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Abstract—A popular approach to providing nonexperts in parallel computing with an easy-to-use programming model is to design a

software library consisting of a set of preparallelized routines, and hide the intricacies of parallelization behind the library’s API.

However, for regular domain problems (such as simple matrix manipulations or low-level image processing applications—in which all

elements in a regular subset of a dense data field are accessed in turn) speedup obtained with many such library-based parallelization

tools is often suboptimal. This is because interoperation optimization (or: time-optimization of communication steps across library calls)

is generally not incorporated in the library implementations. This paper presents a simple, efficient, finite state machine-based

approach for communication minimization of library-based data parallel regular domain problems. In the approach, referred to as lazy

parallelization, a sequential program is parallelized automatically at runtime by inserting communication primitives and memory

management operations whenever necessary. Apart from being simple and cheap, lazy parallelization guarantees to generate legal,

correct, and efficient parallel programs at all times. The effectiveness of the approach is demonstrated by analyzing the performance

characteristics of two typical regular domain problems obtained from the field of low-level image processing. Experimental results show

significant performance improvements over nonoptimized parallel applications. Moreover, obtained communication behavior is found

to be optimal with respect to the abstraction level of message passing programs.

Index Terms—Parallel processing, data communications aspects, optimization, image processing software.

�

1 INTRODUCTION

A parallelization tool based on a software library of
preparallelized routines can serve as a powerful

programming aid to obtain high performance with relative
ease. In the field of low (pixel) level image processing, for
example, many such parallelization tools exist [10], [11],
[13], [14], [21], [32], [33]. Such tools, however, generally
restrict performance optimization to each library operation
in isolation, and ignore communication minimization for full
applications. For library implementations based on message
passing primitives, significant performance gains can be
obtained, as it is often possible to remove many redundant
communication steps, and to combine multiple messages in
a single transfer.

Automatic optimization of communication overhead is
not easy. First, this is because the optimization strategy must
be able todeterminewhich communication steps are essential
and which can be safely combined or removed. Also, it must
guarantee that the resulting parallel code is 1) efficient,
preferably comparable to an optimal hand-coded implemen-
tation, 2) legal, such that the program is deterministic and can
never end in deadlock, and 3) correct, such that it produces
output identical to the original program.

This paper presents a new and surprisingly simple
strategy for communication minimization in library-based
data parallel regular domain problems [22], which adheres
to all these requirements. In the approach, a fully sequential

program is parallelized automatically at runtime by insert-
ing communication primitives and additional memory
management operations whenever necessary. The ap-
proach, referred to as lazy parallelization, is based on a
simple finite state machine (fsm) specification. One of two
essential fsm ingredients is a set of states, each correspond-
ing to a valid internal representation of a distributed data
structure at runtime. The other is a set of state transition
functions, each of which defines how a valid data structure
representation is transformed into another valid representa-
tion. This paper indicates how the fsm specification is
applied in the process of obtaining legal, correct and,
indeed, efficient parallel code. Also, a compile-time exten-
sion is discussed, which is capable of producing the
theoretically fastest parallel version of a program.

This paper is organized as follows: Section 2 describes
the optimization problem. In Section 3, the finite state
machine specification is presented. Section 4 describes the
fsm-based approach of lazy parallelization and briefly
presents a compile-time extension for additional optimiza-
tion. An evaluation of measurements obtained for two
example regular domain problems obtained from the field
of low-level image processing is presented in Section 5.
Section 6 discusses related work. Concluding remarks are
given in Section 7.

2 THE OPTIMIZATION PROBLEM

The main objective in our research is to build a library-
based software architecture that allows for fully sequential
implementation of low-level image processing applications
executing in data parallel fashion [25], [26], [27], [29]. All
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parallelization and optimization issues are to be taken care
of by the architecture itself, hidden from the user.

2.1 Parallelizable Patterns in Regular Domain
Problems

For reasons of software maintainability and reuse, all
library operations are implemented on the basis of a
definition of so-called parallelizable patterns found in typical
regular domain problems [29]. Each such pattern represents
a generic description of a class of sequential algorithms with
similar behavior in terms of data accesses to array-like
structures. More specifically: A parallelizable pattern
represents a generic operation that takes zero or more
source structures as input and produces exactly one
destination structure as output. It consists of n independent
tasks, where a task specifies what data in any of the
structures must be acquired in order to update the value of
a single data point in the destination structure. As such,
prior to parallel execution of a pattern, for all data structures
on all processing units, all data accesses are known. As all
accesses are defined to be local to the processing unit
executing the algorithm, all nonlocal data to be accessed
must be communicated prior to execution. Given the
precise definition of these data access pattern types, a default
parallelization strategy with minimal communication over-
head directly follows for any operation that maps onto one

of the predefined parallelizable patterns [29]. Irrespective of
the focus on low-level image processing, due to the generic
nature of parallelizable patterns, this result naturally
extends to other regular domain problems as well.

2.2 Abstract Function Specifications

As stated, in our software architecture, all sequential image
processing functionality is implemented on the basis of
parallelizable patterns. For these operations, we introduce a
shorthand notation, presented in Table 1. It includes (a.o.)
unary and binary pixel operations, (recursive) neighbor-
hood operations, and geometric transformations.

