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Abstract

We study finite-state controllers (FSCs) for par-
tially observable Markov decision processes
(POMDPs) that are provably correct with respect
to given specifications. The key insight is that
computing (randomised) FSCs on POMDPs is
equivalent to (and computationally as hard as) syn-
thesis for parametric Markov chains (pMCs). This
correspondence enables using black-box tech-
niques to compute correct-by-construction FSCs
for POMDPs for a wide range of properties. Our
experimental evaluation on typical POMDP prob-
lems shows that we are competitive to state-of-
the-art POMDP solvers.

1 Introduction

Partially Observable MDPs. We intend to provide guar-
antees for planning scenarios given by dynamical systems
with uncertainties. In particular, we want to synthesise
a strategy for an agent that ensures certain desired be-
haviour [18]. A popular formal model for planning sub-
ject to stochastic behaviour are Markov decision processes
(MDPs) [27]. An MDP is a nondeterministic model in which
the agent chooses to perform an action under full knowledge
of the environment it is operating in. The outcome of the
action is a probability distribution over the system states.
Many applications, however, allow only partial observabil-
ity of the current system state [20, 31, 36, 39]. For such
applications, MDPs are extended to partially observable
Markov decision processes (POMDPs). While the agent
acts within the environment, it encounters certain observa-
tions, according to which it can infer the likelihood of the
system being in a certain state. This likelihood is called the
belief state. Executing an action leads to an update of the
belief state according to new observations. The belief state
together with an update function form a (typically uncount-
ably infinite) MDP, referred to as the belief MDP [34].

The POMDP Synthesis Problem. For (PO)MDPs, a ran-
domised strategy is a function that resolves the nondeter-
minism by providing a probability distribution over actions
at each time step. In general, strategies depend on the full
history of the current evolution of the (PO)MDP. If a strat-
egy depends only on the current state of the system, it is
called memoryless. For MDPs, memoryless strategies suf-
fice to induce optimal values according to our measures of
interest [27]. Contrarily, POMDPs require strategies taking
the full observation history into account [29], e. g. in case of
infinite-horizon objectives. Moreover, strategies inducing
optimal values are computed by assessing the entire belief
MDP [3, 22, 24, 35], rendering the problem undecidable [6].

POMDP strategies can be represented by infinite-state con-
trollers. For computational tractability, strategies are of-
ten restricted to finite memory; this amounts to using ran-
domised finite-state controllers (FSCs) [23]. We often refer
to strategies as FSCs. The product of a POMDP and an FSC
yields a POMDP with a larger state space. In this product,
it suffices to compute a memoryless randomised strategy.
Computing such a strategy is NP-hard, SQRT-SUM-hard,
and in PSPACE [37]. While optimal values cannot be guar-
anteed, finite memory in combination with randomisation
may supersede infinite memory in many cases [1, 7].

Correct-by-Construction Strategy Computation. In
this paper, we synthesise FSCs for POMDPs. We require
these FSCs to be provably correct for specifications such as
indefinite horizon properties like expected reward or reach-
avoid probabilities. State-of-the-art POMDP solvers mainly
consider expected discounted reward measures [38]. Note
that reach-avoid probabilities cannot sufficiently be simu-
lated by reward engineering, as complex requirements may
trigger negative side-effects or hide potential bugs [32].

Our key observation is that for a POMDP the set of all
FSCs with a fixed memory bound can be succinctly repre-
sented by a parametric Markov chain (pMC) [12]. Tran-
sitions of pMCs are given by functions over a finite set of
parameters rather than constant probabilities. The parame-
ter synthesis problem for pMCs is to determine parameter



Table 1: Correspondence
POMDP under FSC pMC

states × memory states
same observation same parameter
strategy parameter instantiation

instantiations that satisfy (or refute) a given specification.
We show that the pMC parameter synthesis problem and the
POMDP strategy synthesis problem are equally hard. This
correspondence not only yields complexity results [19], but
particularly enables using a plethora of methods for param-
eter synthesis implemented in sophisticated and optimised
parameter synthesis tools like PARAM [17], PRISM [21],
and PROPhESY [14]. They turn out to be competitive alter-
natives to dedicated POMDP solvers. Moreover, as we are
solving partially different problems, our methods are orthog-
onal to, e. g., PRISM-POMDP [24] and solve-POMDP [38].

We detail our contributions and the structure of the paper,
which starts with necessary formalisms in Sect. 2.

Section 3: We establish the correspondence between
POMDPs and pMCs. Consider Table 1. The product
of a POMDP and an FSC yields a POMDP with state-
memory pairs. These are mapped to states in the pMC.
If POMDP states share an observation, the correspond-
ing pMC states share parameters at their emanating
transitions. A strategy of the POMDP corresponds to a
parameter instantiation in the pMC.

Section 4: We show the opposite direction, namely a trans-
formation from pMCs to POMDPs. This result estab-
lishes that the synthesis problems for POMDPs and
pMCs are equally hard. Technically, we identify the
practically relevant class of simple pMCs, which coin-
cides with POMDPs under memoryless strategies.

Section 5: Specific types of FSCs differ in the information
they take into account, e. g. the last action that has been
taken by an agent. We compare existing definitions
from the literature and discuss their effect in our setting.

Section 6: Typical restrictions on parameter instantiations
concern whether parameters may be assigned the prob-
ability zero. We discuss effects of such restrictions to
the resulting POMDP strategies.

Section 7: We show how to compute correct-by-
construction FSCs using our techniques. To that
end, we explain how particular parameter synthesis
approaches deliver optimal or near-optimal FSCs.
Then, we evaluate the approach on a range of typical
POMDP benchmarks. We observe that often, only
little memory suffices. Our approach is competitive
to state-of-the-art POMDP solvers and is able to
synthesise small, almost-optimal FSCs.

Related Work. In addition to the cited works, [23] uses a
branch-&-bound method to find optimal FSCs for POMDPs.
A SAT-based approach computes FSCs for qualitative prop-
erties [4]. For a survey of decidability results and algorithms
for broader classes of properties refer to [5, 6]. Work on
parameter synthesis [10, 16, 19] might contain valuable ad-
ditions to the methods considered here.

2 Preliminaries

A probability distribution over a finite or countably infinite
set X is a function µ : X → [0, 1] ⊆ R with

∑
x∈X µ(x) =

µ(X ) = 1. The set of all distributions on X is Distr(X ). The
support of a distribution µ is supp(µ) = {x ∈ X | µ(x) > 0}.
A distribution is Dirac if |supp(µ) | = 1.

