer radius b, are connected to 

the lower patches at a distance (X., Y.) from the centre of each lower patch. The number of 

array elements in x- and y-direction is K and L respectively and the array element index 

is represented by j = (1- 1) x K + k. We shall assume that the distance between the 

lower patches and the groundplane is small compared to the wavelength in the substrate 

(z; ~ A,). In this case the current along the coaxial probes will be almost constant. 

However, when the substrate is electrically thick, the current distribution along the probes 

will be z-dependent and therefore a more sophisticated model has to be used. Arrays on 

thick substrates are discussed in chapter 3 of this report. Now let's assume the substrate 

to be electrically thin. The probe is represented by a cylinder with radius a. The z

independent current distribution on the probe of antenna element 1 (j = 1) is then given 

by 

J,!:!beJ (x, y, z) = If J"robd(X, y, z) = e'2~/ ( J(x - x.)2 + (y - y.)2 - a) 0:5 z :5 z'J 
(2.2) 

where If is the port current of antenna element 1. 

2.3 Green's function 

A Green's function is the vector potential or the electric and magnetic field created by a 

unit source. The fields resulting from a general electric current distribution can then be 

found by dividing this current distribution into an infinite number of elementary electric 

dipoles and then integrating the contributions of all the elementary dipoles. The problem 

shall be formulated in the spectral domain, because a closed form expression of the Green's 
function can be found in the spectral domain. So all quantities are transformed according 

to {x,y} --+ {kx,ky }: 

(2.3) 

In [5),[6) the spectral domain Green's function was given of an electric dipole embedded in 

a substrate above an infinite and perfectly conducting groundplane. Using these results, 

the electric field in the substrate at (x,y,z) due to a general current distribution in the 
substrate is given by 

£(x,y,z) = 

with 
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QE(k"" k .. , Zo, z) = QE QE QE . ."'...' for z:5 d and Zo :5 d, (2.4) 

{ :~;:;,,~ b('~ -l;lo)N.(,)Tm - '1'1(. -1)';"',,1 zo:5 z 
QE",,,,(k,,,, k., Zo, z) = 

wfik,;;k!r' b(k~ - k~fr)Ne(zo)Tm - k~k;(fr - 1) sin k,zoJ z :5 Zo 
(rot cm 

{ _ •••• M ... bN ( )T "( 1)" 1 zo:5 z kH T T e z m - ,fr - sm 'z 
QE,..(k"" k., zo, z) 

Q frOlem - EJlz = 
wlJOksk" aink l * 2' Z :5 Zo k'k T T bNe(zo)Tm - k,(fr -1)smk,zo] 

fr ole m 

{ :~;:;,,~ W; - ".)N,(,)Tm - ,;.~(. - I),;. ',,1 zo:5 z 
QE .. (k"" k", %0, Z) -

<~~k:~:}:' [J(k~ - kZ<r)Ne(zo)Tm - k~k?«r - 1) sin k,zo] z :5 Zo 

-Q._o { 
w"'~'",;kU9 [frk2 cos k,(d - z) + Jk, sin k,(d - z)] zo:5 z 

QE",.(k"" k., zo, z) = 
ofr m 

wl!OJ,';ku [<.k2 cos k,(d - zo) + Jk, sin k,(d - zo)] z:5 Zo <r m 

-QE.O { 
w""~.';k ... [frk2 cos k,(d - z) + Jk, sin k,(d - z)] Zo :5 z 

QE •• (k"" k., Zo, z) 
<r m 

= 

w":;~r;''''':'' [£r~COS k,(d - zo) + Jk, sink,(d - %0)] z:5 Zo 

QE .. (k"" k., zo, z) - ~c5(z - zo) 

-~.'"'-" { cos k,zo [frk2 sin k,(d - z) - Jk, cos k,(d - z)] zo:5 Z 

kjfrklTm 

cos k,z [frk2 sin k, (d - zo) - Jk, cos k, (d - zo)] Zo :2: z 
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and 

where ko = WyfoJlo is the free space wave number and W = 271" f is the radial frequency. 

The restriction that Im(k2) < 0 follows from the radiation condition that the fields are 

outward propagating waves, decaying with distance from the source. The corresponding 
magnetic field at (x, y, z) is given by 

il(x, y, z) 

with 

for z ~ d and zo ~ d, (2.5) 
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Jk~kM(£r-l) Bin kl%O coak1% 

TeTm. 

_NeC08ku + ,k~((,.-l)ainkl%()C08kl% 
Te TeTm 

Necoek1 % _ J~(t,. l)ainkll'oCOllkt.J 
Te TeTm 

,1:$1:,(£,.-1) sink! ZO coek1% 

TeTm 

,k.N e(zo) oink,. 
ktTe 

Thin substrate arrays 

z :5 ZO, 

In this chapter the magnetic field shall not be used. However, in chapter 3 where a 

sophisticated model for the feeding coaxial cable is presented, the magnetic field will be 
used, with z :5 zoo The roots of the functions Te and Tm correspond to solutions of the 
characteristic equation for TE respectively TM surface waves in a grounded dielectric slab 
[7]. These roots correspond to first order poles in the Green's function and are therefore a 
source for numerical problems. In paragraph 2.6 a method is discussed that avoids these 
numerical problems. 

2.4 Method of moments formulation 

The boundary conditions on all the 2 x K x L patches of the stacked microstrip array 
are used to formulate an integral equation for the unknown current distribution on each 

patch. This integral equation is then solved by applying the method of moments. We wiIl 
start with the boundary condition that on all the patches of the array the total tangential 
electric field has to be zero, i.e. 

-ot t ... ... ... 
C.:n(x,y,z) = C::n(x,y,z) + C:.n(x,y,z) = 0 on each patch, (2.6) 

where e;~n(x, y, z) and e;~n(x, y, z) represents the excitation field and scattered field respec
tively. The scattered field results from the induced currents on all the patches of the array. 
The excitation field is the electric field due to the K x L coaxial probes. The next step in 

the method of moments formulation is the expansion of the unknown current distribution 
on each patch into a set of basis functions 
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KxL KxLN1 +N2 

J(X,y,Z) = L 3;(x,y,z) = L L Im;Jmj(x,y,Zm) 
j=1 ;=1 m=l (2.7) 

x {U(r+(k-l) •• +!!ft )-U(r+(k-l) •• -!!ft)} {U(.+(I-l)6.+~ )-U(.+(I-l )6.- ~)}, 

with 

U(x) = 0 for x < 0 

U(x) = 1 for x ~ 0, 

and 

Nl is the number of basis functions used on each lower patch of an antenna element and 

N2 the number of basis functions used on each upper patch. So the total number of basis 

functions is Nm•r = K x L X (Nl + N2 ). Jmi represents the m-th basis function on antenna 
element j and Imj the corresponding unknown mode coefficient. On each antenna element 

the same set of basis functions will be used. The scattered electric field f:.n (x, y, z) can 
now be expressed in terms of the unknown mode coefficients, because we may use the 

superposition principle. This then gives 

KxLN,+N, 

f'(x,y,z) = L L In .f!.(x,y,z). (2.8) 
;=1 n=l 

Substituting expansion (2.8) in (2.6) gives 

(

KXLN1+N, ) 

i. x ~ ~ I n.f!. + fer = 0 on each patch. (2.9) 

Introduce a residue according to 

(

KXLN1+N, ) 

R = i. x L L I n.f!. + fer ~ if 
i=1 n=1 

on each patch. (2.10) 

The above equation has to be satisfied at all points of each patch. We shall relax this 
condition a little bit. The residue is now weighted to zero with respect to some weighting 

functions, Jm;. such that 

(R; Jmi}s .=J f R.JmidSmi~O for m=1,2 ... ,Nl+N2 j=1,2, ... ,KxL, 
mJ 1s

mj 

(2.11) 
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where Smj represents the surface of the lower patch of array element j if m !5 Nt and Smj 

represents the surface of the upper patch of array element j if m > Nt. Note that the set 
of weighting functions is the same as the set of expansion functions. This choice is known 

as Galerkin's method. Inserting (2.1O) in (2.11) gives a set of linear equations: 

(2.12) 

for m=I,2 ... ,Nt +N" j=I,2, ... ,KxL. 

The excitation field fez, excited by the K x L probes, can be written in terms of the 

contribution from each probe: 

(2.13) 

for m=I,2 ... ,Nt +N" j=I,2, ... ,KxL. 

This set of linear equations can be written in a matrix form 

[Zj[I] + [VOj[P] = [0]. (2.14) 

with 

'Jl -. -Zmj.n' = 4,.. . t"n,(x, y, zm) . .Jmj(x, y, zm) dxdy, 
sm, 

'Jl -ez -VOmj" = 411' . C, (x, y, Zm) . .Jmj{x, y, Zm) dxdy 
Sm, 

(2.15) 

'JJf -. -= 411' jprol>e, cmj{x,y,z)' .Jprol>e ,(x,y,z) dxdydz, 

where the reaction concept was used [7] to rewrite VOmj,;. jprol>e ;(x, y, z) represents the 

current distribution along the coaxial probe of antenna element i and is given in (2.2). 
The matrix [Z] contains Nm.~ x Nm.~ elements {Nm.~ = K x L X (Nt + N2»' [I] is a 
vector containing the Nm= unknown mode coefficients of the basis functions, [VOl is an 

Nm.~ x (K x L) matrix and [IP] is the K x L-element column vector of port currents. In 
paragraph 2.3 a closed form expression was given for the dielectric slab Green's function 

in the spectral domain. The elements of [Z] and [VOl can be expressed in terms of this 

,spectral domain Green's function: 
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·jmj(X, y, Zmj)dxdy 

= 1: 1: P E( k", k., Zn, Zm) . J:.( k", k., Zn)] 

. [1 Ism; jmj(x,y,zm)e-Jk'''e-Jk'.dXdY] dk"dk. 

-1: 1: PE(k", k., Zn, Zm)· .T;..(k" , k., Zn)] .l;"j(k", k., zm)dk"dk. 

100 100 III (k k ) J.~ (k k )] J~' (k k ) -Jk~S~ji -Jk,lS,ljidk dk 
- -00 -00 l .... E '" .' Zn, Zm . nl '" .' Zn . ml ", .' Zm e e " .' 

·j",obe .(x,y,z)dxdydz 

(2.16) 
with 

J. .(k k) = e J. (aJP + k2)e-Jk.(".+(k;-l)··)e-Jk.( •• +(I;-l)b.) 
probe t :&, II Z 0 Z JI ' 

with i = (I; - I)K + k., 

where J:j ( k", k., zm) is the Fourier transform of the m-th basis function on antenna element 

j and Jo(x) is a Bessel function of the first kind of order o. We will only use real basis 

functions, i.e. j';;j(X,y,Zm) = jmj(X,y,Zm). J;"j(k",k.,zm) is the complex conjugate of 
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J:j(kz, k., Zm). Szj; and S.j; are the distances in x- !espectively y-direction between the 

centre of antenna element j and antenna element i. QE(kz , k., zo, z) is the dyadic Green's 

function given by (2.4). The z-integral in (2.16) can be performed analytically. From (2.16) 

it is clear that [Z) and [VO) have a Toeplitz-type of symmetry. So only the Zmj.n; elements 

with m = 1, .. , Nt + N2 , n = 1, .. , Nl + N2 and i = 1, .. , K x L have to be calculated. 
Similarly, only the VOm;.1 elements of [VO) have to be evaluated for a maximum of 4 probe 

locations namely 1) prohe at (X., y.) 2) (x., -y.) 3) (-x., y.) and 4) (-x., -y.). 

2.5 Basis functions 

In general two types of basis functions can be distinguished: 1) entire domain basis func

tions and 2) subdomain basis functions.· With subdomain basis functions arbitrarily shaped 

patches can be analysed whereas with a set of entire domain basis functions usually only 

one patclt shape can be analysed. From a computationally point of view however, entire 
domain basis functions are more efficient, because usually only a few basis functions have 
to be used in order to obtain accurate results from a moment method procedure. We shall 

only consider microstrip patches wi th a rectangular shape and therefore a set of entire 
domain basis functions shall be used. These basis functions are solutions obtained from 

a cavity model analysis (8). They form a complete and orthogonal set that exists on each 

patch of the array. The moth basis function on antenna element 1 (j = 1) is then given by 

Lower patch (zm = zD, m = 1, ... ,Nt 

.; (x y z') = e m." sin (m." (x + ~») cos (m." (y + w,.») ""ms-m., , , 1 zW.d Wd 2 W,l 2 

+e m." cos (m.,,(x + W.'») sin (~""(y + w •• ») 
y W.l Ws l 2 .,1 2' 

with Ixl:::; W;t. Iyl:::; ";1, mz = 0,1,2, ...... , m. = 0,1,2, ....... , 

Upper patch(zm = z~), m = Nl + 1, ... , Nl + N2 

.; ( ') .; ( ') ~!!!.1L' (!!!&l!.( + !f.a.») (!!!a!:( + ~») ""ml X,Y,Z2 = vmsm., X,Y,Z2 = erwS'2 sIn Ws2 x 2 COS W,2 Y 2 

with Ixl:::; Wt, Iyl :::; Wt, mz = 0, 1,2, ...... , m. = 0, 1,2, ....... . 

(2.17) 

For every m we have to choose a certain combination (mz • m.). The Fourier transforms of 
the basis functions for antenna element 1 are given by 
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Lower patch (zm = z;), m = 1, ... , Nt, 

J:(k", kv, z;} = Jm.m.(k", kv, z;} 

= e" mW,,7r F.(m", k", W",)Fc(mv, k., Wvt ) + ev mW
v7r 

Fc(m", k", Wt,,)F.(m., kv, W.t ), 
%1 ~l 

Upper patch (zm = z~), m = Nt + 1, ... , Nt + N2 , 

with m" = 0,1,2, ...... , mv = 0,1,2, ....... , 

(2.18) 

and 

m" odd 

m z even 

m. odd 

m. even 

The definition of the Fourier transformation is given by (2.3). From convergence tests it 
was shown in [9] that the x-directed modes with mv = 0 and the y-directed modes with 

m" = 0 give good results for linearly polarised patch antennas. The other modes do not 
significantly improve the overall result. Therefore we shall use a sub-set of (2.17). For 
antenna element 1 this sub-set has the form 
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Lower patch (zm = zD, m = 1, ... ,Nt 

jmt(X, y, zD = jm.m,(X, y, zD 

= e m ... sin (m· .. (x + ~)) + e m ... sin (m ... (y + W •• )) 
X Wsl WS) 2 II W .. l W. I 2' 

with Ixl:5 W;t, lyl:5 W;t, m: = 0,1,2, ...... , m. = 0,1,2, ....... , 
(2.19) 

Upper patch(zm = z~), m = Nt + 1, ... , Nt + N2 

= e m ... sin (m ... (x + W.a)) 
:t Ws2 Ws 2 2 

~ ~ . (~( + !fn)) +e. W.a Sill W.a y 2 ' 

with Ixl:5 Wt, lyl:5 Wt, m: = 0,1,2, ...... , m. = 0,1,2, ........ 

And the corresponding Fourier transforms of these basis functions are given by 

Lower patch(zm = zD, m = 1, ... , Nt, 

Upper patch (zm = z;), m = Nt + 1, ... , Nt + N 2 , (2.20) 

with m: = 0,1,2, ...... , m. = 0, 1,2, ....... . 