Shorthand notation for all required interprocess commu-
nication is presented in Table 2, and contains the common
collective operations in MPI [17]. The additional CreatLcl-
Part/Full and DelLcl functions constitute creators and
destructors for partial data structures, each residing on a
different processor at runtime. Partial structures are referred
to as local in the presented parameter lists (lsrc and ldst). The
original structure from which the partial structures are
obtained is referred to as global (gsrc and gdst). The
importance of these abstractions is that, for any application
implementedusingour architecture, it is possible toderive an
abstract operation stream comprising of functions from
Tables 1 and 2 alone.
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TABLE 1
Abstract Functions: Sequential Operation

TABLE 2
Abstract Functions: Communication



2.3 Default Algorithm Expansion

Because all functionality is implemented on the basis of
parallelizable patterns, conversion of any sequential appli-
cation into an equivalent parallel program is straightfor-
ward. The conversion process, referred to as default
algorithm expansion, is illustrated in Fig. 1. The sequential
program, shown on the left, first imports image A, which is
used as input to a unary pixel operation. Subsequently,
resulting image B is used as input to a binary pixel
operation. Finally, resulting image C is exported and all
images are destroyed.

The equivalent parallel program is shown on the right of
Fig. 1. First, a Scatter operation is inserted before the
UnPixOp call. After the operation has finished, the resulting
partial outputs are gathered to the single root node and all
temporary partial structures are destroyed. Subsequently,
the images which are passed as source and argument to the
binary pixel operation are scattered throughout the parallel
system. The partial outputs resulting from BinPixOp are
gathered to the root, after which all partial structures are
deleted. From this point onward, the program is identical to
the original sequential version.

Default algorithm expansion always generates a legal
and correct parallel version of any sequential program
implemented on the basis of parallelizable patterns. This is
because each abstract function call in the sequential code is
replaced by an equivalent sequence of one or more
(parallel) operations. The parallel code is not guaranteed
to be time-optimal, however. Worse even, it can be expected
to be slower than the original sequential program. Although
other tools may have different implementations, all library-
based tools suffer from the very same problem—and for
improved performance a solution is essential.

2.4 The Problem: Inefficiencies from Default
Algorithm Expansion

When considering the parallel code of Fig. 1b, it is clear that
it contains several operations that could be removed
without violating the program’s correctness or legality.
First, image locA, used as source structure for the unary
pixel operation, is removed by DelLcl and, subsequently,
recreated in the second occurrence of the Scatter(A, LocA)
call. For improved performance, both operations simply
could be removed. The same holds for the sequence of
instructions applied to the locB structure preceding the
BinPixOpI call (i.e., Gather followed by DelLcl and Scatter).

Fig. 2b presents the optimized program obtained after
removing the redundant communication steps from the
parallel code. The remainder of this paper indicates how
execution of such redundant operations can be avoided
automatically.

3 FINITE STATE MACHINE DEFINITION

Our solution to the problem of redundant communication
avoidance is based on a finite state machine (fsm) specifica-
tion. More specifically, we restrict ourselves to a determi-
nistic finite accepter (dfa) [9], defined by the quintuple
M ¼ ðQ; �; �; q0; F Þ, where

Q is a finite set of internal states;

� is a finite set of symbols called the input alphabet;

� : Q� � ! Q is a transition function;

q0 2 Q is the initial state; and

F � Q is a set of final states:

3.1 Data Structure States and Lifespan

As described in [29], for parallel execution, two types of
data structure representations are used in our software
architecture: global structures and local (or partial) struc-
tures. A global structure always resides at a single
processing unit (the root), and contains all data for the
complete domain of the structure it represents. Local
structures, on the other hand, are the result of a scatter or
broadcast operation performed on a global structure.

There is a strong relationship between a global structure
and the set of derived local structures (or: distributed data
structure). Clearly, at any time, either the global structure
itself or its derived distributed structure must contain all
valid data. An abstract representation of this relationship is
given by the triple q ¼ ðg; d; tÞ, where

g 2 G is the state of the global structure;

d 2 D is the state of the derived distributed structure;

t 2 T is the distributed structure0s distribution type;

and

G ¼ fnone; created; valid; invalidg;

D ¼ fnone; valid; invalidg;

T ¼ fnone; partial; full; not-reducedg:

In set G, none indicates that no space has been allocated
for the global structure in the main memory of the root.
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Fig. 1. (a) Abstract sequential application and (b) equivalent parallel
program after default algorithm expansion.

Fig. 2. (a) Abstract sequential application and (b) equivalent parallel
program after interoperation optimization.



Furthermore, created indicates that space for the global
structure has been allocated by way of the Create function.
In this state, the elements of the global structure do not
contain values resulting from any calculation (yet). Finally,
valid indicates that the global structure contains up-to-date
values for all structure elements, and invalid indicates that
at least one of the global structure’s elements may contain
an incorrect value. For distributed structures, the elements
in set D are defined in a similar manner. The value created
is not present in set D, however, simply because we do not
need it.

In set T , none indicates that no distribution type
information is available. In addition, partial indicates that
the set of constituent local structures is the result of a Scatter
operation, while full indicates that the structures are
obtained in a Broadcast operation. Finally, not-reduced
indicates that all elements of the constituent local structures
yet have to be subjected to an element-wise ReduceOne or
ReduceAll operation (see also [29]).

The set R ¼ G�D� T contains all possible representa-
tions of the relationship between a global structure and its
derived distributed structure. However, many of these
possible representations cannot (or should not) occur. As an
example, the representation q ¼ (invalid, invalid, full)
should not occur in a program, as neither the global
structure nor the distributed structure contains all correct
values.

