Finite State Automata Representing Two-Dimensional Subshifts

JONI BURNETTE PIRNOT
NATAŠA JONOSKA

Department of Mathematics
Manatee Community College
$584026^{\text {th }}$ Street West
Bradenton, FL 34207, USA
pirnotj@mccfl.edu

Department of Mathematics University of South Florida 4202 East Fowler Avenue Tampa, FL 33620, USA jonoska@math.usf.edu

Overview

- Background and Motivation
- Automata Representing 2D Sofic Shifts
- Uniform Horizontal Transitivity and Periodicity
- State Merging
- Open Questions

2D Shift of Finite Type

- Σ is a finite alphabet.
- Q is a set of $k \times k$ states: $[0, k-1] \times[0, k-1] \rightarrow \Sigma$.
- Shift of finite type defined by Q is $X \subseteq \Sigma^{\mathbb{Z}^{2}}$ such that

$$
\forall x \in X,\left\{x_{[i, i+k-1] \times[i, j+k-1]} \mid i, j \in \mathbb{Z}\right\} \in Q .
$$

Ex: 2D Golden Mean

a	a
a	a

b	a
a	a

a	b
a	a

a	a
\mathbf{b}	a

a	a
a	b

For $\Sigma=\{a, b\}, Q$ is finite set of states defining set X of all possible configurations of the plane having any appearance of b surrounded by a 's.

Ex: 2D Golden Mean

a	a
a	a

\mathbf{b}	\mathbf{a}
\mathbf{a}	\mathbf{a}

a	b
a	a

a	a
\mathbf{b}	a

a	a
a	b

For $\Sigma=\{a, b\}, Q$ is finite set of states defining set X of all possible configurations of the plane having any appearance of b surrounded by a 's.

$$
\begin{aligned}
& \ldots \text {... a a a a a a a a a a a a a a a... } \\
& \text {...a a a b a a a a a a b a a a b a... } \\
& \ldots a \operatorname{ba} a \text { a } a \text { a } a b a \text { a } a b a \operatorname{a} a \ldots
\end{aligned}
$$

Ex: 2D Golden Mean

a	a
a	a

\mathbf{b}	a
a	a

a	b
a	a

a	a
b	a

a	a
a	b

For $\Sigma=\{a, b\}, Q$ is finite set of states defining set X of all possible configurations of the plane having any appearance of b surrounded by a 's.

$$
\begin{aligned}
& \ldots \text {... a a a a a a a a a a a a a a a... } \\
& \text {...a a a b a a a a a a ba a a b a... } \\
& \ldots a \mathrm{~b} a \text { a a a a a b a a a ba a a... } \\
& \ldots a \text { a a a a a b a a a a a a a a a... }
\end{aligned}
$$

Ex: 2D Golden Mean

a	a
a	a

\mathbf{b}	a
a	a

a	b
a	a

a	a
b	a

a	a
a	b

For $\Sigma=\{a, b\}, Q$ is finite set of states defining set X of all possible configurations of the plane having any appearance of b surrounded by a 's.

Ex: 2D Golden Mean

a	a
a	a

\mathbf{b}	a
a	a

\mathbf{a}	\mathbf{b}
\mathbf{a}	a

a	a
\mathbf{b}	a

a	a
a	b

For $\Sigma=\{a, b\}, Q$ is finite set of states defining set X of all possible configurations of the plane having any appearance of b surrounded by a 's.

Ex: 2D Golden Mean

a	a
a	a

\mathbf{b}	a
a	a

\mathbf{a}	\mathbf{b}
\mathbf{a}	a

a	a
\mathbf{b}	a

a	a
a	b

For $\Sigma=\{a, b\}, Q$ is finite set of states defining set X of all possible configurations of the plane having any appearance of b surrounded by a 's.

The Emptiness Problem

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color?
(H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2 D shift of finite type.

The Emptiness Problem

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color?
(H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2 D shift of finite type.
- Incorrect proof of affirmative hinges on assumption that any set of tiles capable of tiling the plane must admit a periodic tiling.
- In 1D, shift of finite type X is nonempty $\Leftrightarrow X$ contains a periodic point.

The Emptiness Problem

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color?
(H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2 D shift of finite type.
- There exists a set of Wang tiles that can only tile the plane aperiodically. (R. Berger, 1966)

The Emptiness Problem

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color?
(H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2 D shift of finite type.
- There exists a set of Wang tiles that can only tile the plane aperiodically. (R. Berger, 1966)
- The Emptiness Problem: Wang's question is now known to be undecidable.

Factors vs. Allowed Blocks

- Factors of X : For subshift $X, F(X)$ denotes set of all blocks that appear in some point of the subshift.
- Allowed blocks: $A(X)$ denotes set of all blocks that can be constructed from finite set Q which defines X.