2.6 Efficient evaluation of the matrix [Z] 

In (2.16) an element of the moment method matrix [Z) was expressed in terms of a two 

dimensional infinite integral. These integrals have to be evaluated numerically. Several 

numerical problems occur when calculating these integrals. Before we shall discuss these 
problems, a change to polar coordinates is introduced: 
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k., = kof3 cos 0, 

(2.21) 

k, = kof3 sin o. 

This change to polar coordinates transforms one infinite integra.! into a. finite integra.!. An 

element of [Z) then takes the form 

(2.22) 

The ° integra.tion range of the above integra.! can be reduced to [0, ~) if one uses the even 

and odd properties of the dyadic Green's function Q E and of the basis functions X,I, Jnl • 

Using these properties, an element of [Z) can be written in the following form 

(2.23) 
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S.(m,j,n,i,{3,a) = 
-4) sin k"S"ii cos koSoji m" odd, n .. even 

-4J sin k"S"ji cos koSoji m" even, n" odd 

mz even, nz even 

2. mo = n" = 0, i.e. Jm1 = Jm1 e" and J,.1 = Jn1 e". 

-4 sin k"S"j; sin koSoj; m" odd, no odd 

S.(m,j,n,i,(J,a) = 
-4) sin k"S"ji cos koS.i; m" odd, no even 

m z even, nJl even 

3. m" = no = 0, i.e. Jm1 = Jm ! eo and J,.1 = I n! e". 

-4 sin k"S"i; sin k,S,ii m. odd, n" odd 

S.(m,j,n,i,{3,a) = 
-4) cos k"S"ii sin koSoi; mo odd, n" even 

4 cos k"S"ii cos k.Soii m. even, n" even 

4. m" = n" = 0, i.e. J".1 = Jm1 e. and J,.! = I n ! e". 

S.(m,j,n,i,(J,a) = 

m" odd, n" odd 

-4) cos k"S"i; sin k.Soii m" odd, n" even 

-4J cos k"S"ii sin koSo;i m" even, n" odd 

4 cos k"S"j; cos koSoi; m" even, n" even 

The infinite {3 integration interval can be divided into three sub intervals, i.e. [0,1], [1, v'f:l, 
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and [yR,:",oo). In the first interval the integrand has an infinite derivative at (3 = 1. So 
much integration points are needed near this point in order to obtain a good accuracy in 

the numerical integration. This infinite derivative can be avoided by introducing a change 

of variables (10) with {3 = cos t: 

J 1 .!l .!: 11 f({3,o:)d{3do: = 1'1' f(cos t, 0:) sin tdtdo:. (2.24) 

In the second integration interval this infinite derivative also occurs. With a change of 

variables (3 = cosh t this infinite derivative can be eliminated (10): 

[~ [,p; [~ rcco.h,p; 
10 11 f({3,o:)d{3do: = 10 10 f(cosht,o:)sinhtdtdo:. (2.25) 

In the integration interval [1, v'f::J another numerical problem arises due to surface waves 

that exist in the grounded dielectric slab. The roots of the functions Tm and Te in (2.4) 

correspond to solutions of the characteristic equation for TM and TE surface waves in the 

dielectric slab. The roots of Tm and Te correspond to poles in the dyadic Green's function. 

In (6) it was shown that these poles in the dyadic Green's function are first order poles and 

are located just below the real {3-axis if the substrate is not lossless. Although the poles are 

not located on the real {3-axis, they do cause numerical problems when integrating along 

the real {3-axis. In most practical situations there will only be one pole, corresponding to 

the T Mo mode with a zero cut-off frequency. A second mode will occur if kod~ ~ ~. 

Now lets assume only Tm has one root located at {3 = {3p = Po + J /I with 1 S Po S yR,:" 

and /I S O. The (3-integrand in (2.23) may be written in the form 

h({3,o:) 
f({3, 0:) = Tm({3)" (2.26) 

Because the function Tm has a first order zero at {3 = (3p, f({3,o) will have a first order 

pole at this point. In the neighbourhood of this pole f({3, 0:) can be expanded in a Laurent 

series. The singular part of this series is given by 

R(o:) 
f.;ng({3,o:) = {3 - (3p' 

where R(o:) is the residue of f at {3 = (3p: 

R(o:) = lim ({3 - (3p)f(fJ,o:) = h(fJp,O:) lim (; -(~). 
tJ-fJp {J-fJp m 

Tm({3) can be expanded into a Taylor series in the heighbourhood of fJ = (3p: 

dTm({3)I . 
Tm({3) = d{3 ({3 - (3p) + .... hlgher order terms 

{J={J. 

(2.27) 

(2.28) 

(2.29) 

Substituting this expansion in expression (2.28) and neglecting the higher order terms 
yields 

(2.30) 
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Numerical problems associated with surface waves can be avoided by extracting the singular 

part, denoted by I.ing, from the original integrand I: 

l'l..p; lf {1..p; 1..p;} o 1 l(fJ,a)dfJda= 0 1 (f({3,a)-I,;ng({3,a»d{3+ 1 f.ing({3,a)dfJ da. 

The fJ integration over I,;ng can be performed analytically: 

1
..p; 

1 I'ing (fJ, a )dfJ = 
R In [( vR." - {3o? + v2] 
2 (1 - flo)2 + v2 

+JRarctan [vR."v- flo] + JRarctan [flo: 1] 
In the case of a lossless substrate (v 1 0) the integral over I.ing takes the form 

1..p; [vR." - flo] 
1 l.ing(fJ,o:)d{3=Rln (flo-I) -J1rR 

(2.31) 

(2.32) 

(2.33) 

The remaining (3 integral in (2.31) is well-behaved and can be calculated with a standard 

numerical integration routine. 

In the third integration interval, i.e. [vR.", 00), no poles or infinite derivatives occur. Several 
authors (1),[2J perform this integration numerically for a certain upper integration limit 

13m..,. A great disadvantage of this direct integration strategy is the fact that the fJ
integrand is a slowly decaying and strongly oscillating function. The direct integration 

strategy works well for isolated microstrip antennas. However, if one wants to analyse 

arrays, this strategy will be very time consuming and not very accurate. Because of the 
e,k.S.j; e,k.S.j; term in the (3-integrand of (2.22), the number of oscillations increase if the 

distance between the two patches under consideration increases. In (4) a technique was 

proposed (source term extraction technique) that was applied to the case of an isolated 

microstrip antenna. In this report we ~hall extend this method to the case of an array 

with stac~ed-patch elements. Now let QE be the asymptotic form of the dyadic Green's 
functionQE for large (3 values. Then an element of the matrix [Z) may be written as 

l f 100 IA ~] ~ 2 Zmj,ni = 0 0 ["'"E({3,o:,Zn,Zm)·Jn1 ({3,o:,Zn) ·J:' l ({3,o:,Zm) S.(m,j,n,i,{3,a)/ct,fJd{3da 

= l' {1°O [(QE({3, a, Zn, Zm) - QE({3, a, Zn, Zm» . J:1 (fJ, a, Zn)] . 

/:'1 (fJ, a, Zm) S.(m,j, n, i, (3, o:)k~{3d{3 

+ 1"" [QE({3, 0:, Zn, Zm) . X.1({3, 0:, Zn)] . /;'1 ({3, 0:, Zm) S.(m,j, n, i, {3, o:)~{3d{3 } do: 

= (Zmj,ni - Zmi,ni) + Zm.i,ni' 

(2.34) 
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with 

Zm;,n; = if L"" [QE(,8,O,Zn,Zm) ·J:1(,8,0,Zn)]·J:'1(,8,0,Zm) S.(m,j,n,i,,8,o)k~,8d,8do. 
(2.35) 

Note that QE is extracted from the original integrand for all ,8-values. The asymptotic 
form of the Green's function can be found by substituting kl = -)1.0,8 and k. = -)1.0,8 in 

expression (2.4). In this chapter only x- and y-directed basis functions are used. So only 

QE",,,,, QEII1I' QE,,,, and QE"" are used. 

with 

QEzz QE"" QEzz 

QE(k""k"zo,z) = QE,,,, QEII1I QE,z 

QEz", QEz, QEzz 

- )wflo [1 _ 2,8' cos' OJ Z = Zo = d 
21.0,8 fr + 1 

-)Wflo [1 _ ,82 cos
2 OJ Z = Zo < d 

2ko,8 fr 

o 

o 

)W flo,8 sin 20 

21.o,8( fr + 1) 

JWflo,8 sin 20 

41.of3fr 

o 

Z t- Zo 

Z t- Zo 

z=zo=d 

z=zo<d 

z t- Zo 

(2.36) 

Note that the asymptotic form is not continuous for z = Zo = d. From (2.36) it is clear that 

Zm;,n; is unequal zero only if the basis functions Xn;(,8, 0, zm) and J:;(,8, 0, zn) are located 
both at the same z-coordinate, i.e. if Zm = Zn. Our task is now to find a closed form 

expression for the infinite ,8-integration over the extracted part of the integrand. We shall 

present this method here only for the case of two x-directed basis functions, so 1m; = Jmje., 

and l,.j = Jnje", with m", and n", both odd. The procedure of determining Zmj,n; for the 

remaining basis functions is analogeous. Substituting (2.4) and (2.20) in expression (2.35) 
yields 
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- 1~ Zmj,ni = 4A 0 + 100 [1 _ fP cos
2 a] 

SIn a 0 frh 

cos2 Ib. sin2 g cos (3( COS (3Tl . 
2 2 ./ d(3da 

(n .. n· - (3,)(n .. rr + (3,)(mx7r - (3,)(mx 7r + (3,)(32 ' 

(2.37) 

with 

8 4 2 2W: 
A= 

- JWJlo7r mxnx yt 

k' 0 

,= ko cos aWxt 

e= ko sin aWyt 

(= ko cos aSxji 

11= ko sin aSyji 

1 
W x1 if Zm 

/ 
= Zn = Zt 

W xt = 

W x2 if Zm 
/ 

= Zn = Z2 

{ 
W y1 if / 

Zm = Zn = Zl 

W yt = 

W y2 if / 
Zm = Zn = Z2 

1 
<T if zm=zn<d 

frh = 
~ if zm=zn=d 2 

The cos2 ~ry sin2 i!f cos (3( cos (311 term in (2,37) can be expanded into a set of exponential 

functions: 

cos
2 (32' sin

2 ~( cos (3( cos (311 = ~: {g((3) + g( -(3)}, (2.38) 
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with 

Because of the fact that the ,8-integrand of Zmj,fti is an even function of ,8, the integration 
interval can be extended to the range [-00,00). This then results in 

Zmj,ni = 2A If -._1
2
-100 [1- !....,8_2c_os_

2
_a] 

10 SIn a -00 frh 

2{tr· 2{!f f.I( f.I 
cos 2 sm 2 cos f' cos f'1/ d,8da 

(nz1l' - ,8i)(nz1l' + ,8i)(mz 1l' - ,8i)(mz 1l' + ,8i),82 
(2.39) 

J.
i' 1 

= 2A -'-2-Ip(a)da, 
o sm a 

with 

100 [ ,82 cos2 a] cos2 {tr sin2 
(!f cos ,8( cos ,81/ 

Ip(a) = 1 - 2 2 d,8. 
-00 E,h (nz1l' - ,8i)(nz1l' + ,8i)(mx1l' - ,8i)(mz 1l' + ,8i),82 

(2.40) 

Two situations can be distinguished: 1) mz =I nz and 2) mz = nz • We shall now take a 
closer look at both situations. 

1. m., =f. n., 
The integrand of Ip(a) is analytical for all ,8 values. We may, therefore, modify the ,8-
integration path as was done in figure 2.2. This figure shows the modified integration path 

in the complex ,8-plane. 

Using this modified integration path, the integral If3( a) is given by 

(2.41) 

-00 

00 

where rf denotes the integration path of figure 2.2. If we substitute expansion (2.38) 
-00 

into expression (2.41) and then divide the /l-integral in 36 parts, we have to determine 36 
integrals with the general form 
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_m.yT _ n,T 

'Y o 

Figure 2.2: Modified integration path if mx ! nx 

(2.42) 

-00 

The integrand of the above integral has 4 poles of order 1 at p = ± m;" and p = ± ~ and 

1 pole of order 2 at p = O. A closed form expression can be found of the integral G1 (t) if 

the residue theorem of Cauchy and Jordan's Lemma [11) are being used. Two situations 

have to be distinguished in this case namely i) t ;:: 0 and ii) t < O. 

i) t > 0 

The original integration path of figure 2.2 will be closed with C: as is shown in figure 2.3. 

If t > 0 the integral over C: vanishes if p --t 00 according to Jordan's Lemma. If t = 0 

the integral over C: is also zero if p --t 00, because the integrand has a p~ behavior for 

large p values. The integral G1 (t) is equal to zero for t ;:: 0, because no poles are located 
within the area enclosed by the integration path of figure 2.3: 

G1(t) = 0 for t;:: o. (2.43) 

ii) t < 0 



Thin substrate arrays 

_m1T 

Complex 
If-plane 

_ n;T o 

Figure 2.3: Integration path for t ~ 0 
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Our integration path is now closed with C;, shown in fig. 2.4. Within the area enclosed 
by the integration path 5 poles are located. According to Jordan's Lemma the integral 
over C; equals zero if p --+ 00. Then G1 (t) can be expressed in terms of the 5 residues: 

+ Res + Res 

(2.44) 

[1 - (3' 000> '" 1 eJ(3' 
<.A 

The residue of a function c!~:\p with peN at the point z = a, where f is an analytical 
function in z = a, can be calculated with the formula 

J(z) J(p-l)(a) 
Res = . 

(z-a)p (p-1)! 
..-= II 

(2.45) 

Using this formula, the residues in (2.44) are given by 
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Complex 
,,-plana 

Figure 2.4: Integration path for t < 0 

l!!'.o.!! 

Res 0 
,e- 7 [m'1/"' cos· a] 

= 21/"sm;[n! _ m!l 1 - x ,'Ern {J _ -m$1II' 

- 7 
IQ,ft't 

Res 0 
,e- 7 [nZ1/"'cosZ"'] - 1 x 

- 21/"5n;[m; - n~l - ,'Ern 
fJ = _;"ft 

Res 0 
)t 

= m 2n2 1r 4 
#aO x x 

~ 

Res 0 
-,e 7 [ n'1/"' cos' a] - 1 x 

1'= T 
- 21/"5n;[m! - n!l - ,'Ern 

l!!'.o.!! 

Res 0 
-,e 7 [m'1/"' cos· a] - 1- x 

fJ ... m,fl' - 21rsm~{n~ - m;] i'£rh 

(2.46) 

Substituting these results in expression (2.44) gives a closed form expression for the integral 

G1 (t): 
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(2.4 7) 

t < o. 