For the fsm, we have specified a restricted set of valid
internal states, based on the relationship between global and
distributed structures. It is defined by

Q ¼ f q0; q1; � � � ; q8 g � G�D� T;

with

q0 ¼ ðnone; none; noneÞ; q3 ¼ ðinvalid; none; noneÞ; q6 ¼ ðinvalid; valid; partialÞ

q1 ¼ ðcreated; none; noneÞ; q4 ¼ ðvalid; valid; partialÞ; q7 ¼ ðinvaid; valid; fullÞ

q2 ¼ ðvalid; none; noneÞ; q5 ¼ ðvalid; valid; fullÞ; q8 ¼ ðinvalid; invalid; not-reducedÞ:

State q0 is the empty state, and represents the state of the
global-distributed structure combination before its initial
creation and after its final destruction. State q1 represents
the state immediately after creation of the global structure.
This is a special case of state q2, as the global structure also
could be designated as valid. State q1 is still required,
however, to avoid communication in case a distributed
structure is to be derived from a global structure in this
state. State q2 indicates that a global structure’s elements
contain all up-to-date values, while a derived distributed
structure is nonexistent. At first glance, q3 seems to be a
state that should never appear in a legal parallel program.
However, this is the state obtained after performing a
DelLcl operation in case the global-distributed structure
combination is represented by states q6, q7, or q8. In states
q4; q5; q6, and q7, the distributed structure contains all correct
values, while the related global structure is either consistent
or inconsistent with these values. Finally, state q8 occurs in
parallel reduction operations. As long as the required
reduction has not been performed on the distributed
structure, all constituent local structures as well as the
related global structure remain invalid.

At runtime, each global-distributed structure combina-
tion starts in the empty state q0. From this point onward,
each state can be reached, depending on the operations
performed on the structure combination. Also, it is possible

for certain states to be reached multiple times. The lifespan
of a global-distributed structure combination ends in case it
returns to the empty state q0. As such, state q0 serves as the
initial state of our finite state machine definition, as well as
the single element in the set of final states.

3.2 State Transition Functions

For our purposes, the fsm input alphabet is formed by the
operations of Tables 1 and 2, with a concrete data structure
reference for each formal parameter. Also, as the fsm is
used to monitor state changes and lifespan of a single data
structure only, monitoring the correctness and legality of a
complete application involves multiple fsm’s. This results in
a parallel view of the states of all data structures in an
application: At any moment during execution, several
structures are “alive” and their combined state is captured
by their respective fsm’s. As the states of multiple structures
are not always independent, we assume that each fsm has a
complete and up-to-date view of the states of all data
structures in an application. Also, by way of the defined set
of state transition functions, each fsm incorporates all
knowledge regarding data structure state dependencies. To
this end, the definition of state transition functions as
presented before is extended as follows:

� : Q� �d ! Q;

where �d is the input alphabet in which each function is
annotated with a list of permitted state dependencies for all
additional structures passed as parameter to that function
(i.e., those structures for which the current fsm is not
responsible). Here, we represent elements in �d by a pair or
triple, in which the first component is the name of the
function, and the remainder represents the (possibly empty)
list of state dependencies. For example, �ðq0; ðBinPixOpV;
q4; q5ÞÞ ¼ q6 represents a state transition function for the
output structure produced by the BinPixOpV operation. This
transition function changes the state of the output structure
from q0 to q6, while the source and argument structures are
expected to be in states q4 and q5, respectively. It should be
noted that the knowledge obtained with this parallel view
also canbe captured in a single cross-productmachine, inwhich
each dfa simulates, in parallel, the behavior of each
component dfa [16]. For simplicity, however, in the remain-
der of this paper, we keep to the parallel view of simple state
machines.

Table 3 presents the transition functions for the image
operations available in our library. In all cases, initial state
q0 refers to the state of the output structure produced by any
of the operations. As can be seen, output structures are the
only structures that actually move from one state to another.
Input structures and argument structures never change
state, as these are accessed only, and never updated. All
transitions that cause a structure to be moved to state q1 or
q2 always indicate sequential execution using global
structures. All other transitions refer to parallel execution
using distributed structures. State transition functions
related to the additional communication functionality, and
the memory management of local data structures, are
presented in Table 4. In all of these, the list of state
dependencies is empty, as the functions work on a single
data structure only.

Fig. 3 presents a reduced state transition graph for the
fsm. For better readability, it contains only those operations
that cause a structure to move from one state to another. As
such, the graph incorporates the complete lifespan of a data
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structure, and covers any state a structure can reach at

runtime. Also, it is exactly these operations that are essential

in the process of operation redundancy avoidance as

presented in Section 4.
A program is legal, if it is accepted by all fsm’s related to

that program. In other words, in our architecture, a program

is legal if 1) it contains function calls fromTables 1 and 2 only,

2) it contains no data structure state inconsistencies, and 3) all

structures start as well as end in state q0. In case a user-

provided sequential program is legal, default algorithm

expansion always generates a legal and correct parallel

program. This is because each sequence of (parallel) opera-

tions that replaces a sequential call generates exactly the same

set of data structure state transitions at all times. The

following section shows how the presented fsm is used to

obtain legal and correct parallel code, which is optimized in

that the execution of any redundant communication opera-
tions is avoided.