Let V = {p1, . . . ,pn } be a finite set of parameters over the
domain R and let Q[V ] be the set of multivariate polynomi-
als over V . An instantiation for V is a function u : V → R.
Replacing each parameter p in a polynomial f ∈ Q[V ] by
u(p) yields f [u] ∈ R; f , 0 holds if f [u] , 0 for some
instantiation u.

Decision problems can be considered as languages describ-
ing all positive instances. A language L1 ⊆ {0,1}∗ is polyno-
mial (many-one or Karp) reducible to L2 ⊆ {0,1}∗, written
L1 6P L2, if there exist a polynomial-time computable
function f : {0,1}∗ → {0,1}∗ such that for all w ∈ {0,1}∗,
w ∈ L1 ⇐⇒ f (w) ∈ L2. Polynomial reductions are
essential to define complexity classes, cf. [25].

2.1 Parametric Probabilistic Models

Definition 1 (pMDP) A parametric Markov decision pro-
cess (pMDP) M is a tuple M = (S, sI,Act,V,P) with a finite
(or countably infinite) set S of states, initial state sI ∈ S, a
finite set Act of actions, a finite set V of parameters, and a
transition function P : S × Act × S → Q[V ].

The available actions in s ∈ S are Act(s) = {a ∈ Act | ∃s′ ∈
S : P (s,a, s′) , 0}. We assume that pMDP M contains no
deadlock states, i. e. Act(s) , ∅ for all s ∈ S. A path of a
pMDP M is an (in)finite sequence π = s0

a0
−−→ s1

a1
−−→ · · · ,

where s0 = sI, si ∈ S, ai ∈ Act(si ), and P (si ,ai , si+1) , 0
for all i ∈ N. For finite π, last(π) denotes the last state of π.
The set of (in)finite paths of M is PathsMfin (PathsM ).

Definition 2 (MDP) A Markov decision process (MDP) is
a pMDP where P : S × Act × S → [0,1] ⊆ R and for all
s ∈ S and a ∈ Act(s) we have

∑
s′∈S P (s,a, s′) = 1.

A (parametric) discrete-time Markov chain ((p)MC) is a
(p)MDP with |Act(s) | = 1 for all s ∈ S. For a pMC D, we
may omit the actions and use the notation D = (S, sI,V,P)
with a transition function P of the form P : S × S → Q[V ].
This is analogous for (non-parametric) MCs.



Applying an instantiation u : V → R to a pMDP or pMC M ,
denoted M[u], replaces each polynomial f in M by f [u].
M[u] is also called the instantiation of M at u. Instantiation
u is well-defined for M if the replacement yields probability
distributions, i. e. if M[u] is an MDP or an MC, respectively.

Strategies. To resolve the nondeterministic action choices
in MDPs, so-called strategies determine at each state a
distribution over actions to take. This decision may be
based on the history of the current path.

Definition 3 (Strategy) A strategy σ for M is a function
σ : PathsMfin → Distr(Act) s. t. supp

(
σ(π)

)
⊆ Act

(
last(π)

)
for all π ∈ PathsMfin . The set of all strategies of M is ΣM .

A strategy σ is memoryless if last(π) = last(π′) implies
σ(π) = σ(π′) for all π,π′ ∈ PathsMfin . It is deterministic if
σ(π) is a Dirac distribution for all π ∈ PathsMfin . A strategy
that is not deterministic is randomised.

A strategy σ for an MDP M resolves all nondeterministic
choices, yielding an induced Markov chain Mσ , for which a
probability measure over the set of infinite paths is defined
by the standard cylinder set construction [2].

Definition 4 (Induced Markov Chain) For an MDP M =

(S, sI,Act,P) and a strategy σ ∈ ΣM , the MC induced by
M and σ is given by Mσ = (PathsMfin , sI,Pσ ) where:

Pσ (π,π′) =



P (last(π),a, s′) · σ(π)(a) if π′ = πas′,
0 otherwise.

2.2 Partial Observability

Definition 5 (POMDP) A partially observable
MDP (POMDP) is a tuple M = (M , Z ,O), with
M = (S, sI,Act,P) the underlying MDP ofM, Z a finite
set of observations and O : S → Z the observation function.

We require that states with the same observations have
the same set of enabled actions, i. e. O(s) = O(s′) im-
plies Act(s) = Act(s′) for all s, s′ ∈ S. We define
Act(z) = Act(s) if O(s) = z. More general observation
functions [30, 34] take the last action into account and pro-
vide a distribution over Z . There is a transformation of the
general case to the POMDP definition used here that blows
up the state space polynomially [5]. In Fig. 1(a), a frag-
ment of the underlying MDP of a POMDP has two different
observations, indicated by the state colouring.

We lift the observation function to paths: For π = s0
a0
−−→

s1
a1
−−→ · · · sn ∈ PathsMfin , the associated observation se-

quence is O(π) = O(s0)
a0
−−→ O(s1)

a1
−−→ · · ·O(sn ). Several

paths in the underlying MDP may yield the same observa-
tion sequence. Strategies have to take this restricted observ-
ability into account.
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(a) POMDPM

〈n1〉

〈n2〉
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(b) FSC A
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Figure 1: (a) The POMDPM has two observations O(s1) =

O(s3) = z0 (white) and O(s2) = O(s4) = O(s5) = z1 (red).
(b) The associated (partial) FSC A has two memory nodes.
(c) The MCMσA induced byM and A has then 9 states.

Definition 6 An observation-based strategy for a POMDP
M is a strategy σ for the underlying MDP M such that
σ(π) = σ(π′) for all π,π′ ∈ PathsMfin with O(π) = O(π′).
ΣM is the set of observation-based strategies forM.

An observation-based strategy selects actions based on ob-
servations along a path and the past actions. Applying the
strategy to a POMDP yields an induced MC as in Def. 4,
resolving all nondeterminism and partial observability. To
represent observation-based strategies with finite memory,
we define finite-state controllers (FSCs). We discuss alterna-
tive definitions from the literature in Sect. 5. A randomised
observation-based strategy for a POMDPM with (finite) k
memory is represented by an FSC A with k memory nodes.
If k = 1, the FSC describes a memoryless strategy. In the
following, we refer to observation-based strategies as FSCs.