Define a help function GW) with GW) = G1(t) + Gt ( -t). Then according to (2.47) and 

(2.43) GW) is given by 

(2.48) 

Now that G~ (t) is known, we can also calculate the original integral Ip. Ip can be expressed 

in terms of the function G~ (t): 

-00 

= ~ {-4G1«( + '1) - 4G1«( - '1) - 2G1(, + (+ '1) - 2G1(, + (- '1) 

- 2G~ (, - ( + '1) - 2G~ (, - ( - '1) + 2G~ (e + ( + '1) + 2G~ (e + ( - '1) 

+2G~(e - (+ '1) + 2G~ (e - (- '1) + G~(, + e + (+ '1) + G~(, + e + (- '1) 

+G~ (, + e - ( + '1) + G~ (, + e - ( - '1) + G~ (, - e + ( + '1) 

+G~ (, - e + ( - '1) + G~ (, - e - ( + '1) + G~ (, - e - ( - TJ)} 

2. m", =n", 

(2.49) 

The procedure used in the mx of nx situation will also be used in this case. The integrand 

of I p, given by (2.40), is in this case also analytical for all .a-values. We may therefore use 

the modified integration path of figure 2.5 in order to determine Ip. Ip is then given by 



26 Thin substrate arrays 

, 
-!D/ o 

Figure 2.5: Modified integmtion path for the case that mz = nz 

(2.50) 

-00 

00 

where the symbol !f is used to indicate that the integration path of figure 2.5 is used. 
-00 

Substitute expansion (2.38) in (2.50) and divide this integral in 36 parts. We then have to 

evaluate 36 integrals of the form 

(2.51) 

-00 

The integrand of G2 (t) has in this case 3 poles of order 2 at f3 = ±m;-- and f3 = O. If we 

want to use Jordan's Lemma to find an analytical solution for G2(t), two situations have 

to be distinguished, i.e. i) t ~ 0 and ii) t < O. 

i) t > 0 

The integration path is now closed with C:, shown in fig. 2.6. 
According to Jordan's Lemma the integral over C: vanishes if p --+ 00. There are no 
poles within the closed integration path of fig. 2.6, so G2(t) will be zero in this case. 

(2.52) 
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_m.;T 

ii) t < 0 

Complex 
II-plane 

o 

Figure 2.6: Modified integmtion path if t ~ 0 

Close the integration path with C; as shown in fig. 2.7. 
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Again Jordan's Lemma is used to eliminate the contribution of the integral over C; for 

p --> 00. G2(t) can then be calculated from 

+ Res 
+ p~~) 

fJ=O 

(2.53) 

The residues of the three poles can be determined with formula (2.45). Doing this one 
finally gets 
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Res 0 

Res 0 

Complex 
/J-plane 

Figure 2.7: Modified integration path if t < 0 

)t 
=--

Substituting these results in expression (2.53) finally gives 

Introduce the help function G~(t) = G2(t) + G.( -t): 

Thin substrate arrays 

(2.54) 

(2.55) 

t < o. 
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+ -- 3 - sm --='---'--' 
'Y [ m;1r2 COS

2 0] . mx 1rltl 

m!1r4 'Y2Erh 'Y 

Ip can now be expressed in terms of the functions G;: 

-00 

= 6! {-4G~( ( + '1) - 4G~( ( - '1) - 2G~( 'Y + ( + '1) - 2G~( 'Y + ( - '1) 

+G;('Y + {- (+ 1/) + G;('"( + {- (-1/) + G;('"( - {+ (+ 1/) 

+G;('Y - {+ (-1/) + G;('"( - {- (+ 1/) + G;('"( - {- (- 'In 
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(2.56) 

(2.57) 

Note that the remaining a-integration in (2.39) has to be evaluated numerically. If one 

divides the a-integration interval properly into sub-intervals, only a few integration points 

are needed in order to obtain a good accuracy. The boundaries of these sub-intervals 

correspond to zeros in the arguments of G~ (t) or G;(t). Fortunately these a integrals need 

only to be evaluated for 1 frequency point. As was stated before in paragraph 2.4 not all 

elements of [Z] have to be calculated due to the Toeplitz-type of symmetry of [Z]. The 

number of elements that have to be evaluated numerically is of order K x L. Computation 

time can also be saved by calculating all elements of [Z] simultaneously, because the Green's 

function needs to be evaluated only once in this case. More computation time can be saved 

if one neglects the coupling between patches that are far away from each other. The matrix 

[Z] is in this case a sparse matrix. In paragraph 2.10 it will be shown that very accurate 

results can be obtained with this method even if only a few elements of [Z] are unequal 
zero. 

2.7 Efficient evaluation of the matrix [VOl 

We shall use the same strategy here as was used in the previous section for the case of [Z] 
matrix elements. An element of the matrix [VO] is according to (2.16) given by 
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-L:L: PUE(k",k.,zm)·J:l(k",k.,zm)] .e.Jo(aJk~+k;) 

e'k,(S';'-"')e'k,(S';'-")dk dk 

" .' 
(2.58) 

with 

Only 2 components of the dyadic function QuE are n~ed in (2.58). The z-integrations 
can be performed analytically. The two components of QuE are then given by 

QuE..,(k.:,kv,zm) = -"'~~::;.~.: [frk2COSkM-zm)+Jklsinkl(d-zm)], 

QuE •• (k", kv, Zm) = - "'~~;::;.~.: [frk2 cos kl(d - Zm) + Jkl sin kl(d - Zm)). 

(2.59) 

One infinite integral in (2.58) can be transformed into a finite integral by introducing a 
change to polar coordinates given by (2.21). The a-integration range can be reduced to 

the interval [0, il if one uses the even and odd properties of QUE and of L.l. Using the set 
of basis functions defined in (2.19) we obtain the following result for the elements of [VOl 

- l J L'" pUE(.8,a,Zm). Jml (.8, a, Zm)] . ez Jo(kQ.8a) Su(m,i, i,.8, a)~.8d.8da 
(2.60) 
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with 

1. m. = 0, i.e. lml = Jml ez 

. . { -4)sinkz(Szji-x.)cosk,(S,ji-Y') 
S.(m,), I, (3, 0) = 

4 cos kz(Szji - x.) cos k,(S,ji - 11.) 

mzodd 

mz even 

2. m z = 0, i.e. J.nl = Jml e. 

. . { -4} cos kz(Szji - x.) sin k,(S,ji - Y.) 
S.(m,}, I, (3, 0) = 

4 cos kz(Szji - x.) cos k,(S'ii - y.) 

m. odd 

The ,8-integration interval is divided in three sub-intervals, i.e. [0,1), [1, Vf!J, and [v'7"oo). 
In the first interval the ,8-integrand has an infinite derivative at (3 = 1, which can be 

eliminated by using an appropriate change of variables with ,8 = cost (see (2.24». In 
the second interval two numerical difficulties have to be conquered. The first numerical 
problem is caused by the infinite derivative at (3 = 1 and the second numerical problem is 
due to the existence of surface waves in the dielectric slab. The first problem is eleminated 
by a change of variables f3 = cosh t (see (2.25)) and the second problem can be treated 

with the singularity extraction technique described in paragraph 2.6. In order to accelerate 

the convergence of the numerical integration in the third interval, i.e. [v'7" 00), the source 

term extraction technique that was also used in paragraph 2.6 for [Z) will be applied. The 

slowly converging f3 integral is then rewritten into a sum of a closed form expression and 
a relatively fast converging integral. This has already been described in (4) for the case of 
an isolated single patch microstrip antenna. The results of [4J can also be used here if one 
substitutes (Szji - X., S.ii - Y.) for (X., y.) in the resulting expressions. 
Fortunately not all elements of the matrix (VOJ have to be calculated, because of the 

Toeplitz type of symmetry of this matrix. It can be shown that only the VOmj•l elements 
of (VO] have to be calculated for maximum four probe locations: 1) probe at (x.,y.), 2) 

probe at (X., -y.), 3) probe at (-X., Y.) and 4) probe at (-x., -Y.). Computation time can 

also be reduced if all elements of [VO] are calculated simultaneously. More computation 

time can be saved when the elements of [VOl corresponding to the interaction between 

probes and patches that are located far away from each other is neglected. The matrix 

[VO] is in that case a sparse matrix. [12] only considers the interaction between probes 

and patches that are fysically connected to each other, i.e. probe and patch belonging to 

the same antenna element of the array. In paragraph 2.10 the influence on the calculated 

results when neglecting these elements of (VO] is discussed. 

2.8 Port impedance matrix and scattering matrix 

One of the great advantages of a finite array approach (element by element approach) in 
order to analyse arrays, is the fact that the port impedance matrix [ZP] and the scattering 
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Microwave 
Network 

Pt 
.. ... 

1ft 
..... I~ 

+ p' 

'" 
Figure 2.8: K x L-port network 

matrix [S] can be <;alculated directly once the moment method matrices [Z) and [VO) are 

known. If one uses an infinite array approach [9},13},[14) only the active reflection coefficient 

is calculated for 1 scan angle. The elements of the scattering matrix can be calculated 
with an infinite array method if one perf ormes an inverse Fourier transformation to the 

calculated active reflection coefficient. This means that the reflection coefficient has to be 

known over the full (60 ,4>0) range. This is of course a very cumbersome way in order to 

obtain the scattering matrix. 
Figure 2.8 shows an K x L element array represented by an K x L-port network.. The 
relation between the port currents [IP) and port voltages [VP} is given by 

(2.61) 

According to [7) the relation between port voltage V;" and port current If is given by 

pi -1111 ~ ~ V;" = I~~ = 11'" . £P . oJ;"'rce idV, 
• • 80urce I 

(2.62) 

where {P is the total electric field and J;"rcei is the complex conjugate of the current 

distribution of source i. In our situation £P is the total electric field due to the currents 
on all the patches of the array. The contribution of the currents on the probes to the total 

electric field shall be neglected in this chapter. In chapter 3 where we look at microstrip 
arrays on thick substrates, this assumption is not made. The current distribution on the 
patches can be determined with the moment method procedure described in the previouB 
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part of this chapter. The total electric field can then be expressed in terms of the current 
coefficients [I): 

KxLN1 +N2 

(P = L L Im;f!.;, (2.63) 

;=1 m=l 

where [I) is the solution of the matrix equation (2.14). Inserting the above expansion in 

(2.62) gives 

-1 KxLN.+N. 111 ~ w = r L LIm; . f!.; . .1.:".", ;dV 
• i=1 m=l .ource • (2.64) 

with 

Nm ." = (Nt + N2 )· K X L and i = 1,2,3 .... ,K X L. 

Expression (2.64) can also be presented in a matrix form: 

= 2[VOf[I) 
411'2 

= 4:
2 
[VO)T[Zrt[VO)W), 

[P) 
(2.65) 

where matrix equation (2.14) has been used. Matrix [VO)T is the transposed of [VO) and 

[Z)-t is the inverse of [Z]. The port impedance matrix [Z'] is found by combining (2.61) 

with (2.65): 

(2.66) 

Note that [Z,) can be calculated without solving the method of moments matrix (2.14). 

At microwave frequencies one usually uses the scattering matrix rather than the port 
impedance matrix. At higher frequencies it is easier to work with incident and reflected 
power quantities than with impressed voltages and impressed currents. Incident power will 

usually remain constant under varying conditions, whereas it is very difficult to keep the 

impressed voltage or the impressed current constant [15]. The scattering matrix [S] can 

be calculated by means of the well-known relation [15) 

[S) = {W)- [Zo)}{W) + [ZoU-t, (2.67) 

where [Zo) is a diagonal matrix with elements equal to the characteristic impedance of the 
connecting coaxial cables, which is usually 50f!. When scanning the main beam of the 

array at a certain scan angle (00 , ~), the elements of the excitation vector [a) should have 
the form 

a . - ..,ko[(k-t) •• u+(l-t)b.v) ,-t;- , (2.68) 
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with 

u = sin 0o cos ¢o, v = sin 0o sin ¢O, j = (1-1) x K + k. 

The active reflection coefficient of array element j can then be written in terms of the 

scattering matrix [S]: 

KxL 

R;(Oo,¢o) = :E Sijaj. (2.69) 

j=1 

Using (2.69) as an input signal at the terminals of all array elements means that the array 
is uniformly excitated. The amplitudes of the input signals are the same for each array 

element. When not only the phase of the input signals is used for scanning, but also the 
amplitude, one speaks of a tapered excitation of an array. In the fol\owing sections of 

this report we will assume that the array is uniformly excitated. Finally the active input 
impedance of array element i is given by 

; [1 + R;(00, ¢o)] 
Z;n(OO, ¢o) = Zo 1- R;(00, ¢o) (2.70) 

2.9 Radiation pattern 

Besides the port characteristics of antennas one is usually also interested in the radiation 
pattern since antennas are by definition made to radiate power into free space. In this 

section we shall assume that the elements of the method of moments matrices [Z) and [VO) 
have already been calculated. The easiest way to determine the far field pattern of an array 

is by using Huygens' principle. The sources, which are embedded in the grounded dielectric 
slab, are now replaced by an equivalent electric and magnetic current distribution on the 

upper surface S of the dielectric slab. We may assume (7) that the infinite plane S is a 
perfect electric conductor. In this case only the equivalent magnetic current distribution 

is nonzero on S (see figure (2.9). The magnetic current distribution on S is given by 

Jm = i x n. (2.71) 

In the far field region the electric field is given by [5] 

jkoe-jkor _ikod"",,9~ 

4 
.,.. erx 

7rr 

J is 2Jm(xo,Yo,d)ejko( .. ooin9cooHlIOoin9oin<Pldxodyo, 

(2.72) 

where fo = (Xo, Yo, d) represents a source point on the plane S and r= (x,y,z) an obser
vation point in the far field region. The coordinate system is defined in figure 2.10. 

Expression (2.72) can be written in terms of the spectral domain electric field with k .. = 

ko sin 0 cos 4> and k. = ko sin 0 sin 4>: 
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Figure 2.9: Equivalent magnetic current source 
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Figure 2.10: Coordinate system 
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with 

Zm= {z; m~Nl . 
z~ m> Nl 

Thin su bstrate arrays 

In (2.73) use has been made of equation (2.4). So once the mode coefficient vector [I) 
is known, the far field pattern can be calculated without any numerical difficulties from 
(2.73). [I) can be determined from matrix equation (2.14) if one uses the relation 

(IP) = ([U M) - [S)}[a), (2.74) 

where [U M) is the unity matrix. So the impressed port currents depend on the scattering 
parameters of the array. Note that for an infinite array [IP)=c[a), where c is a constant 

coefficient. 

2.10 Results 

2.10.1 7x7 single patch test array 

In order to check the finite array theory which was presented in the previous sections, a 
test array was build of 7x7 square microstrip patches with a single patch layer, i.e. zl = z2' 
The array was designed to operate at L-band frequencies. The dimensions of this array 
are: 

• patch location zf = z~ = 10mm, 

• substrate thickness d = 10mm, 

• permittivity €, = 1.07 tan.5 = 0.0008, 

• patch dimensions W"l = W.l = 97.5mm, 

• inner radius coax a = 1.5mm, 

• excitation point X. = 26mm, y. = 0, 

• array dimensions a" = b. = 115.3mm. 
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Figure 1 shows a photograph of the 7x7 test array. The overall size of the array is 1m X 1m. 
All S-parameter measurements were performed in an anechoic chamber and the measure

ments were made with a Hewlett Packard HP8510B network analyser. In this way the 

effect of reflections against objects in the environment is minimized. Because phase infor
mation is very important if one wants to determine the active reflection coefficient from the 

measured scattering parameters, one has to be sure that the reference plane is positioned 
very accurately. While measuring the S-parameter between two antenna elements, all the 
other antenna elements were terminated with 50n loads. 

Figure 2.11: Photograph 0/ the 7 x 7 test array 

In figure 2.12 a plot is drawn of the calculated and measured amplitude of the coupling 

coefficient between the centre element (k = 1 = 4,j = 25) and elements along the 1 = 4 

and I = 3 row with f =1.3 GHz. Calculations were made using three x-directed basis 

functions (mx = 1,3,5 j mv = 0) and one y-directed basis function (mx = 0 j mv = 2) for 
each array element (see also (2.19). 

