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FINITE STATE AUTOMATA: A GEOMETRIC APPROACH

BENJAMIN STEINBERG

Abstract. Recently, finite state automata, via the advent of hyperbolic and
automatic groups, have become a powerful tool in geometric group theory.
This paper develops a geometric approach to automata theory, analogous to
various techniques used in combinatorial group theory, to solve various prob-
lems on the overlap between group theory and monoid theory. For instance,
we give a geometric algorithm for computing the closure of a rational language
in the profinite topology of a free group. We introduce some geometric no-
tions for automata and show that certain important classes of monoids can be
described in terms of the geometry of their Cayley graphs. A long standing
open question, to which the answer was only known in the simplest of cases
(and even then was non-trivial), is whether it is true, for a pseudovariety of
groups H, that a J -trivial co-extension of a group in H must divide a semidi-
rect product of a J -trivial monoid and a group in H. We show the answer is
affirmative if H is closed under extension, and may be negative otherwise.

1. Introduction

The geometry of the Cayley graph of a group is key to most modern approaches
to group theory. An automaton, on the surface, is much like a Cayley graph and
should be amenable to similar techniques. This paper explores some applications
of techniques from geometric group theory to the theory of finite automata and
monoids. The approach of this paper is to first rigorously develop the fundamentals
of the theory, and then to apply the theory to various problems. We attempt to
keep the exposition fairly self-contained, reproving some old results from a new,
geometric point of view.

While a connection between group theory and monoid theory has always existed,
the interplay between these two subjects has only truly become apparent in this
decade. On the one hand, the theory of automatic groups [15] is an attempt to use
finite monoids to understand the structure of a group; on the other hand, in recent
years, several deep results in semigroup theory have come from (and motivated)
group-theoretic results. The best example of this is the theorem of Ribes and Za-
lesskĭı [37] that products of finitely generated subgroups of a free group are closed
in the profinite topology. This theorem was conjectured by semigroup theorists [34]
because its truth implied the truth of the Rhodes Type II Conjecture which had
already been verified in several important cases. This conjecture was then used to

Received by the editors February 12, 1999 and, in revised form, August 24, 2000.
1991 Mathematics Subject Classification. Primary 20M35, 20F10.
Key words and phrases. Immersions, coverings, fundamental groups, profinite topologies, ra-

tional languages, automata, graphs, monoids, block groups, semidirect products, pseudovarieties,
Mal′cev products.

The author was supported in part by Praxis XXI scholarship BPD 16306 98.

c©2001 American Mathematical Society

3409

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3410 BENJAMIN STEINBERG

prove, amongst other things, one of the most difficult results in finite semigroup
theory to date: the seemingly innocuous equation PG = BG which states that
every block group divides a power group. The techniques used by Ribes and Za-
lesskĭı involved profinite groups acting on profinite trees, techniques seemingly far
removed from the primary application: the calculation of the closure of a rational
(or regular) language in the profinite topology, something very important in monoid
theory.

Another such example is the interpretation of Stallings’ [40], including the proof
of Marshall Hall’s Theorem, as statements about inverse automata by Margolis and
Meakin [28]. In particular, they classify all immersions of a finite graph in a manner
similar to the classification of covering spaces, but using free inverse monoids rather
than free groups. Also one can show, see [29] for a survey, that a finitely generated
subgroup of a free group is pure if and only if its associated immersion, viewed as an
inverse automaton, is aperiodic; hence this is a decidable property. This interplay
between group theory and inverse automata theory is further explored by Margolis,
Sapir, and Weil in [30] to relate an embedding problem in the theory of immersions
to a membership problem for pseudovarieties of inverse monoids.

This paper applies the techniques of graph immersions and coverings to monoids
and automata in general–the results are rather surprising. First of all, we obtain
an elementary and more general version of the results of [30]. In addition, using the
Ribes and Zalesskĭı Theorem [37], we obtain a simple geometric procedure to com-
pute the closure of a rational language in the profinite topology on a free group. In
particular, we discover that some special cases of the Type II Theorem, for example
the case of regular monoids, follow from Hall’s Theorem which is much more ele-
mentary than the theorem of Ribes and Zalesskĭı. Our algorithm is internal to the
automaton accepting the language and has the benefit that, from the automaton,
we construct a non-deterministic automaton which can be used to recognize the
closure of every language recognized by the original automaton. In applications,
this is the situation in which one finds oneself, and so we obtain a true increase in
efficiency.

While clarification of old results is important, a new theory should also lead to
new results–and so our theory does. Our main result is related to the problem
of extensions in group theory. Recall that G is an extension of N by H if there
is a surjective homomorphism ϕ : G → H with 1ϕ−1 = N (one also says that
G is a co-extension of H by N). The extension is said to be split if G = N ∗ H
where ∗ denotes the semidirect product (rather than the free product). The relation
between extensions and split extensions is that if G is any extension of N by H ,
then G can be embedded in N ◦ H where ◦ denotes the wreath product, which
is nothing more than a semidirect product of the form NH ∗ H . More generally,
if ϕ : M → G is a surjective morphism with M a monoid and G a group, then
N = 1ϕ−1 is a submonoid of M . In this case, we say that M is a co-extension of
G by N . One can also define the semidirect product N ∗ G of a monoid N and a
group G and, in this case, N ∗G is a co-extension of G by N . Unfortunately, not
every co-extension of a group can be recovered by a wreath product. It was the
study of co-extensions that motivated the conjecture of [34] which led to the Ribes
and Zalesskĭı Theorem.

To discuss this problem further, we need the notion of a pseudovariety of mon-
oids, introduced in the seventies by Eilenberg [14] as a means by which to classify
finite monoids. A pseudovariety of monoids is a class of finite monoids closed under
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forming finite products, taking submonoids, and taking quotient monoids. Since
there are far too many finite monoids to classify them up to isomorphism (think
of how many multiplication tables one can put on an 8 element set, including 0,
satisfying the identity xyz = 0), Eilenberg [14], motivated by the Krohn-Rhodes
Theorem [17] and the Theory of Complexity [18], pushed for the classification of fi-
nite monoids into pseudovarieties. From this viewpoint, it is then natural to define,
for V a pseudovariety of monoids and H a pseudovariety of groups, the pseudovari-
eties of monoids V ∗H (the semidirect product) and V©m H (the Mal’cev product)
generated, respectively, by semidirect products of monoids in V with groups in H
and by co-extensions of groups in H by monoids in V. In general, V ∗H ⊆ V©m H,
while the reverse inclusion follows if V is also a pseudovariety of groups by the
observation above concerning wreath products. There are many pseudovarieties
of monoids for which equality holds, for instance, if V = Sl, the pseudovariety of
semilattices (idempotent-commutative monoids); there is even a well-known suffi-
cient condition for equality. Since semidirect products can be understood in terms
of their factors, this is the desired situation. However, there is an important ex-
ample, that of J -trivial monoids, for which this sufficient condition fails. A finite
monoid is called J -trivial if each principal two-sided ideal has a unique generator.
It turns out, that the J -trivial co-extensions of groups are precisely those finite
monoids, called block groups, such that each regular element has a unique inverse.
A deep result of Henckell and Rhodes [24] says that J ∗G = J©m G where J is the
pseudovariety of all finite J -trivial monoids and G is the pseudovariety of all finite
groups. However, one also wants to study, for instance, J -trivial co-extensions of a
p-group, and so it is important to know whether such a monoid can “be obtained”
from a semidirect product. Let H be a pseudovariety of groups closed under ex-
tensions, or, equivalently, forming semidirect products; we show in this paper that
J ∗H = J©m H. The proof is independent of the result for G and when restricted
to that case gives the shortest, least technical proof to date. The result uses a gen-
eralization by Ribes and Zalesskĭı [38] of their theorem to the pro-H topology, and
that the geometry of the Cayley graph of a block group is particularly well suited
to our methods. Since the author has already shown that J ∗H, in the extension-
closed setting, is generated by power sets of groups in H, viewed as monoids under
setwise products [45], this result strongly relates the structure of J©m H to the
structure of H. We also show that this equation can indeed fail for pseudovarieties
of groups which are not extension-closed. In addition, we show that the H-closed
rational languages are recognized by monoids in J©m H. Many generalizations to
other Mal’cev and semidirect products are obtained as well.

The paper is organized in the following manner. We begin by defining graphs and
labeled graphs and studying their geometry; some basic results from combinatorial
group theory are surveyed; we then define deterministic and non-deterministic au-
tomata geometrically. After a brief digression on monoid theory, we focus on inverse
monoid theory; here, we obtain simple geometric proofs of the results of [30] and
lay the groundwork for the more general monoid situation. Then follows a study of
the geometry of strongly connected automata; we describe the profinite closures of
the languages they recognize in terms of the fundamental groups of geometrically
related automata. From there, we move to more general automata by studying
them in terms of their strongly connected components; we obtain, in particular,
our geometric algorithm for computing the profinite closure of a rational language
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as well as a geometric condition on when the profinite and pro-H closures of a lan-
guage coincide for an extension-closed pseudovariety of groups H. Our results are
then applied to the Cayley graph of a monoid where we demonstrate that certain
pseudovarieties of monoids are entirely determined by geometric invariants of the
Cayley graphs of their members. The remaining sections apply these results to
prove various equalities of pseudovarieties of monoids and to give counterexamples
to possible equalities.

2. Some Conventions and Notation

Since first and foremost this is a paper concerned with semigroups, monoids, and
automata, we are led in general to write our morphisms between algebraic objects
on the right. Most other times, arguments will appear in their more customary
positions. We shall follow the set theoretic convention of not distinguishing between
a relation ϕ of sets S and T viewed as a function ϕ : S → 2T and as a set of pairs
in S×T . Hence, at various times, one might see such notation as t ∈ sϕ, s ∈ tϕ−1,
or s ϕ t, all of which mean that s and t are ϕ-related. We shall abuse notation
when considering morphisms of graphs and categories by using the same symbol to
denote the vertex and edge functions. Categories will be viewed as graphs with an
algebraic structure and so we shall use words such as vertices and edges instead of
objects and arrows. However, it will be convenient to talk of hom sets.

If A is a set, we let Ã = A ∪A−1 where A and A−1 are disjoint sets in bijection
via a map a 7→ a−1 with the property that (a−1)−1 = a for any a ∈ Ã. We use A∗

for the free monoid and FG(A) for the free group generated by a set A. For a word
w ∈ Ã∗, we define w−1 to be the word obtained in the standard manner by reversing
the order of appearance of the letters and replacing each letter by its inverse. In
this way, Ã∗ becomes the free monoid with involution. We shall not distinguish
between a reduced word and the element of the free group which it represents. If
M is an A-generated algebra of some type, we shall use [w]M to denote evaluation
in M of a term w of an appropriate free algebra generated by A. Primarily, we shall
be interested in monoids, not semigroups. Thus, we shall formulate most of our
definitions for monoids, leaving the analogous semigroup definitions to the reader.
For undefined concepts from semigroup theory, we refer the reader to [2, 12, 14],
and from category theory to [25]. As a final note, many of the results of this paper
can be proved making use of profinite monoids. The author used this approach
in [44] to prove certain cases of some of the results of this paper. Also many of
the deep results which we quote in this paper are proved using profinite groups
and profinite graphs. We have avoided using profinite objects deliberately in this
paper to make it more accessible. However, one can apply many of the ideas of
this paper to profinite groups, monoids, and graphs; for instance, a labeling of a
profinite graph by a profinite set can be defined in a fashion analogous to that used
for discrete objects in this paper. We leave these generalizations to the interested
reader and, indeed, there is already a considerable literature on profinite groups
acting on profinite graphs; see [7, 21].

3. Graphs and Automata

In this section we introduce our geometric conception of automata, viewing them
in a combinatorial or topological fashion.
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3.1. Graphs. By a graph, we mean a graph in the sense of Serre and Stallings [39,
40]. Formally, a graph Γ consists of the following data: a set V (Γ) of vertices ; a set
E(Γ) of edges ; a function α : E(Γ) → V (Γ); and a map on edges e 7→ e such that
e = e and e 6= e. We define a function ω : E(Γ) → V (Γ) by eω = eα. One calls,
respectively, eα, eω, e the, respectively, initial vertex, terminal vertex, reverse edge
of e. Note that Z/2Z acts freely on E via the involution e 7→ e. An orientation of Γ
consists of a choice of a representative from each Z/2Z-orbit. The representatives
are called positively oriented edges. We call a graph Γ with a given orientation an
oriented or directed graph. If Γ is an oriented graph, we use E+(Γ) to denote the set
of positively oriented edges; then E(Γ) = E+(Γ)∪E+(Γ) and the union is disjoint.
An oriented graph is completely determined by its sets of positively oriented edges,
by α, and by ω. Normally, when one draws an oriented graph, one draws only
the positively oriented edges with an arrow from the initial vertex to the terminal
vertex. One then thinks of the reverse edge as being the same edge, but traversed
in the reverse direction. A graph Γ is called finite if V (Γ) and E(Γ) are finite.

A path p of length n in a graph Γ is a sequence of edges e1 · · · en of Γ such that
ejω = ej+1α. The notation |p| will be used to denote the length of p. We let
pα = e1α and pω = enω. One then says that p is a path from pα to pω. If pα = pω,
we call p a circuit or a loop. We also allow an empty loop (of length 0) at each
vertex v, denoted 1v. If Γ is oriented and the ej are all positively oriented, p is
called a directed path. By convention, the empty loop is considered to be directed.
If p is a path, the reverse path of p is p = en · · · e1. Note pα = pω, pω = pα, and
p = p. One takes, by convention, 1v = 1v.

One can then compose paths in Γ in the usual way. If p1ω = p2α, then p1p2 is
obtained by juxtaposition of the edge sequences. If p1 and p2 are directed, so is
p1p2. The product of two loops at a vertex is evidently another loop. Composition
is associative and the empty paths act as local identities so we get a category Π(Γ)
with vertex set V (Γ) and hom sets Π(Γ)(v1, v2) = {paths from v1 to v2}. Note that
Π(Γ) is a category with an involution operation p 7→ p. If Γ is oriented, then Γ∗

will denote the subcategory of Π(Γ) consisting of all directed paths and is what is
usually referred to as the free category generated by the directed graph Γ.

We say that Γ is connected if any two vertices can be joined by a path, while we
say that an oriented graph Γ is strongly connected if this can be done by a directed
path. A connected component of a graph is a maximal connected subgraph. Any
graph is a disjoint union of its connected components; hence we shall mostly consider
connected graphs. A maximal strongly connected subgraph of an oriented graph
is called a strongly connected component. In an oriented graph Γ, we write, for
v, w ∈ V (Γ), w ≤ v (read w is accessible from v), if there is a directed path from v
to w. This is a preorder and if ≡ is the associated equivalence relation, then v ≡ w
if and only if they are in the same strongly connected component of Γ.

3.2. The Fundamental Group of a Graph. As this material is well known,
see [39, 40], we merely give the definitions and state the primary result. Let Γ
be a graph. For p1, p2 ∈ Π(Γ)(v1, v2) we say p1 ∼ p2 (read p1 is homotopic to
p2) if p1 can be obtained from p2 by deletions and insertions of paths of the form
ee. This is easily seen to be a congruence and the resulting quotient π(Γ) is a
groupoid called the fundamental groupoid of Γ. The equivalence class [p] of a path
p is called the homotopy class of p. The inverse of a path [p] is [p]. If v ∈ V (Γ), then
π1(Γ, v) = π(Γ)(v, v) is called the fundamental group of Γ at v. If v and v′ are in
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the same connected component of Γ, then they have (non-canonically) isomorphic
fundamental groups.

A path p ∈ Π(Γ) is said to be reduced if it has no subpath of the form ee. For
instance, any directed path in an oriented graph is reduced. One can show that each
homotopy class of π(Γ) contains a unique reduced path. We shall not, in general,
distinguish between a reduced path p and its homotopy class. A connected graph Γ
is called a tree if the only reduced circuits in Γ have length 0, that is π1(Γ, v) = 1 for
every vertex v. By Zorn’s lemma, every connected graph has a maximal (sub)tree,
and this maximal tree contains every vertex. The following theorem is at the root
of combinatorial group theory; see, for instance, [40].

Theorem 3.1. Let Γ be a connected oriented graph, T ⊆ Γ be a maximal subtree,
and v0 ∈ V (Γ). For each v ∈ V (Γ), let pv be the unique reduced path in T from v0

to v. Define for e ∈ E+(Γ), ẽ = peαepeω. Then π1(Γ, v0) is a free group generated
by {[ẽ]|e /∈ E(T )}.

If Γ is finite, one can algorithmically (in polynomial time) find a basis for the
fundamental group of Γ at any vertex by first constructing a maximal tree T , and
then computing the appropriate ẽ.

3.3. Graph Morphisms and Immersions. A graph morphism ϕ : Γ → ∆ con-
sists of a pair of functions ϕV : V (Γ) → V (∆) and ϕE : E(Γ) → E(∆); however,
it will be convenient to just use ϕ for both these functions. The requirements on a
graph morphism are: eϕα = eαϕ and eϕ = eϕ. If we let An be the standard arc
[0, n], subdivided at the integer points (where there is a positively oriented edge
from j to j + 1), then a path p of length n from v1 to v2 corresponds to a graph
morphism p : An → Γ, explaining our conventions on empty paths. One can easily
show that Π and π are functors (if we look at the category of graphs with base
points and base point preserving graph morphisms, then π1 is a functor as well). If
we view a path p of length n as a graph morphism p : An → Γ, then pΠ(ϕ) = pϕ
leading us to just write ϕ in place of Π(ϕ), and similarly for π(ϕ). If Γ and ∆
are oriented, ϕ is called orientation-preserving if it sends positively oriented edges
to positively oriented edges. In the category of oriented graphs and orientation-
preserving maps Γ 7→ Γ∗ is a functor. Note that a directed path p of length n is
an orientation-preserving graph morphism p : An → Γ. If ϕ : Γ → ∆ is a graph
morphism and if ∆ is oriented, then there is a unique orientation of Γ so that ϕ is
orientation-preserving called the orientation of Γ induced by ϕ.

The following lemma is an easy exercise which we leave to the reader.

Lemma 3.2. Let Γ1, Γ2, and ∆ be oriented graphs and

Γ1
γ

//

α
  

AAAAAAA Γ2

β
~~}}}}}}}

∆

be a commutative diagram of graph morphisms. Then if γ, β preserve orientation,
so does α. If α and β preserve orientation, so does γ.

Hence if we have a fixed oriented graph ∆ and consider the comma category
of graphs with morphisms into ∆, then if we orient all these graphs so that their

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE STATE AUTOMATA: A GEOMETRIC APPROACH 3415

morphisms to ∆ preserve orientation, all the morphisms in this comma category
become orientation-preserving.

We call a graph morphism ϕ faithful if e1α = e2α, e1ω = e2ω, and e1ϕ = e2ϕ
imply that e1 = e2. Let Γ be a graph and v ∈ V (Γ). Then we define Star(v) =
vα−1. If ϕ : Γ → ∆ is a graph morphism, then for any vertex v ∈ V (Γ), we have
an induced map ϕv : Star(v) → Star(vϕ). Following Stallings [40], ϕ is called an
immersion if ϕv is injective, locally surjective if ϕv is surjective, and a covering
if ϕv is bijective for all v ∈ V (Γ). It is easy to see that a composition of maps
with any of the above properties has that property as well. By way of example, a
reduced path p of length n in a graph Γ is an immersion p : An → Γ.

The following elementary results are sketched in [40].

Theorem 3.3. Let ϕ : Γ→ ∆ be an immersion and v ∈ V (Γ).
1. ϕ : π1(Γ, v)→ π1(∆, vϕ) is injective.
2. If p is a reduced path in Γ, then pϕ is a reduced path in ∆.
3. If p and q are paths starting at v and pϕ = qϕ, then p = q.
4. If ϕ is a covering and p a path starting at vϕ, then there is a (unique) path p̃

starting at v with p̃ϕ = p.
5. Suppose τ : Γ′ → ∆ is a graph morphism with Γ′ connected, u ∈ V (Γ′), and
uτ = vϕ. Then the existence of τ̃ : Γ′ → Γ lifting τ (that is, τ̃ϕ = τ) with
uτ̃ = v implies π1(Γ′, u)τ ⊆ π1(Γ, v)ϕ; furthermore, τ̃ is unique. If ϕ is a
covering, the above condition is sufficient.

We now state the standard theorem on the existence of coverings; see [40].

Theorem 3.4. If ∆ is a connected graph, v ∈ V (∆), and H ⊆ π1(∆, v) a subgroup,
then there exists a covering ϕ : Γ → ∆ with Γ connected, a vertex u ∈ V (Γ) with
uϕ = v, and π1(Γ, u)ϕ = H. Any two such coverings are isomorphic as based
graphs over (∆, v). The number of sheets of the covering, |vϕ−1|, is the index of
H.

