
Finite State Machine Decomposition For Low Power

José C. Monteiro Arlindo L. Oliveira

IST-INESC Cadence European Labs/IST-INESC
Rua Alves Redol, 9 Rua Alves Redol, 9

1000 Lisboa, Portugal 1000 Lisboa, Portugal
jcm@inesc.pt aml@inesc.pt

Clock-gating techniques have been shown to be very effective
in the reduction of the switching activity in sequential logic cir-
cuits. In this paper we describe a new clock-gating technique
based on finite state machine (FSM) decomposition. We com-
pute two sub-FSMs that together have the same functionality as
the original FSM. For all the transitions within one sub-FSM, the
clock for the other sub-FSM is disabled. To minimize the aver-
age switching activity, we search for a small cluster of states with
high stationary state probability and use it to create the small sub-
FSM. This way we will have a small amount of logic that is active
most of the time, during which is disabling a much larger circuit,
the other sub-FSM.

We provide a set of experimental results that show that power
consumption can be substantially reduced, in some cases up to
80%.

I. I NTRODUCTION

Power consumption has become a major design parameter in the
project of integrated circuits. Two independent factors have con-
tributed for this. On one hand, low power consumption is essential
to achieve longer autonomy for portable devices. On the other hand,
increasingly higher circuit density and higher clock frequencies are
creating heat dissipation problems, which in turn raise reliability con-
cerns and lead to more expensive packaging.

In static CMOS circuits, the probabilistic switching activity of
nodes in the circuit is a good measure of the average power dissipa-
tion of the circuit. Methods that can efficiently compute the average
switching activity, and thus power dissipation, in CMOS combina-
tional [10] and sequential [13] circuits have been developed.

In this work, we are concerned with the problem of optimizing
logic-level sequential circuits for low power. This problem has re-
ceived some attention recently. Several techniques for state assign-
ment have been presented which aim at reducing the average switch-
ing activity of the present state lines, and consequently of the internal
nodes in the combinational logic block (see for example [12]). Re-
timing has also been tailored so that the distribution of the registers
within the logic block minimizes the total amount of glitching in the
sequential circuit [9].

Techniques based on disabling the input/state registers when some
input conditions are met have been proposed and shown to be among

the most effective in reducing the overall switching activity in sequen-
tial circuits [1], [2], [3], [5]. The disabling of the input/state registers
is decided on a clock-cycle basis and can be done either by using a
register load-enable signal or by gating the clock. A common feature
of these methods is the addition of extra circuitry that is able to iden-
tify input conditions for which some or all of the input/state registers
can be disabled. In this situation there will be zero switching activity
in the logic driven by input signals coming from the disabled regis-
ters. This class of techniques is sometimes referred to asdynamic
power management.

The method we propose in this paper falls into this class of tech-
niques. We use finite state machine (FSM) decomposition to obtain
the conditions for which a significant part of the registers in the cir-
cuit can be disabled. The original FSM is divided into two sub-FSMs,
where one of them is significantly smaller than the other. Except for
transitions that involve going from one state in one sub-machine to a
state in the other, only one of the sub-machines needs to be clocked.
By selecting for the small sub-FSM a cluster of states in which the
original FSM has a high probability of being in, most of the time we
will be disabling all the state registers in the larger sub-FSM.

The overhead associated with the FSM decomposition makes this
method not very effective for typical FSMs with a small number of
states. However, for large machines, impressive gains up to 80%
power reduction are possible.

In Section II, we introduce some basic definitions used throughout
the paper. We present related work on logic level power management
in Section III. Section IV gives an overview of the problem of FSM
decomposition. We describe our method in Section V. We first de-
scribe the architecture that allows for the disabling of the inputs/state
registers and present an algorithm for the selection of the states for
each of the sub-FSMs. In Section VI, we provide a set of experimen-
tal results and end with some conclusions and discussion of future
work in section VII.

II. BASIC DEFINITIONS

We use the standard definition of finite state machines:
Definition 1: A finite state machine is defined in the standard way

as a tupleM =
�
�;�; Q; q0; �; �

�
where� is a finite set of input

symbols,� 6= ; is a finite set of output symbols,Q 6= ; is a finite
set of states,q0 2 Q is the “reset” state,�(q; a) : Q� � ! Q is the
transition function, and�(q; a) : Q��! � is the output function.