From figure 2.12 it is clear that there is some disagreement between measured and cal
culated S-parameter data. This is probably due to the finite size of the substrate and 

groundplane of the test array. Furthermore, the inaccuracy of the permittivity and the 
inaccuracy of the patch dimensions could be a potential source for errors. Another factor 
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I S25,JI (dB) 

0r-------~~~~~~~------~ 
- Measured + Calculated 

-10 - - - - - - - - - - -

-20 -----------

Array element number I 

Figure 2,12: Measured and calculated coupling coefficient between the centre element (j = 
25) and elements of the I = 4 and I = 3 row of a 7z7 array with j = (l-l)K + k, f = 1.3 
GHz 

could be the simple feed model that we have used in our theoretical model, i.e. the cou

pling between the coaxial probes was not included in the analysis. In chapter 3 a more 
sophisticated feed model will be used, including coupling between the coaxial probes of the 
array. 

At this stage it is interesting to investigate how much computational effort has to be 
used in order to obtain accurate results for the calculated scattering matrix. We have 

used a numerical strategy that speeds up the numerical analysis: matrix elements of [Z) 
corresponding to 2 array elements for which the distance in x-direction is larger than 

k.m.", x a", and the distance in y-direction is larger than I.m.", x b. are neglected. Similarly, 

matrix elements of [VOl corresponding to 2 array elements for which the distance in x

direction and y-direction is larger than k"",.", x a", respectively 1"",= x b. are set to zero. In 

this way [Z) and [VO) become sparse matrices. First we shall examine what the influence 

is of this method if we apply this method only to the elements of [VOl. Figure 2.13 shows 

the calculated coupling coefficients between the centre element of our test array and array 

element j = 24, j = 18 and element j = 1 for various (kvm.""1"",=) values. Note that 

k.m= = Izm= = 7. Quite accurate results can be obtained even if (kvm."" I"",.",) = (1,1). 

Figure 2.14 shows calculated coupling coefficients between the centre element and array 

element j = 24, j = 18 and element j = 1 for various (k.m.""lzm.",) values. The excitation 

matrix [VOl is not altered so kum.", = I"",.", = 7. From this figure it is clear that very 
accurate results can be obtained for the coupling between the centre element and all the 
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I SO,III (dB) 

Or-------~IS~~-5-,2-~~I-+~IS~(2-5-,I-~~I~*~IS~(2-5-,I-II~----~ 

-10 .................................. . 

-20 .................................. . 

-30 ..............•.................... 

~~--------------------------------------~ 
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k.",.. = Iv.,.,. 

Figure 2.13: Calculated S-parameters lor various (k"",oz, l.moz) values, 1=1.9 GHz 
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other array elements if we choose (k,moz,l,moz) = (4,4). If one is only interested in the 

coupling between adjacent array elements (k,moz,lzmoz) = (2,2) can be used. In this way 
large arrays can be analysed while the overall computation time remains relatively short. 

Once the scattering matrix [S1 is known, we can calculate the active reflection coefficient 
from (2.69). Figure 2.15 shows the E- and H-plane active reflection coefficient of the centre 

element of our 7x7 test array, with I =1.3 GHz. The "measured" curve indicates that the 
measured S-parameter data was used whereas the "calculated" curve indicates that the 

calculated S-parameter data was used. 

The disagreement between the measured curve and calculated curve is probably caused by 

phase errors in the measured S-parameter data. Phase errors of 10° are normal for this type 

of measurements [Pozar1. Another error causing factor could be the difference between the 

measured and calculated SjJ of the centre element (j = 25). Figure 2.16 shows calculated 

and measured S25,25 versus frequency. We think that the simple feed model which was used 

in the analysis is the cause of the disagreement. 

2.10.2 Stacked-element microstrip array 

In this section the results of a study of an array of stacked patch elements are presented. 

Again square microstrip elements are used on a square grid. The dimensions of the stacked 
array are 

• patch location lower patch z:. = 1.57mm, 
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1 50,i) 1 (dB) 

0r-----~~~~~~~~~~~----_, 
~ 15(25,24) 1 + 15(25,18)1 .. 15(25,1) 1 
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:/ •••••••••••.••.••••••• 
~~----------------------------------~ 
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Figure 2.14: Calculated S-parameters for various (kzm.~' lzm.~) values, f =1.9 GHz 

• patch location upper patch %2 = 3.14mm, 

• substrate thickness d = 3.14mm, 

• permittivity fr = 2.33 tan.5 = 0.001, 

• patch dimensions lower patch W~l = Wr1 = 60mm, 

• patch dimensions upper patch W<2 = Wr2 = 59.7mm, 

• inner radius coax a = 0.635mm, 

• excitation point X. = 15mm, y. = 0, 

• array dimensions a" = b. = 91mm. 

In [14] this array has been used in order to compare results obtained from a finite array 
theory (presented in this report) with results obtained from an infinite array theory. For 

both theories 3 x-directed basis function (m~ = 1,3,5 i mr = 0) and one y-directed basis 
function (m~ = 0 j mr = 2) was used on each patch of the array. Figure 2.17 shows the 
calculated centre element active input impedance versus frequency with 80 = ~ = 00. 
This is done for various array sizes including an infinite array size. Two peaks can now be 

observed in the active resistance plot, because of the stacked configuration. The agreement 
between the finite and infinite theory is quite good for array sizes larger than 7x7. 
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In figure 2.18 a plot is shown of the centre element active reflection coefficient in the case 
of E-plane scanning (4)0 = 0°) for various frequencies. Fig. 2.19 shows the active reflection 
coefficient of the centre element (k = 1 = 4) and of an edge array element (k = 1 = 1) in the 
case of an 7x7 array configuration. The calculated infinite array results are also shown in 
this plot. The agreement between the finite and infinite array approach is quite good if we 
consider the centre element, except for large scan angles (80 > 60°). However, a significant 

difference is observed between the calculated reflection coefficient of the centre element 

and of an edge array element. So edge array elements can only be analysed properly if one 
uses a finite array approach. 

In the last part of this chapter we shall take a closer look to the radiation patterns of 

stacked microstrip arrays. In paragraph 2.9 a method has been discussed to calculate the 
radiation charcteristics of such arrays. Figure 2.20 and 2.21 show the E-plane and H-plane 

radiation patterns for broadside scan (80 = 4>0 = 0°) of a 7x7 stacked microstrip array. 
Note that we have used an uniform array excitation of the form (2.68). In fig. 2.22 the 
E-plane radiation pattern is given of a 7x7 stacked array in the case of E-plane scanning 

with 80 = 30°. 
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Figure 2.15: Centre element active reflection coefficient, f =1.3 GHz 
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Figure 2.16: Calculated and measured 825.25 versus frequency 
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Figure 2.17: Centre element input impedance of a stacked array versus frequency, 80 = 
tPo = 0 
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Figure 2.18: Calculated centre element reflection coefficient of a 7%7 stacked microstrip 

array, <Po = 0° 
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Figure 2.19: Calculated reflection coefficient versus scan angle () of a stacked microstrip 

array, f =1.6 GHz, <Po = 0° 
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Figure 2.20: E-plane (t/J = 0°) radiation pattern of a 7z7 stacked microstrip amJY, 80 = 

tPo = 0°, f =1.6 GHz 
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Figure 2.21: H-plane (t/J = 90°) radiation pattern of a 7z7 stacked microstrip amJY, 80 = 

tPo = 0°, f =1.6 GHz 
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Figure 2.22: E-plane (t/> = 0°) radiation pattern of a 7:r7 stacked microstrip array, 00 = 
300

, <Po = 00
, f =1.6 GHz 
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Chapter 3 

Finite stacked microstrip arrays 

with a thick substrate 

3.1 Introduction 

In chapter 2 of this report a method was presented for the analysis of finite stacked mi

crostrip antennas based on an electrically thin dielectric substrate. Because of this thin 

substrate, the current distribution along the coaxial probes was almost constant and there

fore a simple feed model could be used. This simple feed model fails however if one wants 

to analyse electrically thick microstrip arrays. In this case a more sophisticated model 

for the feeding coaxial cables has to be used that includes the variation of current along 

the probes. Furthermore, a special attachment mode has to be used in order to ensure 

continuity of current at the patch-probe transitions. In this chapter the model of chapter 2 

is extended to the case of electrically thick substrates. A lot of attention will be paid to an 

efficient procedure for the evaluation of the elements of the method of moments matrices. 

3.2 Model description 

The geometry of a finite stacked microstrip array is shown in figure 2.1. The antenna is 

linearly polarised, so only one coaxial cable for each antenna element has to be used. The 

feeding coaxial cables, located at a distance (x" Y.) from the centre of each lower patch, are 

usually connected to the lower patch, but this is not necessary. The diameter of the inner 

conductor is 2a and the diameter of the outer conductor of each coaxial cable is equal 2b. 

Figure 3.1 shows a more detailed view of the coaxial cable of antenna element 1. Figure 

3.1a shows the most common construction where the probe is connected to the lower patch 

of each antenna element. Figure 3.1b shows a configuration where the probe is not fysically 

connected to the lower patch, i.e. ZF < z;. This "electromagnetically coupled" (EMC) 

microstrip structure has broadband characteristics [5,16]. 

The probes are represented by a cylinder with radius a and with perfectly conducting 

walls. It is assumed that the z-directed surface current on this cylinder only depends on 

the z-co-ordinate. The fields in the coaxial apertures of each array element act as sources. 

At frequencies for which kb < 0.1 (k = W"jfp.o) only the groundmode, i.e. TEM-mode, 

49 
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Substrate 

................ ......................... . 
. . . . . . . . . . . . . . . . . . . .. ................. . 

'// ///////////////// 

/ 
Groundplane 

Patches 

d 
................. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -. . . . . . . . . . . . . . .. ........................ . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ 

'///// 

+-2b 

a. Probe connected to the lower patch 

Substrate 

....... 
. . . . . . . . .......... ............... . ........... ........... . ......... ......... . ....... . 

. . . . . . . . , . .. ......... . 

Patches 

. ................. . .............. 

... ...... ·'iiil· iI··ii··ii· ·ii··ii··ii· ·ii··ii··ii· ·ii· ·ii··"··"··"·ii··ii· ·ii··ii··ii· ·ii'······ .................. . ::::::. :-:-:-:-»>:->:.. ............ ............... . ..... '.:-:.:.:-:-:-:-:-:-:- '::::::::: ......................... ............................. 
............... . ............. . 

............ .... ...... 
........... ............. . ........ ........... .......... ........ .. 

. ....... . 
. ............... .. 

.......... . ......... . ............ . .. ...................................... . ... . ................ . .................. . . . . . . . . . . . . . . . . . . .. .......... . 

/ 
Groundplane 2b 

b. Probe not connected to the lower patch 

Figure 3.1: Feeding coaxial structure of antenna element 1 

z' 1 

o 

o 



Thick substrate arrays 51 

exists in the coaxial cables. The field in the aperture of the coaxial cable connected to 
antenna element 1 is then given by 

(3.1) 

~ ~ ~ 
'H4>(r) "" 'H4>TEM(r) = -e4>' a:::; r' :::; b 

2".r' 

where,:l = (x' cos ,p', y' sin </l) = f-r" with f. = (X., y.). Vi is the port voltage between the 
inner and outer conductor of the coaxial cable connected to antenna element 1 and If is the 

total current at the base (z = 0) of the probe. The electric fields in the coaxial apertures 

will be used as sources. So for a known set of port voltages V;P (j = 1,2, .. , K x L) we have 

to determine the corresponding port currents If. The K x L sources can be represented 

by a magnetic current distribution at the aperture of each antenna element. For antenna 

element 1 this magnetic current distribution in the coaxial aperture takes the form 

-0 tot ... p...... Vi ... 
M frilll = M frilll VI = E:r x ez = - I (b) e4>' 

r' n -
a 

In literature this source model is often called the "Magnetic frill excitation model". 

3.3 Method of moments formulation 

(3.2) 

We can use the same strategy here as the one that was used in section 2.4. The only 
difference is that apart from x- and y-directed currents on the patches, we now also have 
to calculate the z-directed current distribution on the K x L coaxial probes. The boundary 
conditions on the 2 x K x L patches and on all the K x L probes of the stacked microstrip 

array are used in order to obtain an integral equation for the unknown currents on the 

patches and probes. The total tangential electric field has to be zero on all patches and on 

all probes: 

f::!(x, y, z) = f::n(x, y, z) + f:an(x, y, z) = 0 on each patch and probe, (3.3) 

where f;:n(x, y, z) is the excitation field which is excited by the magnetic current distribu

tion at the coaxial apertures. The term f:an (x, y, z) represents the tangential component of 
the scattered field that results from the induced currents on all the patches and probes of 

the array. The unknown current distribution on each array element will now be expanded 

into a set of basis functions that exist on both patches and a set of basis functions that 

exist on the outer surface of the coaxial probe. In addition a special attachment mode 

shall be used that exists on the probe and on the lower patch of each array element. This 
attachment modes ensures continuity of current at the transition between the probe and 
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the lower patch. The expansion of the unknown current distribution on each array element 
can be written in the following form 

with 

Zm = { Z; Nz + 2 $ m $ Nz + 1 + Nl , 

z~ m > Nz + 1 + Nl 

where the basis functions Ji"; represent the attachment modes, J!; are the basis functions 

on the probes and J:..; represent the Nl basis functions on the lower patch and the N2 

basis functions on the upper patch of each array element. 1m; are the corresponding 

unknown mode coefficients of the basis functions. The total number of basis functions is 

Nmaz = K x L x (1 + Nz + Nl + N2 ). More details about the type of basis functions that we 

shall use are given in section 3.4. The method of moments is applied to find the unknown 

mode coefficients 1m;. The method of moments has already been discussed in section 2.4. 

Using the strategy of section 2.4 we finally obtain a set of linear equations, which is in 
matrix form given by 

[ZJ[I] + [VOJ[V"] = [0], (3.5) 

with 

Zm;,n; =411'2 f f 1m; C~;(x,y,Z)·Jm;(X,y,z) dxdydz, 

vOm;,; = 411'2 f f 1m; fr(x, y, Zm) . Jm;(X, y, Zm) dxdydz (3.6) 

= _411'2 f f /, il~;(x, y, 0) . M,.m i(X, y, 0) dxdy, 
frill i 

where the reaction concept was used to rewrite VOmj,i [7]. M/. ilI i(X,y,O) is the magnetic 

current distribution in the coaxial aperture of antenna element i and is given by expression 
(3.2). The matrix IZ] contains Nmax x Nmaz elements, [I] is a vector containing the Nmaz 
unknown mode coefficients, [VOl is the Nmaz x (K xL) excitation matrix and IV"] is the 
K x L-element column vector of port voltages. The difference between expression (3.5) 

and matrix equation (2.14) is that in (3.5) the port voltage vector IV"] is used whereas in 

(2.14) the port current vector II"] was used. The method of moments matrices [Z] and 
[VO] have the following structure 
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[Z) = 

and 

[Z"") [Z"/) [Zap) 

[ZI"j [Z") [ZIp) 

[zp") [ZP I) [ZPP) 

[VO) = 

[VO") 

[VOl) 

[VQP) 

(3.7) 

(3.8) 

where the superscript a denotes an attachment mode, f a basis function on one of the 
coaxial probes and p a basis function on one of the patches. Note that we have used current 
expansion (3.4). A method for the calculation of [Zpp) has already been discussed in chapter 
2. In this chapter a method is presented in order to calculate the other submatrices of [Z) 
and [VO) in an efficient way. Note that [VQP) is not the same as the matrix [VO) that was 
used in the previous chapter, because a different source model is used in this case. The 

matrix [Z) is a symmetrical matrix because of the reciprocity concept. The elements of [Z) 
can be expressed in terms of the spectral domain Green's function (see also (2.16)) 
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Z~~ - 1: 1: 1 L [QE(k%, ku, Zo, z)· Jf(k%, ky, zo)] dzo ' it(k%, ku,z)dz J,I 

e -JksSsji e -Jk"Sflji dkzdk
Jl

, 

zio 
mi,' - 1: 1: 1 L [QE(k%, ku, Zo, z)· Jf(k%, ku, zo)] dzo ' f!.;(k%, ku, z)dz 

e -1ksSsji e -JIe.,S,;i dkzdk" , 

[°1
00 

11 Z!,!;,ni 
= "1 "'1-- _00 _00 % ZO ~E(k%,ku,zo,Z)·Jnl(k%,k.,zo)l dZO·Jm1(k%,ku,z)dz 

e-JkzSsiie-Jk"Sfliidk dk % y, 
(3.9) 

1
00 

1
00 

1 Z:.i 
= "'-a ~. 

- _00 _00 ZO ~E(k%,ku,zo'Zm)·Jl(k%,ku,zo)l dZO·Jm1(k%,ku,zm) 

e-JicsSzjie-JlcflS1liidk dk 
% .' 

1
00 

1
00 

1 Z;,!;,ni 
= .... / j)J. 

- _00 _00 zo [QE(k%,ky,zo,Zm)' Jn1(k%,ky,zo)] dzo ' Jm1(k%,k.,Zm) 

e-Jk.S·j'e-Jk.S·j'dk dk % y, 

1
00 

1
00 

Z!,:;,ni 
= 11> 11>-

- _00 _00 [QE(k%,ku,Zn,Zm)·Jn1(k%,ku,Zn)] . Jm1(k%,ku,zm) 

e-JlczSsji e-Jk,lSlliidkzdk1l' 

where ij(k%, ku, z) is the Fourier transform of the attachment mode on antenna element 1 

and J!l (k%, ky, z) represents the Fourier transform of the n-th basis function on the probe 
of antenna element 1. B%;i and By;i are the distances in x respectively y-direction between 

the centre of antenna element j and antenna element i. Lateron it will be shown that 

the fourfold integrals in ZJ.f, Z~j,i' Z!,!;,ni can be reduced to a one dimensional integral. 

The z-integrations of Z:;:';,i and Z;,!;,ni can also be evaluated analytically. The elements of 

the excitation matrix [VOl can also be expressed in terms of the spectral domain Green's 
function: 
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.M/rill i(x,y,O)dxdy 

= -1:1: [l,0H(kx,ky,zo,O).JJ(kx>ky,Zo)dzo] .Mjrilli(kx,ky)dkxdky 

= -100 100 

[f OH(kx,ky,zo,O).J::(kx,ky,zo)dzo] .Mjrilll(kx,ky) 
-00 -00 1zo 

VO"·· = m),1 

(3.10) 

where M/rill i(kx, ky) is the Fourier transform of the magnetic current distribution in the 

coaxial aperture of antenna element i and is given by 

_i_eJkx((k,-I)ax+X')eJky((I,-I)by+y.) {e -211") sin a 
In ~ x kof3 

a 

~ 27rJ cos a } 
[Jo(kof3b) - Jo(kof3a)] + ey kof3 [Jo(kof3b) - Jo(kof3a)] , 

(3.11) 

with kx = kof3 cos a, ky = kof3 sin a and where i is the array-element counter with i = (Ii -

i)K + k;. Two of the three integrations in VOj,; and VO~j,i can be performed analytically 

(see section 3.6). 

3.4 Basis functions 

3.4.1 Attachment mode 

An attachment mode is introduced to ensure continuity of current at the transition from 

probe to the lower patch of each antenna element. We shall use the attachment mode 

that was presented in [5] for the analysis of isolated thick substrate microstrip antennas. 

This attachment mode has an exact ; dependence near the patch-probe transition. In 
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[5] very good results have been obtained with this type of attachment mode. Another 

great advantage of this mode is the fact that the overall computation time is not increased 

significantly. The complicated attachment mode used by [17] needs a lot of computation 

time while the final results are not better then with our attachment mode. The attachment 

mode consists of two parts, namely a part on the probe and a part on the lower patch of 

each antenna element. If one considers only antenna element 1 then the attachment mode 

is given by 

with 

r' 
- 271"b~er' 

( 
r' 1) ---+-- e. 

271" b~ 271"r' r 

o 

(3.12) 

J."'(x,y,z) = eZ2~a Ii (J(x - X.)2 + (y - y.)2 - a) ~(z - z; +~) z~ - ~ :5 z:5 z~, 

where'; = r-r., r= (x,y) and r. = (X.,y.). A three-dimensional plot of the patch-part 

of the attachment mode is shown in figure 3.2. 

The Fourier transform of the attachment mode is known in closed form and is given by 

(3.13) 

with 

z'_!!.<z<z 
1 2 - -

3.4.2 Basis functions on the probes 

On the K x L probes of the array piecewise linear subdomain basis functions (also called 
rooftop functions) will be used. On the probe of antenna element 1 these basis functions 

have the form 

J!l (x, y, z) = 2~a Ii ( J(x - x.)2 + (y - y.)2 - a) 9m(z)e., (3.14) 
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Figure 3.2: Three dimensional representation of the patch-part of the attachment mode 

with 

H~ - z) m= 1 O::;Z::;~ 

gm(z) = ~(z - Zm_l) m 2: 2 Zm_l :5 z S Zm 

~(zm+1 - z) m 2: 2 Zm ::; Z ::; Zm+1 

In figure 3.3 the z-dependent part of the basis functions is shown. The total number of 

basis functions on each probe equals N •. 

The Fourier transform of this set of basis functions is given by 

3.4.3 Basis functions on the patches 

The unknown current distribution on both patches of each array element are expanded into 

a set of entire domain basis functions. The set of basis functions that has also been used 

in chapter 2 will be applied here. So the basis functions and their corresponding Fourier 

transforms are given by expression (2.17) and (2.18) respectively. 
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o h/2 Zm-1 Zm+1 

Figure 3.3: Rooftop basis functions along the probe 

3.5 Calculation of the matrix [Z] 

The structure of the method of moments matrix [Z) is given by (3.7). Because [Z) is a 
symmetrical matrix we only need to calculate 6 of the 9 submatrices. An efficient method 
to calculate the elements of the submatrix [ZPP) has already been discussed in chapter 2 of 
this report. In this section similar numerical techniques will be applied in order to calculate 
the elements of the remaining 5 submatrices, i.e. [ZOO), [Z'O), [Z""), [ZJJ) and [ZP'). 

3.5.1 [ZOO]: attachment modes +---+ attachment modes 

This submatrix contains (K x L) x (K x L) elements. [ZOO) is symmetrical and has a 

Toeplitz structure. So only K x L elements need to be calculated. According to (3.9) an 
element of [ZOO) is given by 

(3.16) 

where li(k", k., z) is given by expression (3.13). Now let's introduce a change to polar 
coordinates according to (2.21). This results in 
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z;:: - f"" jW 11 ~E(.8,a,zo,z) .1;'(,8,a,zo)] dzo' J:*(,8,a,z)dz 
10 -11" Z %() (3.17) 

The two z-integrations and the a-integration can be performed analytically [5]. An ex

tra term Jo( ko,8.j S~j; + S:j;) is introduced here compared with the case of an isolated 

microstrip antenna (see [5, section 3.7.1]). The resulting expression has the form 

(3.18) 

with 

Ijj(,8) = 

In the derivation of the above expression the following relation has been used 

j w eJkofJRsin"da = 2 r cos(ko,8Rsina)da = 27rJo(ko,8R). 
-11" 10 

(3.19) 
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Apparently an element of the submatrix [z·a] can be calculated by performing only one 

infinite integration numerically. The numerical difficulties that occur when performing this 

integration are similar to the numerical problems that has been discussed in section 2.6 for 
the case of [Z""] elements. Again the ,8-integration interval is divided in three sub intervals, 

i.e. [0, IJ, [1, ~ and [v?",ooJ. In the first and second interval an infinite derivative occurs 
at ,8 = 1, which can be eliminated by using an appropriate change of variables (2.24) and 
(2.25). In the second interval another numerical problem occurs due to surface waves that 

exist in the grounded dielectric slab. The numerical problems associated with these surface 

waves can be avoided if one uses the pole extraction technique of section 2.6. In the third 
integration interval a convergence acceleration technique will be applied. This technique 

was also used in section 2.6. Now let ZJ.? be given by 

Z~~ = 100 

r~ (,8)d,8. "t 1,' 
o 

This can also be written in the form 

with 

Z;'i - 100 

frt(,8)d,8 = 1" fj~i(,8)d,8 + 100 

f;':(,8)d,8 

= 1" f;,'t(,8)d,8 + 100 

[m (,8) - n,i<,8) 1 d,8 + 100 

n,i<,8)d,8 

= [z~~ - Z~~l + z~~ 
J,I J.t J.t' 

(3.20) 

(3.21) 

and l;.?(,8) is the asymptotic form of the original ,8-integrand f;,r<,8) for large ,8-values. 
The asymptotic form of f;,r<,8) can be found by substituting k, = - )ko,8 and k2 = - )ko,8 
in the original expression. Doing this we finally obtain 

Z~~(,8) = 
J.O 

(3.22) 
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where R = J S;ji + S:ji is the distanc~ between the centre of antenna element j and 

antenna element i. In order to calculate Z;,~ 5 types of integrals need to be known: 

It = ['" Po(koPa~o(koPR) d(3, 

12 -
[>0 JJ(kopa)Jo(koPR) d(3 

• (32 ' 

13 = 
[0 J;(ko(3b.)Jo(ko(3R) dP 

• p2 ' 
(3.23) 

14 -
['" Jt(ko(3b.)Jo(koPa)Jo(koPR) dP 

• p
2 

' 

Is -
[>0 Po( kopa )Jo( ko(3R) dP 

• P' . 
All five integrals can be approximated by a closed form expression. As an example we will 
now take a closer look at the integral It. The other four integrals can be calculated with 
the same procedure. For large P values, the Bessel functions in the integrand of It can be 
replaced by their asymptotic form, so 

{f{ 11" sin(x -~) } 
Jo(x)= - cos(x--)+ • + higher order terms . 

1I"X 4 8x 
(3.24) 

For the sake of symplicity only the first term in the above expansion will be used here. 
However, more accurate results can be obtained if more terms of the asymptotic expansion 

of the Bessel funtions are being used. The number of terms that have to be used in order 
to obtain an accurate result for the integrals depends on Rand a. Now using only the first 

term of (3.24) we get 

It = 1ooJJ(ko(3a)Jo(ko(3R) d(3 
• P 

with 

= 100 

_2_ r--r-cos
2
(koap - ~) ~os(koR(3 - ~) dP 

• 1I"koa Y ;k;Ji (3; 

= 2V2 f2(ko)! 
811"koa Y ;fcJi a 2 

100 2 sin ~ + 2 cos ~ + cos x( ~ - 2) - cos x( ~ + 2) + sin x( ~ + 2) - sin x( ~ - 2) dx . , 
kat/a X 2 

1
00 sin B: 

--:-dx 
Xm X2 

1
00 cos Rx 

--·-dx 
l 

Zm X2 

(3.25) 

= 2sin ~ + 4Rcos ~ _ 4V21r (~)2 {~_ S (J&m)}, 

3x~ 3ay'x;;;" 3jii 2 a 

= 2 cos ~ 4Rsin ~ _ 4V21r (~)2 {~_ C (J&m)} , 
3x' 3ay'xm 3 fii 2 a 

m V~ 



62 Thick substrate arrays 

where 8(x) and C(x) are Fresnel integrals defined by 

8(x) = sin-dt 1
x 7rt2 

a 2 

C(x) 1
x 

7rt' 

= a cos Tdt. 

Fresnel integrals can be calculated with standard numerical routines [18]. When using 

more terms in the asymptotic expansion (3.24) we can also find a closed form expression 

for 11 , similar to the above result. If the distance between element j and i is zero, i.e. 

R = 0 and j = i, the integrals 11 and I. can also be determined from [5] 

11 = 100 

JW'o{3a) d{3 
• (3 

1 l,.,·a ].'(x)-1 
= -log-kova-C- 0 dx, 

2 a x 

I. = 1.00 

J~(;ta) d{3 

_ Jg(kova) _ 4koa + 2k~a'v[J;(kava) + J~(kava)] 
v 7r 

- 2koaJa( kava )J1 (kova), 

with C = 0.577215 .... is Euler's constant. 

3.5.2 [zlaj: feed modes +--> attachment modes 

(3.26) 

The submatrix [z'a] contains (K x L x N.) x (K x L) elements. Fortunately this matrix has 
a Toeplitz type of symmetry. Therefore only K x L x N. elements need to be calculated. 

According to (3.9) an element of the matrix [z'a] is given by 

Z 'a mi.i = I: I: 1. L [Qdk:c, k., Za, z)· If(kx, k., za)] dza · l/";(kx, k., z)dz 

e-,I<.S'i'e-)1,,,S,,iidk dk 
x y, 

(3.27) 

where Jf(k:c, ky, z) is given by (3.13) and the Fourier transform of a basis function on the 

probe, J;'l(k:c,ky,z), is given by expression (3.15). Again a change to polar coordinates, 

given by (2.21) is introduced. Substituting this in the above expression gives 

= 1°O1~ 1.1 [QE({3,a,za,z). If({3,a, za)] dza ·J;';({3,a,z)dz 
o -11' % zo (3.28) 

e -JkofJ cos aSsji e -,kop.inaS"j' ~f3df3da. 
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The Q- and the two z-integrations can be performed analytically. Doing this, one finally 

arrives at the following expression for Z~i,; 

with 

and for m :s N. - 1 

-2Jwpo(P { k [h k (d- ') 2sink,(d-z;) _ 2sink,(d-z; + ~)] 
h2k4T fr 2 COS, Z, + k k 

f.,. 1 mIl 

k 
[h 

. k (d ' ) 2 cos k, (d - z;) 2 cos k, (d - z; + ~)] } 
+J' sm, - z, - k, + k, 

[1- COS(k'~)] m = 1 

and for m = N. (overlap between feed mode m and the attachment mode): 
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[frk2( -2 cos k,z~ sin k,(d - z;) - k,hsin k,z~ sin k,(d - z~) 

+2 cos k, (z; - h) sin k, (d - z; + ~) - 4 cos k, (z; - ~) sin k, (d - z; + ~) 

-k,hcosk,(z; - h)cosk,(d-z;)+2k,hcosk,(z; - ~)COSk,(d- z;) 

-2 cos k,(z; - h) sin k,(d - z;) + 6 cos k,(z; - ~) sin k,(d - z;» 

-)k,( -2 cos k,z; cos k,(d - z;) - k,h sin k,z; cos k,(d - z;) 

+2 cos k,(z; - h) cos k,(d - z; +~) - 4 cos k,(z; - ~) cos k,(d - z; + ~) 

+k,h cos k,(z; - h) sin k,(d - z;) - 2k,hcos k,(z; - ~) sin k,(d - z;) 

-2 cos k,(z; - h) cos k,(d - z;) + 6 cos k,(z; - ~) cos k,(d - zDl] }, 

where Zm, Zm_' and Zm+1 are the z-coordinates of subdomain m on the probe of antenna 

element j (see section 3.4.2). If m = 1, i.e. Nz = 1 then z; - h and z; - ~ should be 

set to zero in the above expression for I!,.a/(f3). The numerical problems that occur when 

calculating the above infinite f3-integral are similar to the numerical problems discussed in 

the previous section for [zaa]. We will therefore only discuss the asymptotic form extraction 

technique here for the integration interval [~, 00]. Applying this extraction technique to 

[Z~i.;] results in 

[" f~j.i(f3)df3 = [ f~j.i(f3)df3 + [" f~i.i(f3)df3 

= [f~j.i(f3)df3 + [" [f~j . .(f3) -l~i . .(f3)] df3 + [" l~j . .(f3)df3 (3.30) 

[z/a z-/a] + Z-/a 
= mj,i - mj,i mj,i' 

with 

where l~i.i(f3) is the asymptotic form of the original integrand for large f3 values. This 

asymptotic form is unequal zero only if subdomain m on the probe touches or overlaps the 

attachment mode: 
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100 -2Jo(ko(3R)J~(ko(3a) d(3 
h2PR2 

• 01' 

1
00 (_ frhJ~( ko(3a) 2J1 (ko(3ba )Jo( ko(3a) 

12R + b h('12P 
11 I-' 41-'0 

6J~(ko(3a) _ 2J~(ko(3a») J. (koRR)dR 
+ h2(32k3 h(3kJ 0 I' I' 

roo (_ frhJ~( ko(3a) 4frJ1 (ko(3ba )JO( ko(3a) 

1. 12(3 + ba h(32k3(fr + 1) 

(4fr + 8)J~(ko(3a) _ 2J~(ko(3a») J. (ko(3R)d(3 
+ h2(32k3(fr + 1) h(3kJ 0 
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m = Nz -l 

m = N z /I d < z; , 

m = N z /I d = z; 
(3.31 ) 

with R = .j S~;i + S~;i. The three types of integrals in (3.31) can be approximated by a 

closed form expression. These three integrals are of the same type as the integrals of (3.23) 

and can be calculated with the same technique as discussed in the previous section. 