Definition 7 (FSC) A finite-state controller (FSC) for a
POMDPM is a tuple A = (N,nI, γ, δ), where N is a finite
set of memory nodes, nI ∈ N is the initial memory node,
γ is the action mapping γ : N × Z → Distr(Act), and δ
is the memory update δ : N × Z × Act → Distr(N ). The
set FSCM

k
denotes the set of FSCs with k memory nodes,

called k-FSCs. Let σA ∈ ΣM denote the observation-based
strategy represented by A.

From a node n and the observation z in the current state
of the POMDP, the next action a is chosen from Act(z)
randomly as given by γ(n, z). Then, the successor node of
the FSC is determined randomly as described by δ(n, z,a).

Example 1 Fig. 1(b) shows an excerpt of an FSC A with
two memory nodes. From node n1, the action mapping
distinguishes observations z0 and z1. The solid dots indicate
a probability distribution from Distr(Act). For readability,



all distributions are uniform and we omit the action mapping
for node n2.

Now recall the POMDP M from Fig. 1(a). The induced
MCMσA is shown in Fig. 1(c). AssumeM is in state s1 and
A in node n1. Based on the observation z0 := O(s1), σA
chooses action a1 with probability δ(n1, z0)(a1) = 0.5 lead-
ing to the probabilistic branching in the POMDP. With prob-
ability 0.6,M evolves to state s2. Next, the FSC A updates
its memory node; with probability δ(n1, z0,a1)(n1) = 0.5,
A stays in n1. The corresponding transition from 〈s1,n1〉 to
〈s2,n1〉 inMσA has probability 0.5 · 0.6 · 0.5 = 0.15.

2.3 Specifications

For a POMDPM, a set G ⊆ S of goal states, a set B ⊆ S
of bad states, and a threshold λ ∈ [0,1], we consider
quantitative reach-avoid specifications ϕ = P>λ (¬B U G).
The specification ϕ is satisfied for a strategy σ ∈ ΣM if
the probability PrM

σ
(¬B U G) of reaching a goal state in

Mσ without entering a bad state in between exceeds λ,
denoted byMσ |= ϕ. The task is to compute such a strat-
egy provided that one exists. For an MDP M, there is a
memoryless deterministic strategy inducing the maximal
probability PrMmax(¬B U G) [9]. For a POMDP M, how-
ever, observation-based strategies with infinite memory as
in Def. 6 are necessary [29] to attain PrMmax(¬B U G). The
problem of proving the satisfaction of ϕ is therefore unde-
cidable [6]. In our experiments, we also use undiscounted
expected reachability reward properties [2].

3 From POMDPs to pMCs

Our goal is to make pMC synthesis methods available for
POMDPs. In this section we provide a transformation from
a POMDP M to a pMC D. We consider the following
decision problems.

Problem 1 (∃k-FSC) Given a POMDPM, a specification
ϕ, and a (unary encoded) memory bound k > 0, is there a
k-FSC A withMσA |= ϕ?

Problem 2 (∃INST) Given a pMC D and a specification ϕ,
is there a well-defined instantiation u such that D[u] |= ϕ?

Theorem 1 ∃k-FSC 6P ∃INST.

The converse direction is addressed in Sect. 4. Consider a
POMDPM, a specification ϕ, and a memory bound k > 0
for which ∃k-FSC is to be solved. The degrees of freedom
to select a k-FSC are given by the possible choices for γ
and δ. For each γ and δ, we get a different induced MC, but
these MCs are structurally similar and can be represented
by a single pMC.

〈s1, n1〉
p′

0.6

0.4

〈s2, n1〉

〈s2, n2〉

〈s3, n1〉

〈s3, n2〉

q1

1−q1

q1

1−q1

(a) Induced pMC

Act P Node Result

a1 : p
0.6 n1 : q1 0.6 · p · q1

n2 : 1 − q1 0.6 · p · (1 − q1)

0.4 n1 : q1 0.4 · p · q1
n2 : 1 − q1 0.4 · p · (1 − q1)

a2 : 1 − p
0.7 n1 : q2 0.7 · (1 − p) · q2

n2 : 1 − q2 0.7 · (1 − p) · (1 − q2)

0.3 n1 : q2 0.3 · (1 − p) · q2
n2 : 1 − q2 0.3 · (1 − p) · (1 − q2)

(b) Parameterised transition probabilities

Figure 2: Induced parametric Markov chain for FSCs.

Example 2 Recall Fig. 1 and Ex. 1. The action mapping
γ and the memory update δ have arbitrary but fixed prob-
ability distributions. For a1, we represent the probability
γ(n1, z0)(a1) =: p by p ∈ [0,1]. The memory update yields
δ(n1, z0,a1)(n1) =: q1 ∈ [0,1] and δ(n1, z0,a1)(n2) =:
1 − q1, respectively. Fig. 2(a) shows the induced pMC for
action choice a1. For instance, the transition from 〈s1,n1〉

to 〈s2,n1〉 is labelled with polynomial p · 0.6 · q1.
We collect all polynomials for observation z0 in Fig. 2(b).
The result column describes a parameterised distribution
over tuples of states and memory nodes. Thus, instantiations
for these polynomials need to sum up to one.

As the next step, we define the pMC that results from com-
bining a k-FSC with a POMDP. The idea is to assign pa-
rameters as arbitrary probabilities to action choices. Each
observation has one remaining action given by a mapping
Remain : Z → Act. Remain(z) ∈ Act(z) is the action to
which, after choosing probabilities for all other actions in
Act(z), the remaining probability is assigned. A similar
principle holds for the remaining memory node.

Definition 8 (Induced pMC for a k-FSC on POMDPs)
LetM = (M , Z ,O) be a POMDP with M = (S, sI,Act,P)
and let k > 0 be a memory bound. The induced pMC
DM,k = (SM,k , sI,M,k ,VM,k ,PM,k ) is defined by:

• SM,k = S × {0, . . . , k − 1}

• sI,M,k = 〈sI,0〉

• VM,k =
{
pz,n
a

�� z ∈ Z,n ∈ {0, . . . , k − 1},
a ∈ Act(z),a , Remain(z)

}
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(b) Induced pMC DM,1

Figure 3: From POMDPs to pMCs (k = 1)

∪
{
qz,n
a,n′

�� z ∈ Z,n,n′ ∈ {0, . . . , k − 1},
n′ , k − 1,a ∈ Act(z)

}
• PM,k (s, s′) =

∑
a∈Act(s) H (s, s′,a) for all s, s′ ∈ S′,

where H : SM,k × SM,k × Act → R is for z = O(s) defined
by H

(
〈s,n〉,〈s′,n′〉,a

)
=

P (s,a, s′) ·



pz,n
a , if a , Remain

(
z
)

1 −
∑
b,a

pz,n
b
, if a = Remain

(
z
) 



·



qz,n
a,n′ , if n′ , k−1

1 −
∑

n̄,n′
qz,n
a, n̄ , if n′ = k−1


 .