The specification of the finite state machine is equivalent to the
specification of a state transition graph (STG), where each state corre-
sponds to one node in the graph, and there exists an edgeeij between
two statesqi andqj with labela=b iff �(qi; a) = qj and�(q; a) = b.

Under specific input line probabilities, it is possible to compute
the stationary state and transition probabilities. The stationary state
probability,P (qi), is the probability of the finite state machine being
in stateqi in a given clock cycle. In this work, we will always use the

35th Design Automation Conference ®
Copyright ©1998 ACM

1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

absolute transition probabilities, indicated asP (eij). P (eij) repre-
sents the probability that, at any specific time, transitioneij is active.
P (eij) can be computed using:

P (eij) = P (qi)� P (a) (1)

whereP (a) represents the probability of the primary inputs combina-
tions that trigger the transitioneij .

For each stateqi we can write an equation:

P (qi) =

jQjX

k=1

P (eki) (2)

We obtainjQj equations out of which any one equation can be derived
from the remainingjQj � 1 equations. Since at any specific time the
machine is in one and only one state, we have a final equation:

jQjX

k=1

P (qi) = 1 (3)

This linear set ofjQj equations can be solved to obtain the different
P (qi)’s.

This system of equations is known as the Chapman-Kolmogorov
equations for a discrete-time discrete-transition Markov process, and,
under some general conditions, has a unique solution [11].

III. R ELATED WORK

So called power management techniques that shutdown blocks of
hardware for periods of time in which they are not producing useful
data are effective methods to reduce the power consumption of a cir-
cuit. Shutdown can be accomplished by either turning off the power
supply or by disabling the clock signal. A system-level approach is to
identify idle periods for entire modules and turn off the clock lines for
these modules for the duration of the idle periods ([4], Chapter 10).

Power management techniques have also been proposed at the
logic level. The main difference is that the shutdown of hardware
is decided on every clock cycle. The technique we propose in this
paper falls under this category. In this section we describe previously
proposed methods.

A. Precomputation

One of the first logic-level shutdown methods isprecomputa-
tion [1]. In this method a simple combinational circuit (the precom-
putation logic) is added to the original circuit. Under certain input
conditions, the precomputation logic disables the loading of all or a
subset of the input registers. Under these input conditions, no power
is dissipated in the portions of the original circuit with only disabled
registers as inputs.

The choice of the number of inputs to use for the pre-computation
logic is critical. The more inputs used the highest the probability the
precomputation logic will be active, thus disabling logic in the origi-
nal logic block. However, this also increases the size of the precom-
putation logic, a circuitry overhead that is active all the time, thus
offsetting the gains obtained by disablingA a larger fraction of the
time.

Once the number of inputs to the precomputation logic is fixed,
the input selection is based on the probability that the outputs can be
computed without the knowledge of a specific input, i.e., the size of
the observability don’t-care set. Inputs with lowest probabilities are
selected to be in the precomputation logic.

B. Gated-Clock Finite State Machines

The gated-clock finite state machinesapproach [2] is based on
identifying self-loops in a Moore FSM. If the FSM enters a state with
a self loop, the clock is turned off. In this situation, the inputs to the
combinational logic block do not switch, and thus we have virtually
zero power dissipation in that block. When the input values cause the
FSM to make a state transition, the clock signal is again enabled and
the circuit resumes normal operation.

The fact that this procedure is only applicable to Moore FSMs can
be very limiting. Techniques to locally transform a Mealy FSM into
a Moore FSM are given in [2] so that the opportunity for gating the
clock is increased.

The method for FSM decomposition that we describe in this paper
can be seen as an extension of the gated-clock FSM approach. In FSM
decomposition we can consider the cluster of states that we select for
the small sub-FSM as a “super-state” and then transitions between
states in this cluster are no more than self-loops in this “super-state”.
The decision as to what states make up the “super-block” basically
gives the opportunity to maximize the number of self-loops.

C. Selectively-Clocked Systems

The implementation of a FSM in terms of sub-FSMs with the ob-
jective of achieving low power consumption by only enabling the
clock signal of the active sub-FSM has been proposed recently [3].
However, the approach followed is completely different from the one
we are proposing in this paper.