If Γ is a graph, we say a graph morphism ϕ : Γ → ∆ is a fold if there exist
edges e1, e2 ∈ E(Γ) such that e1α = e2α, e2 6= e1, and ∆ is obtained from Γ by
identifying these edges.

e1

e2

{e1, e2}

Stallings proves in [40] that a fold induces a surjective map on fundamental
groups. The following observation of Stallings [40] will be important in the sequel.

Proposition 3.5. Let Γ be a finite graph and ϕ : Γ → ∆ a morphism of graphs.
Then ϕ factors as a finite sequence of folds followed by an immersion. The sequence
of folds need not be unique, but the immersion is unique.

The idea is that if ϕ is not an immersion, then there exists a vertex v and distinct
edges e1, e2 ∈ Star(v), with e2 6= e1, such that e1ϕ = e2ϕ. One folds these two
edges and repeats this procedure on the quotient graph. Hence one can construct
this immersion in rapid polynomial time.
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3.4. Labeled Graphs. Let A be a set. Then we use BA to denote a bouquet of |A|
circles; that is, V (BA) = {1} and E(BA) = Ã where a = a−1 for a ∈ Ã. We orient
BA by choosing E+(BA) = A. One can then see that B() is a functor which is right
adjoint to the functor E+. It is easy to see that Π(BA) = Ã∗, π(BA) = FG(A),
B∗A = A∗ where we view each of these monoids as a one vertex category. Using
Theorems 3.1, 3.3, and 3.4, and using that π1(BA, 1) = FG(A), one obtains the
well known result that any subgroup of a free group is free.

A labeling of a graph Γ over A consists of a faithful graph morphism ` : Γ→ BA;
we orient Γ by `. If e is an edge, we call e` the label of e. More generally, since
there is an induced map ` : Π(Γ) → Ã∗, for a path p, we call p` the label of p. If
p is directed, then p` ∈ A∗. Also note that if p` is a reduced word, then p cannot
contain a factor ee whence p is also reduced. We think of a labeled graph as a
collection of vertices and oriented edges, each edge labeled by an element of A and
no two coterminal edges having the same label. We shall call a graph Γ labeled
over A an A-graph.

A morphism ϕ : Γ → ∆ of A-graphs is a morphism in the comma category of
graphs over BA, that is, a graph morphism ϕ such that

Γ
ϕ

//

`Γ   AAAAAAAA ∆

`∆~~||||||||

BA

commutes. Note that, by Lemma 3.2, ϕ automatically preserves orientation. We
think of ϕ as a label-preserving graph morphism.

A congruence ∼ on an A-graph Γ is an equivalence relation ∼ on V (Γ). The
quotient A-graph Γ/∼ is defined as follows: V (Γ/∼) = V (Γ)/∼; if v, w ∈ V (Γ) and
[v], [w] are the ∼-classes of v and w, respectively, then there is a positively oriented
edge in Γ/∼, [v] a−→[w] with a ∈ A, if and only if there exist v′ ∈ [v] and w′ ∈ [w]
such that there is an edge v′ a−→w′ in Γ. Any morphism of A-graphs then factors
through a quotient and an embedding.

Let w ∈ Ã∗. Then a run of w in an A-graph Γ is a path p with p` = w. We say
in this case that there is a run of w from pα to pω. If w ∈ Ã∗, then the reversal of
w is the word wρ obtained by reversing the order of the letters occurring in w, for
instance (ab)ρ = ba. A reverse run of a word w ∈ Ã∗ in Γ from p to q is then a run
of wρ from p to q.

Note that a word may have several runs from a vertex p of an A-graph Γ;
we would like to consider the situation where this does not occur. Let Γ be an
oriented graph. Define, for v ∈ V (Γ), Star+(v) = Star(v)∩E+(Γ) and Star−(v) =
vω−1 ∩ E+(Γ). Let ϕ : Γ → ∆ be an orientation-preserving graph morphism. We
call ϕ deterministic if ϕ is injective when restricted to Star+(v) for all v ∈ V (Γ)
and codeterministic if ϕ is injective when restricted to Star−(v) for all v ∈ V (Γ).
Note that ϕ is an immersion if and only if it is deterministic and codeterministic.
If Γ is an A-graph, we call Γ, respectively, deterministic, codeterministic, inverse if
the labeling ` is, respectively, deterministic, codeterministic, an immersion. If ` is
locally surjective, Γ is called complete; if ` is a covering, Γ is called a cover.

If Γ is a deterministic A-graph, then one can show inductively that each w ∈ A∗
has at most one run from any vertex q ∈ V (Γ). We let qw = p if the run of
w from q exists and ends at p, and leave it undefined otherwise. Each w ∈ A∗
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defines, in this manner, a partial function on V (Γ). Furthermore, for w1, w2 ∈ A∗,
(qw1)w2 = q(w1w2), and hence we have a well defined homomorphism of A∗ into
the monoid of partial functions on V (Γ). The image is called the transition monoid
of Γ and is denoted M(Γ). Analogously, each word w ∈ A∗ has at most one reverse
run from any vertex. We let wq = p if the reverse run of w from q ends at p, and
leave wq undefined otherwise. In this way, we again obtain a set of partial function
on V (Γ), this time acting on the left. As before, these partial functions form a
monoid Mρ(Γ) called the left transition monoid of Γ. If M is a monoid, we use Mρ

to denote the reverse monoid; it is then easy to see that Mρ(Γ) = M(Γ)ρ. Hence
we will usually leave it to the reader to supply dual results and proofs for reverse
runs and left transition monoids. Note that M(Γ) consists of functions if and only
if Γ is complete.

A deterministic A-graph congruence on a labeled A-graph Γ is an A-graph con-
gruence ∼ such that for p, q, p′, q′ ∈ V (Γ) if pa = q, p′a = q′, and p ∼ p′, then
q ∼ q′. The quotient Γ/∼ is then a deterministic A-graph and any morphism of Γ
to a deterministic A-graph, factors through a quotient by a deterministic A-graph
congruence followed by an embedding.

If Γ is an inverse A-graph, that is, the labeling is an immersion, then each w ∈ Ã∗
has at most one run from any q ∈ V (Γ). Again, let qw = p if w has a run from q
to p, and leave it undefined otherwise. Then w gives a partial one-to-one function
with inverse w−1. At this point, to avoid confusion, if Γ is an A-graph with the
labeling an immersion, we write I(Γ) if we want to think of Γ as an inverse A-
graph while we shall just write Γ when we only want to think of Γ as an A-graph.
Then the transition monoid of I(Γ), denoted M(I(Γ)), is the monoid of partial
one-to-one functions induced by the various w ∈ Ã∗. We note that M(Γ) consists
of partial one-to-one functions and is a submonoid of M(I(Γ)). In fact, M(I(Γ))
is the inversification of M(Γ), obtained by adding to M(Γ) the inverse of each
element. We note that I(Γ) is complete if and only if Γ is a cover; this occurs if
and only if M(I(Γ)) is a group. If Γ is finite, I(Γ) is a cover if and only if M(Γ) is a
group in which case M(Γ) = M(I(Γ)). In an inverse A-graph, it is easy to see that
a path p is reduced if and only if p` is reduced. Indeed from our earlier remarks,
it suffices to show that if p is reduced then so is p`. But immersions take reduced
paths to reduced paths. Note that the fundamental group of an inverse A-graph is
a subgroup of FG(A). The following observation will be of frequent use.

Proposition 3.6. Let Γ be an inverse A-graph and v ∈ V (Γ). Suppose p, q ∈ V (Γ)
and wp, wq ∈ Ã∗ label reduced paths from v to p, q respectively. Then p = q if and
only if wpw−1

q ∈ π1(Γ, v).

Proof. Clearly if p = q, then wpw
−1
q ∈ π1(Γ, v). For the converse, suppose u ∈ Ã∗

is the largest common suffix of wp and wq and that wp = upu and wq = uqu. Then,
since wpw−1

q = upu
−1
q in π1(Γ, v) and the right-hand side is reduced, the run of

upu
−1
q at v exists and is a loop. Since Γ is inverse, it follows that vup = vuq whence

p = vwp = vupu = vuqu = vwq = q.

At this point, we briefly pause to introduce some semigroup theoretic concepts.
An element m of a monoid M is called regular if m ∈ mMm. An element e ∈M is
called idempotent if e2 = e. We shall write E(M) for the set of idempotents of M .
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Elements m and n are called inverses if mnm = m and nmn = n. Every regular
element has at least one inverse. If mnm = m, then mn and nm are idempotents.
A monoid M is called regular if every element of M is regular, a block group if each
regular element of M has a unique inverse, and inverse if it is a regular block group.
Equivalently, a monoid is inverse if it is regular and its idempotents commute. For
example, any group is an inverse monoid.

If I is an inverse monoid, we writem−1 for the inverse ofm ∈ I. Then (m−1)−1 =
m and (mn)−1 = n−1m−1. Hence any inverse monoid is isomorphic to its reversal.
Inverse monoids can be viewed as unary monoids and form a variety of such defined
by the equations xx−1x = x, (x−1)−1 = x, and xx−1yy−1 = yy−1xx−1. Thus there
is a free inverse monoid on any set A, which we denote by FIM(A). Note that the
canonical projection of Ã∗ to FG(A) factors through FIM(A) with the property
that the inverse image of 1 in FIM(A) is E(FIM(A)). The word problem for
FIM(A) has a beautiful geometric solution, due to Munn [32], which we shall
discuss later. If I is an inverse monoid such that E(I) = I, that is an idempotent
commutative monoid, then I is called a semilattice. Semilattices form a variety of
monoids and it is easy to see that the free semilattice on a finite set is again finite.
Note that, for any inverse monoid I, E(I) is a semilattice. We remark that, for an
inverse A-graph Γ, M(I(Γ)) is an inverse monoid. Indeed, the inverse of the partial
function induced by w is the one induced by w−1.

An inverse A-graph congruence on an A-graph Γ is a deterministic A-graph
congruence with the additional property that, for a ∈ A, p, q, p′, q′ ∈ V (Γ), if
pa = q, p′a = q′, and q ∼ q′, then p ∼ p′. The quotient Γ/∼ is then an inverse
A-graph and any morphism of Γ to an inverse A-graph factors, through a quotient
by such a congruence followed by an embedding.

Note that if Γ is an oriented graph, then there is a natural immersion ` : Γ →
BE+(Γ), and so every graph can be made an inverse A-graph for some set A.

3.5. Automata. Let A be a finite set (one often calls such a set an alphabet).
Then a non-deterministic A-automaton is a pair (Γ, q0) with Γ a finite, connected
A-graph and q0 ∈ V (Γ). We shall often call V (Γ) the state set, vertices states, and q0
the initial state. In the literature, one often requires a subset F ⊆ V (Γ), called the
set of final states, as part of the data for such an automaton, but as we are interested
in the geometric and algebraic structure of the automaton, we do not require this
extra information. We call a non-deterministic automaton accessible if every state is
accessible from the initial state. A strongly connected, non-deterministic automaton
is one whose underlying graph is strongly connected. These will be our primary
object of study. Often, we shall just denote the non-deterministic automaton by
Γ if the initial state is clear from context, or if we are not so interested in it. An
automaton morphism is a morphism of labeled graphs preserving initial states. A
non-deterministic automaton congruence is an A-graph congruence. The initial
state of the quotient is then the equivalence class of the initial state.

A deterministic A-automaton, or, more simply, an A-automaton, is a non-deter-
ministic A-automaton (Γ, q0) such that Γ is a deterministic A-graph. We call M(Γ)
the transition monoid of the automaton. An automaton is called complete if Γ is
a complete A-graph. One defines an automaton congruence to be a deterministic
A-graph congruence. The initial state of the quotient automaton is the equivalence
class of the initial state of the original automaton.
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An inverse A-automaton is an A-automaton (Γ, q0) with Γ an inverse A-graph.
We shall use (I(Γ), q0) or I(Γ, q0) to distinguish between (Γ, q0) viewed as an A-
automaton and an inverse A-automaton. The transition monoid of the inverse
automaton is thenM(I(Γ)). Again, we shall often just write I(Γ) if q0 is understood
or not of significance. An inverse automaton congruence is an inverse A-graph
congruence and the quotient is made an inverse automaton by choosing the class
of the initial state as the initial state of the quotient.

3.6. An Important Functor. Let A be a set. We use GA for the category of
A-graphs and IA for the category of inverse A-graphs. Observe that the forgetful
functor I(Γ) 7→ Γ embeds IA as a full subcategory of GA. We now construct a
left adjoint I : GA → IA such that I(Γ), for an inverse A-graph Γ, has the same
meaning as before. We shall call this functor inversification as it generalizes the
previous sense of the term.

Let Γ ∈ GA. We define a congruence ∼Γ on Γ such that the map ϕΓ : Γ→ Γ/∼Γ

is universal for labeled graph morphisms of Γ into inverse A-graphs. Then letting
I(Γ) = I(Γ/∼Γ) (where the right-hand side is in the original sense) will give the left
adjoint. We note that if Γ is an inverse A-graph, then the identity map is clearly
universal and so the notation I(Γ) is unambiguous.

Define, for p, q ∈ V (Γ), p ∼Γ q if there exists w ∈ Ã∗ such that w has a run from
p to q and [w]FG(A) = 1. Using that the set

K = {w ∈ Ã∗|[w]FG(A) = 1}

is a unary submonoid of Ã∗, it is easy to show that ∼Γ is an equivalence relation.
We show that ∼Γ is deterministic. Suppose p ∼Γ p′ and pa = q, p′a = q′. Let
w ∈ K such that w runs from p to p′. Then a−1wa runs from q to q′, so q ∼Γ q

′. A
dual verification shows that ∼Γ is an inverse A-graph congruence whence Γ/∼Γ is
an inverse A-graph. Suppose ∆ is an inverse A-graph and ϕ : Γ→ ∆ is a morphism
of A-graphs; we show that ϕ factors through ϕΓ. First, we shall need the following
standard lemma which can be proved by induction.

Lemma 3.7. One has that K is the smallest subset of Ã∗ such that:

1. 1 ∈ K;
2. u, v ∈ K, implies uv ∈ K;
3. u ∈ K, a ∈ Ã, implies aua−1 ∈ K.

We now prove, by induction on |w|, that if w ∈ K and w has a run from p to
q in Γ, then pϕ = qϕ; it will then follow that ϕ factors through ϕΓ. Suppose first
that |w| = 0; then p = q, so pϕ = qϕ. Suppose now that w = uv with u, v ∈ K,
|u|, |v| < |w|, and that w has a run from p to q. Let p′ be the vertex reached
on reading u in this run. Then by induction, pϕ = p′ϕ = qϕ. Suppose now that
w = aua−1 with a ∈ Ã, u ∈ K and that w has a run from p to q; then |u| < |w|. Let
p′ be the vertex reached after reading the first a in this run and q′ the vertex from
which the last a−1 is read. Then u reads from p′ to q′ so, by induction, p′ϕ = q′ϕ.
Now, since ∆ is inverse and ϕ a morphism, pϕ = p′ϕa−1, qϕ = q′ϕa−1 whence
pϕ = qϕ. We have thus proved the following theorem.

Theorem 3.8. Let I : GA → IA be given by I(Γ) = I(Γ/∼Γ) (in the previous
sense on the right-hand side). Then I is left adjoint to the forgetful functor.
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Suppose Γ is a finite A-graph. We now give a geometric description of I(Γ)
which also shows that it is constructible in polynomial time. Indeed, recall from
Proposition 3.5 that ` : Γ → BA factors through a finite sequence of folds and an
immersion `′ : Γ′ → BA. The sequence need not be unique, but the immersion
is unique. Also one can perform these folds in polynomial time. We show that
I(Γ) = Γ′. To do this, it suffices to show that the map to Γ′ has the desired
universal property.

Proposition 3.9. Let Γ and Γ′ be as above and let ϕ : Γ → ∆ be a labeled graph
morphism with ∆ an inverse A-graph. Then ϕ factors through the quotient map
from Γ to Γ′.

Proof. The morphism ϕ factors through a finite sequence folds and an immersion
ψ : ∆′ → ∆. But then if `∆ : ∆→ BA is the labeling, ψ`∆ is an immersion. Since
` = ϕ`∆ factors through a sequence of folds and ψ`∆, we see, by the uniqueness of
the immersion in Proposition 3.5, that ∆′ = Γ′ and the result follows.

For a non-deterministic A-automaton (Γ, v0), we shall denote (I(Γ), [v0]) by
I(Γ, v0).

4. Monoid and Semigroup Theory

We are finally ready to begin applying the machinery we have been building to
the theory of monoids. As mentioned earlier, we shall generally leave to the reader
semigroup theoretic analogs of our definitions and results.

4.1. Cayley and Schützenberger Graphs. Let M be an A-generated monoid.
We then define ΓA(M), the right Cayley graph of M with respect to A, to be the
complete deterministic A-graph with V (ΓA(M)) = M and E+(ΓA(M)) = M ×A.
We let (m, a)α = m, (m, a)ω = m[a]M , and the label of (m, a) be a. Normally, we
draw the edge (m, a) as

m
a−→m[a]M .

Note that M(ΓA(M)) = M . The left Cayley graph of M with respect to A, ΓρA(M)
is the complete deterministic A-graph with V (ΓρA(M)) = M , E+(ΓρA(M)) = M×A,
(m, a)α = m, and a the label of (m, a), but now with (m, a)ω = [a]Mm. Evidently,
Mρ(ΓρA(M)) = M . In fact, ΓρA(M) = ΓA(Mρ).

If m,n ∈M , we say that m R n (read m is R-equivalent to n) if m and n are in
the same strongly connected component of ΓA(M). We denote the R-class of m,
Rm. More generally, we write m ≤R n (read m is R-below n) if m ≤ n in ΓA(M).
These notions are independent of A since it is easy to see that m ≤R n if and only
if mM ⊆ nM . Similarly, we say m L n, respectively, m ≤L n if in ΓρA(M), m ≡ n,
respectively, m ≤ n. Finally, we say that for m,n ∈ M , m J n, respectively,
m ≤J n if MmM = MnM , respectively, MmM ⊆ MnM . An R-class is called
regular if it contains an idempotent. It can be shown that an R-class is regular if
and only if each element of the R-class is regular. Dual remarks apply to L-classes
and we continue to leave such dualizations to the reader. We refer the reader to [12]
for more on the fundamentals of monoid theory.

If X is an R-class of M , the Schützenberger graph (with respect to A) of X ,
denoted SchA(X), is the full subgraph of ΓA(M) with vertices X . We note that
SchA(X) is a strongly connected, deterministic A-graph. We call M(SchA(X))
the Schützenberger representation of X and denote it by Sch(X). Observe that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE STATE AUTOMATA: A GEOMETRIC APPROACH 3421

this monoid is independent of A and can be described as the monoid of partial
functions on X arising from right multiplication by elements of M . If m L n and
rn = m, it can be shown that left multiplication by r induces a graph isomorphism
of Schützenberger graphs. Hence, up to isomorphism, eachD-class of M has exactly
one corresponding Schützenberger graph (the relation D is the join of R and L and,
for finite monoids, D=J ). Dually, for an L-class Y , we use the notation SchρA(Y ) for
the left Schützenberger graph and Schρ(Y ) for the left Schützenberger representation
of Y . That is, Schρ(Y ) = Mρ(SchρA(Y )). To each D-class there is also only one
left Schützenberger graph up to isomorphism.

If M and A are finite, then (ΓA(M), 1) is an accessible A-automaton. For a
regular R-class X , we shall usually make SchA(X) an A-automaton by choosing
an idempotent as the initial state. In the cases of most interest to us, there will be
only one idempotent to choose from.

If I is an inverse monoid generated by A (as an inverse monoid) and X is an
R-class, we define the Schützenberger graph of X , I(SchA(X)), to be the graph
with vertex set X and set of positively oriented edges

{(x, a) ∈ X ×A|x[a]I ∈ X}.
One defines (x, a)α = x, (x, a)ω = x[a]I , and the label of (x, a) to be a. If I and A
are finite, we choose the unique idempotent of R to be the initial state (since E(I)
is a semilattice, one can check that an R-class has a unique idempotent). We note
that M(I(SchA(X))) = Sch(X) and hence is independent of the generating set.
Of course, we should justify the notation I(SchA(X)).

Proposition 4.1. Let X be an R-class of an inverse monoid I. Then I(SchA(X))
is an inverse A-graph.

Proof. We show that if x, y ∈ I and x R xy then xyy−1 = x. It then follows that
Sch(X) consists of partial one-to-one maps on X . So suppose xyt = x with t ∈ I.
Then

x−1(xyy−1)x−1 = (t−1y−1x−1)(xyy−1)x−1

= t−1y−1yy−1x−1xx−1 = t−1y−1x−1 = x−1.

On the other hand,

(xyy−1)x−1(xyy−1) = xx−1xyy−1yy−1 = xyy−1.

Thus x−1 and xyy−1 are inverses whence x = xyy−1.