4 LAZY PARALLELIZATION

In the approach of lazy parallelization it is assumed that each
communication or memory management operation inserted
by default algorithm expansion is redundant, unless proven
otherwise. Stated differently, lazy parallelization causes an
inserted operation to be executed only if its removal would
introduce a data structure state inconsistency. Although the
method can be applied on the fly at runtime, for the
moment, we will present it as a compile time method.
Conceptually, lazy parallelization consists of the following
steps:

1. Apply the process of default algorithm expansion to
the original sequential code.

2. Remove all communication operations, as well as all
operations for the creation and destruction of partial
data structures.

3. Apply partial loop unrolling by extracting the code for
the first iteration of each loop, and placing it in front
of the code for the remaining loop iterations.

4. Resolve data structure state inconsistencies by re-
inserting operations removed in Step 2.

5. Undo the loop unrolling by collapsing each sepa-
rated loop into a single code block.

As stated, the parallel code obtained after the first step is
legal, but nonoptimal. The operation removal in the second
step, however, introduces many state inconsistencies. As
described below, these inconsistencies are resolved in Step 4.
Steps 3 and 5 are present only to expose all data structure
state inconsistencies that can possibly occur in a program.

Fig. 4 gives a conceptual example of lazy parallelization.
The programs obtained in the first three steps of the
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TABLE 3
Transition Functions: Image Operations

TABLE 4
Transition Functions: Communication

Fig. 3. Reduced state transition graph. �1;� 2;� 3;� 4 = creation of
datastructure by one of several image operations.



optimization process are straightforward and will not be
discussed. The reinsertion of code as applied in Step 4 (see
Fig. 4e) is performed using the state transition functions of
Section 3.2 (i.e., only those in the reduced state transition
graph of Fig. 3). The Broadcast(A, locA) operation in the
first loop iteration is inserted because the Import operation
causes its output structure to be moved to state q2, while for
parallel execution, the subsequent GeoMat operation
requires its input structure to be in state q5 or q7 (see
Table 3). The only operation that provides a resolution to
this state inconsistency is Broadcast, as it moves a data
structure from state q2 to q5. Similarly, Gather(locC, C) is
inserted in the first loop iteration, as it moves C from q6 to
q4, which is one of the allowed input states for the
subsequent Export operation. The additional reinsertions
work in a similar manner, and all further interpretation is
left to the reader.

4.1 Discussion

Lazy parallelization produces legal and correct parallel
code at all times. This can be seen by considering the
allowed states for all structures passed as parameters to the
operations in Table 1, and the resulting states for the
produced output structures. As such, each operation has a
set of allowed input states for each parameter, one of which is
moved to a new output state. By exhaustion, it is easily
shown that for each possible output state, a finite sequence
of zero or more state transitions exists that moves a
structure from that output state to one state in each set of
allowed input states (see also [28]).

An important property of lazy parallelization is that it can
be applied on the fly at runtime (hence, its name). As all data
structure states are known for each operation, decisions
regarding the execution of each communication step are
deferred to as late as the actual moment of execution.
Essentially, this means that all five steps as described above
are reduced to a single step. This makes lazy parallelization
very easy to implement, and highly efficient (i.e., without
measurable runtime overhead). An additional advantage is
that no prior knowledge regarding the behavior of loops and
branches is required. Finally, runtime adaptation to data structure
sizes is easily integrated, by allowing flexibility in the applied
number of processing units (or even by temporarily residing
to sequential execution) [25].

Although lazy parallelization produces very efficient
parallel code, it is still nonoptimal. First, this is because it
always applies the fastest communication step whenever
message transfer is mandatory. This is a form of local
performance optimization, however, as it may be better to
insert a combined message transfer to avoid further
communication steps at a later stage. Second, no knowledge
is incorporated regarding the performance characteristics of
the parallel machine at hand [26], [29]. To overcome these
problems, we have also implemented an extension to the
presented approach, which is capable of producing the
(expected) fastest parallel version of a sequential program
at compile time. The extended approach relies on the
creation of an application state transition graph (ASTG),
incorporating all relevant performance optimization deci-
sions that can be made at runtime. Each decision is
annotated with a cost estimation, such that the fastest
implementation is represented by the cheapest branch in
the graph. Drawback, however, is that it is often costly to
actually obtain the cheapest branch. See [25] for more
information.

4.2 Applicability

Although lazy parallelization was designed for data parallel
imaging applications, it has a broader applicability. As
stated in Section 2, the approach will work (and, generally,
be effective) for all regular domain problems in which the
essential operations can be expressed in terms of paralleliz-
able patterns. One obvious example is the domain of linear
algebra applications. Clearly, for the approach to work in
other application areas, all references to image operations in
the fsm specification should be altered, but this adaptation
is only marginal. Also, the fact that operations in other areas
may incorporate different data access pattern types does not
challenge the validity of the proposed method in any way.

Essentially, lazy parallelization is applicable to irregular
(even data driven) problems as well. For the approach to
work, however, it is essential to have knowledge regarding
the data access pattern types of operations to obtain the
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Fig. 4. Example of optimization by lazy parallelization: (a) original code,
(b) after default algorithm expansion, (c) after removal of “redundant”

operations, (d) after partial loop unrolling, (e) after default operation

reinsertion, and (f) optimized parallel code after loop recombination.



required communication sets on the fly at runtime. For
irregular applications this may not always be effective,
especially in cases where nothing is known other than that n
accesses are to be performed within a set of m elements,
with m � n. When most elements in the set of size m are
nonlocal, the communication set for each processor will be
large. In such cases, the performance obtained by lazy
parallelization largely depends on the amount of overlap in
the communication sets for sequences of operations. The
more overlap, the more communication can be avoided.

In the problem of avoiding redundant communication
steps, the reader may see a relation to similar problems in
other research areas. As a first example, there is an analogy
to the generation of redundant instructions in the process of
compilation. Here, a well-known problem is the avoidance
of superfluous transfer of values between registers and
(main) memory. As another example, there are similarities
to cache coherency problems in the avoidance of unneces-
sary updates of stale data. Solutions to problems of this
kind (e.g., peephole strategies for compilers, I/O address
checking for cache accesses, etc.) all require (often costly)
look-ahead strategies to obtain knowledge regarding data
accesses. Our solution to redundant communication avoid-
ance is different in that it does not require any form of look-
ahead at all. This property directly follows from the
knowledge regarding data accesses contained in the
definition of parallelizable patterns. As such, our solution
to the redundancy problem does not easily transfer to the
aforementioned problems in other research areas. This is
because it is often unfeasible or even impossible to
incorporate a priori knowledge regarding data accesses in
the general case. However, for certain domain-specific
problems, our approach is still applicable. It is possible,
for example, to use compiler annotations in parallel
languages such as HPF to obtain particularly efficient
parallel code for certain regular domain problems. Specify-
ing code segments as being implemented according to
particular parallelizable patterns relieves the compiler of
extensive dependency analysis, and allows for lazy paralle-
lization to be incorporated. Currently, this approach is
being considered for the SPAR parallel language [24], [31].

5 MEASUREMENTS AND VALIDATION

To evaluate the approach of lazy parallelization, this section
describes the implementation and parallel execution of two
example image processing applications: 1) line detection
and 2) extraction of rectangular size distributions from
document images. The actual code is available at http://
www.science.uva.nl/~fjseins/ParHorusCode/.

The two applications have been tested on the 72-node
Distributed ASCI Supercomputer 2 (DAS-2) located at the
Vrije Universiteit in Amsterdam [2]. All nodes consist of
two 1-Ghz Pentium-III CPUs, with 2 GByte of RAM, and are
connected by a Myrinet-2000 network. At the time of
measurement, the nodes ran the RedHat Linux 7.2 operat-
ing system. Our software architecture was compiled using
gcc 2.96 (at highest level of optimization) and linked with
MPICH-GM, which uses Myricom’s GM as its message
passing layer on Myrinet. As the DAS-2 system is heavily
used for other research projects as well, measurement
results are presented here for a system of up to 64 dual-CPU
nodes only.

5.1 Curvilinear Structure Detection

As discussed in [8], the important problem of detecting
lines and linear structures in images is solved by consider-
ing the second order directional derivative in the gradient
direction, for each possible line direction. This is achieved
by applying anisotropic Gaussian filters, parameterized by
orientation �, smoothing scale �u in the line direction, and
differentiation scale �v perpendicular to the line, given by

r00ðx; y; �u; �v; �Þ ¼ �u�v f�u;�v;�vv

�

�

�

�

1

b�u;�v;�
;

with b the line brightness. When the filter is correctly aligned
with a line in the image, and �u; �v are optimally tuned to
capture the line, filter response is maximal. Hence, the per
pixelmaximum line contrast over the filter parameters yields
line detection:

Rðx; yÞ ¼ arg max
�u;�v;�

r00ðx; y; �u; �v; �Þ:

5.1.1 Sequential Implementations

The anisotropic Gaussian filtering problem can be
implemented sequentially in many different ways. First,
for each orientation � it is possible to create a new filter
based on �u and �v. Hence, a sequential implementation
based on this approach (which we refer to as Conv2D)
implies full 2-dimensional convolution for each filter.

The second approach (referred to as ConvUV) is to
decompose the anisotropic Gaussian filter along the
perpendicular axes u; v, and use bilinear interpolation to
approximate the image intensity at the filter coordinates.
Although comparable to the Conv2D approach, ConvUV is
expected to be faster due to a reduced number of accesses to
the image pixels.

Pseudocode for the Conv2D and ConvUV algorithms is
presented in Fig. 5. Filtering is performed in the inner loop
by either a full two-dimensional convolution (Conv2D) or by
a separable filter in the principle axes directions (ConvUV).
On a state-of-the-art sequential machine, either program
may take from a few minutes up to several hours to
complete, depending on the size of the input image and the
extent of the chosen parameter subspace. Consequently, for
the directional filtering problem parallel execution is highly
desired.

5.1.2 Parallel Execution

Execution of the parallel versions of the algorithms obtained
by default algorithm expansion results in a huge amount of
redundant communication overhead. This is because each
image operation in the inner loop of the program now
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Fig. 5. Pseudocode for the Conv2D and ConvUV algorithms, with
”func” either ”gauss2D” or ”gaussUV.”



executes one or more Scatter-Gather-pairs similar to
those presented in the example code of Fig. 1b.

In contrast, applying lazy parallelization to the two
algorithms results in minimal communication overhead. In
the first loop iteration, OriginalIm is scattered such that
each node obtains a nonoverlapping slice of the image’s
domain. Next, all subsequent operations are performed in
parallel, only requiring border exchange communication in
the convolutions (note: this is due to a sequential library
design choice, see [25]). Finally, just before program
termination, ResultIm is gathered to the root. In this
manner, communication behavior is optimal with respect to
the abstraction level of message passing programs.

5.1.3 Performance Evaluation

From the description, it is clear that the Conv2D algorithm is
expected to be the slowest sequential implementation, due to
the excessive accessing of image pixels in the 2-dimensional
convolution operations. Fig. 6a shows that this expectation
indeed is confirmed by the measurements obtained on a
single CPU. Although Conv2D has a slightly better speedup
characteristic due to a better computation versus commu-
nication ratio, ConvUV always is the fastest implementation
on any number of nodes.

The speedup graph of Fig. 6b shows the importance of
the lazy parallelization approach. Speedup values obtained
on 64 nodes are 58.1 and 55.9 for Conv2D and ConvUV,

respectively, in case of lazy parallelization. These values
drop to 11.5 and 4.5 in case of the original approach of
default algorithm expansion.

Fig. 7 shows similar results for measurements obtained in
case both CPUs on each node are used in the execution. Even
measurements for up to 128 CPUs deliver close to linear
speedup. In this situation, however, performance is slightly
degraded by the fact that two CPUs on a single node need to
passmessages through the same communication port. None-
theless, we can conclude that the application of lazy
parallelization enables our software architecture to produce
highly efficient parallel code for these implementations.

5.2 Rectangular Size Distributions

As discussed in [1], rectangular size distributions are an
effective way to characterize visual similarities between
document images. Here, the vertically and horizontally
aligned regions of varying aspect ratios in a document
image are characterized using multivariate, rectangular
granulometries. A granulometry can be thought of as a
morphological sieve, where objects not conforming to a
particular size and shape are removed at each level of the
sieving process. The rectangular granulometry, �x;y, of
input image S is given by

�x;yðSÞ ¼ S � ðyV � xHÞ;
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Fig. 6. (a) Performance and (b) speedup characteristics for computing a typical orientation scale-space at 5� angular resolution (i.e., 36 orientations)
and eight (�u; �v) combinations. Scales computed are �u 2 f3; 5; 7g and �v 2 f1; 2; 3g, ignoring the isotropic case �u;v ¼ f3; 3g. Image size is
512� 512 (4-byte) pixels. Results obtained using 1 CPU per dual node.

Fig. 7. (a) Performance and (b) speedup characteristics as in Fig. 2. Results obtained using 2 CPUs per dual node.



where H and V are the horizontal and vertical line
segments of unit length centered at the origin, and x and
y are independent scale parameters controlling the width
and height of the rectangle used for filtering. Of most
interest in describing the visual appearance are the
measurements taken on the filtered images �x;yðSÞ. One
useful measurement for granulometries is the rectangular
size distribution. The rectangular size distribution induced
by the granulometry G ¼ f�x;yg on image S is given by:

�Gðx; y; SÞ ¼
AðSÞ 	Að�x;yðSÞÞÞ

AðSÞ
;

AðXÞ denoting the area of set X. As such, �Gðx; y; SÞ is the
probability that an arbitrary pixel in S is filtered by a
rectangle of size x� y or smaller.

5.2.1 Sequential Implementation

To obtain particularly efficient sequential code for generating
rectangular size distributions, we have taken advantage of
several properties of rectangular granulometries and size
distributions. First, each rectangular filter is decomposed
into 1-dimensional filters, eliminating the need to filter a
document by rectangles of all sizes. Next, the need to use
filters increasing linearly in size is removed by applying
linear distance transforms for horizontal and vertical
directions. These transforms are implemented by using
recursive forward/backward filter pairs. Last, the need to
explore large, flat regions of the size distributions is
eliminated by halting the filtering for the current filter
when its properties guarantee that the filtered result will be
identical.

Pseudocode for the presented problem is given in Fig. 8. It
should be noted that the use of recursive filters results in an
implementationwhich is notoriously hard to parallelize (as is
shown in the results provided in the remainder of this
section). A less efficient sequential solution would be to use
sieving without decomposition. This boils down to a
morphological scale-space, and is comparable to the applica-
tion of Section 5.1.

5.2.2 Parallel Execution

As before, the sequential code of Fig. 8 directly constitutes a
parallel program as well. When applying default algorithm
expansion for parallelization, the program suffers from the

same problem as the application described in Section 5.1: it
results in execution of many costly Scatter and Gather

operations. Lazy parallelization avoids all such redundant
communication steps automatically, and again results in
optimal communication behavior with respect to the abstrac-
tion level of message passing programs. In effect, the input
image is scattered throughout the parallel system only once,
and no additional communication steps are required for
resolution of data structure state inconsistencies.

It should be noted, however, that speedup characteristics
arenotexpected tobeasgoodas thosepresentedinSection5.1.
This is because theapplied recursive filter operationsarehard
to parallelize efficiently. In our library, we apply a fast two-
step redistribution of the partitioned image data to always
match the horizontal and vertical filtering directions.
Although this approach does result in fast parallel execution,
we are aware of the fact that additional optimizations are
possible (such as the application of a multipartitioning
technique [6]). This part of the preparallelized code is not
affected by lazy parallelization, however, as data redistribu-
tion plays no role in the introduction or removal of data
structure state inconsistencies.

5.2.3 Performance Evaluation

Measurement results for the two generated parallel versions
of the presented algorithm are given in Fig. 9. It should be
noted that these results represent a lower bound on the
obtainable speedup for this application, as the size of the
input images was reduced to 350� 517 pixels only. As can
be seen in Fig. 9a, lazy parallelization results in significant
performance gains for any applied number of processors. In
contrast, default algorithm expansion behaves badly, and
even results in a performance drop at all times.

Fig. 9b shows that themaximumnumber of nodes that can
beused effectively for such a small-sized input image is about
32. Even though lazy parallelization has resulted in the
removal of all redundant communication, the cost of the
communication steps applied in the recursive filter opera-
tions is significant in case the number of processors becomes
large. Still, the differences in the execution times for the two
parallelization strategies are enormous, and clearly show the
importance of redundant communication removal.

Fig. 10 shows similar results in case both CPUs on each
node are used in the execution. As each dual node can
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Fig. 8. Condensed pseudocode for fast calculation of rectangular size distributions; maximum size of calculated filters denoted by “w” and “h.”
Functions “horDist” and “verDist” perform horizontal and vertical distance transforms, using recursive filter-pairs.



communicate through one port only, communication over-
head has increased in comparison to the results presented
in Fig. 9. As a result, the maximum number of processors
that can be used effectively is now reduced to only 16.

Fig. 11 shows that, for amuchmore realistic input image of
size 2; 325� 3; 075 pixels, lazy parallelization still provides
very good speedup characteristics: 45.5 on 64 processors—an
efficiency of 71.2 percent. As before, default algorithm
expansion does not deliver any performance gains at all.
Fig. 12 shows similar results in case both CPUs are used on
each node. Given these results, we conclude that lazy
parallelization also generates efficient parallel code for the
presented rectangular size distribution extraction algorithm.

5.3 Performance Comparison with Related Tools

In [27], we have made a performance comparison between
our software architecture and several related tools de-
scribed in the literature. The comparison is based on a well-
known stereo vision application which—in its parallel
behavior—is comparable to the line detection application
of Section 5.1. The following briefly presents the main
results.

First, a comparison is made with results obtained for the
stereo vision application written in a specialized parallel
programming language (SPAR [24]), which was executed

on the same parallel machine as used in the above
evaluation. Also, the codes generated by the SPAR front-
end and that of our own architecture were compiled in an
identical manner. Measurements showed our architecture
to provide superior sequential performance of about a
factor 5, and better speedup—clearly indicating that the
overhead from our lazy parallelization approach is much
smaller than that of the SPAR runtime system.

Second, a comparison is made with results obtained for
an implementation in the Adapt parallel image processing
language [34]. A true comparison with this work turned out
to difficult, however, as the results were obtained on a
significantly different machine (i.e., a collection of iWarp
processors, with a better potential for obtaining high
speedup than our DAS cluster). Even so, our software
architecture showed superior performance (of about a
factor 2) with comparable speedup characteristics over a
large range of processors.

Most interesting, however, is the comparison with Easy-
PIPE [20], a library-based software environment for parallel
image processing similar to ours. The most distinctive
feature of this architecture is that it incorporates a
mechanism for combining data and task parallelism. Also,
Easy-PIPE does not shield all parallelism from the applica-
tion programmer. As a consequence from these differences,
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Fig. 9. (a) Performance and (b) speedup for computing rectangular size distributions for document image of size 350� 517 (2-byte) pixels. Maximum
size of calculated filters either 39� 59 or 79� 119. Results obtained using 1 CPU per dual node. Note: speedup lines for either approach essentially
coincide.

Fig. 10. (a) Performance and (b) speedup as in Fig. 9. Results obtained using 2 CPUs per dual node. Note: speedup lines for either approach
essentially coincide.



Easy-PIPE has the potential of outperforming our architec-
ture, which is fully user transparent, and strictly data
parallel. However, performance and speedup characteris-
tics for the stereo vision application obtained on the very
same DAS cluster show that our implementations far better
exploit the available parallelism than Easy-PIPE. Part of the
difference is accounted for by the fact that Easy-PIPE does
not incorporate an explicit interoperation optimization
mechanism for removal of redundant communication. In
addition, the runtime parallelization overhead of Easy-PIPE
turned out to be much higher than that of our software
architecture.

6 RELATED WORK

For obtaining efficient library-based parallel image proces-
sing applications, the importance of interoperation optimi-
zation has been acknowledged before. Morrow et al. [19]
describe an environment for data parallel image processing
similar to ours. One of the important features of this
environment is its self-optimizing class library, which is
extended automatically with optimized parallel operations.
During program execution, a syntax graph is constructed
for each statement in the program, and evaluated only
when an assignment operator is met. At first execution of a

program, each syntax graph is traversed, and an instruction
stream is generated and executed. In addition, any syntax
graph for combinations of primitive instructions is written
out for later consideration by an offline optimizer. On
subsequent runs of the program, a check is made to decide
if an optimized routine is available for a given sequence of
library calls. In comparison with lazy parallelization, this
optimization approach has several drawbacks. First, the
optimization process is performed at compile-time only and
has inherent problems with data-dependent conditionals
and loop constructs. Next, optimized performance is
obtained only for runs following the initial execution of a
program. Finally, the approach may guarantee optimal
performance of sequences of library routines, but not
necessarily of complete programs. It should be noted that
the approach of Lee et al. [15] is quite similar to that of
Morrow et al.; as a consequence, it suffers from the very
same problems as well.

A related approach to obtaining efficient code for library-
based scientific applications is the concept of Telescoping
Languages introduced by Kennedy et al. [12]. In this
approach, high performance for full applications is
achieved by exhaustively analyzing and precompiling a
given library—which is annotated with domain-specific
optimizations that should not be discovered unaided—to
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Fig. 12. (a) Performance and (b) speedup as in Fig. 11. Results obtained using 2 CPUs per dual node. Note: speedup lines for either approach

essentially coincide.

Fig. 11. (a) Performance and (b) speedup for computing rectangular size distributions for document image of size 2; 325� 3; 075 (2-byte) pixels.
Maximum size of calculated filters either 39� 59 or 79� 119. Results obtained using 1 CPU per dual node. Note: speedup lines for either approach
essentially coincide.



produce a processor that recognizes and optimizes library
operations as primitives in a domain-specific language. The
goal of precompilation is to specialize different versions of
each library routine for sets of conditions that hold when
the routine is invoked. The entire set of specialized routines
is collected in a database that permits efficient code
selection and inlining when full applications are compiled.
Although many other forms of optimization are incorpo-
rated (a.o.: self-tuning for portability, which is comparable
to our ASTG-approach referred to in Section 4.1), of most
relevance to this paper is the fact that the Telescoping
Languages approach also considers combinations of library
operations on data structures for multiple distribution
types. In comparison to lazy parallelization, however, the
presented approach has several disadvantages. First, as in
the approach of Morrow et al. described above, optimiza-
tion is performed at compile-time only, resulting in
difficulties with data-dependent conditionals and loops.
Moreover, the required precompilation can be extremely
time-consuming, and results in a large database of opera-
tions from which only a few routines will generally be
invoked at runtime. Also, to be able to deal with different
shapes and sizes of data structures (which generally remain
unknown until runtime), the database of alternative im-
plementations is extended even further. Although it has not
been emphasized so much before, lazy parallelization can
easily deal with this problem by remaining flexible in the
number of nodes to be used, and by allowing for runtime
selection of a single state transition from a set of multiple
alternatives, depending on a structure’s size and shape. As
indicated in [25], this solution has been integrated cleanly
and elegantly, and without measurable runtime overhead.

To our knowledge, usage of fsm specifications is new in
the field of library-based parallelization tools. Moreover, the
application of an fsm definition seems not to have been
considered at all in the field of parallel image processing. In
related research areas of parallel computation, however,
fsm definitions have been applied before. For example,
Chatterjee et al. [4] apply a finite state machine for the
generation of optimal communication sets in distributed-
memory implementations of data-parallel languages such
as HPF. As in our case, results indicate that the fsm
approach requires very little runtime overhead. For ad hoc
optimization of specific algorithms and applications, fsm
definitions have been applied successfully as well [5], [18].

Interestingly, our approach to finding optimal perfor-
mance of operations as well as complete applications is
related to several projects in other domains. The SPIRAL
project [23], [30], for example, is aimed at the design of a
system to generate efficient libraries for digital signal
processing algorithms. SPIRAL generates efficient imple-
mentations of algorithms expressed in a domain-specific
language, called SPL, by a systematic search through the
space of possible implementations. Other efforts in auto-
matically generating efficient implementations of programs
include FFTW [7] for adaptively generating time-optimal
FFT algorithms, and the ATLAS project [35] for deriving
efficient implementations of basic linear algebra routines.

Finally, our work shares common goals with that of
Baumgartner et. al. [3], in the search of an optimal data
partitioning strategywithminimal communication overhead
for applications in the field of quantum chemistry and
physics. As in our extended approach not discussed here, an
operator tree is generated, in which multiple data partition-
ing and communication strategies are incorporated. This

approach is also entirely static, however, and includes no
possibility for partial optimization performed at runtime.

7 CONCLUSIONS

In this paper, we have presented a finite state machine-
based approach for communication minimization of data
parallel regular domain problems. The approach, referred
to as lazy parallelization, considers a sequential program,
which is parallelized automatically by inserting commu-
nication operations and local memory management opera-
tions whenever necessary. The approach always generates a
legal, correct, and efficient parallel version of any sequential
program implemented on the basis of so-called parallelizable
patterns, where each such pattern represents a generic
description of a class of sequential algorithms with similar
behavior in terms of data accesses to array-like structures.

The main advantage of the optimization approach is that
it can be applied on the fly at runtime. As all required data
accesses are defined for each operation, decisions regarding
interprocess communication can be deferred to the actual
moment of intended execution. As such, lazy parallelization
is very easy to implement, and performs without measur-
able runtime overhead. In comparison with other methods
described in the literature, lazy parallelization requires no
prior knowledge regarding the behavior of loops and
branches, and runtime adaptation to data structure shapes
and sizes is easily integrated [25].

In conclusion, lazy parallelization on the basis of a finite
state machine specification has proven to constitute a
surprisingly simple, yet effective method for global optimi-
zation of data parallel regular domain problems. Essen-
tially, the simplicity stems from the knowledge contained in
the definition of parallelizable patterns, and from the high-
level abstractions incorporated in the finite state machine
definition. Consequently, we feel that the applicability of
the approach extends beyond the domain of library-based
low-level image processing applications. This is particulary
true for the domains of signal processing and linear algebra
applications, which include similar patterns of communica-
tion and calculation.
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