The work presented in [3] is concerned with the construction of
controllers obtained during the process of behavioral synthesis. In
this process, mutually exclusive sections of computation operations
are detected. Each of these sections is then implemented as a separate
FSM. The overall controller is thus made up of a set of interacting
FSMs. Since by construction no two FSMs can be active simultane-
ously, only the clock signal for one of the FSMs needs to be working,
therefore achieving a significant power reduction as compared to a
monolithic implementation of the controller.

The technique we describe in the present paper is more flexible in
the sense that it is not tied to the structure of some behavioral-level
circuit description. However, the overhead in our approach may be
higher. In any case, during the synthesis process we can take advan-
tage of both techniques as the FSM decomposition approach can be
applied to each individual FSM generated with the approach of [3].

D. Decomposition By Choice Of Disjoint Encodings

An approach that is very closely related to our work is based on the
selection of encodings that are mutually orthogonal. This method can
also be viewed as a state transition graph decomposition approach [5],
although the resulting hardware does not follow strictly the standard
structure for FSM decomposition, as described in the next section.

In this method, the STG is partitioned in two (or more) sets of
states. All the states in one of the sets are assigned encodings with the
first bit at 0, while the states in the other set are assigned encodings
with that bit at 1. The combinational logic can now be broken into
two separate blocks: one that is active when the first state bit is 0,
and one that is active when the first state bit is 1. Since only one of
these blocks can be active at any time, the other block can be disabled,
leading to potentially significant power savings, if the state partition
is chosen carefully.

The authors propose two methods to chose the state partition. The
first one is based on the computation of the co-factors of the sequen-
tial circuit with respect to one of the state bits, and arbitrarily splits

M1

M2

OI

(a)

OL

M1

M2

OI

(c)

OL

M1

M2

I

(b)

O

Fig. 1. Parallel, cascade and general approaches to finite state ma-
chine decomposition.

the set of two states into two disjoint sets. The second method is re-
lated to our own, in that it uses the stationary state probabilities to
achieve a partition that leads to a final circuit with low power dissipa-
tion. However, the methodology used to implement the final circuit is
very different, since only one set of registers is used, and therefore all
the registers have to be clocked at every time instant.

IV. D ECOMPOSITIONOF FINITE STATE MACHINES

The decomposition of finite state machines has been addressed by
a number of authors, the first work dating back to 1960 by Hartmanis
[7]. Several decomposition strategies have been proposed and are de-
scribed in detail elsewhere [6]. Parallel and cascade decomposition,
shown in Figure 1 (a) and (b), respectively, are simple, but of limited
use with finite state machines that do not have a very regular structure.

On the other hand, the more general form of finite state machine
decomposition, shown in Figure 1 (c), is applicable to any finite state
machine. The structure of the resulting finite state machine is shown
in Figure 2. Each of the sub-machines receives, as inputs, not only the

FF

FF

OL

CL1

CL2

I O

Fig. 2. Structure of decomposed finite state machine.

primary inputs and its own state variables, but also the state variables
of the other sub-machine. Although there are several ways in which
the STGs of each machine can be built, the following approach is
simple and intuitive and will be used in this work.

1. Select a subset of the states in the original STG to belong to
the first sub-machine, and let the remaining states belong to the
second machine.

2. Generate two STGs, one for each sub-machine. Create a new
state, the RESET state, in each of the two new STGs.

3. All transitions entirely inside each of these STGs are copied
unmodified from the original STG.

4. Transitions between a state in the first sub-STG and a state in
the second sub-STG are replaced by two transitions: one to the
RESET state in the first sub-machine, and one from the RESET
state in the second sub-machine. The reverse is true for the sym-
metric case.

We illustrate the procedure with the following simple example de-
picted in Figure 3. Consider the following state transition graph for a
simple sequence detector and assume that a decomposition of the cor-
responding FSM is desired, with states A and B to belong to machine
M2, and all the other states to belong to machine M1.

X
D

A

E

B

F

C

0/0

1/0

0/01/0

1/0

0/0

1/0

0/0

1/0

0/0

0/0

1/1

Fig. 3. State transition graph of the sequence detector.