Factors vs. Allowed Blocks

- Factors of X : For subshift $X, F(X)$ denotes set of all blocks that appear in some point of the subshift.
- Allowed blocks: $A(X)$ denotes set of all blocks that can be constructed from finite set Q which defines X.
- In 1D, $F(X)=A(X)$ for all shifts of finite type.
- In 2D, $F(X) \subseteq A(X)$ for all shifts of finite type, but $F(X)=A(X)$ is undecidable (Emptiness Problem).

Automata for 2D Sofic Subshifts

- Two separate graphs (matrices) have been used to represent horizontal and vertical movement in a 2D shift of finite type X.
- However, sofic subshifts that are the image of X under a block code generally can not be represented by simply relabeling the underlying pair of graphs that represent X.

Motivation

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images

Motivation

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images
- Investigate periodicity in 2D subshifts having property $A(X)=F(X)$

Motivation

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images
- Investigate periodicity in 2D subshifts having property $A(X)=F(X)$
- Initiate state merging to reduce graph size

$\mathcal{M}_{F(X)}$ Recognizing 2D Shifts of Finite Type

Let X be a 2D shift of finite type defined by set of $k \times k$ states Q where X has the property $A(X)=F(X)$.
The finite state automaton $\mathcal{M}_{F(X)}=(Q, E, s, t, \lambda)$ defined by
Q is a finite directed graph such that:

$\mathcal{M}_{F(X)}$ Recognizing 2D Shifts of Finite Type

Let X be a 2D shift of finite type defined by set of $k \times k$ states Q where X has the property $A(X)=F(X)$.
The finite state automaton $\mathcal{M}_{F(X)}=(Q, E, s, t, \lambda)$ defined by
Q is a finite directed graph such that:

- Vertex set of $\mathcal{M}_{F(X)}$ is Q; and
- Edge set is $E=E_{h} \cup E_{v}$, where \ldots

$\mathcal{M}_{F(X)}$ Recognizing 2D Shifts of Finite Type

Let X be a 2D shift of finite type defined by set of $k \times k$ states Q where X has the property $A(X)=F(X)$.
The finite state automaton $\mathcal{M}_{F(X)}=(Q, E, s, t, \lambda)$ defined by
Q is a finite directed graph such that:

- Vertex set of $\mathcal{M}_{F(X)}$ is Q; and
- Edge set is $E=E_{h} \cup E_{v}$, where \ldots

$$
\begin{array}{ccccccc}
e_{h}: q \rightarrow r \in & E_{h} \text { if and only if } \\
\begin{array}{ccccccc}
q_{(1, k-1)} & \ldots & q_{(k-1, k-1)} & r_{(0, k-1)} & \ldots & r_{(k-2, k-1)} \\
\vdots & \ddots & \vdots & = & \vdots & \ddots & \vdots \\
q_{(1,0)} & \ldots & q_{(k-1,0)} & & r_{(0,0)} & \ldots & r_{(k-2,0)}
\end{array}
\end{array}
$$

$\mathcal{M}_{F(X)}$ Recognizing 2D Shifts of Finite Type

Let X be a 2D shift of finite type defined by set of $k \times k$ states Q where X has the property $A(X)=F(X)$.
The finite state automaton $\mathcal{M}_{F(X)}=(Q, E, s, t, \lambda)$ defined by
Q is a finite directed graph such that:

- Vertex set of $\mathcal{M}_{F(X)}$ is Q; and
- Edge set is $E=E_{h} \cup E_{v}$, where \ldots
$e_{v}: q 1 r \in E_{v}$ if and only if

$$
\left.\begin{array}{cccccc}
q_{(0, k-1)} & \cdots & q_{(k-1, k-1)} & & r_{(0, k-2)} & \cdots \\
\vdots & \ddots & \vdots & = & \vdots & \ddots
\end{array}\right]
$$

Labeling Function

$$
\begin{aligned}
& \text { p }
\end{aligned}
$$

$$
\begin{aligned}
& \text { q }
\end{aligned}
$$

Labeling Function

Labeling Function

$$
\begin{aligned}
& a b e \\
& c d f
\end{aligned}
$$

Labeling Function

[^0]\[

$$
\begin{aligned}
& \text { p }
\end{aligned}
$$
\]

Labeling Function

Labeling Function

Acceptance of Non-block Factors

If X is given by a set Q of $k \times k$ blocks then a k-phrase is a shape obtained by repeated extension of rows and/or columns of width k.

Acceptance of Non-block Factors

If X is given by a set Q of $k \times k$ blocks then a k-phrase is a shape obtained by repeated extension of rows and/or columns of width k.