Observe that since an inverse monoid is isomorphic to its reversal, there is no rea-
son to study its left Schützenberger graphs. Note that, for a group G generated by
A as a group, one can define its Cayley graph ΓA(G) with respect to A in the exact
same manner (in fact, viewing G as an inverse monoid, this is the Schützenberger
graph of the unique R-class of G) and the resulting graph is a cover (what is called
in topology a regular cover). However, if G is not a torsion group, then, in general,
G = M(I(ΓA(G))) 6= M(ΓA(G)). A torsion group is, of course, generated by A as
a group if and only if it is generated by A as a monoid, and so there is no ambiguity.

4.2. Varieties and Pseudovarieties of Monoids. We note that every definition
given here for monoids has a semigroup, inverse monoid, and unary monoid analog
which we shall use freely. The following notions, which may seem a bit strange to
those not familiar with them, go back to Eilenberg, Krohn, Rhodes, and Tilson.
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If M and N are monoids, then a relational morphism ϕ : M −→◦ N is a relation
ϕ ⊆M ×N which is a submonoid whose projection to M is onto. If the projection
to N is injective, we say ϕ is a division and that M divides N (or is a divisor of
N). If M and N are both A-generated, then there is a natural relational morphism
ϕ : M −→◦ N given by

〈([a]M , [a]N )〉 ⊆M ×N.
We call this the canonical relational morphism.

A variety of monoids is a class of monoids closed under taking arbitrary products
and divisors. A well known theorem of Birkhoff states that varieties are defined by
identities and have free objects on any set. A pseudovariety of monoids is a class of
finite monoids closed under taking finite products and divisors. Examples include
the classes: M of all finite monoids; G of all finite groups; Gp of all p-groups; Gsol

of all finite solvable groups; and Gnil of all finite nilpotent groups. An intersection
of varieties, respectively, pseudovarieties is again a variety, respectively, pseudova-
riety, so the classes of varieties and pseudovarieties form complete lattices. If V
and W are varieties, respectively, pseudovarieties, the least variety, respectively,
pseudovariety containing them both is called their join and is denoted V ∨W.

If ϕ : M −→◦ N is a relational morphism of finite monoids, then, for e ∈ E(N),
eϕ−1 is a semigroup. We define the Mal’cev kernel of ϕ to be the pseudovariety
of semigroups Vϕ generated by eϕ−1 with e ∈ E(N). If V is a pseudovariety
of semigroups and W a pseudovariety of monoids, then the collection of all finite
monoids M with a relational morphism ϕ : M −→◦ N ∈W with Mal’cev kernel in
V (that is, Vϕ ⊆ V) forms a pseudovariety V©m W called the Mal’cev product
of V and W. The Mal’cev product is not associative, but the following property
holds; see, for instance, [50].

Proposition 4.2. Let U and V be pseudovarieties of semigroups and W a pseu-
dovariety of monoids. Then

U©m (V©m W) ⊆ (U©m V)©m W.

If M and N are monoids, a left action of N on M is a homomorphism of N into
the endomorphism monoid of M . We shall write the action by left exponentiation.
The semidirect product of M and N with respect to this action, denoted M ∗N , is
then M ×N with multiplication given by

(m,n)(r, s) = (mnr, ns),

exactly as for groups. It is easy to see that this is a monoid with identity (1, 1). If
V and W are pseudovarieties of monoids, then V ∗W is the collection of monoids
which divide a semidirect product M ∗N with M ∈ V and N ∈W. This forms a
pseudovariety called the semidirect product of V and W. The semidirect product
operation is associative; see [14].

If ϕ : M −→◦ G is a relational morphism with G a group, then 1ϕ−1 is a sub-
monoid of M . If H is a pseudovariety of groups (and we shall reserve H for such
pseudovarieties) and V is a pseudovariety of monoids then it is easy to see that
V∗H ⊆ V©m H. A sufficient condition for equality is that V is local in the sense of
Tilson [49], see [24] for more. A monoid is called, respectively, R-trivial, L-trivial,
J -trivial if the corresponding relation is the equality relation. We let R, L, and
J denote the respective pseudovarieties of finite R-trivial, L-trivial, and J -trivial
monoids. It turns out that R and L are local [14, 49], but J is not [16, 49]; thus
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R ∗H = R©m H and L ∗H = L©m H. In this paper, we shall study V©m H and
V∗H, particularly for these three pseudovarieties. The heart of the paper concerns
the equation J ∗H = J©m H; we shall give classes of pseudovarieties H for which
the equation holds and classes for which it fails to hold as well as some conjectures
on a complete classification.

Let H be a pseudovariety of groups and M a finite monoid. Then the H-kernel
of M

KH(M) =
⋂

µ:M−→◦ G∈H

1µ−1

is a submonoid ofM containingE(M). Although, at first glance, this definition may
look a bit arcane, we shall see that KH(M) encodes a great deal of algebraic and
geometric information about M . For instance, Proposition 4.3 will imply that M ∈
V©m H if and only if KH(M) ∈ V. We shall see later that KH is a functor preserving
surjection. We shall be interested in when this functor is effectively computable.
The famous Rhodes type II conjecture, proved independently by Ash [10] and Ribes
and Zalesskĭı [37] (via a profinite group-theoretic argument), gives a polynomial
time algorithm to compute KG. Ribes and Zalesskĭı have given an algorithm to
compute KGp [38] for p a prime, shown recently to be polynomial time by Margolis,
Sapir, and Weil [30]. We shall give rapid geometric algorithms to compute these
kernels in this paper. It turns out that to understand KH, it is necessary to
understand the pseudovariety of inverse monoids Sl©m H. This has been studied
extensively in [30] and we give a new proof of their main result using our work on
graphs and immersions.

We end this subsection with the following important proposition from [24].

Proposition 4.3. Let M be a finite A-generated monoid and H a pseudovariety
of groups. Then there exists an A-generated group G ∈ H such that if µ : M −→◦ G
is the canonical relational morphism, then m ∈ KH(M) if and only if m ∈ 1µ−1.

Proof. For each m ∈ M \ KH(M), there exists ϕm : M −→◦ Gm ∈ H such that
m /∈ 1ϕ−1

m . So, for
∏
ϕm : M −→◦

∏
Gm ∈ H, r ∈ KH(M) if and only if r ∈

1(
∏
ϕm)−1. Now, for each a ∈ A, choose ã ∈ a(

∏
ϕm). Then

G = 〈{ã|a ∈ A}〉 ∈ H

is the desired group.

5. Inverse Automata and Embedding Problems

In this section, we obtain simple proofs of the results of [30] characterizing mem-
bership in the pseudovariety of inverse monoids Sl ©m H. It turns out to be a
geometric condition involving embeddings of inverse monoids in covers (or, from
another viewpoint, extensions of partial one-to-one maps). Our approach is more
elementary in that we avoid using profinite monoids. These techniques form the
basis for our later work.

5.1. Inverse Automata. We first need the following well known result which can
easily be proved from Lemma 7.1 below. If M is any monoid, we use ⊕Sch(M)
to denote the direct product of Sch(X) as X ranges over the regular R-classes of
M and ⊕Schρ(M) to denote the direct product of Schρ(Y ) as Y ranges over the
regular L-classes of M .
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Proposition 5.1. Let I be a finite inverse monoid. Then I is a subdirect product
of the monoids Sch(X) as X ranges over the R-classes of I; that is to say, the
natural map from I to ⊕Sch(I) is injective.

Thus, to deal with membership in the pseudovariety of inverse monoids Sl©m H, it
suffices to handle the case of transition monoids of inverse automata. Our treatment
is similar to that of [30], but we do not restrict to the special case of what they call
reduced inverse automata. The principal difference is that we use the H-kernel in
the types of arguments where profinite monoids are used in [30].

Proposition 5.2. Let G be a finite (or torsion) group, I an inverse monoid, and
ϕ : I −→◦ G a relational morphism of monoids. Then ϕ is a relational morphism
of inverse monoids; that is, ϕ is a subinverse monoid of I ×G.

Proof. First note that m−1 = (m−1m)nm−1 for all n ≥ 0. Suppose that (m, g) ∈ ϕ.
Let m−1 ϕ h. Then ((m−1m)nm−1, (hg)nh) ∈ ϕ for all n ≥ 0. Let k > 0 be such
that (hg)k = 1. Then (hg)k−1h = g−1, and so (m−1, g−1) ∈ ϕ as desired.

It now follows that the pseudovariety of inverse monoids Sl©m H is nothing more
than the collection of inverse monoids in the monoid pseudovariety Sl©m H. Also,
if I is a finite inverse monoid, it now follows KH(I) is a subinverse monoid of I and
that if n ∈ I, then n−1KH(I)n ⊆ KH(I). The following proposition is easy to prove
with our geometric methods. We recall for a finite cover Γ that M(Γ) = M(I(Γ))
and is a group.

Proposition 5.3. Let (I(Γ), q0) be an inverse A-automaton. Then M(I(Γ)) ∈
Sl©m H if and only if there exists a finite cover Γ′ with Γ ⊆ Γ′ and M(Γ′) ∈ H.

Proof. Let I = M(I(Γ)). Suppose first that such a Γ′ exists and let w ∈ Ã∗ be
such that [w]M(Γ′) = 1. Then w acts as the identity on Γ′ and hence as a partial
identity on Γ whence [w]I ∈ E(I). But E(I) ∈ Sl; thus the canonical relational
morphism of I with M(Γ′) has Mal’cev kernel in Sl.

For the converse, choose, as in Proposition 4.3, a group G ∈ H which is A-
generated and such that, for the canonical relational morphism µ : I −→◦ G, 1µ−1 =
KH(I) = E(I). Let

Stab(q0) = {w ∈ Ã∗|q0w = q0}.

This is evidently a unary submonoid of Ã∗. Let

H = {g ∈ G|g = [w]G, w ∈ Stab(q0)},
that is, the image of Stab(q0) in G. Then H is a subgroup of G. We let Γ′

be the coset graph of H : V (Γ′) = G/H ; E+(Γ′) = G/H × A; (Hg, a)α = Hg;
(Hg, a)ω = Hg[a]G; and the label of (Hg, a) is a. An edge (Hg, a) is drawn

Hg
a−→Hg[a]G.

Then (Γ′, H) is a complete inverse A-automaton, that is, a finite-sheeted cover
of BA. Let HG =

⋂
g∈G g

−1Hg be the core of H in G. It is well known that
M(Γ′) = G/HG.

We claim π1(Γ, q0) ⊆ π1(Γ′, H). Indeed, if w ∈ Ã∗ reads a circuit at q0, then
w ∈ Stab(q0), and so [w]G ∈ H whence the run of w from H is a circuit. Since
Γ′ is a cover of BA, there is, by Theorem 3.3, a unique automaton morphism
ϕ : (I(Γ), q0) → (I(Γ′), H) (note that a lifting of the labeling function of Γ to Γ′
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with q0 going to H is the same thing as an automaton morphism). To show that the
morphism is an embedding, it suffices to show that it is injective on vertices (since
labelings are faithful). So let q, q′ ∈ V (Γ) and suppose qϕ = q′ϕ. Let q = q0w1 and
q′ = q0w2. Then

Hw1 = qϕ = q′ϕ = Hw2

so [w1w
−1
2 ]G ∈ H . Hence there exists v ∈ Stab(q0) such that [vw1w

−1
2 ]G = 1.

But then, by choice of G, [vw1w
−1
2 ]I is an idempotent and hence acts as a partial

identity; so q0vw1w
−1
2 = q0. But,

q0vw1w
−1
2 = q0w1w

−1
2 = qw−1

2 .

Thus

qw−1
2 = q0 = q′w−1

2 ,

and so q = q′. The result follows.

If an inverse automaton satisfies the equivalent conditions of the above theorem,
we call it H-extendible. Note that any inverse automaton is G-extendible whence
Sl ©m G is the pseudovariety of all finite inverse monoids. We now show that
there is a least automaton congruence on an inverse automaton (I(Γ), q0) so that
the quotient is H-extendible. Our description is slightly different from, and more
general than, the one given in [30].

Theorem 5.4. Let (I(Γ), q0) be an inverse A-automaton. We define, for p, q ∈
V (Γ), p ∼H q if there exists m ∈ KH(M(I(Γ))) such that pm = q. Then ∼H is the
least inverse automaton congruence on (I(Γ), q0) with H-extendible quotient. We
call ∼H the H-extendible congruence.

Proof. Let I = M(I(Γ)). Using that KH(I) is a subinverse monoid, it is easy to
see that ∼H is an equivalence relation. Suppose p ∼H p′ and pa = q, p′a = q′.
Let p′ = pm with m ∈ KH(I). Then qa−1ma = q′ and a−1ma ∈ KH(I), so
q ∼H q′. The other verification that ∼H is an inverse automaton congruence is
dual. Let (I(Γ′), v0) = (I(Γ), q0)/∼H. Let G ∈ H be such that m ∈ KH(I) if and
only there is a word w ∈ Ã∗ with [w]I = m, [w]G = 1. Consider the canonical
relational morphism of M(I(Γ′)) with G. Suppose w ∈ Ã∗ is such that [w]G = 1
and that p, q ∈ V (Γ) are such that [p]Hw = [q]H where [p]H and [q]H denote the
∼H-equivalence classes of p and q, respectively. Then, by definition of ∼H and
choice of G, if w = a1 · · · an with aj ∈ Ã, then there exist ui ∈ Ã∗ (i = 0, . . . , n)
such that [ui]G = 1 and pu0a1u1 · · ·un−1anun = q. But then

[u0a1u1 · · ·un−1anun]G = [w]G = 1.

So, by choice of G and the definition ∼H, we see that p ∼H q whence w acts
as a partial identity on V (Γ′). Thus M(I(Γ′)) ∈ Sl©m H, and so (I(Γ′), v0) is
H-extendible.

Suppose (I(∆), v) is another H-extendible quotient of (I(Γ), q0) and let ϕ :
(I(Γ), q0) → (I(∆), v) be the projection morphism. Then if p, q ∈ V (Γ) and
p ∼H q, there exists m ∈ KH(I) such that pm = q. Let ∆′ be a finite cover with
M(∆′) ∈ H and ∆ ⊆ ∆′. Then there exists w ∈ Ã∗ such that [w]I = m and
[w]M(∆′) = 1. Now, since pw = q and ∆ is quotient of Γ, pϕw = qϕ. Hence, since
∆ ⊆ ∆′, pϕ = qϕ. The result follows.
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We have just shown that every inverse automaton I(Γ, q0) has a maximal H-
extendible image which we shall denote by IH(Γ, q0). We shall denote the underly-
ing graph of this automaton IH(Γ) and the initial state by [q0]H. These can be put
together to give a functor from the category of inverse automata to the category of
H-extendible inverse automata, left adjoint to the forgetful functor (which is again
an inclusion of a full subcategory).

Note that since one can effectively compute all the automaton congruences on
a finite automaton, the decidability of H-extendibility of an inverse automaton
is equivalent to computability of the H-extendible congruence, given an inverse
automaton as input.

We have thus far reduced the membership problem to determining the least
extendible congruence on an inverse automata. Before we can solve this problem,
we need to recall the definition of the profinite topology on a group, due to Hall [23].

5.2. Profinite Topologies. Let G be a group and H a pseudovariety of groups.
Then the pro-H topology on G is defined by taking as a basis of neighborhoods of
1 all normal subgroups N of G such that G/N ∈ H. One then makes G into a
topological group in the standard way. This is the weakest topology on G so that
every homomorphism of G to a group in H (endowed with the discrete topology)
is continuous. We say that G is residually in H if, for any g ∈ G \ {1}, there is
a homomorphism ϕ : G → H ∈ H with gϕ 6= 1, or, equivalently, {1} is a closed
subgroup. In this case, the pro-H topology is Hausdorff and, in fact, metric. In
general, the topology is given by the following ultrametric écart. For g ∈ G, define

r(g) = min({[G : N ]|G/N ∈ H, g /∈ N} ∪ {∞}).
Then the H-pseudonorm is given by

|g|H = 2−r(g) (where 2−∞ = 0).

One can verify that

|g1g2|H ≤ max{|g1|H, |g2|H}.
For g1, g2 ∈ G, we define

dH(g1, g2) = |g1g
−1
2 |H.

It is easy to see that this is an ultrametric écart defining the pro-H topology which
is a metric if and only if G is residually in H. If H is the pseudovariety Gp of p-
groups for a prime p and G = Z, then this topology is just the usual p-adic topology
on the integers and the above norm and metric are equivalent to the usual p-adic
norm and metric. The following straightforward proposition is due to Hall [23]; see,
for instance, [30].

Proposition 5.5. Let G be a group, H a subgroup, and H a pseudovariety of
groups. Then the following are equivalent for the pro-H topology:

1. H is open;
2. H is closed of finite index;
3. H is of finite index and G/HG ∈ H where, as before, HG denotes the core of
H in G.

We use clH(X) to denote the closure of X ⊆ G in the pro-H topology. For those
not familiar with this topology, we offer the following “Rosetta stone:” if g ∈ G,
then g ∈ clH(X) if and only if, for all ϕ : G→ H ∈ H, gϕ ∈ Xϕ. We note that since
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the pro-H topology is pseudometric, one has that clH(X ∪ Y ) = clH(X) ∪ clH(Y ).
It is also not difficult to prove the following standard proposition which we leave
as an exercise.

Proposition 5.6. Let G be a group, H a subgroup, and H a pseudovariety of
groups. Then clH(H) =

⋂
open K⊇H K.

From now on, we take H to be a fixed pseudovariety of groups. Let A be a
finite set and consider FG(A) in the pro-H topology. If FG(A) is not residually in
H, then clH({1}) is a normal, in fact, verbal subgroup of FG(A) and FGH(A) =
FG(A)/clH({1}) is the relatively free group in the variety of groups generated by H.
Indeed, note that, by definition of the pro-H topology, clH({1}) consists precisely
of those words w ∈ FG(A) which map to 1 in every group in H.

Let M be a finite A-generated monoid (or inverse monoid). We define a relational
morphism αH : M −→◦ FG(A) as follows. Give M the discrete topology, FG(A)
the pro-H topology, and M × FG(A) the product topology. Let

αH = clH(〈([a]M , [a]FG(A))〉)
(where if M is an inverse monoid, we take the subinverse monoid generated by the
above pairs). We note that if

Lm = {u ∈ A∗|[u]M = m},
then mαH = clH(Lm) for M a monoid. For M an inverse monoid,

mαH = clH({[w]FG(A)|w ∈ Ã∗, [w]M = m}).

Proposition 5.7. Let M be a finite A-generated monoid (or inverse monoid). The
m ∈ KH(M) if and only if m ∈ 1α−1

H .

Proof. We just handle the monoid case, the inverse monoid case being identical. Let
G ∈ H be an A-generated group such that, for the canonical relational morphism
µ : M −→◦ G, m ∈ KH(M) if and only if m ∈ 1µ−1. Let ϕ : FG(A) → G be the
canonical surmorphism and N = kerϕ. Suppose now that 1 ∈ clH(Lm). Then,
since N is an open subgroup, N ∩ Lm is non-empty, so there exists w ∈ A∗ such
that [w]M = m and [w]G = 1. Thus m ∈ KH(M).

Conversely, if m ∈ KH(M), then, for any open normal subgroup N ∈ FG(A),
we see that Lm∩N is non-empty by considering the canonical relational morphism
of M with FG(A)/N ∈ H. So 1 ∈ clH(Lm).

Corollary 5.8. Let (I(Γ), q0) be an inverse A-automaton and ϕ : Ã∗ → FG(A)
the natural projection. Let Lp,q = {w ∈ Ã∗|pw = q}. Then p ∼H q if and only if
1 ∈ clH(Lp,qϕ) in the pro-H topology.

Proof. Let I = M(I(Γ)). If there exists m ∈ KH(I) such that pm = q, then, by
Proposition 5.7, 1 ∈ clH(Lp,qϕ). For the converse, let G ∈ H be A-generated such
that m ∈ KH(I) if and only if, for the canonical relational morphism µ : I −→◦ G,
m ∈ 1µ−1. Then, since 1 ∈ clH(Lp,qϕ), it follows that there exists w ∈ Lp.q such
that [w]G = 1. Then m = [w]I ∈ KH(I) and pm = q, so p ∼H q.

We now calculate clH(Lp,q).

Lemma 5.9. Let (I(Γ), q0) be an inverse A-automaton, p, q ∈ V (Γ), wp a reduced
word reading from q0 to p, and wq a reduced word reading from q0 to q. Let Lp,q =
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{w ∈ Ã∗|pw = q} and ϕ : Ã∗ → FG(A) the canonical projection. Then Lp,qϕ =
w−1
p π1(Γ, q0)wq.

Proof. Clearly, w−1
p π1(Γ, q0)wq ⊆ Lp,qϕ. Conversely, if w ∈ Lp,q, then wpww

−1
q is

a loop at q0. It follows that [w]FG(A) ∈ w−1
p π1(Γ, q0)wq.

Since translation is a homeomorphism, we get the following.