The original STG is transformed into two smaller STGs. Tran-
sitions between the states in M1, as well as transitions between the
states in M2, are copied without transformation. As shown in Fig-
ure 2, the number of inputs to each sub-FSM is enlarged with the value
of the state lines of the other sub-FSM, each FSM also providing as
outputs the value of the state lines. Transition between a states in M1

Y

DE

F
R

C

0A/0R

1A/1R

0B/0R

0−/0D

0−/0C

1−/0C

0−/0F

1−/0F

1−/0E

0−/0E

1−/0D

OTHER/−−

A

B

S1−/0B

0−/0B

0−/0A

OTHER / −−

1−/1A

0D/0S

Z

Fig. 4. STGs for the sequence detector after decomposition.

and a state in M2 require a slightly more complex treatment. Con-
sider, for example, the transition marked withX, in Figure 3, between
states D and B. This transition corresponds to two new transitions,
one in each of the STG of the sub-FSMs. In M1, it corresponds to the
transition markedY, between state D and state R (the newly created
RESET state in M1). This transition is labeled with the original value
of the input (0) and has, as output, the value of the source state in
M1, D. When machine M1 performs this state transition, it becomes
inactive. In M2, it corresponds to the transition markedZ, between
state S (again, the newly created RESET state in M2) and state B.
This transition is labeled with 0 D (the original value of the input plus
the encoding of state D), and signals that machine M2 should become
active. All input combinations not explicitly shown in the edges leav-
ing the reset state of each machine are self-loops, and they signal the
fact that the given machine is to stay inactive until it receives the right
input combination.

In practice, the procedure works in a slightly different way from

the one illustrated here, because the codification of the sub-FSMs is
not known at the time the STG is being partitioned. In fact, using the
same state codification for the sub-FSMS and for the original FSM
would be sub-optimal, specially in the case where one of the sub-
FSMs is much smaller than the other one and requires a much smaller
number of registers. In the decomposition of large machines, this may
represent a significant advantage over an approach that uses the same
set of registers to implement both sub-machines [5]. The exact way
by which this information is exchanged between the sub-machines is
detailed in section V-C.1.

V. FINITE STATE MACHINE DECOMPOSITIONFOR LOW POWER

The main objective of this work is to use finite state machine de-
composition techniques to achieve low power dissipation. The basic
idea, described in this section, is to decompose the original machine
into two machines, one of them with a reduced number of states and
low power dissipation that performs needed computations for a large
fraction of the time.

A. Targeting The Partition Strategy For Low Power

Consider the decomposition shown in Figure 2 in Section IV and
the state transition diagrams shown in Figures 3 and 4. Notice that,
for any transition that takes place between two states other than the
RESET state in the same factor machine, only this machine needs
to be active. This means that, for these transitions, we can disable
entirely the other machine, avoiding all the power dissipation it incurs.

On the other hand, transitions that involve the RESET state and an-
other state are active simultaneously in both machines, because when
one machine is leaving the RESET state, the other one is entering it.
These transitions tend to generate the largest power dissipation, be-
cause both machines are active at once.

The potential for the gains in power dissipation obtainable from
the decomposition technique described in Section IV are larger if one
selects a partition that exhibits the following characteristics:

1. One of the machines (thesmallmachine) has a state transition
diagram with a small number of states, and is therefore simple
and dissipates a small amount of power.

2. The sum of the transition probabilities between two states in the
smallmachine other than the RESET state is as large as possible.

3. The sum of the transition probabilities involving the RESET
state in thesmallmachine is as small as possible.

The motivation for each of these factors is relatively straightfor-
ward. The first and second requirements specify that one of the ma-
chines, thesmall machine, will be operating a large fraction of the
time with a relatively small amount of power dissipation. The third
requirement minimizes the fraction of time both machines are operat-
ing, a situation that is undesirable because it corresponds to maximum
power dissipation.

Clearly, a partition that satisfies these requirements is not guaran-
teed to perform well, because the power dissipation of the final sys-
tem depends on a variety of factors that cannot be considered at this
abstraction level, like state encoding, combinational circuit synthe-
sis and technology mapping. However, the three requirements listed
above can be considered as useful heuristics in the selection of a par-
tition that will achieve the desired reduction in power dissipation.