A k-phrase is said to be accepted by $\mathcal{M}_{F(X)}$ if there is a path in $\mathcal{M}_{F(X)}$ having P as its label.

Block Acceptance, Shifts of Finite Type

Block $B_{m, n}$ is said to be accepted by $\mathcal{M}_{F(X)}$ if all k-phrases of $B_{m, n}$ are accepted.

Block Acceptance, Shifts of Finite Type

Block $B_{m, n}$ is said to be accepted by $\mathcal{M}_{F(X)}$ if all k-phrases of $B_{m, n}$ are accepted.
(Check all k-phrases of $B_{m, n}$ that start with β_{α} and terminate in β_{ω} after a sequence of $n-k$ horizontal transitions and $m-k$ vertical transitions.)

Proposition

For a 2D shift of finite type X having property $F(X)=A(X)$, automaton $\mathcal{M}_{F(X)}$ is such that

$$
F(X)=L\left(\mathcal{M}_{F(X)}\right)=\left\{B: B \in \Sigma^{* *}, B \text { is accepted by } \mathcal{M}_{F(X)}\right\} .
$$

Ex: 2D Golden Mean

a	a			
a	a	\quad	b	a
:---	:---			
a	a	\quad	a	b
:---	:---			
a	a	\quad	a	a
:---	:---			
b	a	\quad	a	a
:---	:---			
a	b			

Block Acceptance, Alternate Definition

- An $m \times n$ block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.

Block Acceptance, Alternate Definition

- An $m \times n$ block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.

$$
\begin{array}{cccccc}
q_{[0, m-k+1]} & \rightharpoonup & q_{[1, m-k+1]} & \rightharpoonup & \cdots & q_{[n-k+1, m-k+1]} \\
\vdots & & \vdots & & & \vdots \\
1 & & 1 & & & 1 \\
q_{[0,1]} & \rightharpoonup & q_{[1,1]} & \rightharpoonup & \cdots & q_{[n-k+1,1]} \\
1 & & 1 & & & 1 \\
q_{[0,0]} & \rightharpoonup & q_{[1,0]} & \rightharpoonup & \cdots & q_{[n-k+1,0]}
\end{array}
$$

Block Acceptance, Alternate Definition

- An $m \times n$ block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.
- The original definition of block acceptance for shifts of finite type is a special case of this since all states bear distinct labels.

Grid-Infinite Paths

- A configuration of the plane is represented by a grid-infinite path.

Grid-Infinite Paths

- A configuration of the plane is represented by a grid-infinite path.

- For a 2D shift of finite type X, there is a $1-1$ correspondence between points in X and grid-infinite paths in $\mathcal{M}_{F(X)}$.

Proposition

Let X be represented by $\mathcal{M}_{F(X)}=(Q, E, s, t, \lambda)$, and let Y be the image of X under the block map Φ.

If $\mathcal{M}_{F(X)}^{\oplus}$ is the automaton having underlying graph $\mathcal{M}_{F(X)}$ with state set Q^{\prime} and edge set E^{\prime} relabeled according to Φ, then $L\left(\mathcal{M}_{F(X)}^{\Phi}\right)=F(Y)$.

Proposition

Let X be represented by $\mathcal{M}_{F(X)}=(Q, E, s, t, \lambda)$, and let Y be the image of X under the block map Φ.

If $\mathcal{M}_{F(X)}^{\Phi}$ is the automaton having underlying graph $\mathcal{M}_{F(X)}$ with state set Q^{\prime} and edge set E^{\prime} relabeled according to Φ, then $L\left(\mathcal{M}_{F(X)}^{\Phi}\right)=F(Y)$.

- The sofic shift Y need not be shift of finite type.
- There need no longer exist a 1 - 1 correspondence between points in Y and grid-infinite paths in $\mathcal{M}_{F_{(X)}}^{\Phi}$.

Example: Strictly Sofic Subshift

Example: Strictly Sofic Subshift

Notice q always appears in 2×2 tiles as $\begin{array}{ll}q_{4} & q_{3} \\ q_{2} & q_{1}\end{array}$

Example: Strictly Sofic Subshift

Automaton represents all configurations of the plane that can be obtained by tiling with p and q q.
q q

2D Uniform Horizontal Transitivity

For a 2D subshift X, we say the factor language $F(X)$ has horizontal transitivity if for every pair of blocks $B^{\prime}, B^{\prime \prime} \in F(X)$ the block B^{\prime} meets $B^{\prime \prime}$ along direction vector $\langle 1,0\rangle$ within some larger block $B \in F(X)$.