Lemma 5.10. Let G be a group in the pro-H topology, X ⊆ G, and g ∈ G. Then
clH(Xg) = clH(X)g and clH(gX) = g(clH(X)).

Thus from Lemma 5.9, we obtain the following.

Corollary 5.11. Let (I(Γ), q0) be an inverse A-automaton, p, q ∈ V (Γ), wp a
reduced word reading from q0 to p, and wq a reduced word reading from q0 to q.
Then

clH(Lp,qϕ) = w−1
p clH(π1(Γ, q0))wq .

Now we can obtain a characterization of the least H-extendible congruence for
an inverse automaton. This result was obtained in the special case of a reduced
automaton in [30].

Theorem 5.12. Let (I(Γ), q0) be an inverse A-automaton, p, q ∈ V (Γ), wp a re-
duced word reading from q0 to p, and wq a reduced word reading from q0 to q. Then
p ∼H q if and only if wpw−1

q ∈ clH(π1(Γ, q0)).

Proof. By Corollary 5.8, p ∼H q if and only if 1 ∈ clH(Lp,qϕ). So, by the above
corollary, 1 ∈ clH(Lp,qϕ) if and only if wpw−1

q ∈ clH(π1(Γ, q0)).

We are thus led to the following result of [30].

Theorem 5.13. Let H be a pseudovariety of groups. Suppose that there is an
algorithm, for each finite set A, to determine, given as input a finite set Y of
reduced words over A, membership in clH(〈Y 〉) in the pro-H topology. Then the
membership problem for the pseudovariety of inverse monoids Sl©m H is decidable
in only polynomially worse time.

Proof. If I is a finite A-generated inverse monoid, then it is well known that the
automaton (SchA(X), eX) for each R-class X of I (with corresponding idempo-
tent eX) can be constructed in polynomial time. By Proposition 5.1, I ∈ Sl©m H
if and only if M(I(SchA(X))) ∈ Sl©m H for every R-class X . But this occurs
if and only if each such I(SchA(X)) is H-extendible. By Theorem 5.12, this
can be checked in only polynomial worse time than the membership problem for
clH(π1(SchA(X), eX)). But we can find a finite basis for π1(SchA(X), eX) in poly-
nomial time so the result follows.

Now one can ask: What does H-extendibility mean in terms of the fundamental
group of an inverse automaton? The answer is simple [30].

Proposition 5.14. Let H be a pseudovariety of groups and suppose that (I(Γ), v0)
is an H-extendible inverse A-automaton. Then π1(Γ, v0) is a free factor in an H-
open subgroup K ⊆ FG(A).

Proof. Let ∆ be a finite cover with Γ ⊆ ∆ and M(∆) in H. Then it is easy to see
that ∆ is the coset graph of K = π1(∆, v0), so M(∆) = FG(A)/KFG(A). Hence K
is open by Proposition 5.5. Now any maximal subtree of Γ can be extended to one
of ∆, so there is a basis for K containing a basis for π1(Γ, v0).
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The following result can be found in [30, 38]. A non-trivial pseudovariety H of
groups is said to be extension-closed if H ∗ H = H, or, equivalently, 1 → N →
G→ H → 1 an exact sequence of groups with N,H ∈ H, implies that G ∈ H. For
instance, the pseudovarieties G, Gp, and Gsol are extension-closed, while Gnil is
not.

Proposition 5.15. Let H be an extension-closed pseudovariety. Suppose H is a
subgroup of FG(A) which is a free factor in an open subgroup K, then H is finitely
generated and closed in the pro-H topology.

It should be pointed out that, for any pseudovariety H of groups, if H ⊆ FG(A)
is a finitely generated closed subgroup, then it is a free factor in an open subgroup.
To show this, we construct, following the algorithm of Stallings [40], a finite inverse
automaton with H as its fundamental group. Then, following [30], we show that
this automaton is H-extendible; the claim will then follow. Let Y be a finite set of
reduced words such that H = 〈Y 〉. Form an A-graph ∆ as follows. First, for each
element w of Y , take a circle subdivided into |w| parts reading the word w from
some chosen base point; then identify all these base points. The resulting graph
∆ is an A-graph which is a wedge of subdivided circles each reading an element of
Y . Let w0 be the base point. One then has that π1(∆, w0) is a free group on |Y |
generators and if ` : (∆, w0)→ (BA, 1) is the labeling, then π1(∆, w0)` = 〈Y 〉. Let
Γ = I(∆) and v0 be the equivalence class of w0. Since Γ is obtained by factoring
` through a sequence of folds, and folds are surjective on fundamental groups, it
follows that π1(Γ, v0) = π1(∆, w0)` = 〈Y 〉. Now suppose p, q ∈ V (Γ) with p ∼H q.
Let wp and wq be reduced words reading from v0 to p and q respectively. Then,
since H = clH(H) by hypothesis, wpw−1

q ∈ clH(H) implies wpw−1
q ∈ H , and hence

p = q. We thus have the following proposition of [30].

Proposition 5.16. Let H be a pseudovariety of groups and H ⊆ FG(A) be a
finitely generated subgroup, closed in the pro-H topology. Then H is a free factor
of an open subgroup K.

Since any inverse automaton is G-extendible, we recover some old theorems of
Hall [22, 23, 40].

Theorem 5.17. Let H ⊆ FG(A) be finitely generated. Then H is a free factor in
a G-open subgroup and hence is closed in the pro-G topology.

A related result of Ribes and Zalesskĭı, see [30, 38], is the following.

Proposition 5.18. Let H be an extension-closed pseudovariety of groups and H ⊆
FG(A) be a finitely generated subgroup. Then rank(clH(H)) ≤ rank(H). In par-
ticular, clH(H) is finitely generated.

The following is a deep result of Ribes and Zalesskĭı [37, 38].

Theorem 5.19. Let H be an extension-closed pseudovariety of groups and let
H1, . . . , Hn be finitely generated, closed subgroups of FG(A) in the pro-H topol-
ogy. Then H1 · · ·Hn is closed.

We end this subsection by remarking that in [30] algorithms are given to compute
membership in the H-closure of a finitely generated subgroup of a free group for
the pseudovarieties Gp of p-groups and Gnil of nilpotent groups, while in [42]
the author solves this problem for pseudovarieties with a decidable membership
problem, consisting entirely of abelian groups.
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5.3. Some Connections to Decidability Results from Group Theory. We
now present an argument for (a generalization of) an unpublished result of Margo-
lis [26]. The proof is based on the arguments used by Rhodes [35] and the author
(with Rhodes) [36] for a monoid analog, but is of a geometric nature, using argu-
ments involving covers.

Let w ∈ Ã∗ be a reduced word. A group G is said to satisfy the group identity
(w = 1), written G |= (w = 1), if, for every function ϕ : A→ G, wϕ̃ = 1 where ϕ̃ is
the unique extension of ϕ to FG(A). More generally, if E is a set of group identities,
then G |= E (read G satisfies E) if, for each identity (w = 1) ∈ E, G |= (w = 1).
If H is a pseudovariety of groups and E a set of group identities, we say H |= E if,
for every G ∈ H, G |= E. Let w ∈ Ã∗ be a reduced word. Then an easy exercise
shows that H |= (w = 1) if and only if w ∈ clH({1}). Let EH be the set of all group
identities of the form (w = 1) satisfied by H with w a reduced word over a fixed,
countable, recursively enumerable set; we call EH the equational theory of H. We
say H has decidable equational theory if EH is recursive. Hence if, for each finite
set A, there is an algorithm to compute membership in clH(〈Y 〉) ⊆ FG(A), given a
finite set Y of reduced words over Ã, then the equational theory of H is decidable.
Our next goal is to show that if the pseudovariety of inverse monoids Sl©m H is
decidable, then so is the equational theory of H.

First, we show a connection between embeddings of inverse automata in covers
and the word problem for groups. We start by discussing the word problem for
FIM(A). Let w ∈ Ã∗. Then the Munn tree of w, Γ(w), is the subgraph of
ΓA(FG(A)) used in the run of w from 1. The result is then that [w]FIM(A) =
[w′]FIM(A) if and only if [w]FG(A) = [w′]FG(A) and Γ(w) = Γ(w′). Given a reduced
word w ∈ Ã∗, we then consider the inverse A-automaton (I(Γ(w)), 1). Define
Test(w) to be the set of all inverse automaton quotients of (I(Γ(w)), 1) such that
the states of 1 and w do not get identified. Then we have the following simple
lemma.

Lemma 5.20. Let G be an A-generated (perhaps infinite) group and w ∈ Ã∗ a
reduced word. Then [w]G = 1 if and only if no element of Test(w) can be embedded
in ΓA(G).

Proof. We first note that ΓA(G) is a regular covering of BA: a word v ∈ Ã reads a
loop at one vertex of G if and only if it reads a loop at every vertex. So suppose
(I(Γ), v0) ∈ Test(w) is such that Γ ⊆ ΓA(G). Then, since v0w 6= v0 by definition of
Test(w), w does not read a loop at any vertex of ΓA(G), so [w]G = [1]Gw 6= [1]G.

Suppose, on the other hand, that [w]G 6= 1. Since Γ(w) is a tree, π1(Γ(w), 1) =
1. Then, since ΓA(G) is a cover, we obtain, by Theorem 3.3, a unique inverse
automaton morphism ϕ : (I(Γ(w)), 1) → (ΓA(G), [1]G). Let ∼ϕ be the associated
inverse automaton congruence on (I(Γ(w)), 1). Then, since [w]G 6= [1]G, 1ϕ 6= wϕ.
Hence (I(Γ(w)), 1)/∼ϕ ∈ Test(w) which embeds in ΓA(G).

Theorem 5.21. It is undecidable whether, given as input a finite inverse A-auto-
maton (I(Γ), q0) over some finite set A and a finite presentation of a group G
generated by A, whether (I(Γ), q0) can be embedded in the Cayley graph ΓA(G).

Proof. The above lemma shows that the decidability of the problem in question
would imply the decidability of the word problem which is well known to be unde-
cidable.
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Now we obtain the following unpublished result of Margolis (actually, my under-
standing is that he proved the result for equational pseudovarieties).

Theorem 5.22. Let H be a pseudovariety of groups. Then if the pseudovariety
of inverse monoids Sl©m H has decidable membership problem, H has decidable
equational theory.

Proof. Let w ∈ Ã∗ be a reduced word. We claim H |= (w = 1) if and only if no
element of Test(w) has transition monoid in Sl©m H. The result follows from this.
Suppose first that some element (I(Γ), v0) of Test(w) has M(I(Γ)) ∈ Sl©m H and
that H |= (w = 1). Then (I(Γ), v0) is H-extendible and so there is a cover ∆ with
M(∆) ∈ H and Γ ⊆ ∆. But then [w]M(∆) = 1 whence w acts a partial identity on
V (Γ). But since 1w = w in Γ(w), it follows v0w is the equivalence class in V (Γ) of
w, and so 1 and w are equivalent in V (Γ), contradicting that (I(Γ), v0) ∈ Test(w).

Suppose now that H does not satisfy (w = 1). Then there is a group G ∈ H for
which [w]G 6= 1. Hence, by Lemma 5.20, some element (Γ, v0) ∈ Test(w) can be
embedded in ΓA(G). So M(I(Γ)) ∈ H.

As far as the author knows, it is open as to whether there exists a pseudovariety
H of groups with decidable membership problem but whose equational theory is
undecidable. In fact, we believe the following special case is still open. Let A be a
finite set and E a finite set of group identities of the form (w = 1) with w a reduced
word in Ã∗. Then the set of all finite groups satisfying E forms a pseudovariety
[[E]] which evidently has decidable membership. The identity problem for groups
asks whether, for every finite set of group identities E, there is an algorithm to
determine, given a reduced word w in variables A as input, whether G |= E implies
G |= (w = 1) for any group G. This is known to be undecidable; see [1] for a history
and references. The finite identity problem for groups asks the same question, but
the groupsG are restricted to be finite. Equivalently, this question asks whether the
equational theory of [[E]] is decidable for every finite set E of identities. We believe
that this question remains open, although the analogous question for semigroups
is undecidable [1]. The above theorem shows that if there is a finite set of group
identities E for which one cannot decide if (w = 1) is a consequence in finite
groups for all reduced words w, then Sl©m [[E]] has an undecidable membership
problem as a pseudovariety of inverse monoids (and hence also as a pseudovariety
of monoids). We shall see later that several other algorithmic problems in which
we are interested are equivalent to the membership problem for Sl©m H. We do
note, however, that the undecidability of the identity problem for groups implies,
by the above arguments, that there exists a variety of groups H for which one can
decide membership for finite groups, but for which one cannot decide membership
for finite inverse monoids in the inverse monoid variety Sl©m H (defined analogously
to the pseudovariety).

6. Geometric Automata Theory

In this section, we apply our ideas to automata in general. The key idea is to
study the strongly connected components of an automaton.

6.1. Strongly Connected Automata. We have so far shown that, for any pseu-
dovariety H of groups, there is a functor (Γ, v0) 7→ IH(Γ, v0) from the category of
non-deterministic A-automata to the category of H-extendible inverse A-automata
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obtained by first folding edges to arrive at I(Γ, v0) and then imposing ∼H. We wish
to study this functor algebraically when restricted to the subcategory of strongly
connected automata. Note that an automaton quotient of a strongly connected au-
tomaton is strongly connected, so these functors take strongly connected automata
to strongly connected automata.

We first observe that any finite monoid can be made into a unary monoid in a
natural way. If M is a finite monoid and m ∈M , then there is a unique idempotent
e which is a positive power of m. We denote this idempotent by mω. There is
also a unique element r ∈ 〈m〉 which is regular and such that mr = mω. We
call this element mω−1 (note: mω−1m = mω = mmω−1). One can verify that
if n ≥ |M |, then mω = mn! and mω−1 = m2n!−1. Also, one can verify that
if ϕ : M → N is a homomorphism, then mω−1ϕ = (mϕ)ω−1. So if we treat
()ω−1 as a unary operation, all homomorphisms of finite monoids are unary monoid
homomorphisms. It then follows that any relational morphism µ : M −→◦ N of
finite monoids is automatically a relational morphism of unary monoids; that is, if
(m,n) ∈ µ, then (mω−1, nω−1) = (m,n)ω−1 ∈ µ. Let Mω−1 denote the variety of
unary monoids generated by finite monoids with this unary operation. Then, for
each set A, we use Fω−1(A) for the free unary monoid in this variety. Note that
if G is a group, then G ∈ Mω−1 and ()ω−1 is just the usual inverse. This follows
from noting that the free group on any generating set is residually finite and that
the ()ω−1 operator is just the ordinary inverse for a finite group. Hence there is
a natural projection ρ : Fω−1(A) → FG(A). For any element m of a monoid in
Mω−1, we define mω = mω−1m. Then the identities (xω)n = xω (n ≥ 1), (xω)ω,
and xxω−1 = xω hold in Mω−1.

This above discussion concerns a special case of the notion of an implicit opera-
tion; see [2, 7] for the relationship between implicit operations, profinite monoids,
and pseudovarieties. Since we shall not make use of any other implicit operations
in this paper, we avoid developing the notion. We do note, however, that many
of the pseudovarieties which we have been considering are definable by a set of
unary monoid identities, meaning that a finite monoid, viewed as a unary monoid
via the ()ω−1-operation, is in the pseudovariety if and only if it satisfies the unary
monoid identities in this set. For instance, G = [[xω = 1]], R = [[(xy)ωx = (xy)ω]],
L = [[x(yx)ω = (yx)ω ]], and J = [[(xy)ωx = (xy)ω , x(yx)ω = (yx)ω ]]. If (Γ, v0)
is an A-automaton and p a state, then, for any term w ∈ Fω−1(A), we define
pw = p[w]M(Γ).

We now study the relationship between runs of words from Ã∗ in I(Γ) and terms
of Fω−1(A). We say an element w ∈ Fω−1(A) has height at most one if it can be
represented by a term with no nested occurrences of ()ω−1. For instance, (ba)ω−1b
has height at most one.

Lemma 6.1. Let (Γ, v0) be a strongly connected A-automaton, a ∈ A, and suppose
pa = q. Then there exists t ∈ A∗ such that q(ta)ω−1t = p.

Proof. Since Γ is strongly connected, there exists t ∈ A∗ such that qt = p. It is
then easy to see that q(ta)ω−1t = p.

This lemma says that traversing an edge labeled by a in the reverse direction
can be accomplished by a term of Fω−1(A) which maps to a−1 in FG(A). Hence,
given any run in Γ of a word in Ã∗, we can, by replacing each reverse transition
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with an appropriate (ω − 1)-term, obtain an (ω − 1)-term of height at most one
with the same effect.

Lemma 6.2. Let (Γ, v0) be a strongly connected A-automaton, w ∈ Ã∗, and sup-
pose that there is a run of w from p to q. Then there exists w ∈ Fω−1(A) of height
at most one such that pw = q and [w]FG(A) = [w]FG(A).

Proof. We induct on |w|. If |w| = 0, then w = 1 clearly works. Suppose |w| = n.
Then if w = vã, ã ∈ Ã, we see by induction that there exists v ∈ Fω−1(A) of height
at most one with pv = q′, the vertex reached on reading v in the run of w from
p, and [v]FG(A) = [v]FG(A). If ã = a ∈ A, then w = va is as desired. If ã = a−1,
with a ∈ A, then, since qa = q′, there exists, by Lemma 6.1, t ∈ A∗ such that
q′(ta)ω−1t = q. Then the term w = v(ta)ω−1t is as desired.

Proposition 6.3. Let (Γ, v0) be a strongly connected A-automaton and w ∈ Ã∗.
We use [p] for the equivalence class of a vertex p in I(Γ, v0). Suppose p, q ∈ V (Γ)
are such that [p]w = [q]. Then there exists w ∈ Fω−1(A) of height at most one such
that pw = q and [w]FG(A) = [w]FG(A).

Proof. Suppose w = a1 · · · an with the ai ∈ Ã. Then, by definition of I(Γ), there
exist ui ∈ Ã∗ (i = 0, . . . , n) such that u0a1u1a2 · · ·un−1anun has a run from p to
q in Γ and [ui]FG(A) = 1 for all i. Thus, by the above lemma, there is a term
w ∈ Fω−1(A) of height at most one such that pw = q and

[w]FG(A) = [u0a1 · · ·anun]FG(A) = [w]FG(A).

We remark that if M is a finite A-generated monoid, m ∈M , and w ∈ Fω−1(A)
such that [w]M = m and [w]FG(A) = 1, then m ∈ KG(M) (consider a relational
morphism as per Proposition 4.3). The Rhodes type II conjecture is equivalent to
the converse; see [5]. We then have the following corollary (compare to [48]).

Corollary 6.4. Let (Γ, v0) be a strongly connected A-automaton, then [p] = [q] in
(I(Γ), v0) if and only if there exists m ∈ KG(M(Γ)) such that pm = q.

Proof. In light of the above remark, Proposition 6.3 shows that the condition is
necessary. For sufficiency, consider any embedding of I(Γ) in a finite cover ∆.
Then, since m ∈ KG, there exists u ∈ A∗ such that [u]M = m and [u]M(∆) = 1.
But [p]u = [q] whence [p] = [q].

Our next goal is to characterize in a similar manner the congruence on a strongly
connected A-automaton (Γ, v0) associated to taking IH(Γ, v0). If V is a pseudova-
riety of monoids, we denote by EV the pseudovariety consisting of finite monoids
M such that 〈E(M)〉 ∈ V.

Proposition 6.5. Let (Γ, v0) be a strongly connected A-automaton. Then the fol-
lowing are equivalent:

1. The A-graph Γ is inverse;
2. M(Γ) ∈ Sl©m G;
3. E(M(Γ)) ∈ Sl;
4. M(Γ) ∈ ER.
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Proof. Let M = M(Γ). If Γ is an inverse A-graph, then we can embed it in a finite
cover ∆. Hence, by considering the canonical relational morphism with M(∆), we
see that M ∈ Sl©m G. Since E(M) ⊆ KG(M), if M ∈ Sl©m G, then E(M) ∈ Sl.
Since Sl ⊆ R, we are left with showing that if M ∈ ER, then Γ is an inverse
A-graph. Since Γ is deterministic, we need to show that if pa = q and p′a = q,
then p = p′. By Lemma 6.1, there exist t, t′ ∈ A∗ such that q(ta)ω−1t = p and
q(t′a)ω−1t′ = p′. Now

p(at′)ω = p(at′)(at′)ω−1 = q(t′a)ω−1t′ = p′.

Similarly, p′(at)ω = p. Let e1 = (at′)ω and e2 = (at)ω. Then p(e1e2)ωe1 = p′

and p(e1e2)ω = p. Since (e1e2)ω R (e1e2)ωe1 in 〈E(M)〉, they are equal and hence
p = p′. The result follows.

To describe IH(Γ, v0) in terms ofM(Γ), we must first understand the relationship
between KH(M(Γ)) and KH(M(I(Γ))).

