Finite State Automata Representing Two-Dimensional Subshifts

JONI BURNETTE PIRNOT

NATAŠA JONOSKA

Department of Mathematics Manatee Community College 5840 26th Street West Bradenton, FL 34207, USA pirnotj@mccfl.edu Department of Mathematics University of South Florida 4202 East Fowler Avenue Tampa, FL 33620, USA jonoska@math.usf.edu

Overview

- Background and Motivation
- Automata Representing 2D Sofic Shifts
- Uniform Horizontal Transitivity and Periodicity
- State Merging
- Open Questions

2D Shift of Finite Type

- Σ is a finite alphabet.
- *Q* is a set of $k \times k$ states: $[0, k 1] \times [0, k 1] \rightarrow \Sigma$.
- Shift of finite type defined by Q is $X \subseteq \Sigma^{\mathbb{Z}^2}$ such that

 $\forall x \in X, \{x_{[i,i+k-1] \times [j,j+k-1]} \mid i, j \in \mathbb{Z}\} \in Q.$

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.
- Incorrect proof of affirmative hinges on assumption that any set of tiles capable of tiling the plane must admit a periodic tiling.
- In 1D, shift of finite type X is nonempty ⇔ X contains a periodic point.

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.
- There exists a set of Wang tiles that can only tile the plane aperiodically. (R. Berger, 1966)

- Is it possible for any finite set of equal-sized square tiles with colored edges to tile the plane in such a way that contiguous edges have the same color? (H. Wang, 1961)
- NOTE: A set of Wang tiles that can tile the plane satisfy the definition of a 2D shift of finite type.
- There exists a set of Wang tiles that can only tile the plane aperiodically. (R. Berger, 1966)
- The Emptiness Problem: Wang's question is now known to be undecidable.

Factors vs. Allowed Blocks

- Factors of X: For subshift X, F(X) denotes set of all blocks that appear in some point of the subshift.
- <u>Allowed blocks</u>: *A*(*X*) denotes set of all blocks that can be constructed from finite set *Q* which defines *X*.

Factors vs. Allowed Blocks

- Factors of X: For subshift X, F(X) denotes set of all blocks that appear in some point of the subshift.
- <u>Allowed blocks</u>: *A*(*X*) denotes set of all blocks that can be constructed from finite set *Q* which defines *X*.
- In 1D, F(X) = A(X) for all shifts of finite type.
- In 2D, F(X) ⊆ A(X) for all shifts of finite type,
 but F(X) = A(X) is undecidable (Emptiness Problem).

Automata for 2D Sofic Subshifts

- Two separate graphs (matrices) have been used to represent horizontal and vertical movement in a 2D shift of finite type *X*.
- However, sofic subshifts that are the image of *X* under a block code generally can not be represented by simply relabeling the underlying pair of graphs that represent *X*.

Motivation

 Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images

Motivation

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images
- Investigate periodicity in 2D subshifts having property
 A(X) = F(X)

Motivation

- Demonstrate automaton based on a single graph construction capable of representing 2D shifts of finite type as well as their sofic images
- Investigate periodicity in 2D subshifts having property
 A(X) = F(X)
- Initiate state merging to reduce graph size

Let *X* be a 2D shift of finite type defined by set of $k \times k$ states *Q* where *X* has the property A(X) = F(X).

The finite state automaton $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$ defined by

Q is a finite directed graph such that:

Let *X* be a 2D shift of finite type defined by set of $k \times k$ states *Q* where *X* has the property A(X) = F(X). The <u>finite state automaton</u> $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$ defined by *Q* is a finite directed graph such that:

- Vertex set of $\mathcal{M}_{F(X)}$ is Q; and
- Edge set is $E = E_h \cup E_v$, where ...

Let *X* be a 2D shift of finite type defined by set of $k \times k$ states *Q* where *X* has the property A(X) = F(X). The <u>finite state automaton</u> $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$ defined by *Q* is a finite directed graph such that:

- Vertex set of $\mathcal{M}_{F(X)}$ is Q; and
- Edge set is $E = E_h \cup E_v$, where ...

 $e_{h}: q \rightarrow r \in E_{h} \text{ if and only if}$ $q_{(1,k-1)} \cdots q_{(k-1,k-1)} r_{(0,k-1)} \cdots r_{(k-2,k-1)}$ $\vdots \cdots \vdots = \vdots \cdots \vdots$ $q_{(1,0)} \cdots q_{(k-1,0)} r_{(0,0)} \cdots r_{(k-2,0)}$

Let *X* be a 2D shift of finite type defined by set of $k \times k$ states *Q* where *X* has the property A(X) = F(X). The <u>finite state automaton</u> $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$ defined by *Q* is a finite directed graph such that:

- Vertex set of $\mathcal{M}_{F(X)}$ is Q; and
- Edge set is $E = E_h \cup E_v$, where ...

 $e_{v} : q \mid r \in E_{v} \text{ if and only if}$ $q_{(0,k-1)} \dots q_{(k-1,k-1)} \quad r_{(0,k-2)} \dots r_{(k-1,k-2)}$ $\vdots \quad \ddots \quad \vdots \quad = \quad \vdots \quad \ddots \quad \vdots$ $q_{(0,1)} \dots q_{(k-1,1)} \quad r_{(0,0)} \dots r_{(k-1,0)}$

q

e

f

b

d

Acceptance of Non-block Factors

If *X* is given by a set *Q* of $k \times k$ blocks then a <u>*k*-phrase</u> is a shape obtained by repeated extension of rows and/or columns of width *k*.

Acceptance of Non-block Factors

If X is given by a set Q of $k \times k$ blocks then a <u>k-phrase</u> is a shape obtained by repeated extension of rows and/or columns of width k.

A *k*-phrase is said to be *accepted* by $\mathcal{M}_{F(X)}$ if there is a path in $\mathcal{M}_{F(X)}$ having *P* as its label.

Block Acceptance, Shifts of Finite Type

Block $B_{m,n}$ is said to be *accepted* by $\mathcal{M}_{F(X)}$ if all *k*-phrases of $B_{m,n}$ are accepted.

Block Acceptance, Shifts of Finite Type

Block $B_{m,n}$ is said to be *accepted* by $\mathcal{M}_{F(X)}$ if all *k*-phrases of $B_{m,n}$ are accepted.

(Check all *k*-phrases of $B_{m,n}$ that start with β_{α} and terminate in β_{ω} after a sequence of n - k horizontal transitions and m - k vertical transitions.)

Proposition

For a 2D shift of finite type *X* having property F(X) = A(X), automaton $\mathcal{M}_{F(X)}$ is such that

$$F(X) = L(\mathcal{M}_{F(X)}) = \{B : B \in \Sigma^{**}, B \text{ is accepted by } \mathcal{M}_{F(X)}\}.$$

Block Acceptance, Alternate Definition

 An m × n block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.

Block Acceptance, Alternate Definition

 An m × n block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.

Block Acceptance, Alternate Definition

- An m × n block is accepted IFF it is represented by a block path comprised of the appropriate number of states and transitions.
- The original definition of block acceptance for shifts of finite type is a special case of this since all states bear distinct labels.

Grid-Infinite Paths

• A configuration of the plane is represented by a grid-infinite path.

Grid-Infinite Paths

• A configuration of the plane is represented by a grid-infinite path.

• For a 2D shift of finite type *X*, there is a 1 - 1 correspondence between points in *X* and grid-infinite paths in $\mathcal{M}_{F(X)}$.

Proposition

Let *X* be represented by $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$, and let *Y* be the image of *X* under the block map Φ .

If $\mathcal{M}_{F(X)}^{\Phi}$ is the automaton having underlying graph $\mathcal{M}_{F(X)}$ with state set Q' and edge set E' relabeled according to Φ , then $L(\mathcal{M}_{F(X)}^{\Phi}) = F(Y)$.

Proposition

Let *X* be represented by $\mathcal{M}_{F(X)} = (Q, E, s, t, \lambda)$, and let *Y* be the image of *X* under the block map Φ .

If $\mathcal{M}_{F(X)}^{\Phi}$ is the automaton having underlying graph $\mathcal{M}_{F(X)}$ with state set Q' and edge set E' relabeled according to Φ , then $L(\mathcal{M}_{F(X)}^{\Phi}) = F(Y)$.

- The sofic shift *Y* need not be shift of finite type.
- There need no longer exist a 1-1 correspondence between points in *Y* and grid-infinite paths in $\mathcal{M}_{F(X)}^{\Phi}$.

Example: Strictly Sofic Subshift

Example: Strictly Sofic Subshift

Notice q always appears in 2 × 2 tiles as $\begin{array}{c} q_4 & q_3 \\ q_2 & q_1 \end{array}$

Example: Strictly Sofic Subshift

Automaton represents all configurations of the plane that

can be obtained by tiling with p and $\begin{array}{c} q & q \\ q & q \end{array}$.

2D Uniform Horizontal Transitivity

For a 2D subshift *X*, we say the factor language F(X) has horizontal transitivity if for every pair of blocks $B', B'' \in F(X)$ the block *B'* meets *B''* along direction vector $\langle 1, 0 \rangle$ within some larger block $B \in F(X)$.

B

2D Uniform Horizontal Transitivity

For a 2D subshift *X*, we say the factor language F(X) has uniform horizontal transitivity if there is a positive integer *K* such that for every pair of blocks $B', B'' \in F(X)$ that meet along direction vector $\langle 1, 0 \rangle$ there is a block $B \in F(X)$ that encloses *B'* and *B''* in a way that d(B', B'') < K.

Theorem

Let *X* be 2D subshift represented by $\mathcal{M}_{F(X)}^{\Phi}$.

Given distance K, there is algorithm which decides whether F(X) has uniform horizontal transitivity at distance K.

Automaton Facilitates Proof

We seek block path β that overlaps final and initial states of block paths representing *B*' and *B*'', respectively.

Automaton Facilitates Proof

We seek block path β that overlaps final and initial states of block paths representing *B*' and *B*'', respectively.

Uniformity condition permits application of well-known results from 1D automata theory.

2D Periodic Points

Given 2D shift space $X, x \in X$ is periodic of period $(a, b) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ iff $x_{(i,j)} = x_{(i+a,j+b)}$ for every $(i, j) \in \mathbb{Z}^2$.

Theorem

Let X be 2D subshift represented by $\mathcal{M}_{F(X)}^{\Phi}$.

If F(X) exhibits uniform horizontal transitivity at some distance K, then X has a periodic point of period (a, b) for some $a \le K + k$.

Follower-Separated Graphs

The <u>follower set</u> of state $q_i \in Q$ is the set of all blocks that have bottom-left corner $\beta_{\alpha} = q_i$.

Follower-Separated Graphs

The <u>follower set</u> of state $q_i \in Q$ is the set of all blocks that have bottom-left corner $\beta_{\alpha} = q_i$.

Graphs with distinct follower sets for each state are called follower-separated graphs.

Ex: Follower-Separated Graphs

• Graphs representing 2D shifts of finite type *X* are inherently follower-separated.

Ex: Follower-Separated Graphs

• 2D (strictly) sofic shift can also have follower-separated graph.

Ex: Follower-Separated Graphs

• 2D (strictly) sofic shift can also have follower-separated graph.

• Intersect follower sets with set $B = \{B_0, B_1, B_2\}$, where

$$B_{0} := \begin{array}{cccc} p & p \\ p & p \end{array} \qquad B_{1} := \begin{array}{cccc} p & p \\ q & q \end{array} \qquad B_{2} := \begin{array}{cccc} q & p \\ q & p \end{array} \qquad {}_{*-p.25/2}$$

Proposition

The graph size of $\mathcal{M}_{F(X)}^{\Phi}$ can be reduced by combining states having the same follower sets without affecting the represented factor language F(X).

• Graph is follower-separated.

• Relabeled graph is not follower-separated.

• Reduced graph represents same subshift.

• Further reduced; same subshift

• When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by $\mathcal{M}_{F(X)}^{\Phi}$?

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by $\mathcal{M}_{F(X)}^{\Phi}$?
- Is there an analog to the 1D idea of minimal deterministic presentations for $\mathcal{M}_{F(X)}^{\Phi}$?

- When does a graph having two disjoint sets of transitions represent a non-empty 2D subshift?
- What conditions suffice/necessitate existence of periodic points in subshifts represented by $\mathcal{M}_{F(X)}^{\Phi}$?
- Is there an analog to the 1D idea of minimal deterministic presentations for $\mathcal{M}_{F(X)}^{\Phi}$?
- Is there a notion of 2D synchronizing words for subshifts having property F(X) = A(X)?