B. Selecting A State Partition For Low Power

The problem of selecting a graph partition that maximizes a given
cost function has many applications and has been addressed in a vari-
ety of ways. One of the best known algorithms for this problem is the

Kernighan-Lin algorithm [8]. This algorithm has been applied with
success in a variety of applications, and was the algorithm used in this
work.

The algorithm can be applied in the selection of both balanced or
unbalanced partitions, with either a fixed or variable number of states
in each partition. Assume, for the moment, that the number of states
in each partition is fixed beforehand and that the STG hasN = jQj
states. We wish to obtain a partition in two sets withN1 states on one
set andN2 states on the other set, withN1 <= N2.

The algorithm starts with an arbitrary partition that has two sets
with, respectively,N1 andN2 states. It then selects a pair of states
to swap, in a greedy way. Specifically, it selects the pair of states
to be swapped that lead to higher increase (or smaller decrease) in
the objective function. The states are then swapped, and the value of
the resulting partition is recorded. These states are also recorded as
already swapped, and are therefore fixed in their new partitions. After
N1 states have been swapped, the algorithm terminates, and outputs
the best partition seen in the process.

B.1 Selection Of The Objective Function

The application of the Kernighan-Lin algorithm with a cost func-
tion that reflects the objectives stated above generates the desired fi-
nite state machine decomposition. The result can then be used to gen-
erate a sequential network that has a functionality equivalent to the
original one, but dissipates, in general, less power.

Given the general objectives described above, we use the
Kernighan-Lin algorithm to select a partition of the original set of
statesQ into two subsetsQ1 andQ2, that maximize the following
objective function:

F =
X

qi2Q1;qj2Q1

P (eij)��
� X

qi2Q1;qj2Q2

P (eij)+
X

qj2Q1;qi2Q2

P (eij)
�

(4)

The first summation represents the total probability of the transi-
tions occurring entirely inside the STG of thesmall machine, while
the second and third summations represent the total probability of the
transitions occurring between the two machines.

Empirically, we found that values between 0.5 and 1.0 for the�
coefficient worked best, and we selected a value of 0.7 for all experi-
ments.

B.2 Complexity of the Kernighan-Lin procedure

The partition algorithm uses the standard data structures for the
representation of state transition graphs. With this simple data struc-
tures, a total ofN1 � N2 pairings of states need to be considered
for each step1 of the Kernighan-Lin algorithm. The evaluation of the
objective function can be done in time that is, under some general as-
sumptions, linear on the number of states in the small partition,N1.
Finally, a total ofN1 steps need to be executed to finish the algorithm.

This means the procedure has complexityO(N3

1N2). However,
N1 is always a small number, because it is the number of states in the
smallmachine. Typically,N1 is never superior to 15, andN3

1 is there-
fore bounded from above by a constant, leading to a total complexity
that is linear in the total number of states in the original STG.

Empirically, we found that the procedure terminates in less than
30 seconds for all the circuits reported, taking less than a second for
the majority of them. In any case, the execution of this procedure was
never a bottleneck given that, in the majority of the circuits that we
were unable to test, the STG extraction step was the limiting factor.

1Each step of this algorithm performs a state swap between the two
partitions.

C. Generating The Final Network From The State Partition

The FSM decomposition method described in Section IV requires
small changes to be effective in this application. These changes are
motivated by the following facts:

� Because thesmallmachine has a reduced number of states, it is
possible to minimize the amount of information sent from the
large machine to the small machine.

� Maximum power savings will be achieved if the machines are
disabled when they are in a self-loop condition in the RESET
state.

C.1 Minimizing Information Exchange Between The Two Machines

In the partition scheme described in Section IV and shown in Fig-
ure 1, the communication between the two sub-machines is com-
pletely symmetrical.

However, if one of the machines is much smaller than the other one
(as measured by the number of states in the STG), this communication
mechanism can be changed to our advantage in the following way:

� When thesmallmachine makes a transition to the RESET state,
the extra outputs of this machine encode information describing
which state the machine was before reaching the RESET state.

� When thelarge machine makes a transition to the RESET state,
the extra outputs of this machine encode information describ-
ing to which state thesmallmachine should go from its RESET
state.

Because the small machine has a smaller number of states, this
change reduces the number of extra outputs and inputs required,
thereby reducing the total power dissipation.