Lemma 6.6. Let (Γ, v0) be a strongly connected A-automaton. Then, again using
[p] for the class of a state in I(Γ, v0), there exists m ∈ KH(M(I(Γ))) with [p]m = [q]
if and only if there exists r ∈ KH(M(Γ)) with pr = q.

Proof. We let M = M(Γ) and I = M(I(Γ)). Suppose [p]m = [q] with m ∈ KH(I).
Let G ∈ H be an A-generated group such that r ∈ KH(M) if and if r ∈ 1µ−1

under the canonical relational morphism µ : M −→◦ G. Then, since m ∈ KH(I),
there exists w ∈ Ã∗ such that [w]I = m and [w]G = 1. Hence [p]w = [q], and so,
by Proposition 6.3, there exists w ∈ Fω−1(A) such that pw = q and [w]FG(A) =
[w]FG(A). Therefore, [w]G = [w]G = 1, and r = [w]M ∈ KH(M) with pr = q.

Conversely, suppose such an r exists. Let G ∈ H be an A-generated group
such that m ∈ KH(I) if and only if there exists w ∈ Ã∗ such that [w]I = m and
[w]G = 1 (that is, m relates to 1 under the canonical relational morphism). Since
r ∈ KH(M), there exists u ∈ A∗ with [u]M = r and [u]G = 1. But then pu = q, so
[p]u = [q], and m = [u]I ∈ KH(I) as desired.

Proposition 6.7. Let (Γ, v0) be a strongly connected A-automaton. Then the fol-
lowing are equivalent:

1. Γ is an inverse A-graph and M(I(Γ)) ∈ Sl©m H;
2. M(Γ) ∈ Sl©m H;
3. M(Γ) ∈ R©m H.

Proof. Let M = M(Γ) and I = M(I(Γ)). If Γ is an inverse A-graph, then M ⊆ I
and so if, in addition, I ∈ Sl©m H, then M is as well. Clearly Sl©m H ⊆ R©m H.
Suppose M ∈ R©m H. Then, since E(M) ⊆ KH(M), M ∈ ER whence Γ is an
inverse A-graph by Proposition 6.5. Suppose p ∼H q in I(Γ). Then there exists
m1,m2 ∈ KH(I) such that pm1 = q and qm2 = p. But then, by the above lemma,
there exist r1, r2 ∈ KH(M) such that pr1 = q and qr2 = p. Now (r1r2)ωr1 and
(r1r2)ω are R-related elements of KH(M) and hence equal. Thus

p = p(r1r2)ω = p(r1r2)ωr1 = q.

We can therefore conclude that I(Γ, v0) is H-extendible, and so I ∈ Sl©m H.

We note that the hypothesis that Γ is strongly connected is needed in the above
proposition. For instance, let Gcom be the pseudovariety of all finite abelian groups,

M = 〈x, y|x2 = y2 = xyx = yxy = 0〉,
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and Γ be the subgraph of Γ{x,y}(M) obtained by removing the vertex 0,

1

x

y

xy

yx

x

y

y

x
Γ =

.

Then Γ is an inverse A-graph, M(Γ) = M ∈ Sl©m Gcom (consider the relational
morphism with Z/3Z induced by sending x, y to 1), but I(Γ) is clearly not Gcom-
extendible.

We now look at the special case where H = 1, the trivial pseudovariety. Let
K = [[xωy = xω ]] be the pseudovariety of all finite semigroups satisfying the above
unary semigroup identity.

Proposition 6.8. Let (Γ, v0) be a strongly connected A-automaton. Then the fol-
lowing are equivalent:

1. Γ has one vertex;
2. M(Γ) ∈ Sl;
3. M(Γ) ∈ K©m Sl.

Proof. Let M = M(Γ). If Γ has one vertex, then I(Γ) is 1-extendible and so
M ∈ Sl. Clearly Sl ⊆ K©m Sl. Suppose M ∈ K©m Sl. Let q ∈ V (Γ). Since (Γ, v0)
is strongly connected, there exist t, u ∈ A∗ such that v0t = q, qu = v0. Then, since
in any semilattice (tu)ω = (tu)ωt, [(tu)ω]M [(tu)ωt]M = [(tu)ω]M . So

q = v0(tu)ω(tu)ωt = v0(tu)ω = v0

whence Γ has one vertex.

Now for our main theorem of this subsection.

Theorem 6.9. Let (Γ, v0) be a strongly connected A-automaton. Then the least
congruence ∼H on (Γ, v0) with quotient having transition monoid in Sl ©m H is
the congruence associated to the quotient IH(Γ, v0). This congruence is given by
p ∼H q if and only if there exists r ∈ KH(M(Γ)) such that pr = q.

Proof. Let M = M(Γ) and I = M(I(Γ)). By Proposition 6.7, it is clear that
the least such congruence is the one associated to IH(Γ, v0). We use [p] for the
equivalence class of a state p ∈ V (Γ) in I(Γ). Then [p] ∼H [q] if and only if there
exists m ∈ KH(I) such that [p]m = [q]. But, by Lemma 6.6, this occurs if and only
if there exists r ∈ KH(M) such that pr = q. The result follows.

6.2. A Topological Viewpoint. Let L ⊆ A∗. Then L is called a rational or
recognizable language if there is an A-automaton (Γ, v0) and a subset F ⊆ V (Γ),
called the set of final states, such that

L = {w ∈ A∗|v0w ∈ F}.

We say, in this case, that (Γ, v0) recognizes L. If (Γ, v0) is any automaton and
p, q ∈ V (Γ), we let

Lp,q = {w ∈ A∗|pw = q}.
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This language is evidently rational. We call a rational language bonded if there
exists a strongly connected A-automaton which recognizes it. The following propo-
sition follows from Theorem 6.9 exactly as the analogous result followed for inverse
automata.

Proposition 6.10. Let (Γ, v0) be a strongly connected A-automaton and H a pseu-
dovariety of groups. Let p, q ∈ V (Γ). Then p ∼H q if and only if 1 ∈ clH(Lp,q) ⊆
FG(A).

We now give a simple description, for a bonded language L, of its pro-G closure.
In particular, we shall see that given a strongly connected A-automaton recognizing
L, one can calculate clG(L) in rapid polynomial time (in the size of the automaton).
First note that if F ⊆ V (Γ) is the set of final states, then L =

⋃
q∈F Lv0,q whence

clG(L) =
⋃
q∈F clG(Lv0,q). We are thus reduced to the case of a bonded language

of the form Lv0,q. We call such a language a simple bonded language. Later, we
shall see that any rational language can be built up from singletons and simple
bonded languages.

First, note the following fact. Let w ∈ Fω−1(A). Recall that ρ : Fω−1(A) →
FG(A) denotes the canonical surjection. Let wn ∈ A∗ be obtained by replacing all
the ω−1’s in w by 2n!−1. Then in any finite monoid (with the discrete topology),
this sequence converges to [w]M . By considering the case that M is a group, we
see that {wn} converges to [w]FG(A) in the pro-G topology.

Theorem 6.11. Let (Γ, v0) be a strongly connected A-automaton and q ∈ V (Γ).
Then

clG(Lv0,q) = π1(I(Γ), [v0])u

where [v0] is the equivalence class of v0 in V (I(Γ)) and u ∈ Ã∗ is any reduced word
with [v0]u = [q]. Furthermore, if

L′v0,q = {w ∈ Fω−1(A)|v0w = q},
then clG(Lv0,q) = L′v0,qρ.

Proof. Let M = M(Γ) and H = π1(I(Γ), v0). Suppose first that w ∈ L′v0,q, and
let {wn} be the sequence associated to w as above. For n ≥ |M |, [wn]M = [w]M ,
so wn ∈ Lv0,q for n large enough. But {wn} converges to [w]FG(A), so L′v0,qρ ⊆
clG(Lv0,q). Suppose w is a reduced word in clG(Lv0,q). Then, since FG(A) is metric
in the pro-G topology, there exists a sequence {wn} of words in Lv0,q converging to
w. Now since v0wn = q, [v0]wn = [q] in I(Γ) whence, for all n, wnu−1 ∈ H . But H
is a finitely generated subgroup, hence closed by Hall’s Theorem [23]. Thus wu−1 ∈
H , and so w ∈ Hu as desired. Suppose that w ∈ Hu. Then [v0]w = [v0]u = [q].
Hence, by Proposition 6.3, there is a term w ∈ Fω−1(A) of height at most one such
that v0w = q and [w]FG(A) = w. The results follows.

Some comments are in order. First observe that if L′′v0,q is the collection of
(ω − 1)-terms in L′v0,q of height at most one, then the above proof shows that
clG(Lv0,q) = L′′v0,qρ. We note that, in particular,

π1(I(Γ), v0) = L′v0,v0
ρ = clG(Lv0,v0).

Also observe that if we make I(Γ, v0) an Ã-automaton in the obvious way, then the
above theorem says that clG(Lv,q) is precisely the set of reduced words in L[v0],[q]
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and, moreover, the reduction of any word in L[v0],[q] is in the closure. More generally,
if F is any set of final states and L the associated rational language, then clG(L)
consists of those reduced words recognized by I(Γ, v0), viewed as an Ã-automaton,
with set of final states F ′ = {[q]|q ∈ F}. Moreover, the reduction of any accepted
word is in the closure. Since I(Γ, v0) is constructible in rapid polynomial time,
the membership problem for the pro-G closure of a bonded rational language is
computable in rapid polynomial time.

If X ⊆ FG(A) and H,H′ are pseudovarieties of groups with H ⊆ H′, then it
easily follows that clH′(X) ⊆ clH(X) whence clH(X) = clH(clH′(X)). We then
have the following corollary.

Corollary 6.12. Suppose that (Γ, v0) is a strongly connected A-automaton, q ∈
V (Γ), and H is a pseudovariety of groups. Then

clH(Lv0,q) = clH(π1(I(Γ), [v0]))u

where [v0] is the equivalence class of v0 in V (I(Γ)) and u ∈ Ã∗ is any reduced word
with [v0]u = [q].

Proof. We have clH(Lv0,q) = clH(clG(Lv0,q)) = clH(π1(I(Γ), [v0]))u.

Thus if we can compute membership in the closure of a finitely generated sub-
group of FG(A) in the pro-H topology, as we can for Gp and Gnil, then we can
compute the closure of a bonded rational language in that topology. We note the
following very important corollary.

Corollary 6.13. Let H be an extension-closed pseudovariety of groups, (Γ, v0) a
strongly connected A-automaton such that I(Γ, v0) is H-extendible, and L a lan-
guage recognized by Γ. Then clH(L) = clG(L).

Proof. Let H = π1(I(Γ), [v0]). It suffices to consider a language of the form Lv0,q.
Since I(Γ, v0) is H-extendible, H is a free factor in an open subgroup in the pro-
H topology whence, since H is extension-closed, H is a closed subgroup. But
clH(Lv0,q) = clH(H)u where u ∈ Ã∗ is a reduced word with [v0]u = [q]. So
clH(Lv0,q) = Hu = clG(Lv0,q).

Our next goal is to understand the relationship between the fundamental group
of IH(Γ, v0) and the closures of rational languages recognized by (Γ, v0).

Proposition 6.14. Let (Γ, v0) be a strongly connected A-automaton, H be a pseu-
dovariety of groups, H = π1(I(Γ), [v0]), and H̃ = π1(IH(Γ), [v0]H). Then H ⊆
H̃ ⊆ clH(H).

Proof. Since there is an automaton morphism from I(Γ, v0) to IH(Γ, v0), by The-
orem 3.3, H ⊆ H̃ . Since clH(H) =

⋂
open K⊇H K, to finish the proof it suffices to

show that if K is an open subgroup containing H , then H̃ ⊆ K. Let ∆ be the
covering space of BA associated to K. Since K has finite index, this covering space
is finite-sheeted (in fact, it is just the coset graph of FG(A)/K). Since K is open,
M(∆) ∈ H. Now since H ⊆ K and ∆ is a cover, by Theorem 3.3, there is an
automaton morphism ϕ : (Γ, v0) → ∆. Since ∆ is trivially H-extendible, by the
universal property of IH(Γ, v0), ϕ factors through IH(Γ, v0), hence H̃ ⊆ K.

Corollary 6.15. Let H be an extension-closed pseudovariety of groups, (Γ, v0) be
a strongly connected A-automaton, H = π1(I(Γ), [v0]), and H̃ = π1(IH(Γ), [v0]H).
Then clH(H) = H̃.
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Proof. Since H is extension-closed and IH(Γ, v0) is H-extendible, H̃ is closed by
Proposition 5.15. Hence, by the above proposition, H̃ = clH(H).

This corollary shows that if H is extension-closed and there is an algorithm
which, given a finite set of reduced words Y , determines membership in clH(〈Y 〉),
then one can effectively obtain a finite generating set for clH(〈Y 〉). Just construct,
by the Stallings algorithm, an inverse automaton (Γ, v0) with fundamental group
〈Y 〉. Then, by hypothesis, one can effectively construct IH(Γ, v0) whose funda-
mental group, by the above corollary, is the closure. One can then find a finite
generating set. This argument also shows that, in the extension-closed setting, the
membership problem for Sl©m H is equivalent to the existence of such an algo-
rithm (since if we can decide membership in Sl©m H, we can construct effectively
IH(Γ, v0)).

We now obtain an alternate characterization of the H-closure of a bonded ratio-
nal language.

Proposition 6.16. Let (Γ, v0) be a strongly connected A-automaton, q ∈ V (Γ),
and H a pseudovariety of groups. Then

clH(Lv0,q) = clH(π1(IH(Γ), [v0]H))u

where [v0]H is the equivalence class of v0 in V (IH(Γ)) and u ∈ Ã∗ is any reduced
word with [v0]Hu = [q]H.

Proof. Let H = π1(I(Γ), [v0]) and H̃ = π1(IH(Γ), [v0]H). Then Proposition 6.14
shows that clH(H) = clH(H̃). So, by Corollary 6.12, it suffices to show that if
u′ ∈ Ã∗ such that [v0]u′ = [q], then u′u−1 ∈ clH(H). But [v0]u′ = [q] implies that
[v0]Hu′ = [q]H, and hence u′u−1 ∈ H̃ ⊆ clH(H).

In the case that H is extension-closed, and so H̃ = clH(H), we see that if a
strongly connected automaton (Γ, v0) recognizes a language L via final states F ,
then the set of reduced words recognized by IH(Γ, v0), viewed as an Ã∗-automaton,
with final states F ′ = {[q]H|q ∈ F} is clH(L), and the reduction of any word
recognized by this automaton is in the H-closure.

6.3. Some Remarks on Non-Deterministic Automata. Many of the results of
the previous subsection generalize with little change to non-deterministic automata.
Let (Γ, v0) be a non-deterministic A-automaton and F ⊆ V (Γ). We say that L ⊆ A∗
is recognized by (Γ, v0) with final states F if

L = {w ∈ A∗|w has a run from v0 to q for some q ∈ F}.

It is well known [14] that any language recognized by a non-deterministic automaton
is rational. We now extend the definition of bonded and simple bonded languages
to include rational languages recognized by strongly connected non-deterministic
automata. For a non-deterministic automaton (Γ, v0), we define, for p, q ∈ V (Γ),
Lp,q to be the set of all words with a run from p to q.

Lemma 6.17. Let (Γ, v0) be a strongly connected, non-deterministic, A-automaton
and suppose p a−→ q is an edge in Γ. Then a−1 ∈ clG(Lq,p).

Proof. Let t ∈ A∗ such that t runs from q to p. Then (ta)2n!−1t ∈ Lq,p for all n > 0
and (ta)2n!−1 → a−1 in FG(A).
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Lemma 6.18. Let (Γ, v0) be a strongly connected, non-deterministic A-automaton
and suppose w ∈ Ã∗ has a run from p to q with p, q ∈ V (Γ). Then [w]FG(A) ∈
clG(Lp,q).

Proof. First note that if r, s, t ∈ V (Γ), then Lr,sLs,t ⊆ Lr,t; also, by continuity
of multiplication, for X,Y ⊆ FG(A), clG(X)clG(Y ) ⊆ clG(XY ). The result now
follows from the above lemma.

In a manner similar to the proof of Proposition 6.3, one can prove the following.

Proposition 6.19. Let (Γ, v0) be a strongly connected, non-deterministic A-auto-
maton, p, q ∈ V (Γ), and suppose w ∈ Ã∗ is such that [p]w = [q] where [p], [q] are
the equivalence classes of p and q in I(Γ, v0). Then [w]FG(A) ∈ clG(Lp,q).

We now prove Theorem 6.11 for strongly connected, non-deterministic automata.
All the subsequent remarks, corollaries, and propositions of the above subsection
which do not involve (ω − 1)-terms then apply without change in this context and
we shall use them freely.

Theorem 6.20. For (Γ, v0) a strongly connected, non-deterministic A-automaton
and q ∈ V (Γ),

clG(Lv0,q) = π1(I(Γ), [v0])u

where [v0] is the equivalence class of v0 in V (I(Γ)) and u ∈ Ã∗ is any reduced word
with [v0]u = [q].

Proof. Let H = π1(I(Γ), [v0]). Suppose w is a reduced word in clG(Lv0,q); then
there exists a sequence {wn} of words in Lv0,q converging to w. Since each wn has
a run from v0 to q, it follows that [v0]wn = [q]. Thus wnu−1 ∈ H for all n whence,
by Hall’s Theorem, w ∈ Hu. Conversely, if w ∈ Hu, then [v0]w = [q]. So, by the
above proposition, w ∈ clG(Lv0,q).

For the next section, we shall need to use non-deterministic automata with ε-
transitions. A labeling of a graph Γ over A can be thought of as a faithful “graph
morphism” ` : Γ → B∗A such that E+(Γ)` ⊆ A. A labeling with ε-transitions of
a graph Γ over A is then a faithful “graph morphism” ` : Γ → B∗A such that
E+(Γ)` ⊆ A ∪ {ε} where ε represents the empty path. A non-deterministic A-
automaton with ε-transitions is then a pair (Γ, v0) where Γ is a finite graph labeled
over A with ε-transitions and v0 ∈ V (Γ). We say that L ⊆ A∗ is recognized by
(Γ, v0) with set of final states F if

L = {p`|p is a path in Γ with pα = v0, pω ∈ F}.

One can again show that such languages are rational [14].

6.4. General Automata. We now study properties of automata in terms of their
strongly connected components. First our promised result on the decomposition of
rational languages over A into languages built up from simple bonded languages
and singletons. We call an edge e of a graph a transition edge if it is not part of a
strongly connected component. Observe that the language consisting of the empty
string is a simple bonded language.
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Theorem 6.21. Let (Γ, v0) be a non-deterministic A-automaton, F a set of final
states, and L the rational language recognized by (Γ, v0) with these final states.
Then

L =
n⋃
j=1

Lj,0aj,1Lj,1 · · · aj,njLj,nj

where the Lj,i are simple bonded languages recognized by strongly connected compo-
nents of Γ and the aj,i ∈ A. Moreover, this decomposition can be obtained effectively
in polynomial time.

Proof. Since L =
⋃
q∈F Lv0,q, we just need to show that each language Lv0,q can

effectively be written as a finite union of languages of the form L0a1L1 · · · anLn with
the Lj simple bonded languages recognized by strongly connected components of
(Γ, v0) and the aj ∈ A. Consider the graph ∆ obtained from Γ by identifying all
vertices in the same strongly connected component and then removing all loops. We
use [p] for the equivalence class of a state p ∈ V (Γ). Then in ∆, there are no paths
of length greater than the number of vertices of ∆, so ∆∗ is a finite category. Define
a “graph morphism” ϕ : Γ→ ∆∗ by pϕ = [p] on vertices, eϕ = e (viewed as an edge
in ∆) for a transition edge e, and eϕ = 1[eα] for an edge e which is not a transition
edge. There is then an induced map ϕ : Γ∗ → ∆∗. Now Γ∗(v0, q)ϕ = ∆∗([v0], [q]),
a finite subset. Since, for p, r ∈ V (Γ), Lp,r = Γ∗(p, r)` (where ` : Γ → BA is
the labeling) and ϕ merely erases those edges belonging to a strongly connected
component, Lv0,q is the finite union of the sets

Lv0,e1α(e1`)Le1ω,e2α(e2`) · · ·Len−1ω,enα(en`)Lenω,q

where e1 · · · en is a path from [v0] to [q] in ∆∗. Note that this construction is clearly
polynomial time (and, in fact, quite quick).

Our first step in understanding the closure of a rational language is to compute
the closure of a product of simple bonded languages and singletons.

Lemma 6.22. Let H be an extension-closed pseudovariety of groups, A a finite
set, H0, . . . , Hn finitely generated closed subgroups of FG(A), and g0, . . . , gn+1 ∈
FG(A). Then g0H0g1 · · ·Hngn+1 is closed.

Proof. Let Ni = g−1
n+1 · · · g−1

i+1Higi+1 · · · gn+1. Then, since conjugation is a con-
tinuous automorphism, each Ni is a finitely generated closed subgroup. An easy
verification shows that

g0H0g1 · · ·Hngn+1 = g0 · · · gn+1N0N1 · · ·Nn.

So, by Theorem 5.19 and since right translation is a homeomorphism, we see that
g0 · · · gn+1N0N1 · · ·Nn is closed. The result follows.

Corollary 6.23. Let H be an extension-closed pseudovariety of groups, L0, · · · , Ln
simple bonded languages over an alphabet A, and a1, . . . , an ∈ A. Then

clH(L0a1 · · ·anLn) = clH(L0)a1 · · · anclH(Ln).

Furthermore, clH(L0a1 · · · anLn) can be put in the form gN0 · · ·Nn for some finitely
generated closed subgroups Ni (i = 0, . . . , n).
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Proof. By continuity of multiplication, the right-hand side is contained in the left-
hand side; so it suffices to show that the right-hand side is closed. Suppose (Γi, vi) is
a non-deterministic, strongly connected automaton recognizing Li. Then, by Corol-
lary 6.15, Hi = π1(IH(Γi), [vi]H) is closed and, by Proposition 6.16, clH(Li) = Hiwi
for an appropriately chosen wi ∈ FG(A). Hence the right-hand side is equal to
H0w0a1 · · ·anHnwn which is closed by Lemma 6.22. The last statement follows
from the proof of Lemma 6.22.

An immediate consequence is the following.

Proposition 6.24. Let L be a rational language over an alphabet A and H an
extension-closed pseudovariety of groups. Suppose

L =
n⋃
j=1

Lj,0aj,1Lj,1 · · · aj,njLj,nj

with the Lj,i simple bonded languages and the aj,i ∈ A. Then

clH(L) =
n⋃
j=1

clH(Lj,0)aj,1 · · · aj,nclH(Lj,n).

Furthermore, clH(L) can be written as a finite union of sets of the form gN0 · · ·Nn
with g ∈ FG(A) and the Ni finitely generated closed subgroups.

We then obtain the following corollary.

Corollary 6.25. Let L1, L2 be rational languages over A and H an extension-
closed pseudovariety of groups. Then

clH(L1L2) = clH(L1)clH(L2).

We are almost ready for the main result of this section. A version of this algo-
rithm can be found in [38], although the idea is due to Pin and Reutenauer [34].
However, their algorithm requires the algorithm to find a finite set of generators
for a subgroup generated by a rational set, while ours does not. Also, this algo-
rithm is more transparent, as it is geometric in nature, and we shall see below
that one can perform it by hand in reasonable situations. Most importantly, given
a non-deterministic automaton, the algorithm constructs a non-deterministic Ã-
automaton with ε-transitions which can be used to recognize the pro-H closure
of any rational language recognized by the original automaton. First we need the
Gilman ε-completion procedure [19] which proves a result of Benois [11].

Theorem 6.26. Let L ⊆ Ã∗ be a rational language and ρ : Ã∗ → Ã∗ the map
which takes a word to its reduction. Then Lρ is rational. Furthermore, given a non-
deterministic Ã-automaton (Γ, v0) recognizing L, one can construct, in polynomial
time in the size of Γ, a non-deterministic Ã-automaton with ε-transitions which
recognizes Lρ.

Proof. We merely give the algorithm, as the result is well known. Let Γ0 = Γ. The
procedure stops if, between any two vertices of Γi, there is an ε-transition in each
direction. If not, one searches through the vertices of Γi until one finds a pair of
distinct vertices u and v such that, either there is a path from u to v of length 2
with label ε or aa−1 with a ∈ Ã, or such that there is a path from u to v of length
3 with label aa−1, a ∈ Ã. If no such pair is found, the algorithm is terminated.
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Otherwise, one adds an ε-transition from u to v forming Γi+1 and iterates the
procedure. Let Γ′ be the resulting automaton. There is a well-known Ã-automaton
∆ which recognizes precisely the reduced words of Ã∗. The desired automaton is
then the connected component containing the initial state of the product of these
two automata.

Theorem 6.27. Let (Γ, v0) be a non-deterministic A-automaton and H be an
extension-closed pseudovariety. Let (Γ′, [v0]) be the Ã-automaton obtained from
Γ by replacing each strongly connected component Γj with IH(Γj) where we only
allow reverse transitions in the various IH(Γj). We use [v] for the class of a vertex
v. Let F ⊆ V (Γ), F ′ = {[q]|q ∈ F}, and L′ the language recognized by (Γ′, [v0]) with
final states F ′. Then L′ρ = clH(L). Hence performing the Gilman ε-completion
procedure on (Γ′, [v0]) gives a non-deterministic Ã-automaton with ε-transitions
which can be used to recognize the H-closure of any language recognized by (Γ, v0).

Proof. Since taking the H-closure commutes with finite unions, it suffices to show
that if q ∈ F , then L[v0],[q]ρ = clH(Lv0,q). Let ∆ be the graph obtained from Γ,
as above, by identifying the strongly connected components to points, and then
removing the loops. We note that ∆ is the same graph that one would obtain by
performing this construction on Γ′. Now arguing as before, Lv0,q is the finite union
of the sets

Lv0,e1α(e1`)Le1ω,e2α(e2`) · · ·Len−1ω,enα(en`)Lenω,q

over the finitely many paths e1 · · · en between the class of v0 and the class of q in
∆∗. Similarly, L[v0],[q] is the finite union of the sets

L[v0],[e1α](e1`)L[e1ω],[e2α](e2`) · · ·L[en−1ω],[enα](en`)L[enω],[q]

over the same set of paths e1 · · · en in ∆∗. Now, by Proposition 6.24, clH(Lv0,q) is
the finite union of the sets

clH(Lv0,e1α)(e1`)clH(Le1ω,e2α)(e2`) · · · clH(Len−1ω,enα)(en`)clH(Lenω,q).

But, by the remarks at the end of subsection 6.2, L[p′],[q′]ρ = clH(Lp′,q′) if p′ and
q′ are in the same strongly connected component of Γ. Hence L[v0],[q]ρ = clH(Lp,q)
and the result follows.

Theorem 6.28. Suppose that H is an extension-closed pseudovariety of groups, A
a finite set, and that there is an algorithm with complexity f to compute membership
in the closure of a finitely generated subgroup of FG(A). Then, given a rational
language L over A and a non-deterministic A-automaton (Γ, v0) recognizing L,
there is an algorithm to compute membership in clH(L) in only polynomially slower
time than f . In addition, one can, within the same time bound, find elements
gj ∈ FG(A) and finite sets of reduced words Xj,i such that 〈Xj,i〉 is closed for all
j, i and

clH(L) =
n⋃
j=1

gj〈Xj,0〉 · · · 〈Xj,nj 〉.

In particular, the algorithm for G is in rapid polynomial time.

Proof. Since IH(Γj) is computable for each strongly connected component Γj of Γ
in only polynomially worse time than f and the Gilman ε-completion process can be
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done in polynomial time, we can obtain a non-deterministic automaton recognizing
clH(L) in only polynomially worse time than f by the above theorem.

Furthermore, by Proposition 6.16 and since H is extension-closed, for p, q ∈
V (Γj), clH(L[p],[q]) is just the coset of π1(IH(Γj), [p]) corresponding to any reduced
word reading from [p] to [q], the penultimate statement follows from Theorem 6.21,
Proposition 6.24, and of the proof of Lemma 6.22.

Since, for G, IG(Γ) = I(Γ), the algorithm is quite fast indeed. We now give an
example to show that if the automaton (Γ, v0) in question is of a reasonable size,
one can actually perform this algorithm to find the G-closure by hand. Let L be
the language recognized by the following automaton.

v0

v2

v1

v3 v4

v6

v5

a

b

ca

a

c

a

a

b

b

a

We now use our algorithm to find clG(L) in FG({a, b, c}). First we decompose L as
a finite union of products of singletons and finitely generated subgroups. When we
identify the strongly connected components to points, we get the following graph.

0 1, 2, 3 4, 5, 6

a

b

a

So L = aLv2,v3aLv4,v5 ∪ bLv1,v3aLv4,v5 = (aLv2,v3 ∪ bLv1,v3)aLv4,v5 . Now when we
fold the strongly connected component Ω of {v1, v2, v3}, we obtain the following.

v2

v1

v3

2, 3

v1

1,2,3ca

a

c

ca

a

a, c

Hence π1(I(Ω), [v2]) = 〈a, c〉 = π1(I(Ω), [v1]). So

clG(Lv2,v3) = clG(Lv1,v3) = 〈a, c〉.

The strongly connected component ∆ of {v4, v5, v6} is already an inverse {a, b, c}-
graph. We choose T as a maximal subtree.
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v4

v6

v5

v4

v6

v5

a

b

b

a

a

b
T =

Then π1(∆, v4) = 〈ab, ba〉 and v4b = v5. So clG(Lv4,v5) = 〈ab, ba〉b. Thus

clG(L) = (a〈a, c〉 ∪ b〈a, c〉)a〈ab, ba〉b = (a ∪ b)〈a, c〉a〈ab, ba〉b.

Then conjugating as in the proof of Lemma 6.22, we see that

clG(L) = (a2b ∪ bab)〈b−1ab, b−1a−1cab〉〈b−1ab2, ab〉.

Finally, we get the automaton below whose ε-completion recognizes clG(L).

v0 1,2,3 v4

v6

v5

a, b

a, a−1, c, c−1

a

a, b−1

a−1, b
a−1, b

a, b−1

This algorithm also allows simple calculation of KG(M) of a monoid. Indeed,
one just needs to fold all the strongly connected components of ΓA(M) to make
them inverse A-graphs (one can even do this in parallel); then one adds the reverse
transitions for these components; finally, one performs the Gilman ε-completion
procedure. All of this can be done in polynomial time. Then, in parallel, one can
check for each element m whether there is a path labeled by ε from the class of 1 to
the class of m. This is probably more efficient then generating the least submonoid
closed under weak conjugation [24]. To compute KGp(M), one would add the extra,
polynomial time step of computing IH(∆) for each strongly connected component.

Using Theorem 6.11 and Proposition 6.24, we obtain the following result which
implies the Type II Conjecture of Rhodes, J ∗G = J©m G, and a great deal more;
see [4, 5, 13].

Theorem 6.29. Let (Γ, v0) be an A-automaton, q ∈ V (Γ), and

L′p,q = {w ∈ Fω−1(A)|v0w = q}.

Then clG(Lv0,q) = L′p,qρ. Again, one could restrict to terms of height at most one.

Let H be a pseudovariety of groups and (Γ, v0) a non-deterministic A-automaton.
We then call (Γ, v0) locally H-extendible if the strongly connected components of
(Γ, v0) are all H-extendible inverse A-graphs. Let ∆ be a strongly connected com-
ponent of (Γ, v0). Then if (Γ, v0) is deterministic, M(Γ) maps onto M(∆), so
Propositions 6.5 and 6.7 imply the following theorem.
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Theorem 6.30. Let (Γ, v0) be an A-automaton, then (Γ, v0) is locally H-extendible
if and only if, for each strongly connected component ∆, M(∆) ∈ Sl©m H. So, in
particular, if M(Γ) ∈ R©m H, then (Γ, v0) is locally H-extendible. Also if M(Γ) ∈
ER, then (Γ, v0) is locally G-extendible, that is, the strongly connected components
are inverse A-graphs.

We now obtain the following important result generalizing Corollary 6.13.

Theorem 6.31. Let H be an extension-closed pseudovariety, (Γ, v0) a locally H-
extendible (possibly non-deterministic) A-automaton, and L a rational language
recognized by (Γ, v0). Then clG(L) = clH(L). In particular, if L is a rational
language over A, recognized by an A-automaton with transition monoid in R©m H,
then clG(L) = clH(L).

Proof. By the above results, we see that L can be expressed as a finite union of
languages of the form L0a1L1 · · · anLn with the Lj recognized by strongly connected
components of (Γ, v0). By Corollary 6.25,

clH(L0a1 · · ·anLn) = clH(L0)a1 · · · anclH(Ln).

The result now follows from Corollary 6.13 since taking the closure commutes with
taking a finite union.

7. Applications to Monoid Theory

In this section, we finally get to apply our results to monoid theory. In particular,
we obtain a short proof that J©m H = J ∗H for H extension-closed.

7.1. Mal’cev Products. We begin by characterizing algebraically those monoids
whose right (and/or left) Cayley graphs are locally H-extendible. As usual, dual
results will be left to the reader. First we need the following elementary result.
For a finite monoid M , we use, as before, ⊕Sch(M) to denote the direct product
of the monoids Sch(X) as X ranges over the regular R-classes and ⊕Schρ(M) for
the corresponding direct product of of Schρ(Y ) over regular L-classes Y . Let K =
[[xωy = xω]], D = [[xyω = yω]], and N = [[xω = 0]] = K ∩D be the pseudovarieties
of semigroups defined by the above unary semigroup identities. Recall that, for a
morphism ϕ, we use Vϕ for its Mal’cev kernel.

Lemma 7.1. Let M be a finite monoid.
1. Let ϕ : M → ⊕Sch(M) be the natural map, then Vϕ ∈ K.
2. Let ϕρ : M → ⊕Schρ(M) be the natural map, then Vϕρ ∈ D.
3. Let ϕ×ϕρ : M → ⊕Sch(M)×⊕Schρ(M) be the natural map, then Vϕ×ϕρ ∈ N.

Proof. We prove just 1, 2 being dual and 3 following from 1 and 2. Let x, y ∈ M
such that xϕ = yϕ = (xϕ)2. Then xωϕ = xϕ = yϕ. Let X be the R-class of xω

and q = xω. Then, since xωxω = xω, xωϕ = yϕ implies qxω = qy whence xωy = xω

as desired.

We now give a geometric proof of the following well-known lemma.

Lemma 7.2. K©m Sl = R, D©m Sl = L, and N©m Sl = J.

Proof. We only prove K©m Sl = R. LetM be a finite A-generated monoid in K©m Sl.
Then Sch(X) ∈ K©m Sl for every R-class X . But Sch(X) is the transition monoid
of the strongly connected A-automaton SchA(X) (the base point is irrelevant), so,
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by Proposition 6.8, SchA(X) has one vertex, and hence M is R-trivial. Conversely,
if M ∈ R, then, for each regular R-class X , SchA(X) has one vertex, so, by
Proposition 6.8, Sch(X) ∈ Sl whence, by the above lemma, M ∈ K©m Sl.

We now characterize those monoids whose Schützenberger graphs are inverse.

Theorem 7.3. Let M be a finite A-generated monoid. Let ΓA(M) be the right
Cayley graph of M and ΓρA(M) be the left Cayley graph of M .

1. M ∈ ER if and only if (ΓA(M), 1) is locally G-extendible, if and only if
SchA(X) is an inverse A-graph for each regular R-class X, if and only if
⊕Sch(M) ∈ ESl.

2. M ∈ EL if and only if (ΓρA(M), 1) is locally G-extendible, if and only if
SchρA(Y ) is an inverse A-graph for each regular L-class Y , if and only if
⊕Schρ(M) ∈ ESl.

3. M ∈ EJ if and only if 1 and 2 hold.

Proof. We just prove 1. By Theorem 6.30, we see that if M ∈ ER, then ΓA(M)
is locally G-extendible. Clearly if ΓA(M) is locally G-extendible, then, for each
regular R-class X , SchA(X) is inverse. If SchA(X) is an inverse A-graph for X
a regular R-class, then, by Proposition 6.5, Sch(X) ∈ ESl. Therefore, SchA(X)
being inverse for every regular R-class X implies ⊕Sch(M) ∈ ESl. Since ϕ :
〈E(M)〉 → 〈E(⊕Sch(M))〉, we see that if ⊕Sch(M) ∈ ESL, then 〈E(M)〉 ∈ K©m
Sl = R, so M ∈ ER.

Observe that if e, f ∈ E(M) are R-equivalent, then ef = f and fe = e. So, for
monoids in ER, each SchA(X), for X regular, has a unique idempotent; we always
take this idempotent as the initial state to make SchA(X) a strongly connected A-
automaton. In particular, if H is any pseudovariety of groups, then R©m H ⊆ ER
implies we are in the above situation for monoids in R©mH. Also note that the above
theorem shows that the property of the Cayley graph being locally G-extendible is
independent of the choice of generators, that is, an invariant of the monoid. Now
one of our main results.

Theorem 7.4. Let M be a finite A-generated monoid and H a pseudovariety of
groups. Let ΓA(M) be the right Cayley graph of M and ΓρA(M) be the left Cayley
graph of M .

1. M ∈ R©m H if and only if (ΓA(M), 1) is locally H-extendible, if and only if,
for each regular R-class X, SchA(X) is an H-extendible inverse A-graph, if
and only if ⊕Sch(M) ∈ Sl©m H.

2. M ∈ L©m H if and only if (ΓρA(M), 1) is locally H-extendible, if and only if,
for each regular L-class Y , SchρA(Y ) is an H-extendible inverse A-graph, if
and only if ⊕Schρ(M) ∈ Sl©m H.

3. M ∈ J©m H if and only if both 1 and 2 hold.

Proof. Again we just prove 1. Since SchA(X) is strongly connected, the last two
conditions are equivalent by Proposition 6.7. If ⊕Sch(M) ∈ Sl©m H, then M ∈
K©m (Sl©m H) ⊆ (K©m Sl)©m H = R©m H. If M ∈ R©m H, then, by Theorem 6.30,
ΓA(M) is locally H-extendible. But if ΓA(M) is locally H-extendible, then, for
each regular R-class X , SchA(X) is an H-extendible inverse A-graph.

This theorem gives a converse to Theorem 6.30 for the case of the Cayley graph
of a monoid. We don’t know whether the converse holds in general. Again, we
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see that the geometric property of the Cayley graph being locally H-extendible is
independent of the generating set and depends only on the regular R-classes. We
have the following corollary.

Corollary 7.5. Let H be a pseudovariety of groups.
1. K©m (Sl©m H) = (K©m Sl)©m H.
2. D©m (Sl©m H) = (D©m Sl)©m H.
3. N©m (Sl©m H) = (N©m Sl)©m H.

Recalling that R and L are local, we recover the following well known results,
proved now by a geometric (rather than algebraic) argument.

Theorem 7.6. ER = R ∗G, EL = L ∗G, and EJ = J©m G.

Let BG be the pseudovariety of block groups. It is not difficult to see that
BG = EJ. Indeed, if M ∈ EJ, then each regular R and L-class has a unique
idempotent, and so M is a block group [12]. Conversely, it is shown in [24, 44]
that, for a block group M , SchA(X) is inverse for every regular R-class X and
dually for L-classes whence M ∈ EJ. The following is a key result of Henckell and
Rhodes [24]; see [4] for a new proof, we shall give another later in this paper.

Theorem 7.7. J ∗G = J©m G.

The above theorem and the following result will be used shortly to show that,
for extension-closed pseudovarieties of groups, J ∗ H = J©m H as well as various
generalizations.

Theorem 7.8. Let H be an extension-closed pseudovariety of groups. Let M ∈
R©m H or L©m H be a finite A-generated monoid. Let m ∈M and

Lm = {w ∈ A∗|[w]M = m}.
Then clH(Lm) = clG(Lm) in FG(A).

Proof. We just handle the case M ∈ R©m H. The language Lm is rational, being
recognized by (ΓA(M), 1). But, by Theorem 7.4, (ΓA(M), 1) is locally H-extendible.
So, by Theorem 6.31, the result follows.

We now point out that the membership problems for the different pseudovarieties
we have been considering are equivalent.

Theorem 7.9. Let H be a pseudovariety of groups. Then the membership problems
for R©m H, L©m H, J©m H, and the pseudovariety of inverse monoids Sl©m H are
equivalent.

Proof. By Theorem 7.4, if the membership problem for Sl©m H as a pseudovariety of
inverse monoids is decidable, then the membership problems for R©m H, L©m H, and
J©mH are all decidable. Since a monoidM ∈ R©mH if and only ifMρ ∈ L©mH, these
pseudovarieties have equivalent membership problems. Hence if R©m H is decidable,
so is J©m H = (R©m H)∩ (L©m H). Now suppose J©m H has decidable membership
problem. Let I be a finite inverse monoid. Then if I ∈ Sl ©m H, I ∈ J ©m H.
Conversely, if KH(I) ∈ J, then, since KH(I) is a subinverse monoid and the only
J -trivial inverse monoids are semilattices, KH(I) ∈ Sl, and so I ∈ Sl©m H. Thus
if J©m H has a decidable membership problem, so does the pseudovariety of inverse
monoids Sl©m H.
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Corollary 7.10. Let H be a pseudovariety of groups such that there is an algo-
rithm, given a finite set of reduced words Y over a finite set A, to decide membership
in clH(〈Y 〉) ⊆ FG(A). Then R©m H, L©m H, and J©m H all have decidable mem-
bership problem.

Such algorithms exists for Gp [30, 38], Gnil [30], and any decidable pseudovariety
of abelian groups [42].