2D Uniform Horizontal Transitivity

For a 2D subshift X, we say the factor language $F(X)$ has uniform horizontal transitivity if there is a positive integer K such that for every pair of blocks $B^{\prime}, B^{\prime \prime} \in F(X)$ that meet along direction vector $\langle 1,0\rangle$ there is a block $B \in F(X)$ that encloses B^{\prime} and $B^{\prime \prime}$ in a way that $d\left(B^{\prime}, B^{\prime \prime}\right)<K$.

B

Theorem

Let X be 2D subshift represented by $\mathcal{M}_{F(X)}^{\Phi}$.
Given distance K, there is algorithm which decides whether $F(X)$ has uniform horizontal transitivity at distance K.

Automaton Facilitates Proof

We seek block path β that overlaps final and initial states of block paths representing B^{\prime} and $B^{\prime \prime}$, respectively.

Automaton Facilitates Proof

We seek block path β that overlaps final and initial states of block paths representing B^{\prime} and $B^{\prime \prime}$, respectively.

Uniformity condition permits application of well-known results from 1D automata theory.

2D Periodic Points

Given 2D shift space $X, x \in X$ is periodic of period $(a, b) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ iff $x_{(i, j)}=x_{(i+a, j+b)}$ for every $(i, j) \in \mathbb{Z}^{2}$.

B	B	B	A	A	A	B	B	B	A	A	A	B	B	B	A	A	A
B	B	B	A	A	A	B	B	B	A	A	A	B	B	B	A	A	A
A	A	A	B	B	B	A	A	A	B	B	B	A	A	A	B	B	B
A	A	A	B	B	B	A	A	A	B	B	B	A	A	A	B	B	B
B	B	B	A	A	A	B	B	B	A	A	A	B	B	B	A	A	A
B	B	B	A	A	A	B	B	B	A	A	A	B	B	B	A	A	A
A	A	A	B	B	B	A	A	A	B	B	B	A	A	A	B	B	B
A	A	A	B	B	B	A	A	A	B	B	B	A	A	A	B	B	B
B	B	B	A	A	A	B	B	B	A	A	A	B	B	B	A	A	A
B	B	B	A	A	A	B	B	B	A	A	A	B	B	B	A	A	A
A	A	A	B	B	B	A	A	A	B	B	B	A	A	A	B	B	B
A	A	A	B	B	B	A	A	A	B	B	B	A	A	A	B	B	B

Theorem

Let X be 2D subshift represented by $\mathcal{M}_{F(X)}^{\Phi}$.
If $F(X)$ exhibits uniform horizontal transitivity at some distance K, then X has a periodic point of period (a, b) for some $a \leq K+k$.

Follower-Separated Graphs

The follower set of state $q_{i} \in Q$ is the set of all blocks that have bottom-left corner $\beta_{\alpha}=q_{i}$.

Follower-Separated Graphs

The follower set of state $q_{i} \in Q$ is the set of all blocks that have bottom-left corner $\beta_{\alpha}=q_{i}$.

Graphs with distinct follower sets for each state are called follower-separated graphs.

Ex: Follower-Separated Graphs

- Graphs representing 2D shifts of finite type X are inherently follower-separated.

Ex: Follower-Separated Graphs

- 2D (strictly) sofic shift can also have follower-separated graph.

Ex: Follower-Separated Graphs

- 2D (strictly) sofic shift can also have follower-separated graph.

- Intersect folower sets with set $B=\left\{B_{0}, B_{1}, B_{2}\right\}$, where

$$
B_{0}:=\begin{array}{ll}
p & p \\
p & p
\end{array} \quad B_{1}:=\begin{array}{ll}
p & p \\
q & q
\end{array} \quad B_{2}:=\begin{array}{ll}
q & p \\
q & p
\end{array}
$$

Proposition

The graph size of $\mathcal{M}_{F(X)}^{\Phi}$ can be reduced by combining states having the same follower sets without affecting the represented factor language $F(X)$.

Ex: Reducing Graph Size

- Graph is follower-separated.

Ex: Reducing Graph Size

- Relabeled graph is not follower-separated.

Ex: Reducing Graph Size

- Reduced graph represents same subshift.

Ex: Reducing Graph Size

- Further reduced; same subshift

Open Questions

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?

Open Questions

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by $\mathcal{M}_{F(X)}^{\Phi}$?

Open Questions

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by $\mathcal{M}_{F(X)}^{\Phi}$?
- Is there an analog to the 1D idea of minimal deterministic presentations for $\mathcal{M}_{F(X)}^{\oplus}$?

Open Questions

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by $\mathcal{M}_{F(X)}^{\Phi}$?
- Is there an analog to the 1D idea of minimal deterministic presentations for $\mathcal{M}_{F(X)}^{\Phi}$?
- Is there a notion of 2D synchronizing words for subshifts having property $F(X)=A(X)$?

[^0]:

