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Overview
• Background and Motivation

• Automata Representing 2D Sofic Shifts

• Uniform Horizontal Transitivity and Periodicity

• State Merging

• Open Questions
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2D Shift of Finite Type
• Σ is a finite alphabet.

• Q is a set of k × k states: [0, k − 1] × [0, k − 1]→ Σ.

• Shift of finite type defined by Q is X ⊆ ΣZ
2

such that

∀x ∈ X, {x[i,i+k−1]×[ j, j+k−1] | i, j ∈ Z} ∈ Q.

* – p. 3/28



Ex: 2D Golden Mean
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For Σ = {a, b}, Q is finite set of states defining set X of all
possible configurations of the plane having any
appearance of b surrounded by a’s.
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The Emptiness Problem
• Is it possible for any finite set of equal-sized square

tiles with colored edges to tile the plane in such a way
that contiguous edges have the same color?
(H. Wang, 1961)

• NOTE: A set of Wang tiles that can tile the plane
satisfy the definition of a 2D shift of finite type.

* – p. 5/28



The Emptiness Problem
• Is it possible for any finite set of equal-sized square

tiles with colored edges to tile the plane in such a way
that contiguous edges have the same color?
(H. Wang, 1961)

• NOTE: A set of Wang tiles that can tile the plane
satisfy the definition of a 2D shift of finite type.

• Incorrect proof of affirmative hinges on assumption
that any set of tiles capable of tiling the plane must
admit a periodic tiling.

• In 1D, shift of finite type X is nonempty⇔ X contains
a periodic point.
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The Emptiness Problem
• Is it possible for any finite set of equal-sized square

tiles with colored edges to tile the plane in such a way
that contiguous edges have the same color?
(H. Wang, 1961)

• NOTE: A set of Wang tiles that can tile the plane
satisfy the definition of a 2D shift of finite type.

• There exists a set of Wang tiles that can only tile the
plane aperiodically. (R. Berger, 1966)

• The Emptiness Problem: Wang’s question is now
known to be undecidable.
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Factors vs. Allowed Blocks
• Factors of X: For subshift X, F(X) denotes set of all

blocks that appear in some point of the subshift.

• Allowed blocks: A(X) denotes set of all blocks that
can be constructed from finite set Q which defines X.
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Factors vs. Allowed Blocks
• Factors of X: For subshift X, F(X) denotes set of all

blocks that appear in some point of the subshift.

• Allowed blocks: A(X) denotes set of all blocks that
can be constructed from finite set Q which defines X.

• In 1D, F(X) = A(X) for all shifts of finite type.

• In 2D, F(X) ⊆ A(X) for all shifts of finite type,
but F(X) = A(X) is undecidable (Emptiness Problem).
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Automata for 2D Sofic Subshifts
• Two separate graphs (matrices) have been used to

represent horizontal and vertical movement in a 2D
shift of finite type X.

• However, sofic subshifts that are the image of X under
a block code generally can not be represented by
simply relabeling the underlying pair of graphs that
represent X.
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Motivation
• Demonstrate automaton based on a single graph

construction capable of representing 2D shifts of finite
type as well as their sofic images
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Motivation
• Demonstrate automaton based on a single graph

construction capable of representing 2D shifts of finite
type as well as their sofic images

• Investigate periodicity in 2D subshifts having property
A(X) = F(X)
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Motivation
• Demonstrate automaton based on a single graph

construction capable of representing 2D shifts of finite
type as well as their sofic images

• Investigate periodicity in 2D subshifts having property
A(X) = F(X)

• Initiate state merging to reduce graph size
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MF(X) Recognizing 2D Shifts of Finite Type
Let X be a 2D shift of finite type defined by set of k × k

states Q where X has the property A(X) = F(X).
The finite state automatonMF(X) = (Q,E, s, t, λ) defined by
Q is a finite directed graph such that:
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MF(X) Recognizing 2D Shifts of Finite Type
Let X be a 2D shift of finite type defined by set of k × k

states Q where X has the property A(X) = F(X).
The finite state automatonMF(X) = (Q,E, s, t, λ) defined by
Q is a finite directed graph such that:

• Vertex set ofMF(X) is Q; and

• Edge set is E = Eh ∪ Ev, where ...

eh : q→ r ∈ Eh if and only if

q(1,k−1) ... q(k−1,k−1)
...

. . .
...

q(1,0) ... q(k−1,0)

=

r(0,k−1) ... r(k−2,k−1)
...

. . .
...

r(0,0) ... r(k−2,0)
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MF(X) Recognizing 2D Shifts of Finite Type
Let X be a 2D shift of finite type defined by set of k × k

states Q where X has the property A(X) = F(X).
The finite state automatonMF(X) = (Q,E, s, t, λ) defined by
Q is a finite directed graph such that:

• Vertex set ofMF(X) is Q; and

• Edge set is E = Eh ∪ Ev, where ...

ev : q � r ∈ Ev if and only if

q(0,k−1) ... q(k−1,k−1)
...

. . .
...

q(0,1) ... q(k−1,1)

=

r(0,k−2) ... r(k−1,k−2)
...

. . .
...

r(0,0) ... r(k−1,0)
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Labeling Function
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Labeling Function
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Labeling Function
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Labeling Function

Follow the 
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d

a b e
c d f
g h
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read the label
horizontal edge and 
vertical edge with 
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Acceptance of Non-block Factors
If X is given by a set Q of k × k blocks then a k-phrase is a
shape obtained by repeated extension of rows and/or
columns of width k.
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Acceptance of Non-block Factors
If X is given by a set Q of k × k blocks then a k-phrase is a
shape obtained by repeated extension of rows and/or
columns of width k.

β
α

k

β
ω

k

k

k

A k-phrase is said to be accepted byMF(X) if there is a
path inMF(X) having P as its label.
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Block Acceptance, Shifts of Finite Type
Block Bm,n is said to be accepted byMF(X) if all k-phrases
of Bm,n are accepted.
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Block Acceptance, Shifts of Finite Type
Block Bm,n is said to be accepted byMF(X) if all k-phrases
of Bm,n are accepted.

(Check all k-phrases of Bm,n that start with βα and terminate
in βω after a sequence of n − k horizontal transitions and
m − k vertical transitions.)

β
α

k

k

β
ω

k

k

m

n
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Proposition
For a 2D shift of finite type X having property F(X) = A(X),
automatonMF(X) is such that

F(X) = L(MF(X)) =
{

B : B ∈ Σ∗∗,B is accepted byMF(X)

}

.
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Ex: 2D Golden Mean

ba

a a

aa

a

a a

a

a

a a

a a

a ab b

b

a

a a

b

a a

ab

a a

aa

a

a

a

ba

a a

b

* – p. 14/28



Block Acceptance, Alternate Definition
• An m × n block is accepted IFF it is represented by a

block path comprised of the appropriate number of
states and transitions.
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Block Acceptance, Alternate Definition
• An m × n block is accepted IFF it is represented by a

block path comprised of the appropriate number of
states and transitions.

q[0,m−k+1] ⇀ q[1,m−k+1] ⇀ · · · q[n−k+1,m−k+1]
...

...
...

� � �

q[0,1] ⇀ q[1,1] ⇀ · · · q[n−k+1,1]

� � �

q[0,0] ⇀ q[1,0] ⇀ · · · q[n−k+1,0]

* – p. 15/28



Block Acceptance, Alternate Definition
• An m × n block is accepted IFF it is represented by a

block path comprised of the appropriate number of
states and transitions.

• The original definition of block acceptance for shifts of
finite type is a special case of this since all states bear
distinct labels.
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Grid-Infinite Paths
• A configuration of the plane is represented by a

grid-infinite path.

...
...

· · · q[0,1] ⇀ q[1,1] · · ·

� �

· · · q[0,0] ⇀ q[1,0] · · ·
...

...
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Grid-Infinite Paths
• A configuration of the plane is represented by a

grid-infinite path.

...
...

· · · q[0,1] ⇀ q[1,1] · · ·

� �

· · · q[0,0] ⇀ q[1,0] · · ·
...

...

• For a 2D shift of finite type X, there is a 1 − 1
correspondence between points in X and grid-infinite
paths inMF(X).
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Proposition
Let X be represented byMF(X) = (Q,E, s, t, λ), and let Y be
the image of X under the block map Φ.

IfMΦ
F(X) is the automaton having underlying graphMF(X)

with state set Q′ and edge set E′ relabeled according to Φ,
then L(MΦ

F(X)) = F(Y).
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Proposition
Let X be represented byMF(X) = (Q,E, s, t, λ), and let Y be
the image of X under the block map Φ.

IfMΦ
F(X) is the automaton having underlying graphMF(X)

with state set Q′ and edge set E′ relabeled according to Φ,
then L(MΦ

F(X)) = F(Y).

• The sofic shift Y need not be shift of finite type.

• There need no longer exist a 1 − 1 correspondence
between points in Y and grid-infinite paths inMΦ

F(X).
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Example: Strictly Sofic Subshift
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Example: Strictly Sofic Subshift
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Notice q always appears in 2 × 2 tiles as
q4 q3

q2 q1

.
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Example: Strictly Sofic Subshift

q

q

p

q

q

Automaton represents all configurations of the plane that

can be obtained by tiling with p and
q q

q q
.
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2D Uniform Horizontal Transitivity
For a 2D subshift X, we say the factor language F(X) has
horizontal transitivity if for every pair of blocks B′,B′′ ∈ F(X)
the block B′ meets B′′ along direction vector 〈1, 0〉 within
some larger block B ∈ F(X).

B'

B''

B
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2D Uniform Horizontal Transitivity
For a 2D subshift X, we say the factor language F(X) has
uniform horizontal transitivity if there is a positive integer K

such that for every pair of blocks B′,B′′ ∈ F(X) that meet
along direction vector 〈1, 0〉 there is a block B ∈ F(X) that
encloses B′ and B′′ in a way that d(B′,B′′) < K.

B'

B''

B

d
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Theorem

Let X be 2D subshift represented byMΦ
F(X).

Given distance K, there is algorithm which decides whether
F(X) has uniform horizontal transitivity at distance K.
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Automaton Facilitates Proof

B' B''

π' π''

We seek block path β that overlaps final and initial states of
block paths representing B′ and B′′, respectively.

* – p. 21/28



Automaton Facilitates Proof

B' B''

π' π''

We seek block path β that overlaps final and initial states of
block paths representing B′ and B′′, respectively.

Uniformity condition permits application of well-known
results from 1D automata theory.
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2D Periodic Points
Given 2D shift space X, x ∈ X is periodic of period
(a, b) ∈ Z2 \ {(0, 0)} iff x(i, j) = x(i+a, j+b) for every (i, j) ∈ Z2.
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Theorem

Let X be 2D subshift represented byMΦ
F(X).

If F(X) exhibits uniform horizontal transitivity at some
distance K, then X has a periodic point of period (a, b) for
some a ≤ K + k.
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Follower-Separated Graphs
The follower set of state qi ∈ Q is the set of all blocks that
have bottom-left corner βα = qi.
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Follower-Separated Graphs
The follower set of state qi ∈ Q is the set of all blocks that
have bottom-left corner βα = qi.

Graphs with distinct follower sets for each state are called
follower-separated graphs.
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Ex: Follower-Separated Graphs
• Graphs representing 2D shifts of finite type X are

inherently follower-separated.
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Ex: Follower-Separated Graphs
• 2D (strictly) sofic shift can also have

follower-separated graph.

q

q

p

q

q
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Ex: Follower-Separated Graphs
• 2D (strictly) sofic shift can also have

follower-separated graph.

q

q

p

q

q

• Intersect folower sets with set B = {B0,B1,B2}, where

B0 :=
p p

p p
B1 :=

p p

q q
B2 :=

q p

q p
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Proposition
The graph size ofMΦ

F(X) can be reduced by combining
states having the same follower sets without affecting the
represented factor language F(X).
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Ex: Reducing Graph Size
• Graph is follower-separated.
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Ex: Reducing Graph Size
• Relabeled graph is not follower-separated.
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Ex: Reducing Graph Size
• Reduced graph represents same subshift.
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Ex: Reducing Graph Size
• Further reduced; same subshift
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Open Questions
• When does a graph having two disjoint sets of

transitions represent a non-empty 2D subshift?
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deterministic presentations forMΦ
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Open Questions
• When does a graph having two disjoint sets of

transitions represent a non-empty 2D subshift?

• What conditions suffice/necessitate existence of
periodic points in subshifts represented byMΦ

F(X)?

• Is there an analog to the 1D idea of minimal
deterministic presentations forMΦ

F(X)?

• Is there a notion of 2D synchronizing words for
subshifts having property F(X) = A(X)?
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