Intuitively, H (s, s′,a) describes the probability mass from
s to s′ in the induced pMC that is contributed by action a.
The three terms correspond to the terms as seen in the first
three columns of Tab. 2(b).

Example 3 Consider the POMDP in Fig. 3(a) and let
k = 1. The induced pMC is given in Fig. 3(b). The three
actions from s0 have probability p1, p2, and 1−p1−p2 for
the remaining action a3. From the indistinguishable states
s1, s3, actions have probability q and 1−q, respectively.

By construction, the induced pMC describes the set of all
induced MCs:

Theorem 2 (Correspondence Theorem) Let M be a
POMDP, k a memory bound, and DM,k the induced pMC:{

DM,k [u] �� u well-defined
}

=
{
MσA �� A ∈ FSCMk

}
.

In particular, every well-defined instantiation u describes
an FSC Au ∈ FSCM

k
.

By the correspondence, we can thus evaluate an instantiation
of the induced pMC to assess whether the corresponding
k-FSC satisfies a given specification.

Corollary 1 Let DM,k be an induced pMC and let ϕ be
a specification. For every well-defined instantiation u of
DM,k and the corresponding k-FSC Au we have:

MσAu |= ϕ ⇐⇒ DM,k [u] |= ϕ.

s0

s2s1 s3

p

q

1 − p − q

p 1 − p
1 1

Figure 4: Non-simple pMC

Lemma 1 (Number of Parameters) The number of pa-
rameters in the induced pMC DM,k is given by O

(
|Z | ·

k2 ·maxz∈Z |Act(z) |
)
.

4 From pMCs to POMDPs (and back again)

In the previous section we have shown that ∃k-FSC is at
least as hard as ∃INST. We now discuss whether both prob-
lems are equally hard: The open question is whether we can
reduce ∃INST to ∃k-FSC.

A straightforward reduction would maintain the states of the
pMC in the POMDP, or even yield a POMDP with the same
graph structure (the topology) as the pMC. The following
example shows that such a naive reduction is not possible.

Example 4 In the pMC in Fig. 4 the parameter p occurs
in two different distributions (at s0 and s2). For defining a
reduction where the resulting POMDP has the same set of
states, there are two options for the observation function
at the states s0 and s2: Either O(s0) = O(s2) or O(s0) ,
O(s2). The intuition is that every (parametric) transition in
the pMC corresponds to an action choice in a POMDP. Then
O(s0) = O(s2) is impossible as s0 and s3 have a different
number of outgoing transitions (outdegree). Adding a self-
loop to s2 does not alleviate the problem.
Moreover, O(s0) , O(s2) is impossible, as a strategy could
distinguish s0 and s2 and assign different probabilities to p.

The pMC in the example is problematic as the parameters
occur at the outgoing transitions of states in different com-
binations. We restrict ourselves to an important subclass1
of pMCs which we call simple pMCs. A pMC is simple if
for all states s, s′, P(s, s′) ∈ Q ∪ {p,1 − p | p ∈ V }. Con-
sequently, we can map states to parameters, and use this
map to define the observations. The transformation from a
POMDP to a pMC then is the reverse of the transformation
from Def. 8. In the remainder, we detail this correspon-
dence. The correspondence also establishes a construction
to compute k-FSCs via parameter synthesis on simple pMCs.
Current tool-support (cf. Sect. 7) for simple pMCs is more
mature than for the more general pMCs obtained via Def. 8.

Let simple-∃INST be the restriction of ∃INST to simple
pMCs. Similarly, let simple-∃1-FSC be a variant of ∃1-FSC
that only considers simple POMDPs.

1All pMC benchmarks from the PARAM webpage [26] are
simple pMCs.



Definition 9 (Binary/Simple POMDP) A POMDP is bi-
nary, if |Act(s) | ≤ 2 for all s ∈ S. A binary POMDP is
simple, if for all s ∈ S

|Act(s) | = 2 =⇒ ∀a ∈ Act(s) ∃s′ ∈ S : P(s,a, s′) = 1.

We establish the following relation between the POMDP and
pMC synthesis problems, which asserts that the problems
are equivalently hard.

Theorem 3 For any L1,L2 ∈ {∃k-FSC, ∃1-FSC, simple-
∃1-FSC, simple-∃INST }, L1 6P L2.

The proof is a direct consequence of the Lemmas 2-5 below,
as well as the facts that every 1-FSC is a k-FSC, and every
simple POMDP is a POMDP.

The induced pMC DM,1 of a simple POMDP M is also
simple. Consequently, Sect. 3 yields:

Lemma 2 simple-∃1-FSC 6P simple-∃INST.

4.1 From Simple pMCs to Simple POMDPs

Theorem 4 Every simple pMC D with n states and m pa-
rameters is isomorphic to DM,1 for some simple POMDP
M with n states and m observations.

We refrain from a formal proof: The construction is the
reverse of Def. 8, with observations {zp | p ∈ VD }. In a
simple pMC, the outgoing transitions are either all parameter
free, or of the form p,1−p. The parameter-free case is
transformed into a POMDP state with a single action (and
any observation). The parametric case is transformed into a
state with two actions with Dirac-distributions attached. As
observation we use zp .

Lemma 3 simple-∃INST 6P simple-∃1-FSC.