7.2. Regular Elements of KH. We now show that the membership problem for
the pseudovariety of inverse monoids Sl©m H is equivalent to the computability of
the regular elements of KH(M) given M as input. This was proved by the author
in [44] using profinite monoids, but our proof here will be more geometric in nature.
First we show that KH is a functor.

Proposition 7.11. Let H be a pseudovariety of groups. Then KH is a functor
preserving surjective map.

Proof. Let ϕ : M → N be a morphism. If m ∈ KH(M) and τ : N −→◦ G ∈ H, then
1 ∈ m(ϕτ) = (mϕ)τ ; so mϕ ∈ KH(N). Suppose ϕ is surjective. Let µ : M −→◦ G ∈
H be a relational morphism such that m ∈ KH(M) if and only if m ∈ 1µ−1. Then
if n ∈ KH(N), 1 ∈ nϕ−1µ, so there exists m ∈ nϕ−1 such that 1 ∈ mµ. But then
m ∈ KH(M). The result follows.

The following proposition is straightforward to verify. For a monoid M , we use
Reg(M) to denote the set of regular elements of M . We want to show that Reg is
a functor.

Lemma 7.12. Let M be a finite monoid and r,m ∈ M . Then (mr)ωm is regular
with inverse r(mr)ω−1. Furthermore, m ∈ Reg(M) if and only if m = (mr)ωm for
some r ∈M .

Proposition 7.13. Reg is a functor preserving surjective map.

Proof. Let ϕ : M → N be a morphism. Then the image of a regular element
is clearly regular. Suppose n ∈ Reg(N) and ϕ is onto. Let s ∈ N such that
n = (ns)ωn. Let n = mϕ, s = rϕ for m, r ∈ M . Then (mr)ωm ∈ reg(M) and
((mr)ωm)ϕ = n.

Proposition 7.14. Let H be a pseudovariety of groups. Then for M a finite mon-
oid, one has that KH(M) ∩Reg(M) = Reg(KH(M)).

Proof. Clearly Reg(KH(M)) ⊆ KH(M) ∩ Reg(M). Suppose m ∈ KH(M) ∩
Reg(M). Let r ∈ M be such that m = (mr)ωm. Let τ : M −→◦ G ∈ H be
a relational morphism. Suppose r τ g. Then r(mr)ω−1 τ gg−1 = 1. Thus
r(mr)ω−1 ∈ KH(M). But m and r(mr)ω−1 are inverses, so m ∈ Reg(KH(M)).

We now relate the rational language associated to a regular element of M to the
corresponding language recognized by its Schützenberger graph.

Proposition 7.15. Let M be a finite A-generated monoid, m ∈ Reg(M),

Lm = {u ∈ A∗|[u]M = m},
e ∈ Rm an idempotent, Γ = SchA(Rm), and

Le,m = {u ∈ A∗|eu = m in Γ}.
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Analogously, let

L′m = {w ∈ Fω−1(A)|[w]M = m}
and

L′e,m = {w ∈ Fω−1(A)|ew = m in Γ}.

Let ρ : Fω−1(A)→ FG(A) be the canonical surjection. Then

clG(Lm) = clG(Le,m) = L′e,mρ = L′mρ = π1(I(Γ), [e])w

where w is any reduced word taking [e] to [m] in I(Γ).

Proof. First note that, since em = m, Lm ⊆ Le,m and L′m ⊆ L′e,m. So we just need
to show that clG(Le,m) ⊆ clG(Lm) and that L′e,mρ ⊆ L′mρ since, by Theorem 6.11,

clG(Le,m) = L′e,mρ = π1(I(Γ), [e])w.

Let u ∈ A∗ such that [u]M = m. Suppose v ∈ clG(Le,m), then un!v ∈ Lm for all
n and, since un! → 1 in FG(A), we see v ∈ clG(Lm). Similarly, if w ∈ L′e,m, then
uωw ∈ L′m and [w]FG(A) = [uωw]FG(A). The result follows.

Note that, in Proposition 7.15, we could again replace L′m with its subset consisting
of terms of height at most one.

We draw several corollaries; this first one also uses Corollary 6.12 and Proposi-
tion 6.16.

Corollary 7.16. Let M be a finite A-generated monoid, m ∈ Reg(M),

Lm = {u ∈ A∗|[u]M = m},

e ∈ Rm an idempotent, Γ = SchA(Rm),

Le,m = {u ∈ A∗|eu = m in Γ},
and H a pseudovariety of groups. Then

clH(Lm) = clH(Le,m) = clH(π1(I(Γ), [e]))w = clH(π1(IH(Γ), [e]H))v

where w is any reduced word taking [e] to [m] in I(Γ) and v is any reduced word
taking [e]H to [m]H in IH(Γ).

The following result was first proved by Tilson in [48] in the case when H = G
and by the author in general [44].

Corollary 7.17. Let M be a finite A-generated monoid, m ∈ Reg(M), and e ∈ Rm
be an idempotent. Then m ∈ KH(M) if and only if [e]H = [m]H in IH(SchA(X)).

Proof. Indeed, e ∼H m if and only if 1 ∈ clH(Le,m) = clH(Lm), if and only if
m ∈ KH(M).

Corollary 7.18. The membership problems for the pseudovariety of inverse mon-
oids Sl©m H and the pseudovarieties of monoids R©m H, L©m H, and J©m H are
all equivalent to the computability of the functor Reg ◦KH.

Proof. Suppose the pseudovariety of inverse monoids Sl©m H has decidable mem-
bership problem. Then the above corollary shows that Reg ◦ KH is computable.
Conversely, for an inverse monoid I, KH(I) = Reg(KH(I)). The result follows.
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The computability of Reg ◦KH, of course, implies the decidability of the mem-
bership problem for any Mal’cev product of the form RV©m H where RV is the
pseudovariety of monoids whose regular elements generate a monoid in V. For in-
stance, the pseudovariety A = [[xω−1 = xω]] of all finite aperiodic monoids has the
property that RA = A and is local, so if Reg◦KH is computable, then membership
in A ∗H is decidable.

7.3. An Application to Language Theory. We now give an application to
language theory. If H is a pseudovariety of groups and A a finite set, the pro-H
topology onA∗ is defined to be the weakest topology such that every homomorphism
ϕ : A∗ → G ∈ H is continuous where G is given the discrete topology. Noting that
every finite group is generated by A as a group if and only if it is generated by A
as a monoid, it is easy to show that the pro-H topology on A∗ ⊆ FG(A) is the
induced topology.

A language L ⊆ A∗ is said to be recognized by a monoid M if there is a morphism
ϕ : A∗ → M and a subset F ⊆ M such that L = Fϕ−1. Equivalently, one can
view M as a, possibly disconnected, deterministic A-graph via ϕ (as in the Cayley
graph construction) and then L is recognized by the connected component of 1
with final states those elements of F in that component. Conversely, any rational
language is recognized by the transition monoid of the corresponding automaton.
Given a rational language L, there is a smallest monoid M recognizing it, called
the syntactic monoid of L [14]. This monoid is given by the congruence w ≡ v if,
for all x, y ∈ A∗, xwy ∈ L ⇐⇒ xvy ∈ L.

Theorem 7.19. Let H be a pseudovariety of groups residually containing FG(A)
and L ⊆ A∗ a rational language which is open or closed in the pro-H topology.
Then the syntactic monoid of L is in J©m H.

Proof. Since the syntactic monoid of a language L and of its complement are the
same, it suffices to assume L is closed. Let M be the syntactic monoid of L. By
Theorem 7.4, it suffices to show that every left and right Schützenberger graph
of M is H-extendible. To do this, first suppose s R t and that s ∼H t. Then
1 ∈ clH(Ls,t). Since, by assumption on H, the pro-H topology is metric, there
exists a sequence of words {wn} ∈ Ls,t converging to 1. Let ws, wt ∈ A∗ be such
that [ws] = s and [wt] = t. Then wswn ≡ wt for all n. So suppose x, y ∈ A∗ and
xwty ∈ L. Then, since wt ≡ wswn for all n, xwswny ∈ L for all n whence, since
L is closed, xwsy ∈ L by continuity of multiplication. Since 1 ∈ clH(Lt,s) as well,
we see that the reverse implication also holds; thus s = t. We conclude that the
Schützenberger graph for every R-class is H-extendible. A dual argument holds for
L-classes. The result follows.

7.4. The Main Theorem. In this subsection, we prove that the equality J©m H =
J ∗H holds for extension-closed pseudovarieties of groups. To do this, we need the
following two definitions due to Henckell and Rhodes. If X is a subset of a finite
monoid M and V is a pseudovariety of monoids, X is said to be V-pointlike if,
for every relational morphism µ : M −→◦ V ∈ V, there exists v ∈ V such that
X ⊆ vµ−1. One says that V has decidable pointlikes if one can decide, given
as input a finite monoid and a subset of that monoid, whether that subset is V-
pointlike. For example, if H is a pseudovariety of groups, then KH(M) is a pointlike
subset of M (and is, in fact, the maximal pointlike subset X such that X2 = X).
If M is a finite monoid and H a pseudovariety of groups, (m1, . . . ,mk) ∈ Mk is
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called an H-liftable k-tuple if, for every relational morphism µ : M −→◦ G ∈ H,
there exist g1, . . . , gk ∈ G such that g1 · · · gk = 1 and gi ∈ miµ for all i. Note that
(m) is an H-liftable 1-tuple if and only if m ∈ KH(M). The proof of the following
proposition is similar to that of Proposition 5.7; see for instance [38].

Proposition 7.20. Let M be a finite A-generated monoid, (m1, . . . ,mk) ∈Mk,

Lmi = {u ∈ A∗|[u]M = mi},
and H be a pseudovariety of groups. Then (m1, . . . ,mk) is an H-liftable k-tuple if
and only if 1 ∈ clH(Lm1 · · ·Lmk).

Our results on languages recognized by locally H-extendible automata imply the
following.

Theorem 7.21. Let H be an extension-closed pseudovariety of groups and M ∈
R©m H or L©m H. Then (m1, · · · ,mk) ∈Mk is an H-liftable k-tuple if and only if
it is a G-liftable k-tuple

Proof. We suppose M ∈ R©m H, the other case being dual. Let A be a generating
set for M . Then, by Theorem 7.8, for any m ∈ M , clH(Lm) = clG(Lm). Now, by
Corollary 6.25,

clH(Lm1 · · ·Lmk) = clH(Lm1) · · · clH(Lmk)

= clG(Lm1) · · · clG(Lmk) = clG(Lm1 · · ·Lmk).

The result now follows from Proposition 7.20.

We now recall [44, Theorem 8.6].

Theorem 7.22. Let M be a block group and H a pseudovariety of groups. Then
M ∈ J ∗H if and only if, for every pair {a, c} of regular elements of M which is
H-pointlike,

aa−1cc−1 = ac−1.

The reader should recall that in a block group, each regular element has a well
defined inverse and that J©m H ⊆ BG. We wish to turn the above condition into
a condition on H-liftable tuples.

Lemma 7.23. Let H be a pseudovariety of groups, M a block group, and a, c ∈
Reg(M). Then {a, c} is H-pointlike if and only if (a, c−1) is an H-liftable 2-tuple.

Proof. Suppose µ : M −→◦ G ∈ H is a relational morphism. Then if c µ h and
c−1 µ g,

c = (cc−1)ω−1c µ (hg)−1h = g−1

and, similarly, c−1 µ h−1. So if {a, c} ⊆ hµ−1, then a µ h, c−1 µ h−1, and hh−1 = 1.
Similarly, if a µ g, c−1 µ g−1, then c µ g, and so {a, c} is H-pointlike if and only if
(a, c−1) is an H-liftable 2-tuple.

Theorem 7.24. Suppose H is an extension-closed pseudovariety of groups. Then
J©m H = J ∗H.

Proof. Let M ∈ J ©m H and suppose a, c ∈ Reg(m) are such that {a, c} is H-
pointlike. Then, by Lemma 7.23, (a, c−1) is an H-liftable 2-tuple. So, by Theo-
rem 7.21, (a, c−1) is also a G-liftable 2-tuple, and hence {a, c} is G-pointlike. Now,
since M ∈ J©m G = J∗G, by Theorem 7.22, aa−1cc−1 = ac−1. Another application
of Theorem 7.22 then shows that M ∈ J ∗H.
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Of course, this short proof is one of the aims of this paper. But after building all
this machinery, it might be difficult for the reader to see what is truly happening.
Also, this proof may be unsatisfactory as it requires the result of Henckell and
Rhodes, both known proofs of which are long [4, 24]. But again, our techniques
come to the rescue. We now give an independent proof of the above theorem which,
for the case H = G, is considerably shorter than either of the existing proofs. Also
this proof does not use Ash’s Theorem, but rather the simpler to prove cases n = 1, 2
of the Ribes and Zalesskĭı Theorem [20, 33].

Using Lemma 7.23 and Theorem 7.22, it suffices to prove that if M ∈ J©m H
and (a, c) is an H-liftable 2-tuple with a, c ∈ Reg(M), then

aa−1c−1c = ac.

So suppose (a, c) is such an H-liftable 2-tuple and M is A-generated. Let

La = {u ∈ A∗|[u]M = a}

and Lc be the analogous language for c. Let Γa = SchA(X) and Γc = SchρA(Y )
where X is the R-class of a and Y is the L-class of c. Recall that, since M is a
block group, Γa and Γc are inverse A-graphs.

Lemma 7.25. Let w ∈ Ã∗ such that aa−1w = b in Γa and w−1c−1c = d in Γc.
Then

aa−1(bd)c−1c = aa−1c−1c.

Proof. The proof is by induction. If |w| = 0, b = aa−1, d = c−1c, and aa−1bdc−1c =
aa−1c−1c. Suppose w = vx−1 with x ∈ A, the other case being dual. Let b x−→ b′

be the positively oriented edge whose reverse is the last edge used in the run of w
from aa−1 and d = xd′ (d′ is well defined since w−1 has a reverse run from c−1c to
d and the graph is inverse). Then

aa−1(bd)c−1c = aa−1bxd′c−1c = aa−1(b′d′)c−1c.

But aa−1v = b′ in Γa and v−1c−1c = d′ in Γc, so, by induction, the right-hand side
of the above equation is equal to aa−1c−1c.

Let H = π1(Γa, aa−1), K = π1(Γc, c−1c)ρ, and u, v ∈ A∗ be such that [u]M = a,
[v]M = c. Since Γa and Γc are H-extendible and, furthermore, H is extension-
closed, H and K are H-closed, finitely generated subgroups. We then have

clH(La) = Hu, clH(Lc) = vK,

and

clH(LaLc) = clH(HuvK) = uvclH((uv)−1HuvK)

= uvclH((uv)−1Huv)clH(K) = HuvK = clH(La)clH(Lc)

by Theorem 5.19. Since (a, c) is a liftable H-tuple, 1 ∈ clH(LaLc) = HuvK, and
so there exists w ∈ Ã∗ such that w ∈ Hu and w−1 ∈ vK. But then aa−1w = a in
Γa and w−1c−1c = c in Γc. Hence, by Lemma 7.25,

ac = aa−1(ac)c−1c = aa−1c−1c.

Theorem 7.24 follows.
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Lemma 7.26. Let V and W be pseudovarieties of monoids and H a pseudovariety
of groups. Then

(V ∩W)©m H = (V©m H) ∩ (W©m H).

Proof. Both pseudovarieties consist of those monoidsM with KH(M) ∈ V∩W.

We then get the following corollary of Theorem 7.21.

Corollary 7.27. Let H be an extension-closed pseudovariety of groups and V a
pseudovariety of monoids. Then

(V ∩R)©m H = (V©m G) ∩ (R©m H).

A dual result holds for L.

Proof. For M ∈ R©m H, KH(M) = KG(M) by Theorem 7.21. The result then
follows from the above lemma.

Recalling that R©m H = R ∗H, we get the following corollary.

Corollary 7.28. Let H be an extension-closed pseudovariety of groups and V a
local pseudovariety of monoids. Then

(V ∗H) ∩ (R ∗H) = (V ∗G) ∩ (R ∗H).

A dual result holds for L.

Let Com be the pseudovariety of commutative monoids. Note that ECom =
ESl.

Corollary 7.29. Let H be an extension-closed pseudovariety of groups. Then

ECom ∩ (R ∗H) = Sl ∗H = ECom ∩ (L ∗H).

Proof. By a result of Ash [9], ECom = Sl ∗G. It is well known that Sl is local.
The result then follows from the above corollary upon noting that Sl ∗H ⊆ (R ∗
H) ∩ (L ∗H).

In the next section, we shall show that every equality proved in this section can
fail if H is not extension-closed. In fact, we shall obtain classes of pseudovarieties H
for which these equations fail, although we do not yet have a complete classification.

7.5. Examples and Counterexamples. We begin by showing that, for pseu-
dovarieties H of groups which are not extension-closed, Sl ∗ H need not equal
ECom ∩ (R ∗ H). In fact, our examples will be in J ∩ ECom. In this section,
we shall often abuse notation by not distinguishing between generators and their
images in a monoid.

Theorem 7.30. Let H be a pseudovariety of groups satisfying xy = yx or an
identity of the form xn = 1 for some n > 0. Then there exists a monoid in
J ∩ECom which is not in Sl ∗H, and so ECom ∩ (R ∗H) 6= Sl ∗H.

Proof. Suppose first that H satisfies xn = 1 for n > 0. Let

M = 〈x|xn+1 = 0〉.
Clearly, xn ∈ KH(M); but xn is not an idempotent whence M /∈ Sl ∗H. However,
M ∈ J∩ECom. On the other hand, the syntactic monoid of the language ab∗aba∗b
over the alphabet {a, b} is known not to be in Sl ∗Gcom [27]. But a calculation
with “AMoRE” [31], shows that this monoid is in J ∩ECom. Hence equality fails
for any pseudovariety H satisfying xy = yx.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3454 BENJAMIN STEINBERG

We now prove the more difficult result that J©m H 6= J ∗H for the same classes
of pseudovarieties.

Theorem 7.31. Let H be a non-trivial pseudovariety of groups satisfying the iden-
tity xy = yx. Then J©m H 6= J ∗H.

Proof. We shall exhibit a monoid which is in J©m H for every non-trivial pseudo-
variety of groups H, but which is not in J ∗ Gcom. The result will then follow.
Consider first the following inverse automaton (Γ, v0) over the alphabet {a, b}.

a

b

a

Let I = M(I(Γ)). Using “AMoRE”, we obtain the following monoid presentation,

I = 〈a, b, c, d|a2 = ba = b2 = cb = c2 = cd = da = d2 = 0,

aca = a, bca = b, bdb = b, cab = b, cac = c, cad = d, dbd = d, dca = d〉.

This monoid has 22 elements and the following J -class structure.

0 1 2 3 4
------------

0/ 1/ 2/ 3/ 4|*1 |
------------

0 2 4 1 2 3
---------------

0/ 1 2 3/ 4|*ac | a |
---------------

0 2 4/ 1/ 3| c |*ca |
---------------

1 2 2 3 0 2 2 4
-----------------------------

0 2 3 4/ 1|*bd | b | bdc | bc |
-----------------------------

0 1 2 4/ 3| d |*db | dc | dbc |
-----------------------------

0/ 1 2 3 4| abd | ab |*abdc | abc |
-----------------------------

0 1 2 3/ 4| ad | adb | adc |*adbc |
-----------------------------

2
------

0 1 2 3 4|*0 |
------

Suppose now that H is non-trivial. Then it contains a cyclic group Z/nZ with
n > 1. Clearly, Γ embeds in the Cayley graph of Z/nZ × Z/nZ, so (Γ, v0) is
H-extendible and thus I ∈ Sl©m H. Let

M = 〈a, b, c, d|a2 = ba = b2 = cb = c2 = da = d2 = cdc = dcd = cdbc = 0,

aca = a, cac = c, dbd = d, bdb = b, cab = bca, dca = cad, dbcd = cd〉.

Using “AMoRE,” one can verify that this monoid has 34 elements and the following
J -class structure.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE STATE AUTOMATA: A GEOMETRIC APPROACH 3455

0 1 2 3 4 5 6 7 8 9
----------------------

0/ 1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9|*1 |
----------------------

0 3 8 9 0 2 4 7
-------------------

0 2 4 5 6 7/ 1 9/ 3/ 8|*ac | a |
-------------------

0 3 5 6 8 9/ 1 2/ 4/ 7| c |*ca |
-------------------

0 5 7 0 4 6
---------------

0 3 4 6 8 9/ 1 2 7/ 5|*bd | b |
---------------

0 5 7 8/ 1 2 4/ 3 6 9| d |*db |
---------------

0 8 0 7 0 4 0 3
-----------------------------

0 2 3 4 5 6 7/ 1 8 9|*abdc | abd | ab | abc |
-----------------------------

0 3 4 5 6 8 9/ 1 2 7| bdc |*bcad | bca | bc |
-----------------------------

0 3 5 6 7 8 9/ 1 2 4| dc | cad |*cadb | dbc |
-----------------------------

0 2 4 5 6 7 8/ 1 3 9| adc | ad | adb |*adbc |
-----------------------------

0 5 0 6
-----------------

0 3 5 6 7 8 9/ 1 2 4| cd | cdb |
-----------------

0 2 4 5 6 7 8/ 1 3 9| acd | acdb |
-----------------

0 3 4 5 6 8 9/ 1 2 7| bcd | bcdb |
-----------------

0 2 3 4 5 6 7/ 1 8 9| abcd | abcdb |
-----------------

0
------

0 1 2 3 4 5 6 7 8 9|*0 |
------

A simple verification shows that I satisfies every relation M does. Let ϕ : M → I
be the natural homomorphism. Let

N = 0ϕ−1 = {cd, cdb, acd, acdb, bcd, bcdb, abcd, abcdb, 0}.