3.5.3 [zpaj: patch modes ~ attachment modes 

The submatrix [zpaj contains (K x L x (NI +N2» x (K x L) elements. Due to the Toeplitz 
type of symmetry only 4 x K x L X (N1 + N 2 ) elements need to be calculated. An element 
of [zpaj can be calculated from 

Z
pa 
mj,i 

(3.32) 

where ji'(k", k., z) is given by (3.13) and the Fourier transform of a patch basis function 

l::.I(k",k.,zm) is given by (2.18). Introduce a change to polar coordinates according to 
(2.21). The basis functions that are being used on the rectangular patches of the array do 

not have a radial symmetry and therefore the a-integration cannot be performed analyti

cally. However, the a-integration can be reduced from [-"11","11"] to the interval [0, ~], because 

of symmetry considerations. The zo-integration in (3.32) can be performed analytically. 

Doing this, we finally get 

Zpa 
mj,i 

(3.33) 
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with 

Z; if basis function m on lower patch 

Z~ if basis function m on upper patch, 

and with 

1. m. = 0, i.e. J!l = J::'l ez 

. . { 4)cosasinkz(Szji - x.) cos k,(S'ii - y.)J::'*l(p,a,Zm) 
Sp/(m,),I,p,a) = 

4 cos a cos kz(Szji - x.) cos k.(S.ji - y,)P.:l (P, a, Zm) mZ even 

2 O · In> JP~ . m z = ,I.e. ml = m1 e~ 

. . { 4) sin a cos kz(Szji - x.) sin k,(S,ji - y.)J::'*l(p,a, zm) 
Sp/(m,),I,p,a) = 

4sinacoskz(Szji - x.) cos k.(S.ji - y.)J::,;(p,a,zm) m. even 

The p-integration interval is divided in three sub-intervals, i.e. [0,1), [1, ~ and [vR..",00). 
In the first two intervals the same numerica.\ techniques will be used as discussed in section 
2.6. In the last interval the asymptotic-form extraction technique is applied in order to 
accelerate the convergence of the p-integral. Z:,i is rewritten in the following way: 

Z::'i,i = 1~ 100 

r.:;,M)dpda 

- lf (100 

[r.:;,i(P) - 1::.'i,i(P)] dP + 100 

1::.'i'i(P)dP) da (3.34) 

with 

Z::'i,i = l~ 100 

1::.'i,i(p)dpda, 

where !::.i,i(P) is the asymptotic form of the original integrand for large P values. This 
asymptotic form is only unequal zero if Zm = z; (basis function m on lower patch). By 

algebraic manipulations, it is rather simple to show that Z:,i is given by 

)WIlo [f roo 
frh 10 10 

o 

Zm=zj' (3.35) 

Zm = z~ 
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with 

z' < d I 

There are three types of integrals in expression (3.35): 

11(0) = [0 JI (leo(3b.)Sp/(m, j, i, (3, o)d(3, 

12(0) - LX> Jo(leo(3a)Sp/(m,j, i, (3, o)d(3, 

13(0) = [0 Jo(leo(3a) S ( .. (3 )d(3 
o (3 p/m,),', ,0 . 
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(3.36) 

Integral 11(0) and integral 13(0) can be calculated with the same procedure as the proce
dure that has been used in section 2.7. The remaining integral 12(0) has to be calculated 
with an other technique, because the (3-integrand of 12(0) is an odd function of (3. We 
shall present a method to calculate 12(0) for the case of an x-directed basis function on the 
lower patch of antenna element j with m" odd and m. = O. The procedure for the other 
basis functions is analogeous to the one presented here. Substituting (2.18) into expression 

(3.36) gives 

A 00 fb. . i!f . (3 (3 
( ) 

_ coso 1 «(3 )cos 2 SID 2 SID VCOS Pd(3 
h 0 -. Jo leo a ( )( )' 

SID 0 0 m,,1I" - (3, m,,1I" + (3, (3 

with 

A= 
16)1I"2m~ 

koW.I 

, 

,= leo cos oW" .. 

e= leo sin oW.I , 

V= leo cos O(S"i' - x.), 

P= leo sin o(S.i' - y.). 

The Bessel function Jo( leo(3a) can be represented by an integral as 

Jo(leo(3a) =..!... r e'koP. oin9dO =..!... r e'PTdO, 
211" 10 211" 10 

(3.37) 

with T = Ieoa sin O. The Jo(leo(3a) cos ~ sin Uf sin (3vcos (3p term in (3.37) can be expanded 
into a set of exponential functions: 

(3.38) 
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with 

g(P,O) = (e1P(hi+-+,,+T) -1) + (e1P(r+i+--,,+T) -1) - (eJP(r+i--+"+T) -1) 

- (e1P!?+!-_-,,+T) -1) _ (e1P(i-i+-+,,+T) -1) - (e1P(i-i+--,,+T) -1) 

+ (e1P(r-i--+,,+T) - 1) + (e1P(j-i-_-,,+T) - 1) , 

where the integral representation for Jo( ko{Ja) has been used. The residue theorem of 
Cauchy and Jordan's Lemma (11) will now be applied in order to find a closed form expres
sion for I 2( a). The modified integration path of figure 3.4 will be used here. The integral 

I 
o 

• 

I 2( a) is then given by 

00 

• • 
m.'I' 
T 

Figure 3.4: Modified integration path for I2(a) 

(3.39) 

where f denotes the integration path of figure 3.4. If we substitute expansion (3.38) 

o 
into expression (3.39) and then divide this integral in 16 parts, we have to determine 16 
integrals with the general form: 
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00 

f 
eJf3t - 1 

G t = df3 
( ) (m,,7r - f3i)(m,,7r + f3i)f3 

o 

Two situations can be distinguished in this case, namely i) t ;:::: 0 and ii) t < O. 

i) t ;:::: 0 

The original integration path is closed with C: and with C~ as shown in figure 3.5. 

o 

Complex 
tI-plane 

p 

c~ 

Figure 3.5: Integration path for t ;:::: 0 

69 

(3.40) 

If t ~ 0 the integral over ct vanishes for p --+ 00, because the integrand behaves as .!. 

for large p values. Furthermore, there are no poles located within the area enclosed by t' 

integration path of 3.5. So the only contribution to the integral G(t) is the integration 

over C~: 

1.
0 eJf3' - 1 

G t = df3 
( ) JOO (m,,7r - f3i)( mx 1r + f3i)f3 

(3.41 ) 

This may also be written in the form 
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G(t) 1
0 eJfJt - 1 

= d~ 
J"" (m x 7r - ~'Y)(mx7r + ~'YW 
{,OO 1 _ eJfJt 

= 10 (m x 7r - ~'Y)(mx7r + ~'Y)~d~ 

1
"" 1 - e-

ty 

= dy 
o (mx7r - 1Y'Y)(mx7r + 1Y'Y)Y 

(3.42) 

1 1"" 1 - e-
ty 

= 'Y2 0 (mt - 1Y)( m;~ + 1Y) /Y 

Divide the integrand of the above integral in two parts and use relation 3.4.3.5 of [19]. 

This then gives 

G(t) = ;2 foOO 1 - e-
ty 

dy 

I 10 ( 7 - lY) (7 + lY) Y 

= - -- dy+-- dy 1 { 'Y 1"" 1 - e-
ty 

'Y 1"" 1 - e-
ty 

} 

'Y2 2mx7r 0 Y ( m;~ + 1Y) 2mx7r 0 Y ( m;~ - 1Y) 

1 {2C I ( 1mx7rt) I (1mx7rt) _,m·"E·(1mx7rt ) ,m'''E'( = + n --- + n -- - e ' l -- - e' l 
2m~7r2 'Y 'Y 'Y 

1 {c I jmX7rtj 'jmX7rtj (mx7rt) 'jmX7rtj. jmX7rtj} = -- + n -- - C1. -- cos -- - Sl -- sm -- , 
m;7r2 'Y 'Y 'Y 'Y 'Y 

for t ~ 0, 

(3.43) 

where C is Euler's constant and where Ei(x) is the exponential-integral function [19, p. 925] 

and si(x) and ci(x) are the sine respectively cosine integrals [19, p. 928]. The exponential

integral function Ei( x) can be expressed in terms of the sine and cosine integral: 

Ei(x) = ci(x) ±1si(X). (3.44) 

This property has been used in (3.43). 

ii) t < 0 

The integration path for this situation is shown in figure 3.6. 

There is one pole located within the area enclosed by the integration path. The contribution 

of the integral over C; vanishes if p ---> 00. So G(t) can in this case be expressed in terms 

of the residue at ~ = m;~ and the integral over C:;: 

G(t) = -27r1 Res 
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o 

Complex 
tJ-plane 

p 

m.'I' 
T 

Figure 3.6: Integration path for t < 0 

The residue at fJ = m;~ can be calculated with formula (2.45). Doing this we find 

Res ( e
Jlit 

-1 ) = -1 (e"'T' -1) . 
~ = ¥ (mx1r - fJ'Y)(mx1r + fJ'Y)fJ 2m;1r2 

The integration over C::; can be rewritten in the following form 

1
0 eJlit - 1 1 100 1 - ety 

dfJ = 2" ) ( dy 
-JOO (mx1r - fJ'Y)(mx1r + fJ'Y)fJ 'Y 0 (m;~ - lY m;~ + lY) Y 
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(3.46) 

(3.4 7) 

This is exactly the same integral as in (3.42), because in this case t < O. So we can use 

(3.43) as a result of the integral over C:;. Combining (3.46) and (3.43) with (3.45) gives 

G(t) = - e 0 - 1 + 1 (~ ) 
m~7r 

1 {c I 1 mx1rt 1 ·1 mx1rt 1 (mx1rt) ·1 mx1rt 1 . 1 mx1rt I} -- + n -- -Ct -- cos -- -St -- Sill --

m~1r2 'Y 'Y 'Y 'Y 'Y' 
(3.48) 

for t < O. 

Define a help function G'(t) = G(t) + G( -t). Then according to (3.43) and (3.48) G'(t) is 
given by 
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G'(t) = _J_ (e-,m:,"I'1 _ 1) 
m 2 11" x 
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+ m:1I"2 { C + In 1 m~1I"t 1- ci 1 m~1I"t 1 cos (m~1I"t) - si 1 m~1I"t 1 sin 1 m~1I"t I} .. 

(3.49) 

The original integral 12(a) given by (3.37) can now be expressed in terms of G'(t) 

h(a) 

(3.50) 

with mx odd and my = O. 

The II-integration interval can be reduced to [-~, ~]. From numerical tests we concluded 

that when j f i, the radius a in (3.37) can be set to zero. This then elirrrinates the II integral 
in (3.50). Doing this very accurate results can be obtained for h(a) while the computation 

time is reduced significantly, because the II-integral doesn't has to be calculated. 

Now that we have found a way to compute 11(a), 12(a) and 13(a), we can calculate Z:;'j,i 
by evaluating the remaining a integral in (3.35). By dividing the a integral properly into 

sub-intervals, only a few integration points are needed in order to obtain an accurate result. 

The boundaries of these sub-intervals correspond with zeros in the arguments of G'(t) in 

expression (3.50). The a-integral needs only to be evaluated for 1 frequency point. 

3.5.4 [ztt]: feed modes +---+ feed modes 

The submatrix [Z"] is a symmetric matrix containing (KxLxNz ) x (K x L x Nz ) elements. 

This matrix has also a Toeplitz type of symmetry and therefore only (K x L x N'f) elements 

need to be calculated. According to (3.9) an element of [Z"] is given by 
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(3.51) 
I = 

where Jnt (k", k., z) is given by (3.15) andQE(k", k., Zo, z) and QEzz(k", k., Zo, z) are defined 
in (2.4). Introduce a change to polar coordinates (2.21) and use relation (3.19) to eliminate 
the a-integral. The two z-integrations can also be done in closed form (see [5, chapter 2)). 

What remains is an one-dimensional integral that has to be calculated numerically: 

(3.52) 

where I!!.n(3) is calculated for three situations: 

1.ifm-n 

JWpo ( hfr 4(32) 4(32 
I!!.rn = ~{ - 3kW32 _ fr) + hkl frn - h2kfTm 

[frk2 (cos ktzrn _ t sin k t (d - Zrn-t) - 4 cos ktzrn- t sin k t (d - zrn) 

with frn = 1 for m ;::: 2 and frn = ~ for m = 1. In the m = 1 case (half rooftop basis 
function) Zrn and Zrn_t should be set to zero. 
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2. ifn '= m -1 

IJ )Wl'o ( hfr 2f3
2
) 4f32 

Im,m_' '= --z-{ 12kg(f32 - fr) - hk? - h2k~Tm 

[frk2 (cos k,Zm_2 sin k,(d - zm-') - 2 cos k,Zm_2 sin k,(d - zm) 

If m - 1 '= 1, i.e. m = 2, Zm-2 and Zm_' should be set to zero. 

3. ifn < m -2 

Iff 
m,n 

)Wl'o 4f32 
fr h2kfTm [2 cos k,zn - cos k,zn_' - cos k,Zn+1) 

[ frk2 (2 sin k,(d - zm) - sin k,(d - zm-') - sin k,(d - zm+')) 

If n = 1, Zn and Zn_' should be set to zero. 

The ,8-integration interval is again divided into three regions, i.e. [0,1), [1, ~ and 

[vR,:",00). The numerical problems at ,8 = 1 and the problems caused by the surface 

waves can be avoided by using the techniques of section 2.6. The convergence of the nu

merical f3-integration in the third integration interval can be accelerated if one uses the 
asymptotic-form extraction technique (see (3.21)). The extracted part is given by 

(3.53) 

with 
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l.ifm-n 

m>2/\zm+1<d 

1 (!Ofr + 14 ) hfr 
- h2k~f32 kof3(fr + 1) - 4h - 3f32k5 m > 2/\ Zm+l = d 

m = 2 /\ Zm+1 < d 

I" = JWp.o 
m,m fr 

m=1/\zm+1<d 

1 (4fr + 8 ) hfr d 
- h2k~f32 kof3( fr + 1) - 2h - 6f32k5 m = 1 /\ Zm+1 = , 

2. ifn = m -1, 

3. ifn < m - 2, 

n=m-2 

o otherwise. 