4.2 From General POMDPs to Simple POMDPs

We present a reduction from ∃1-FSC to simple ∃1-FSC by
translating a (possibly not simple) POMDP into a binary
POMDP and subsequently into a simple POMDP. Examples
are given in Fig. 5(a–e). We emphasise that our construction
only preserves the expressiveness of 1-FSCs. There are sev-
eral ways to transform a POMDP into a binary POMDP. We
illustrate one in Fig. 5(a–b). The idea is to split actions at
a state with more than two actions into two sets, which are
then handled by fresh states with fresh observations. The
transformation iteratively reduces the number of actions
until every state has at most two outgoing actions. To en-
sure a one-to-one correspondence between 1-FSCs of the
original POMDP and the transformed POMDP, all states
with the same observation should be handled the same way.
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Figure 5: POMDP↔ simple pMC

In particular, the same observations should be used for the
introduced auxiliary states.

The transformation from binary POMDP to simple POMDP
is illustrated by Fig. 5(c–d). After each state with a choice
of two actions, auxiliary states are introduced, such that
the outcome of the action becomes deterministic and the
probabilistic choice is delayed to the auxiliary state. This
construction is similar to the conversion of Segala’s prob-
abilistic automata into Hansson’s alternating model [33].
Fig. 5(e) shows the induced simple pMC.

Lemma 4 ∃1-FSC 6P simple-∃1-FSC.

4.3 From k-FSCs to 1-FSCs

Given a POMDPM and a memory bound k > 1 we con-
struct a POMDPMk such thatM satisfies a specification
ϕ under some k-FSC iffMk satisfies ϕ under some 1-FSC.

Definition 10 (k-Unfolding) Let M = (M , Z ,O) be a
POMDP with M = (S, sI,Act,P), and k > 1. The k-
unfolding ofM is the POMDPMk = (Mk , Zk ,Ok ) with
Mk = (Sk , sI,k ,Actk ,Pk ) defined by:

• Sk = S × {0, . . . k−1}

• sI,k = 〈sI,0〉

• Actk = Act × {0, . . . , k−1}

• Pk
(
〈s,n〉,〈a, n̄〉,〈s′,n′〉

)
=




P (s,a, s′) if n′ = n̄
0 otherwise.

• Zk = Z × {0, . . . , k−1}

• Ok
(
〈s,n〉

)
=

〈
O(s),n

〉
.
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Figure 6: Unfolding a POMDP for two memory states

Intuitively,Mk stores the current memory node into its state
space. At state 〈s,n〉 ofMk , a 1-FSC can not only choose
between the available actions Act(s) inM but also between
different successor memory nodes.

Fig. 6 shows this process for k = 2. All states of the POMDP
are copied once. Different observations allow to determine
in which copy of a state – and therefore, which memory cell
– we currently are. Additionally, all actions are duplicated to
model the option for a strategy to switch the memory cell.

The induced pMC DMk ,1 of the k-unfolding ofM has the
same topology as the induced pMC DM,k ofM with mem-
ory bound k. In fact, both pMCs have the same instantia-
tions.

Proposition 1 For POMDPM and memory bound k:

{DMk ,1[u] | u well-defined} = {DM,k [u] | u well-defined}.

The intuition is that in both pMCs the parameter instan-
tiations reflect arbitrary probability distributions over the
same set of successor states. In the transition probability
function of the induced pMC DM,k ofM we can also sub-
stitute the multiplications of parameters pz,n

a and qz,n
a,n′ by

single parameters. This yields a substituted induced pMC
which is then isomorphic to the induced pMC DMk ,1 of the
k-unfolding ofM. More details are given in Appendix A

From Prop. 1 and Thm. 2 we get that induced MCs ofM
under k-FSCs coincide with induced MCs of Mk under
1-FSCs, i.e., {MσA | A ∈ FSCM

k
} = {M

σA
k
| A ∈ FSCM1 }

Lemma 5 ∃k-FSC 6P ∃1-FSC.

5 Alternative FSCs

In the literature, several formalisms for FSCs occur. In
particular, [2, 5, 23] do not agree upon a common model.
We discuss the applicability of our results with respect to
the different variants of FSCs.

Ignoring the Taken Action for Updates. In [2, 23], the
memory update is of the form δ′ : N × Z → Distr(N ). The
update is a restriction of the FSCs in this paper, represented
by the constraint δ(n, z,a1) = δ(n, z,a2). The constraint

yields dependencies between different actions, preventing
the k-unfolding as in Def. 10. We present an alternative
to the induced pMC as in Def. 8, respecting this variant of
k-FSCs in Appendix B.

Taking the Next Observation into Account. In this pa-
per, the memory node update in FSCs depends on the ob-
servation at the state before executing the action. Instead,
the update may also be based on the observation after the
update [23]. This notion introduces dependencies between
actions from states with different observations that reach the
same observation. The dependencies can be eliminated by
transforming the POMDP. Appendix B details how a trans-
formation to a pMC is possible with this memory model.

Ignoring the Current Observation when Selecting the
Action. In [5], the action mapping is modeled as γ′ : N →
Distr(Act), which restricts our FSC to γ(n, z) = γ(n, z′).
This type of FSC is more general in the sense that it can
assign memory usage more freely than the rather uniform as-
signment used here. In particular, a model with one memory
node is now not memoryless anymore, but weaker (it has to
select the same action distribution regardless of the observa-
tion). It also contains some restrictions: In particular, every
POMDP state requires the same action set. Therefore, this
model is not compatible with our framework.

6 Strategy/Parameter Restrictions

Two typical restrictions on the parameters are usually made
in parameter synthesis for pMCs:

• Each transition is assigned a strictly positive probabil-
ity (graph-preserving).
• Each transition is assigned at least probability ε > 0

(ε-preserving).

For simple pMCs, the restrictions correspond to selecting
parameters instantiations from (0,1) or [ε,1 − ε], respec-
tively.

Accordingly, we define restrictions to POMDP strategies
that correspond to such restricted parameter instantiations.

Definition 11 (Non-zero Strategies) A strategy σ is non-
zero if σ(π)(a) > 0 for all π ∈ PathsMfin ,a ∈ Act(last(π)).
If additionally σ(π)(a) ≥ ε > 0, then σ is min-ε.

Non-zero strategies ensure that supp(σ(s)) = Act(s). The
example below shows the potential impact on reachability
probabilities.

Example 5 The MDP M in Fig. 6 has a choice between
actions a1 and a2 at state s0. If action a1 is chosen with
probability zero, the probability to reach s1 from becomes
zero, and the corresponding parameter instantiation is not
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graph-preserving. Contrarily, if a1 is chosen with any posi-
tive probability, as would be enforced by a non-zero strategy,
the probability to reach s1 is one.