Then N is a null ideal: N2 = 0. Let I ′ = M/N . Then I ′ is an inverse monoid and
ϕ factors as αβ with α : M → I ′ and β : I ′ → I. It is easy to see that (bca)β = b,
(cad)β = d, (bcad)β = bd, (cadb)β = db, and β sends every other element to
itself; hence β is idempotent pure, that is, Vβ = Sl. Since β : KH(I ′) → KH(I),
KH(I) = E(I), and β is idempotent pure, it follows that KH(I ′) = E(I ′), and so
I ′ ∈ Sl©m H. Now, since N2 = 0, the Mal’cev kernel of α satisfies the identity
x2 = 0. So M ∈ N©m (Sl©m H) ⊆ J©m H.

We now show that M /∈ J∗Gcom. Consider the pair of regular elements {abc, b}.
This set is Gcom-pointlike. Indeed, if µ : M −→◦ G ∈ Gcom is a relational morphism
and a ϕ g and b ϕ h then, as in the proof of Lemma 7.23, since c = a−1, c ϕ g−1.
So abc ϕ ghg−1 = h, since G is abelian. Observing that (abc)−1 = adc and cb = 0,
we see that

abc(abc)−1bb−1 = abcadcbd = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3456 BENJAMIN STEINBERG

But (abc)b−1 = abcd 6= 0. Thus, by Theorem 7.22, M /∈ J ∗Gcom.

Our next result is a bit more difficult to prove. A pseudovariety V is said to
be locally finite if it has a largest monoid generated by any finite set. Zel’manov’s
solution of the restricted Burnside problem [51] shows that a pseudovariety of groups
is locally finite if and only if it satisfies an identity of the form xn = 1 for some
n > 0. We now show that, for any non-trivial, locally finite pseudovariety of groups
H, J©m H 6= J ∗H.

Theorem 7.32. Let H be a non-trivial pseudovariety of groups satisfying an iden-
tity of the form xn = 1 with n > 1. Then J©m H 6= J ∗H.

Proof. The idea of the proof is to construct a sequence of monoids with the property
that if H satisfies xn = 1 with n as small as possible (that is, H contains a cyclic
group of order n, but none of larger order) then the nth element of this sequence
will be in J©m H, but not in J ∗H. So let n be the least positive integer such that
H satisfies xn = 1. We consider the following inverse automaton (Γn, v0) over the
alphabet {a}.

0 1 2 n− 1
a a a a. . .

Let In = M(I(Γn, v0)). It is shown in [6] that In has the following monoid presen-
tation:

〈a, b|an = bn = 0, bkakb = bkak−1, bakbk = ak−1bk,

akbka = akbk−1, abkak = bk−1ak (1 ≤ k ≤ n− 1)〉.

Furthermore, they show that each non-zero element can be put uniquely in the
form biajbk with 0 ≤ i, k ≤ j < n (below, we shall give a proof that will imply
that every non-zero element can be put in such a form, uniqueness follows from a
computation with the above automaton).

We note that since (Γn, v0) clearly embeds in the Cayley graph of Z/nZ, it is
H-extendible by choice of n whence In ∈ Sl©m H. Our desired monoid will be
obtained from In by replacing 0 with a null ideal. Let

Mn = 〈a, b|an+1 = bn = 0, bkakb = bkak−1, bakbk = ak−1bk,

akbka = akbk−1, abkak = bk−1ak (1 ≤ k ≤ n− 1)〉

and

M ′n = 〈a, b|an+1 = b2 = 0, bab = b, aba = a〉.

Then it is easy to see that there are natural surjective homomorphisms ϕ : Mn → In
and ψ : Mn → M ′n. We first show that In = Mn/N where N ⊆ Mn is an ideal
such that N2 = 0. Then we shall show that certain elements of N are non-zero by
making use of a representation of M ′n as the transition monoid of an automaton.
We begin by showing that every non-zero element of Mn can be put in the form
biajbk with 0 ≤ i, k ≤ min{j, n − 1}, 0 ≤ j ≤ n. The proof is by induction on |u|,
u ∈ {a, b}∗. We use ∼ for the congruence on words associated to Mn. If |u| = 0,
then u = b0a0b0 so we suppose |u| > 0.
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Case 1: Suppose that u = va. Then if v ∼ 0, u ∼ 0 and we are done. So we may
suppose, by induction, that v ∼ biajbk with 0 ≤ i, k ≤ min{j, n− 1}, 0 ≤ j ≤ n. If
k > 0, then

u ∼ biajbka = biaj−k(akbka) ∼ biaj−k(akbk−1) = biajbk−1

which is of the desired form. If k = 0, then u ∼ biaja = biaj+1 which is 0 if j = n,
and is otherwise of the desired form.

Case 2: Suppose u = vb. Again, if v ∼ 0, u ∼ 0, we are done. Otherwise, by
induction, we may assume that v ∼ biajbk with 0 ≤ i, k ≤ min{j, n−1}, 0 ≤ j ≤ n.
Then u ∼ biajbk+1. If k < min{j, n− 1} we are done. If k = n− 1, then u ∼ 0 and
we are also done. So we may suppose k = j < n− 1. Then

u ∼ bi(ajbj+1) ∼ bi(baj+1bj+1) = bi+1aj+1bj+1

which is of the desired form.
Note that this proof shows that any non-zero element of In can be placed in the

aforementioned form. Also, it shows that any non-zero element of M ′n can be put
in the form biajbk with 0 ≤ i, k ≤ min{1, j}, 0 ≤ j ≤ n. It now follows that ϕ is
injective when restricted to those elements which do not map to 0. The remaining
elements form an ideal

N = 0ϕ−1 = 0 ∪ {bianbk|0 ≤ i, k ≤ n− 1}
such that Mn/N = In. Of course, we haven’t shown that the elements of this
ideal are distinct. We shall do this by first showing that an 6= 0, and then, as a
consequence, prove that all these elements are distinct. To prove that an 6= 0, it
will suffice to show that the normal forms above for M ′n represent distinct elements.
First, however, we shall show that N2 = 0. Indeed,

bi1anbk1bi2anbk2 = bi1anbk1+i2anbk2 .

Let r = k1 + i2. If r ≥ n, then the right-hand side is 0 in Mn as desired. If r < n,

anbran = an−rarbraan−1 ∼ an−rarbr−1an−1 = anbr−1an−1.

Proceeding inductively, we see that anbran ∼ anan−r ∼ 0 since r < n. Thus
N2 = 0.

Now we show that the aforementioned elements give a set of normal forms for
M ′n. Consider the following automaton (∆n, 0) over {a, b}.

0 1 2 n

1′ 2′ n′

a a a a

b

b b ba a a

. . .

We show that M(∆n) = M ′n and that our normal forms can be distinguished by
this automaton.

It is easy to verify that M(∆n) satisfies the defining relations of M ′n, so there is
a natural surjection ρ : M ′n → M(∆n). Let 0 ≤ i, k ≤ min{1, j}, 0 ≤ j ≤ n. Then
an easy calculation shows that 0b = 1′, 1′b is undefined, and, for j > 0,

0biajbk =

{
j if k = 0,
j′ if k = 1,
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and

1′biajbk =


undefined if i = 1,
j if i = 0, k = 0,
j′ if i = 0, k = 1.

So evaluation at 1′ uniquely determines i, while evaluation at 0 uniquely deter-
mines j and k. So it follows that the normal forms give distinct elements and that
M(∆n) = M ′n.

We now assume 0 ≤ i, k ≤ n − 1. Then in Mn, we note that aibianbkak ∼ an;
hence none of the elements of N are zero and all of them are J -equivalent. Now
ai+1bianbk ∼ an+1bk ∼ 0. But since aibianbjaj ∼ an which is not 0, i + 1 is the
smallest power of a for which this occurs. Similarly, k + 1 is the smallest natural
number r with the property that bianbkar ∼ 0. Hence no two elements of the form
bianbk with 0 ≤ i, k ≤ n− 1 are equal in Mn.

Since In = Mn/N ∈ Sl ©m H and N2 = 0, Mn ∈ N ©m (Sl ©m H) ⊆ J ©m
H. Now consider the pair {an−1, b}. These elements are regular; indeed, b−1 =
a, (an−1)−1 = bn−1. So if µ : Mn−→◦ G ∈ H is a relational morphism and a µ g,
then b µ g−1. But an−1 µ gn−1 = g−1 since H satisfies xn = 1, so {an−1, b} is
H-pointlike. Now, since bn = 0,

an−1(an−1)−1bb−1 = an−1bn−1ba = 0.

On the other hand,

an−1b−1 = an−1a = an 6= 0.

Thus, by Theorem 7.22, Mn /∈ J ∗H.

For example, M2 = M ′2 is a 10 element monoid with the following J -class struc-
ture.

0 1 2 3 4 5
--------------

0/ 1/ 2/ 3/ 4/ 5|*1 |
--------------

2 3 5 1 3 4
---------------

0 2/ 1 5/ 3 4|*ab | a |
---------------

0 1/ 2 3 5/ 4| b |*ba |
---------------

3 4 3 5
---------------

0 2/ 1 3 4 5| aa | aab |
---------------

0 1/ 2 3 4 5| baa | baab |
---------------

3
------

0 1 2 3 4 5|*0 |
------

7.6. Other Applications to the Theory of Pseudovarieties. This subsection
will be more of interest to specialists in finite semigroup theory; therefore, we
have made less of an effort to be self-contained. The following definition is due to
Ash [10]; see [3] for a more general concept which makes sense for pseudovarieties
of monoids. Let M be a monoid and Γ a finite, oriented graph (it need not be
connected). A labeling of Γ over M is an orientation-preserving graph morphism
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δ : Γ→ BM (which is not required to be faithful). If G is a group, a labeling δ of Γ
over G is said to commute if, given any circuit p in Γ, the product of the labels in
G is 1, (recall that by the definition of a labeling, if e is a positively oriented edge
with label g, then e has g−1 as its label). If µ : M −→◦ N is a relational morphism
and δ, β are labelings of a finite graph Γ over M and N , respectively, then we say
that δ is µ-related to β if, for each edge e ∈ E+(Γ), eδ µ eβ. If H is a pseudovariety
of groups, M a finite monoid, Γ a finite graph, and δ a labeling of Γ over M , then
δ is called H-inevitable if, for any relational morphism µ : M −→◦ G ∈ H, there is
a labeling β of Γ over G which commutes and which is µ-related to δ. For example,
if M is a finite monoid, a one edge, one vertex graph labeled by an element m is
H-inevitable if and only if m ∈ KH(M). More generally, a directed circuit of length
k labeled by m1, . . . ,mk is H-inevitable if and only if (m1, . . . ,mk) is an H-liftable
k-tuple. A subset X ⊆ M is H-pointlike if and only if the natural labeling of the
graph Γ with two vertices, v0 and v1, and |X | positively oriented edges, each with
initial vertex v0 and terminal vertex v1, is H-inevitable. Almeida defined H to
be hyperdecidable [3] if there is an algorithm to determine whether a labeling of a
finite graph by a finite monoid is H-inevitable. This in turns implies that H has
decidable membership problem, and that KH, H-liftable k-tuples, and H-pointlike
sets are all computable. The following theorem is then proved by the author in [44].

Theorem 7.33. Let M be a finite A-generated monoid, H an extension-closed
pseudovariety of groups, and αH : M −→◦ FG(A) the relational morphism consid-
ered in Section 5.2. Then a labeling δ of a finite graph Γ over M is H-inevitable if
and only there is a labeling β of Γ over FG(A), αH-related to δ, which commutes.

The following is also shown in [44].

Theorem 7.34. Let H be an extension-closed pseudovariety of groups for which
there is an algorithm to compute membership in the closure of a finitely generated
subgroup of a finite rank free group. Then H is hyperdecidable.

Now recall that if M is a finite A-generated monoid, then mαH = clH(Lm) where

Lm = {u ∈ A∗|[u]M = m}.
In particular, if M ∈ R©m H or L©m H, then, by Theorem 6.31,

mαH = clH(Lm) = clG(Lm) = mαG.

Hence we get the following generalization of Theorem 7.21.

Theorem 7.35. Let H be an extension-closed pseudovariety of groups, M ∈ R©m H
or L©m H, and δ a labeling of a finite graph Γ over M . Then δ is H-inevitable if
and only if it is G-inevitable. In particular, a subset of M is H-pointlike if and
only if it is G-pointlike.

We now obtain several remarkable consequences of this result. Recall that if
V and W are pseudovarieties of monoids, then their join V ∨W is the smallest
pseudovariety containing them both. The following fundamental result on joins is
due to the author [41, 43].

Theorem 7.36. Let V and W be pseudovarieties of monoids and M a finite
monoid. Then M ∈ V ∨W if and only if there exists a relational morphism
µ : M −→◦ W ∈W such that no slice {(m1, w), (m2, w)} ⊆ µ is V-pointlike.
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Corollary 7.37. Let H be an extension-closed pseudovariety of groups. Let W ⊆
R©m H be a pseudovariety of monoids. Then H ∨W = (G ∨W) ∩ (R©m H). A
dual result holds replacing R with L.

Proof. We just need to proveM ∈ (G∨W)∩(R©m H) implies M ∈ H∨W, the other
direction being clear. But, by Theorem 7.36, M ∈ (G ∨W) implies that there is a
relational morphism µ : M −→◦ W ∈W such that no slice {(m1, w), (m2, w)} ⊆ µ
is G-pointlike. But since W ∈ W and M ∈ R©m H, µ ∈ R©m H (viewing µ as a
monoid). So, by Theorem 7.35, no such slice is H-pointlike. Another application
of Theorem 7.36 shows that M ∈ H ∨W.

So, for example, R∨Gp = (R∨G)∩(R©m H). Hence an algorithm to determine
membership in R ∨ G, would imply an only polynomially time slower algorithm
for membership in R ∨ Gp. The author has already shown [41, 43] that J ∨ G
has decidable membership whence J ∨ Gp does as well by the above result (also
proved by the author in [44]). We now obtain, by slightly more elementary methods,
a joint result of Almeida and Weil [7]. Let ZE be the pseudovariety of monoids
whose idempotents are central. Then ZE = (A∩Com)∨G [2] and (A∩Com) ⊆ J.
We use H for the pseudovariety of all finite monoids whose subgroups lie in H and
DLH for the pseudovariety of finite monoids whose regular J-classes are left simple
with subgroups in H. First a lemma.

Lemma 7.38. Let H be any pseudovariety of groups. Then

DLH ⊆ R©m H.

Proof. We show that if M ∈ DLH is A-generated, then, for every regular R-class
X of M , SchA(X) is H-extendible. It is well known that if M ∈ DLH, then X is
a subgroup of M in H. Let e be the identity of this subgroup and suppose p, q ∈ X
are such that p ∼H q. We use ϕH : FG(A) → FGH(A) for the projection. Then
there exists a sequence of words {wn} of Lp,q such that {wnϕH} converges to 1.
Let B ⊆ A be the set of letters appearing in some word of {wn}. Then {wnϕH}
converges to 1 in FGH(B). Let w′n be the element of M obtained by replacing each
letter b occurring in wn by eb. Then, since e is an identity for X , pw′n = q. We
claim that, for each b ∈ B, eb ∈ X . First note that eb ≤R e. However, suppose b
occurs in wj , then pw′j = q implies that q ≤J eb whence eb J e; we then deduce,
since M is a finite monoid, hence stable, that eb R e. So we can define a morphism
γ : FGH(B)→ X by b 7→ eb. It follows that, for n large enough, e = wnϕHγ = w′n.
But pw′n = q for all n, so since pe = p, we see that p = q.

Corollary 7.39. Let H be an extension-closed pseudovariety of groups. Then

(A ∩Com) ∨H = ZE ∩H.

Proof. By Corollary 7.37,

(A ∩Com) ∨H = ((A ∩Com) ∨G) ∩ (R©m H) = ZE ∩ (R©m H).

Since R is aperiodic, R©m H ⊆H; hence we just need to show ZE ∩H ⊆ R©m H.
But it is well known that if M ∈ ZE, then the regular J -classes of M are groups,
so

ZE ∩H ⊆ DLH ⊆ R©m H.
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The above result fails, for instance, if H = Gcom since any element of the left-hand
side is commutative, while the monoid

M = 〈x, y|x2 = y2 = xyx = yxy = 0〉
is in the right-hand side but not commutative. One can, in a similar manner,
prove [7, Theorem 4.6] in the extension-closed case from the analogous result for
G.

Our last goal is to prove some generalizations of the results of section 7.4. We
shall merely sketch the proofs, as we wish neither to reproduce long proofs from
other papers or introduce profinite monoids. Using that, for monoids in R©m H
or L©m H, the H-inevitable and G-inevitable graphs are the same, and using the
argument of [5, Theorem 5.2], but with [4, Theorem 2.3] in place of [8, Theorem
5.3], we see that the following result holds.

Theorem 7.40. Let V be a pseudovariety of monoids and H an extension-closed
pseudovariety of groups. Then

(V ∗H) ∩ (R ∗H) = (V ∗G) ∩ (R ∗H).

In particular, if V ⊆ R, then

V ∗H = (V ∗G) ∩ (R ∗H).

A dual result holds for L.

We note that Corollary 7.28 is just a special case of the above theorem. Also
the above theorem implies that (J ∗H) = (J ∗G) ∩ (R ∗H). On the other hand,
using that the analogous equality holds with L in place of R, that J ∗G = J©m G,
and that R and L are local, it is straightforward to deduce that J ∗H = J©m H for
extension-closed pseudovarieties of groups H.

7.7. Conclusions and Conjectures. This paper has developed a geometric/com-
binatorial approach to problems in automata theory, particularly those closely tied
to the theory of groups. The overriding theme has been to apply the techniques
of geometric group theory to the strongly connected components of an automaton.
In this manner, we have obtained a clearer, more efficient algorithm for computing
the closure of a rational language in a free group with the profinite topology with
the added bonus that if several languages are recognized by the same automaton,
then one can compute all their closures simultaneously. In the process, we have seen
that the computation of the regular elements of the G-kernel requires only Marshall
Hall’s theorem and not the full strength of the Ribes and Zalesskĭı’s Theorem. This
perhaps explains why Rhodes and Tilson could prove the type II conjecture for
regular elements almost 25 years before the general case was solved.

We have also clarified the results of Margolis, Sapir, and Weil [30] on inverse
automata, incorporating their theory into a more general framework dealing with
more complicated automata. This has led to a complete characterization of R©m H
and its dual for pseudovarieties H of groups. This theory has also led to the first
breakthrough in the problem J©m H = J ∗ H since the theorem of Henckell and
Rhodes at the start of the decade. However, while great progress has been made,
we are still left with the question of classifying all pseudovarieties H for which the
above equality holds.

The author conjectures, based on this work and [44], that J ©m H = J ∗ H
holds if and only if (Gcom ∩ H) ∗ H = H. Such pseudovarieties, if non-trivial,
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are called arborescent, and were studied in [7]. One result in that paper, which
is essential for the Ribes and Zalesskĭı result, is that the profinite Cayley graph
for the free pro-H group generated by any finite set is an H-tree. A result of [44]
can be used to show that in this case, the fundamental group of an H-extendible
automaton is closed. We conjecture that the Ribes and Zalesskĭı result holds in
this more general context. However, the proof of Ribes and Zalesskĭı Theorem [37,
38] uses a property of extension-closed pseudovarieties not enjoyed by arborescent
pseudovarieties in general. A preliminary step towards resolving the first conjecture
would be to prove the following conjecture: suppose H is a non-trivial pseudovariety
of groups satisfying a non-trivial group identity (w = 1); then equality fails. Our
counterexamples were all based on this principle.

A final question to consider is whether closures of finitely generated subgroups
of a finite rank free group are computable for Gsol. This problem is probably more
of a question for finite group theorists and is likely to be challenging.

Addendum

Since the submission of this paper, there has been some further progress on
some of the questions here investigated. In [47], the author has shown that J∗H =
J©m H for arborescent pseudovarieties H by showing that the Ribes and Zalesskĭı
Theorem holds for products of two closed subgroups in this context. In [46], the
author has completely characterized, for a pseudovariety of groups H, those monoids
recognizing pro-H open and closed recognizable languages, as well as studying the
relationship between J ∗H and various other pseudovariety operators.
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