So Z~~,n; is non-zero only if subdomain m overlaps or touches subdomain n. Apparently 
two types of integrals have to be calculated: 

(3.54) 
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These integrals correspond with It and 12 of (3.23). A method to calculate II and 12 has 
already been presented in section 3.5.1. 

3.5.5 [ZP'j: patch modes +-+ feed modes 

The submatrix [ZP/j contains (K x L x (Nt + N2)) x (K x L x N.) elements and has a 

Toeplitz type of symmetry. Therefore only 4 x K x L X (Nt + N2 ) x N. elements need to 

be calculated. According to (3.9) an element of [ZP/j is given by 

(3.55) 

where J!1 (kz, k., z) is given by expression (3.15) and the Fourier transform of a basis func

tion on the patch, J:;,t(kz , k.,zm), is given by (2.18). Again a change to polar coordinates 
in introduced. The zo-integration can be performed analytically. With some algebraic 
manipulations, it is relatively simple to show that an element of [ZP/j is given by 

with 

1 
z\ if basis function m on lower patch 

Zm = 
z; if basis function m on upper patch, 

n=l (3.56) 

where Sp/(m,j,i,{3,a) is given in (3.33). When evaluating the above integral numerically, 

the {3-integration interval is divided in three parts, i.e. [O,lj, [1, Jf:l and [~, ooJ. In 
the first two intervals the numerical techniques of section 2.6 will be applied. In the third 

interval the asymptotic-form extraction technique (see also (3.35)) is used in order to speed 

up the convergence of the {3-integration. This technique has only to be used for the case 

that n = N. and Zm = z\, i.e. if the last sub domain on the probe touches the lower patch. 

For this situation the extracted part is given by 

(3.57) 
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with 

{ 

fr 

frh = fr; 1 

z' < d 1 
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The ,a-integral in (3.57) has exactly the same form as integral h( a) in (3.36). So we can use 

the method of section 3.5.3 to calculate the above ,a-integral. The remaining a-integration 

is performed with a standard numerical integration routine. 

3.5.6 [ZW]: patch modes ~ patch modes 

The matrix [Z"] contains (K x L x (Nl +N2 )) x (K x L x (N1 +N2 )) elements. An efficient 
method for the calculation of the elements of this matrix has already been discussed in 
section 2.6 of the previous section. 

3.6 Calculation of the excitation matrix [VOl 

The general structure of the excitation matrix [VOl is given by (3.10). The elements of 

[VOl can be calculated in an efficient way if one uses the same numerical approach that 
has been used in the previous section for the calculation of [Z]. 

3.6.1 [Voa]: attachment modes 

This submatrix contains (K x L) x (K x L) elements. [Voa] has a Toeplitz structure, so 

only (K x L) elements need to be calculated. According to (3.10) an element of [Voa] can 
be calculated with 

(3.58) 

where Mjrilll(kz,k.) is given by expression (3.11) and the Fourier transform of the at

tachment mode, J;( kz, k., zo), is given by (3.13). The magnetic field Green's function Q H 

has already been calculated in chapter 2 and is given by (2.5). If we use a change to polar 

coordinates (2.21), it can be easily shown that the a-integral can be performed analytically. 

Furthermore, the zo-integration in (3.58) can also be done in closed form. We finally obtain 

the following expression for VOj,i 
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411"2ko {"" Jo(kof3JS;;; + S;;;) 
VOj,; - In(~) 10 Tm [Jo(kof3b) - Jo(kof3a)] 

[
-2f3 koJo(kof3a) { k [hkl (d ') . ( 1 h) . k (d ')] krh fr 2 2 cos kl - Zl - sm kl d - Zl + 2 + sm 1 - Zl 

_)kl[-~kl sin k1(d - z;) - cos k1(d - z; +~) + cos k1(d - Z;)]} 

{
-2)Jl(kof3ba) )Jo(kof3a)} (' . I»] 

+) b
a

k'5f32 + kof3 (k2fr cos kl d - Zl) + )k1 sm k1(d - Zl df3, 

(3.59) 

where we have used relation (3.19) in order to eliminate the a integration. The remaining 13-

integral can be calculated with a numerical integration routine. The f3-integration interval 

is divided in three parts, i.e. [O,IJ, [1, v"f:J and [."R,:,oo]. The numerical problems due 
to the infinite derivative at 13 = 1 and due to surface waves in the interval [1, v"f:J can 
be avoided by using the techniques discussed in section 2.6. The f3-integral in the third 

interval converges very quickly in most practical situations. However, if the probe part 

of the attachment mode touches the groundplane, i.e. if ~ = z;(Nz = 1), the f3-integral 
converges very slowly. For this situation the asymptotic-form extraction technique will be 

used to speed up the convergence of the f3-integration. VOj,; is now written in the form 

VO~· = 
J,' LX> 1;';(f3)df3 = 1" 1;';(f3)df3 + [O/;';(f3)df3 

= 1" 1i.;(f3)df3 + [0 [/i.;(f3) -1;,;(13) 1 df3 + [0 i;,;(f3)df3 (3.60) 

- [VOj,; - vo;,; 1 + vO;,;, 

with 

VO~. = 100 

P·({3)d{3, J.I 3,1 
v 

- -a 
where 1;';(13) is the asymptotic form of the original f3-integrand for large 13 values. VO;,; is 

unequal zero only if ~ = z;; 

o 
-a 
VO·· = J,. -411"2k'51°O 2Jo(kof3a)Jo(kof3JS;;; + S;;;) 

In(~) v hkgf32 [Jo(kof3b) - Jo(kof3a)] d,8 

I! < ZI 
2 1 

I! - ZI 
2 - 1 

(3.61) 

The above integral has the same form as the integrals in (3.23). Therefore the same 

techniques as discussed in section 3.5.1 can be used in order to approximate the above 
integral with an analytical expression. 
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3.6.2 (VOl]: feed modes 

The submatrix [VOl] contains (K x L x Nz ) x (K x L) elements and has a Toeplitz type 

of symmetry, so only (K x L x Nz ) elements have to be calculated. According to (3.10) an 

element of [VOl] is given by 

(3.62) 

where J;'l(kz,k.,zo) is given by (3.15) and Mjrilll(kz,k.) is given by (3.11). Using a 

change to polar coordinates and after performing the a- and zo-integrations analytically, 

we obtain the following expression for an element of [VOl] 

41r2k51°O 2{3Jo(ko{3a)Jo(ko{3JS;ji + S;j,) 
VO~j,i = - In(~) 0 hk~Tm [Jo(ko{3b) - Jo(ko{3a)] 

{frk2 [2 sin k1(d - zm) - sin k1(d - zm_.) - sin kl (d - Zm+1)] 
(3.63) 

where Zm, Zm_l and Zm+1 are the z-coordinates of subdomain m (see figure 3.3). If m = 1, 

Zm and Zm-l are both equal zero. The {3-integration interval is again divided into three 

regions, i.e. [0,1], [l,vR.] and [P',oo]. The numerical techniques used in the first two 

intervals are the same as those of section 2.6. In the third interval the asymptotic form 

extraction technique is used to speed up the convergence. The extracted part is given by 

(3.64) 

m=2 

o m ~ 3. 

The extracted part is only unequal zero if subdomain m touches the ground plane. The 

{3-integral in (3.64) has the same form as the integrals in (3.23) and can therefore be 

approximated by an analytical expression. 
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3.6.3 [VDP]: patch modes 

This matrix contains (K x L x (Nt + N2 )) X (K xL) elements. Again the Toeplitz type of 

symmetry can be used to reduce the number of elements that have to be calculated. An 

element of [VOP] is according to (3.10) given by 

(3.65) 

where 1::.t (k~, k., zm) is given by (2.18). If we use a change to polar coordinates given by 

(2.21), the a-integral can be reduced to the interval [0, I]' We finally obtain 

V~j.i = ~~~;) [0 L'i [Jo(ko,8b) - Jo(ko,8a)]S;,(m,j,i,,8,a) 
(3.66) 

T~ [k2fr cos kt (d - zm) + Jkt sin kt(d - zm)] dad,8, 

where Sp,(m,j,i,,8,a) is defined in (3.33). The,8 integration interval is again divided 
into three parts. The asymptotic form extraction technique doesn't has to be used now, 

because the ,8-integrand converges very fast to zero for large ,8-values (~ e-il ). 

3.7 Port admittance matrix and scattering matrix 

If we compare matrix equation (3.5) with matrix equation (2.14), we see that in (3.5) 

the port-voltage vector [VP] is used while in (2.14) the port-current vector [IP] is used to 

excite the array. So instead of looking at the port impedance matrix [ZP] we are going 

to determine the port admittance matrix [Yp] in this section. The relation between port 
currents and port voltages is given by 

W] = [P][V"]. (3.67) 

The relation between port current Ii and port voltage ViP is given by [7] 

I P Pi~ -1111 'H' M~' dV i = V? = v.;p .' 50urce i , 
, • 50urce , 

(3.68) 

where if is the total magnetic field and M:ource i is the complex conjugate of the magnetic 

current distribution in the coaxial aperture of source i (see (3.2). Note th~t if is the 
magnetic field due to the currents on all the patches and probes of the array. We may 
therefore write 

(3.69) 
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where the superscript a refers to an attachment mode, f to a basis function on a coaxial 
probe and p to a basis function on one of the patches. If we substitute the above expansion 

into expression (3.68) we get the matrix equation 

W] = -~2 [VO]T[Z(l[VO][V"], 
411" 

(3.70) 

where matrix equation (3.5) has been used. The port admittance matrix can be calculated 

with 

(3.71) 

In literature another approach is often used to calculate the admittance matrix. One often 

uses the formula 

Y" lAO) . h v: 0 £ . ..J.. 
ji = V. WIt j = or J r I, (3.72) 

where 1;(0) is the current at the base of probe j (z = 0) which can be determined by 

solving matrix equation (3.5). Formula (3.72) can be derived from (3.71) if one uses the 

approximation 

,u,( ) _ 1;(0) 
n. x, y, z - 2 ' 

1I"r 
(3.73) 

where r is the distance from the point (x, y, z) to the centre of probe j. In the case 

of electrically thick substrates formula (3.73) gives quite accurate results. However, the 

error between the exact expression (3.71) and (3.72) becomes very large (> 25%) if the 

substrate of the antenna under consideration is thin. We shall therefore always use the 

exact expression (3.71). Once the port admittance matrix is known, we can also calculate 

the scattering matrix with the relation [15] 

[S] = {[Yo]- [Y"]}{[Yo] + [Y"Wt, (3.74) 

where [Yo] is a diagonal matrix with elements equal to the characteristic admittance Yo 

of the coaxial cables. Usually Yo = i. = ~o (hj. The main beam of the array can be 

scanned at a certain angle (00 , <Po) by using the type of excitation vector given by (2.68). 

The active reflection coefficient and active input impedance can then be expressed in terms 

of the elements of the scattering matrix (see relation (2.69) and (2.70). 

3.8 Radiation pattern 

The radiation pattern of a thick stacked microstrip array can be determined with the 

method that was also used in section 2.9. The only difference is the fact that apart from 

currents on the patches we now also have to incorporate the current distribution on the 

coaxial probes. 
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3.9 Results 

3.9.1 Convergence considerations 

A great disadvantage of the rigorous method presented in this chapter for the analysis 

of electrically thick microstrip arrays, is the fact that a lot of one- and two-dimensional 

integrals have to be calculated numerically. It is therefore interesting to investigate how 

much computational effort has to be used in order to obtain accurate results. In section 

2.10 a strategy was proposed that speeds up the numerical analyses. The idea behind this 

method is the fact that the coupling between array elements located far away from each 

other is negligible compared to the coupling between array elements that are located close 

to each other. In this way [Z] and [VO] become sparse matrices. We shall distinguish three 

sets of parameters 

• (k"",ox,lomox): All interactions in the matrix [VOl between modes and sources for 

which the distance in x- and y-direction is larger than k"",ox x ax respectively l"",ox x by 

are zero. This affects [VOO], [VO'] and [VOP]. 

• (k!;!;:x,l{;!;:x): All interactions with modes on the probe or with attachment modes 

in the matrix [Z] for which the distance in x- and y-direction is larger than k!;!;:x x ax 
respectively l!;!;:x x by are zero. This affects sub matrix [ZOO], [Z'O], [ZPO], [ZP'] and 

[Z"]. 

• (k~mox' l~mox): All interactions with modes on one of the patches in the matrix [Z] 
for which the distance in x- and y-direction is larger than k~mox x ax respectively 

l~mox x by are zero. This affects sub matrix [ZPP], [Zpo] and [ZP']. 

The 7 x 7 array of section 2.10.1 will be used to investigate the above method. In figure 
3.7, 3.8 and 3.9 the results are shown when varying one of the three sets of parameters 

while the other are equal (7,7). 

From these three figures it is clear that a lot of computation time can be saved if not 

all the interactions between the basis functions are calculated. Quite accurate results for 

the calculated coupling coefficients can be obtained if one chooses (k"",ox,l"",ox) = (1,1), 

(k!;!;:x,l!;!;:x) = (1,1) and (k~mox,l~mox) = (4,4) for the 7 x 7 single-patch array config
uration. If one is only interested in the coupling between adjacent array elements, one 

can even use (k~mox' l~mox) = (2,2). The above method results in a dramatic reduc

tion of computation time. If we look at the above example with (k.mox , lomax) = (1,1), 
(k!;!;:x,l!;!;:x) = (1,1) and (k~mox' l~mox) = (4,4), the total number of elements of [Z] and 
[VO] that have to be calculated is reduced from approximately 49(2 + 2N% + N; + 2(Nl + 

N2)+N%(Nl +N2)+(Nl +N2)2) to 2+2N% +N;+2(Nl +N2)+ N%(Nl +N2)+16(Nl +N2)2. 
With N% = 3, Nl = 5 and N2 = 0 this corresponds to a reduction of the total number 

of non-zero elements in [Z] and [VOl by a factor ~~S; ::::: 7.5. Using this method relatively 

large finite arrays can be analysed while the overall computation time remains limited. 
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1 50,i) 1 (dB) 

O,---~~~~~~~~~~~----~ 
~ 15(25,24) 1 + 15(25,18) 1 "*" 15(25,1) 1 

-1ot------------------~ 

-20 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

~O~==~====~==~====~==~==~ 
1 2 3 4 5 6 7 

kymax = Ivmax 

Figure 3.7: Calculated S -parameters for various (k.ma .. ,loma .. ) values, f =1.9 GHz 

3.9.2 Single patch layer arrays 

83 

So far as we know no measured data is available from literature concerning finite stacked

element microstrip arrays made on electrically thick substrates. We wiII therefore validate 
our model with measured data from microstrip arrays with only one patch-layer, i.e. with 
~ = z~. The first array that wiII be investigated is the 8 x 1 linear array presented in [23]. 

This array is based on foam material and has a relatively thick substrate with U. = 0.08). 

The array dimensions are given by 

• patch location patch z: = z~ = 7.03mm, 

• substrate thickness d = 7.03mm, 

• permittivity f. = 1.089 tan b' = 0.0008, 

• patch dimensions W ... = W.1 = 31.9mm, 

• dimensions coax a = 0.635mm, b = 2.1mm, 

• excitation point X. = llmm, Y. = 0, 

• array dimensions a .. = 60mm, b. = 0, 

• number of elements K = 8, L = 1. 
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1 80.i) 1 (dB) 

Or------=~~~~T7~ __ ~~~--~----__, 
-18(25.24) 1 + 18(25.18) 1 "* 18(25.1) 1 

-10 - - -

-20 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-30 ------------------------------------

2 3 4 
k'+a _ If .. 

zmax - zmax 

5 6 7 

Figure 3.8: Calculated S-parametersfor various (k!;);:x,I!;);:x) values, f =1.3 GHz 

This configuration is often called an E-plane array configuration. Figure 3.10 shows a plot 

of the calculated and measured coupling coefficient IS1 .• 1 between the last element (j = 8) 

and the other 7 elements of the linear array. The frequency is 3.3 GHz. The agreement 

between the calculated data and measured data is excellent. Note that the spacing between 

the elements of this array is approximately 0.66Ao. So if one wants to use this antenna as 

an active phased array, a grating lobe will appear at () = 42°. 

Next the 7 x 7 array of section 2.10.1 is analysed. This array has been measured in the 
antenna laboratory at the Eindhoven University of Technology. More details about this 

array can be found in section 2.10.1. The array is also based on foam and has a relatively 
thickness of (f. = 0.04). The spacing between the elements is approximately 0.5Ao. Figure 

3.11 shows the calculated and measured coupling coefficients between the centre element 

(j = 25) and the elements along the 1=4 and 1=3 row, with f =1.3 GHz. 

3.9.3 Stacked-element arrays 

In this section an example is presented of a stacked-element finite microstrip array, based 

on a relatively thick dielectric substrate. One could use the model of chapter 2 if the 

distance between the first patch layer and the groundplane, i.e. z;, is very short. However, 
the array that we are going to investigate in this section has a long probe, so we have to 

use a sophisticated model for the coaxial cables. The antenna dimensions are 

• patch location lower patch z; = 1.57mm, 
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1 8Q.i) 1 (dB) 

O.-------~~--~~----~~----------, 
~ 18(25.24)1 + 18(25.18)1 "* 18(25.1)1 

-10~----------------------------------------~ 

-20 ....... 
• 

-30 .................. .. 

=/ .•••.••.••••••• 
-60 ....... .. .. .. 

_70L-------------------------__________ ~ 
2 3 4 5 

k~max = I~ax 
6 7 

Figure 3.9: Calculated S-parameters lor various (k~m.'" l~m.") values, 1=1.9 GHz 

• patch location lower patch z; = 3.14mm, 

• substrate thickness d = 3.14mm, 

• permittivity fr = 2.33 tan.5 = 0.001, 

• lower patch dimensions Wrt = W.1 = 24mm, 

• upper patch dimensions W"z = W.2 = 23.9mm, 

• dimensions coax a = 0.635mm, b = 2.1mm, 

• excitation point X. = 6mm, Y. = 0, 

• array dimensions a" = 37.5mm, b. = 37.5mm, 

• number of elements K = 5, L = 5. 
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Figure 3.12 shows a plot of the calculated input impedance versus frequency of the centre 
element when the array is not scanned, so (00 ,4>0) = (0",0°). Two peaks in the input 

resistance plot can be observed, because of the stacked configuration. In figure 3.13 a plot 
is shown of the calculated mutual coupling coefficients between the centre element and the 

other elements of this 5 x 5 array (see figure 2.1 for the element numbering). 

The H-plane coupling is far stronger than the E-plane coupling for this configuration. 

Compare this with the results of the 7 X 7 single patch layer array, where the E-plane 

coupling was more dominant. 
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ISa.) I (dB) 

Or---------~~--~~_.~~----------__, 
- Measured (23) + Calculated 

-10 - - - - - - - - - - - - - - - - - - - - - - - - - - -

-20 -- - -- -- -- -- - -- - -- -- -- -- -- - -- --

-30 -- -- -- -- - -- -- -- -- - -- -- -- -- -- - -- -- - --

-40 -- -- -- -- -- -- -- -- -- -- - -- - -- -- - -- -

-50)1-~- -~- -~- -~- -====-- -::J;::'-=:::t:;-?--~- -~-- -- -- - -- -- -- -

-60~----~----~------r------r----~------4 

1 2 3 4 5 6 7 

Array element number j 

Figure 3.10: Measured [23} and calculated coupling coefficient between element 8 and the 

other elements of a 8 x 1 linear E-plane array, f =3.3 GHz. 

3.9.4 Arrays with EMC-coupled microstrip elements 

One way to improve the bandwidth of a microstrip antenna or -array is by using thick 

substrates. However, electrically thick substrates give rise to an inductive shift in the 

input impedance and therefore the use of a compensating network would be necessary. 

A solution for this problem could be the so-called electromagnetically coupled (EMC) 
microstrip structure [5]. In this case the patch is not fysically connected to the probe, i.e. 

ZF < z~ (see figure 3.1). We will now investigate if such an element can be used in an array 

configuration. A 7 x 1 E-plane linear array is considered with dimensions: 

• patch location z; = z~ = 6.61mm, 

• substrate thickness d = 6.61mm, 

• length of probe ZF = 6.36mm, 

• permittivity fr = 2.33 tan 8 = 0.001, 

• lower patch dimensions WX1 = W.1 = 11.5mm, 

• dimensions coax a = 0.635mm, b = 2.1mm, 

• excitation point X. = 4.6mm, Y. = 0, 
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Figure 3.11: Measured and calculated (thick substrate model) coupling coefficient between 

the centre element (j = 25) and elements of the I = 4 and I = 3 row of a 71:7 array with 

j = (/- I)K + k, f = 1.3 GHz 

• array dimensions az = 32.mm, 

• number of elements K = 7, L = 1. 

Figure 3.14 shows a plot of the calculated coupling coefficient between the first element 

of the array (k = 1) and the other six array elements for three frequencies. Figure 3.15 

shows the corresponding active reHection coefficient of array element 1. From these figures 
it is clear that this EMC-coupled microstrip structure can be used in order to design a 
broadband microstrip array. 
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Rin (Ohm) 

80r---------------~~--------------------~ 
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60 - - - - - - - - - - - - - - - - - -

40 - - - - - - - - - - - - - - - - - - - - - - - -
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o~~--~--~--_,--_,--~~~~~ 
3.4 3.S 3.6 3.7 3.8 3.9 4 4.1 4.2 

Frequency (GHz) 

Xin (Ohm) a. Real part input impedance 

"*SxS array 

50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

-so - - - - - - - - - - - - - - - - - - - - - - - - - -

-100 --

-1S0 f---,.---r---,-----"T---r-----"T--.,....----l 
3.4 3.S 3.6 3.7 3.8 3.9 4 4.1 4.2 

Frequency (GHz) 

b. Imaginary part input impedance 

Figure 3.12: Centre element input impedance of a 5 x 5 stacked aMYJY versus frequency, 

()o=~=O 
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I S, •. iI (dB) 

0r----------------------------------, 
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Figure 3.13: Calculated coupling coefficient between the centre element (j = 13) and ele

ments of the 1= 1, 1= 2 and I = 3 row of a 5 x 5 array with j = (1- I)K + k, f = 9.75 

GHz 

I Sq I (dB) 

0r-----~~~~~~~~~------~ 
~5.5 GHz +6.5 GHz *7.5 GHz 

-10 - - ... - ... - . - - ...... - - - - - ..... -

-20 -. 

-30 - -- --

1 2 3 4 5 6 7 

Array element number j 

Figure 3.14: Calculated coupling coefficient between element 1 (k = 1) and the other ele

ments of a 7 x 1 linear EMC-array. 
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Figure 3.15: Calculated active reflection coefficient of the first array element of a 7 X 1 

linear EMC-array 



Chapter 4 

Finite array of monopoles embedded 

in a grounded dielectric slab 

Note: This section was published as a paper in Electronics Letters, Vol.28 (1992), p.2079-

2080. The numbering of its equations and references has been changed, so that they corre

spond with the numbering of the previous part of this report 

Finite array of monopoles embedded in a grounded dielectric slab. 

Indexing terms: Phased array, monopoles 

Abstract 

A finite array of monopoles embedded in a dielectric slab is studied using a rigorous yet 

efficient spectral domain moment method. Computed input impedance data are compared 

with data from an infinite array analysis. Significant differences are observed, even for 

relatively large arrays. 

Introduction 

In this letter a method is presented for the analysis of finite two-dimensional arrays of 

vertical monopoles embedded in a grounded dielectric slab. The radiation pattern of such 

an array has a null at broadside. Previously, this type of arrays has been investigated by 

Pozar [20], who analysed an infinite array of monopoles. Fenn [21] studied a finite array of 

monopoles in free space. We have investigated finite arrays of monopoles embedded in a 

dielectric slab by using a spectral domain moment method. A sophisticated magnetic frill 

source model is used in order to account for the feeding coaxial cables. Both Pozar [20] 

and Fenn [21] use a more simple and less accurate source model. 
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Theory 

In figure 4.1 the geometry of a finite two-dimensional array of monopoles embedded in a 

grounded dielectric slab is shown. The length of a monopole is d. 

z y 

.-Jb-- --Jb 
• 
• • 

• 
• • 

. . . . .-

. -----Jb.-----~ ..... . 
. . ---JJ; --.~~ ..... . 

. . t> 

• 

Figure 4.1: Geometry of a finite an-ay of vertical monopoles embedded in a grounded di

electric slab 

An antenna element is represented by a cylinder with radius a and with perfectly conducting 
walls. It is assumed that the z-directed surface current on this cylinder only depends on 

the z-coordinate. The fields corresponding to the TEM-mode in the coaxial aperture act 
as a source. The electric field in the coaxial aperture of antenna element 1 then takes the 

form [5,7): 

(4.1) 

where Vi represents the impressed port voltage at monopole 1 (=port 1). The unknown 

currents on the antenna elements can be found by applying the well known method of 

moments. The problem is formulated in the spectral domain, i.e. all quantities are trans

formed according to {x,y} --+ {k~, k.} . This finally results in the matrix equation: 

[Z)[I) + [V) = [0) (4.2) 

with 
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JWpo 
= -k2 8(z - zo) 

fr 0 

JWpO(P J cosklzo[frk2sinkl(d-z)-Jklcoskl(d-z)J 

frklTm 1 cos klz [frk2 sin kl(d - zo) - Jkl cos k1(d - zo)J 

Tm - k2fr cos kId + Jkl sin kId 

k2 
I = frk5 - k; - k; 

k2 
2 = k2 _ k2 _ k2 

o x y 

k~(32 = k
2 + k2 e 2 
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zo:5 z 

Zo ~ z 

Rjo is the distance between monopole j and i. 9mj(Z) represents the z-dependent part 
of the moth basis function on monopole j. Subdomain rooftop basis functions are used. 

The two z-integrations can be performed analytically for this type of basis function. The 

mode coefficients [IJ are found by solving equation (4.2). The main disadvantage of the 

spectral domain moment method for the analysis of finite arrays is the long computation 

time needed to evaluate the elements of [Z] and [V]. Especially when the distance between 

monopole j and i is large. This problem is mainly due to the numerical evaluation of 

infinite integrals over slowly decaying and strongly oscillating functions. Fortunately we 

have found a way to rewrite these infinite integrals as a sum of a closed form expression 

and a relatively fast converging integral. In Smolders [22] this approach was used for 

the analysis of microstrip patch antennas. Using this analytical method, the computation 

time can be reduced significantly. Once the elements of [Z] and [V] are known the port 

admittance matrix [YP] can be easily calculated. An element of the port admittance matrix 

is given by: 

with V,:: = 0 for m i' i (4.3) 

where Ii is the current at the base of monopole j and is calculated with (4.3), vt is the 

impressed port voltage at monopole i. Once the port admittance matrix is known, the 

scattering matrix [SP] and the active reHection coefficient can be determined. Note that 

with the infinite array approach of [20], the scattering matrix cannot be calculated. 
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Results 

We have checked our method and computer program with the results obtained by Fenn 

[21], who analysed finite arrays of monopoles in free space (fr = 1). The agreement between 
our calculations and the measurements of Fenn [21) is excellent. Next we considered the 
array configuration of Pozar ([20), fig. 4), with fr = 2.5, d = 10mm, a = 0.565mm, 
az = b~ = 60.6mm and 4> = 45°. Pozar [20) measured the input impedance using a 

waveguide simulator in the T Mu mode, with (J = arcsin ~ . In fig. 4.2 the calculated 
v 2az 

centre element reflection coefficient against frequency for this configuration is shown for 
three array sizes. The characteristic impedance is 500. Note that the reflection coefficient 
of the centre element can become larger than 1 for a finite array. 

IRI 
1.5 - - . - - - - - - - - . - - - - - - - - . - - - . - - - - - - - . 

1 

0.5 . - - - . - - - - - - - - . - - - .. - - - . - - - . - - - - - - -

- 3x3 array + 7x7 array "*" 9x9 array 
01---------r--------,----L----r------~ 

4 4.5 5 

Frequency (GHz) 

5.5 6 

Figure 4.2: Calculated centre element reflection coefficient magnitude versus frequency for 

three finite arrays of monopoles embedded in a dielectric slab 

A significant difference can be observed between the calculated reflection coefficient of figure 

4.2 and the results obtained by Pozar ([20], fig. 4) using an infinite array approach, even 
for relatively large arrays. In Fig. 4.3, the corresponding calculated coupling coefficients 

between the center element and the elements of row 5 (see fig. 4.1 of a 9 x 9 array are 
given. 
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Coupling coefficient in dB 
o~----------------------------------------~ 

-5 ......................... . 

-10 

-15 .................................... . 

-20 

-25 

-30L----============d o 1 2 3 4 

Distance/ax from centre element 

Figure 4.3: Coupling coefficient of center element and the elements of row 5 in a 9 x 9 

array of monopoles embedded in a dielectric slab, f =4 GHz 

Conclusion 

A rigorous yet efficient method is presented for the analysis of a finite array of monopoles 
embedded in a dielectric slab. Significant differences in calculated input impedance data 
between our finite array method and the infinite array approach of Pozar [20] are observed, 
even for relatively large arrays. 
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Chapter 5 

Conclusions 

Chapter 2 has dealt with finite stacked microstrip arrays based on electrically thin dielec

tric substrates, whereas in chapter 3 we investigated finite stacked microstrip arrays on 

thick substrates. In the case of an electrically thick substrate a proper model for the feed

ing coaxial cables has to be incorporated in the analysis, including an attachment mode 

between the probes and patches. 

A lot of computation time can be saved if one uses the asymptotic form extraction tech

nique. Without this analytical technique it would be almost impossible to analyse large 

finite arrays, because the overall computation time would become extremely long. More 

computation time can be saved if interactions in the method of moments matrices between 

basis functions that are located far away from each other are neglected. In this way these 

matrices become sparse matrices. 

Mutual coupling measurements were made on a 7 X 7 planar array with a single patch layer. 

The measurements agreed quite well with our calculations. Two broadband microstrip 

structures have been investigated, namely a stacked array on a thick substrate and an array 
with electromagnetically coupled (EMC) microstrip elements. As could be expected, the 

mutual coupling deteriorates when thick substrates are being used. Despite of this, it seems 

that an EMC-microstrip antenna is a very good candidate for the design of broadband 

microstrip arrays. 
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