Proposition 2 LetM be a POMDP. An instantiation u on
DM,1 is graph-preserving (ε-preserving), iff σAu is non-
zero (min-ε).

Still, for the considered specifications, we can, w.l.o.g.,
restrict ourselves to FSCs that induce non-zero strategies.

Theorem 5 Let M be POMDP, k a memory bound and
ϕ = P>λ (¬B U G). Either ∀A ∈ k-FSC : MσA 6 |= ϕ or
∃A ′ ∈ k-FSC :MσA′ |= ϕ with σA′ non-zero.

The theorem is a consequence of the corresponding state-
ment for pMCs, which we show in Appendix C.

Lemma 6 For pMC D and ϕ = P>λ (¬B U G), either
D[u] 6 |= ϕ for all well-defined instantiations u, or D[u] |= ϕ
for some graph-preserving instantiation.

7 Empirical Evaluation

Above, we established the correspondence between the syn-
thesis problems for POMDPs and pMCs. Now, we discuss
the available methods for pMC parameter synthesis, and
how they may be exploited or adapted to synthesise FSCs.
All techniques mentioned below are supported by the tool
PROPhESY [14]. We distinguish three key problems:

(1) Find a correct-by-construction strategy for a POMDP
and a specification. To construct such a strategy, one
needs to find a parameter valuation for the pMC that
provably satisfies the specification. Most solution tech-
niques focused on pMCs with a few parameters, render-
ing the problem at hand infeasible. Recently, efficient
approaches emerged that are either based on particle
swarm optimisation (PSO) [8] or on convex optimisa-
tion [1,10], in particular using quadratically-constrained
quadratic programming (QCQP) [11]. We employ PSO
and QCQP for our evaluation.

(2) Prove that no FSC exists for a POMDP and a speci-
fication. Proving the absence of an FSC also allows
us to show ε-optimality of a previously synthesised
strategy. Two approaches exist: An approximative tech-
nique called parameter lifting [28] and a method based
on SAT-modulo-theories (SMT) solving [13].

Table 2: Benchmarks
POMDPM PRISM-POMDP SolvePOMDP MDP

Id Name States Bran. Obs. Result Time Result Time Res
1 NRP (8) 125 161 41 [0.125, 0.24] 20 TO 1.0
2 Grid (4) 17 62 3 [3.97, 4.13] 1038 4.13 0.4 3.2
3 Netw (3,4,8) 2729 4937 361 TO TO 0.83
4 Crypt (5) 4885 11733 890 MO TO 1.0
5 Maze (2) 16 58 8 [5.11, 5.23] 3.9 5.23 16 4.0
6 Load (8) 16 28 5 [10.5, 10.5] 1356 10.5 7.6 10.5
7 Slippery (4) 17 59 4 TO 0.93 95 1.0

(3) Provide a closed-form solution for the underlying mea-
sure of a specification in form of a function over the in-
duced parameters of an FSC. The function may be used
for further analysis, e.g., of the sensitivity of decisions
or parameter values, respectively. To compute this func-
tion, all of the parameter synthesis tools PARAM [17],
PRISM [21], Storm [15], and PROPhESY [14] employ
a technique called state elimination [12].

Implementation and Setup. We extended the tool
Storm [15] to parse and store POMDPs, and implemented
several transformation options to pMCs. Most notably,
Storm supports k-unfolding, the product with several re-
stricted FSCs such as counters that can be incremented at
will, and several types of transformation to (simple) pMCs.

We evaluate on a HP BL685C G7 with 48 2 GHz cores, a
16 GB memory limit, and 1800 seconds time limit. The
methods compared here are single-threaded. We took all
POMDPs from PRISM-POMDP [24], additional maze,
load/unload examples from [23], and a slippery gridworld
with traps inspired by [31]. Table 2 gives further details.
We list the number of states, branches, and observations in
each POMDP. As a baseline, we provide the results and run
time of the model-checking tool PRISM-POMDP, and the
point-based solver SolvePOMDP [38], obtained with default
settings. Both tools compute optimal memory-unbounded
strategies and are prototypes. The last column contains
the result on the underlying, fully observable MDP. The
experiments contain minimal expected rewards, which are
analysed by a straightforward extension of maximal reacha-
bility probabilities. All pMCs computed are simple pMCs,
as PROPhESY typically benefits from the simpler structure.
PROPhESY has been invoked with the default set-up.

7.1 Finding strategies

We evaluate how quickly a strategy that satisfies the speci-
fication can be synthesised. We vary the threshold used in
the specification, as well as the structure of the FSC.

Results. We summarise the obtained results in Table 3.
For each instance (Id), we define three thresholds (Ts),
ordered from challenging (i.e., close to the optimum) to
less challenging. For different types of FSCs (FSC, F=full,
C=counter) and memory bounds (k), we obtain pMCs with
the given number of states, transitions and parameters. For



Table 3: Synthesing strategies
Id Ts FSC/k States Trans Pars T1 T2 T3

pso qcqp pso qcqp pso qcqp

1 .124/.11/.09

F/1 75 118 8 <1 <1 <1 <1 <1 <1
F/2 205 420 47 2 <1 2 <1 2 <1
F/4 921 1864 215 9 2 9 2 10 2
F/8 3889 7824 911 43 15 42 14 42 14

2 4.15/4.5/5.5

F/1 47 106 3 - - - - Err <1
F/2 183 390 15 7.4 11 4 9 2 <1
F/4 719 1486 63 TO 64 39 91 14 8
F/8 2845 5788 255 TO 700 TO 946 254 69

3 8/10/15

F/1 3268 13094 276 TO TO TO 43 22 4
F/2 16004 46153 1783 TO TO TO 877 152 28
C/2 11270 36171 1168 TO TO TO 358 100 62
C/4 27183 82145 2940 TO MO TO MO 476 MO

4 .25/.2/.15 F/1 3366 6534 364 18 25 18 15 18 12
F/2 25713 51608 3907 330 MO 350 MO 326 MO

5 5.2/15/25

F/1 30 64 8 - - TO TO <1 TO
F/2 137 294 49 TO TO 14 TO 2 TO
F/4 587 1214 219 93 TO TO TO 26 TO
F/8 2421 4924 919 TO TO 1034 TO 115 TO
C/2 99 212 33 TO TO 3.7 TO <1 TO
C/4 231 476 81 7 TO 6 TO 3 TO

6 10.6/10.9/82.5
F/1 16 33 1 - - - - <1 TO
F/2 77 160 11 9 TO 6 TO <1 TO
F/4 354 721 63 20 TO 21 63 3 TO

7 .929/.928/.927

F/1 87 184 3 TO TO <1 1 <1 <1
F/2 285 592 15 4 TO 4 20 3 22
F/4 1017 2080 63 76 767 71 205 67 187
F/8 3825 7744 255 TO TO TO TO TO TO

each threshold (T1,T2,T3), we then report the run time of
the two methods PSO and QCQP, respectively. T1 is cho-
sen to be nearly optimal for all benchmarks except Netw
(where we do not know the optimum). A dash indicates
a combination of memory and threshold that is not realis-
able according to the results in Sect. 7.2. TO/MO denote
violations of the time/memory limit, respectively.

Evaluation. Strategies for thresholds which are subopti-
mal (T3) are synthesised faster. If the memory bound is
increased, the number of parameters quickly grows and the
performance of the methods quickly degrades. Additional
experiments showed that the number of states has only a
minor effect on the performance. Simpler FSC topology for
a counter alleviates the blow-up of the pMC and is success-
fully utilised to find good strategies for larger instances.

Trivially, a k-FSC is also a valid (k+i)-FSC for some i ∈ N.
Yet, the larger number of parameters make searching for
(k+i)-FSCs significantly more difficult. We furthermore
observe that the performance of PSO and QCQP is incom-
parable, and both methods have their merits.

Summarising, many of the POMDPs in the benchmarks
only require FSCs with little memory. We find nearly-
optimal, and small, FSCs for POMDP benchmarks with
thousands of states within seconds.

7.2 Proving ε-Optimality

We now focus on evaluating how quickly pMC techniques
can prove the absence of a strategy satisfying the specifica-
tion. Such a proof allows us to draw conclusions about the
(ε-)optimality of a strategy synthesised in Sect. 7.1.

Table 4: Proving strategy absence and getting closed-forms
(a) Proving absence

Id FSC/k T time
2 F/1 5 <1
3 F/1 5 8
3 F/4 5 183
4 F/1 0.25 2∗

5 F/1 10 3
5 F/2 5 TO
6 F/1 82 <1
6 F/8 10.5 1
7 F/1 0.94 5

(b) Closed-form sol.
Id FSC/k time
1 F/1 <1
1 F/2 97
2 F/1 155
3 F/1 464
4 F/1 <1
5 F/1 116
6 F/1 <1
7 F/1 TO

Results. Table 4(a) shows the run times to prove that for
the POMDP in column Id, there exists no strategy of type
FSC with k memory that performs better than threshold T .
The row indicated by ∗ was obtained with SMT. All other
results were obtained with parameter lifting.

Evaluation. We generally can prove tight bounds for k=1.
For k > 1, the high number of parameters yields a mixed im-
pression, the performance depends on the particular bench-
mark. Notably, we can prove non-trivial bounds even for
k=8, even if the pMC has hundreds of parameters.

7.3 Closed-form solutions.

Results. Table 4(b) indicates running times to compute
a closed-form solution, i.e., a rational function that maps
k-FSCs to the induced probability.

Evaluation. Closed form computation is limited to small
memory bounds. The rational functions obtained vary
wildly in their structure. For (4), the result is a constant
function which is trivial to analyse, while for (3), we ob-
tained rational functions with roughly one million terms,
rendering further evaluation expensive.

8 Conclusion

This paper connects two active research areas, namely veri-
fication and synthesis for POMDPs and parameter synthesis
for Markov models. We see benefits for both areas. On
the one hand, the rich application area for POMDPs in,
e. g., robotics, yields new challenging benchmarks for pa-
rameter synthesis and can drive the development of more
efficient methods. On the other hand, parameter synthesis
tools and techniques extend the state-of-the-art approaches
for POMDP analysis. Future work will also concern a thor-
ough investigation of permissive schedulers, that correspond
to regions of parameter instantiations, in concrete motion
planning scenarios.
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A Substituted Induced pMC

We simplify the induced pMC DM,k of a POMDPM and
a memory bound k by substituting the polynomials in the
transition probability function as follows.

Consider the POMDP from Fig. 1(a) and its induced pMC
for memory bound k = 2. Tab. 5 enumerates the outgoing
transitions of the pMC state 〈s1,n1〉 (cf. Fig. 3). We observe
that the polynomials of the form p · qi and p · (1 − qi ) for
i ∈ {0,1} are independent from each other. We substitute
them with single variables in the substituted column. The
obtained pMC is called the substituted induced pMC.

Definition 12 (Substituted Induced pMC) Reconsider
Def. 8. We define Dsubs

M,k
= (SM,k , sI,M,k ,V subs

M,k
,Psubs
M,k

) by
modifying VM,k and Hsubs as follows:

• V subs
M,k

=
{
r z,na,n′

�� z ∈ Z,n,n′ ∈ {0, . . . , k − 1},a ∈
Act(z) with n′ , k − 1 ∨ a , Remain(z)

}
,

• Hsubs (〈s,n〉,〈s′,n′〉,a)
=

P (s,a, s′)·




r z,na,n′ , if a , Remain(z) ∨ n′ , k−1
1 −

∑
a′,a∨n̄,k−1

r z,na′, n̄ ,

if a = Remain(z) ∧ n′ = k−1




with z = O(s), and

• Psubs
M,k

(s, s′) =
∑

a∈Act(s) Hsubs(s, s′,a) for all s, s′ ∈
SM,k .

It follows:{
DM,k [u] �� u well-defined

}
=

{
Dsubs
M,k [u′] �� u′ well-defined

}
.

Table 5: Substitution of polynomials in induced pMC
Act P Node induced pMC substituted

a1 : p
0.6 n1 : q1 0.6 · p · q1 0.6 · p1

n2 : 1 − q1 0.6 · p · (1−q1) 0.6 · p2

0.4 n1 : q1 0.4 · p · q1 0.4 · p1
n2 : 1 − q1 0.4 · p · (1−q1) 0.4 · p2

a2 : 1 − p
0.7 n1 : q2 0.7 · (1−p) · q2 0.7 · p3

n2 : 1 − q2 0.7 · (1−p) · (1−q2) 0.7 · (1−
∑3

i=1 pi )

0.3 n1 : q2 0.3 · (1−p) · q2 0.3 · p3

n2 : 1 − q2 0.3 · (1−p) · (1−q2) 0.3 · (1−
∑3

i=1 pi )

B Alternative FSCs

Ignoring the Taken Action for Updates. In [2, 23], the
memory update is of the form δ′ : N × Z → Distr(N ). This
is a restriction of the FSCs considered here, represented by
the constraint δ(n, z,a1) = δ(n, z,a2).

Example 6 Recall Ex. 2, with the induced pMC for the
POMDP fragment, as also given in Tab. 2(b). Tab. 6(a)

presents the induced pMC with the restriction in place. No-
tice that we have no parameter q2 anymore. Based on
Tab. 2(b) we could set p′ = 0.5,q1 = 0, and the follow-
ing transition probabilities for each target: {〈s2,n1〉 7→

0,〈s2,n2〉 7→ 0.3,〈s4,n1〉 7→ 0.35}. Based on Tab. 6(a), this
assignment is not possible.

We conclude from the example above that we get an addi-
tional parameter dependency.

Definition 13 (Action-Restricted Induced pMC)
Reconsider Def. 8. We define Drestr

M,k
= (SM,k , sI,M,k ,V restr

M,k
,

Prestr
M,k

) by modifying VM,k and H restr as follows:

• V restr
M,k

= {pz,n
a | z ∈ Z,n ∈ {0, . . . , k − 1},a ∈

Act(z),a , Remain(z)}
∪{qz,n

n′ | n,n
′ ∈ {0, . . . , k − 1},n′ , k − 1, z ∈ Z }

• H restr (〈s,n〉,〈s′,n′〉,a)
=

P (s,a, s′) ·



pz,n
a , if a,Remain

(
z
)

1 −
∑

a′,a
pz,n
a′ , if a=Remain

(
z
) 



·



qz,n
n′ , if n′,k−1

1 −
∑

n̄,n′
qz,n
n̄ , if n′=k−1




with z = O(s)

• Prestr
M,k

(s, s′) =
∑

a∈Act(s) Hnext(s, s′,a) for all s, s′ ∈
S′.

The obtained pMC is then called the action-restricted in-
duced pMC.

For these pMCs, we can no longer perform the substitution
as proposed in Def. 12. As a consequence this restriction
breaks the proposed unfolding.

Taking the Next Observation into Account. Instead of
basing the memory node update on the observation from the
state before executing the action, the memory node may also
be updated based on the observation after the update [23].

Example 7 Recall Ex. 2, with the induced pMC for the
POMDP fragment, as also given in Tab. 2(b). Tab. 6(a)
presents the induced pMC with the restriction in place. No-
tice that the memory update probabilities now depend on the
observation of the resulting state. In particular, the action
probability depends on the current observation, and features
dependencies between source states, while the memory up-
date features dependencies between target states.

Definition 14 (Next-observation induced pMC)
Reconsider Def. 8. We define Dnext

M,k
= (SM,k , sI,M,k ,

V next
M,k

,Pnext
M,k

) by modifying VM,k and Hnext as follows:



• V next
M,k

=
{
pz,n
a

�� z ∈ Z,n ∈ {0, . . . , k − 1},a ∈
Act(z),a , Remain(z)

}
∪

{
qz,n
a,n′

�� z ∈ Z,n,n′ ∈ {0, . . . , k − 1},n′ ,
k − 1,a ∈ Act

}
,

• Hnext (〈s,n〉,〈s′,n′〉,a)
=

P (s,a, s′) ·



pz,n
a , if a,Remain

(
z
)

1 −
∑

a′,a
pz,n
a′ , if a=Remain

(
z
) 



·




qz′,n
a,n′ , if n′,k−1

1 −
∑

n̄,n′
qz′,n
a, n̄ , if n′=k−1




with z = O(s), z′ = O(s′), and

• Pnext
M,k

(s, s′) =
∑

a∈Act(s) Hnext(s, s′,a) for all s, s′ ∈
S′.

The obtained pMC is then called the next-induced pMC.

Notice that due to the dependencies, we cannot substitute
monomials, and we cannot simply unfold the memory into
the POMDP.

We observe that compared to taking the next observation
into account, the defined FSC lags behind, and needs an
additional step. We can modify the POMDP to give the
memory structure time to update.

C Proof of Lemma 6

We show Lemma 6. Assume pMC P and ϕ =

P>λ (¬B U G). We have to show that either P[u] 6 |= ϕ
for all well-defined instantiations or P[u] |= ϕ for some
graph-preserving instantiation.

Let f be a function that maps a well-defined instantiation
u to the probability PrD[u](¬B U G). The essential idea is
that the only reason for a discontinuity of f is a change in
the set S=0 – states in the pMC from which the probability
to reach the target is zero. The number of states in S=0 is
the smallest under a graph preserving assignment. A discon-
tinuity of f thus implies a reduced reachability probability
(there are more states in S=0).

As a consequence, if we have to construct an instantiation
which reaches a goal with probability > κ, we can look for
such an instantiation among the graph-preserving ones. In
particular, this also means that the set of states S=0 can be
precomputed.

Table 6: Alternative induced pMCs
(a) Action Restricted

Obs Act P Node Result

z1

a1 : p′
0.6 n1 : q1 0.6 · p′ · q1

n2 : 1 − q1 0.6 · p′ · (1−q1)

0.4 n1 : q1 0.4 · p′ · q1
n2 : 1−q1 0.4 · p′ · (1−q1)

a2 : 1−p′
0.7 n1 : q1 0.7 · (1−p′) · q1

n2 : 1−q1 0.7 · (1−p′) · (1−q1)

0.3 n1 : q1 0.3 · (1−p′) · q1
n2 : 1−q1 0.3 · (1−p′) · (1−q1)

(b) Next observation dependent
Obs Act P Node Result

z1

a1 : p′
0.6 n1 : q1 0.6 · p′ · q1

n2 : 1−q1 0.6 · p′ · (1−q1)

0.4 n1 : q2 0.4 · p′ · q2
n2 : 1 − q2 0.4 · p′ · (1−q2)

a2 : 1−p′
0.7 n1 : q1 0.7 · (1−p′) · q1

n2 : 1−q1 0.7 · (1−p′) · (1−q1)

0.3 n1 : q1 0.3 · (1−p′) · q1
n2 : 1−q1 0.3 · (1−p′) · (1−q1)
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