C.2 Generation Of The Disabling Network

In this application, it is important to have a sub-FSM disabled
when it is in a loop in its reset state. Given the partition methodol-
ogy outlined in Section IV, it is easy to generate an extra output for
each sub-FSM that is used to enable the other machine.

OL OUTIN FF

FF
EN

OUT

EN

EN

CL2

CL1

EN

OUT
EN
NS

NS

EO

EO

Fig. 5. Structure of decomposed finite state machine with enable
circuits and blocking devices.

The structure of the decomposed machine with the enable circuits
in place is the one shown in Figure 5. In this scheme, each machine
generates a set of extra output variables (EO) that encode the infor-
mation needed to transmit to the other machine which state it must
go to, as described in Section V-C.1. Each sub-FSM also generates
an enable signal (EN) that is used to disable the state registers in the
other machine.

TABLE I
FINITE STATE MACHINE STATISTICS.

Circuit # PI # PO # states # literals Power (�W)

opus 5 6 10 122 416
mark1 5 14 13 129 386
s386 7 7 13 190 422
sse 7 7 13 174 458
ex4 5 9 14 122 482
cse 7 7 16 255 407
kirkman 12 6 16 297 670
ex2 2 2 19 209 723
keyb 7 2 19 306 550
ex1 8 19 20 317 570
donfile 2 5 24 261 685
s820 18 19 25 433 808
s832 18 19 25 454 836
dk16 2 3 27 382 1087
styr 9 10 30 647 909
sand 11 9 32 718 1146
tbk 6 3 32 1019 1726
s510 19 7 47 381 831
planet 7 19 48 729 1832
s1488 8 19 48 942 1680
s1494 8 19 48 951 1675
scf 27 56 115 1058 1117

For one machine (M2, thelarge one), the primary inputs also go
through a set of latches orAND gates, thereby stopping the propaga-
tion of transitions from these inputs before they reach the combina-
tional logic. This is represented by the shaded block in Figure 5. We
decided not to have the primary inputs of thesmallmachine disabled
in the same way because this machine is, in general, small, and be-
cause the extra number of latches added to this small machine may
increase instead of decreasing the total power dissipation.

VI. EXPERIMENTAL RESULTS

We have applied our FSM decomposition technique on circuits
from the MCNC91 and ISCAS89 benchmark set. We present a set
of preliminary results on the power savings we have obtained. The
results were obtained with SIS running on a 170MHZ Ultra I Sun
Workstation, using thepower estimate command [13] to com-
pute the dissipated power. All circuits were first optimized using
script.algebraic and mapped using themsu library.

In Table I, we show statistics of the circuits we present results
for. The name, number of inputs, outputs and states for each of the
circuits used is given in the first four columns. We give the number of
literals in column five, which is a good measure of circuit area. The
power dissipation of the original circuit is shown in the last column,
assuming a supply voltage of 5V, a clock frequency of 20MHz, a zero-
delay model and uniform input probabilities.

Table II presents the results we obtained for each FSM. Since the
algorithm for state selection described in Section V-B.1 is very effi-
cient, we run the algorithm for different values ofn, the number of
states in the small sub-FSM. The cost function given in Eqn. 4 was
used with� = 0:7, which we have found empirically to give best re-
sults. For each FSM in the benchmark set, we present results for the
value ofn with which the best power savings were obtained.

TABLE II
RESULTS OBTAINED AFTER DECOMPOSITION.

Circuit n Blocking latches Blocking ANDs
name % A Pwr % P % A Pwr % P

opus 4 47.4 277 33.5 42.2 281 32.6
mark1 6 55.3 274 29.1 49.1 304 21.4
s386 6 18.5 330 21.9 13.4 342 18.9
sse 5 40.3 231 49.6 34.5 252 44.9
ex4 5 30.5 268 44.2 24.0 234 51.5
cse 5 57.8 231 43.3 53.7 238 41.6
kirkman 3 17.6 461 31.3 10.3 420 37.3
ex2 8 52.6 437 39.6 51.0 462 36.0
keyb 8 27.2 343 37.7 23.7 271 50.7
ex1 6 38.1 459 19.6 34.7 467 18.2
donfile 5 54.8 485 29.2 53.5 574 16.2
s820 4 21.8 344 57.5 14.2 321 60.2
s832 4 19.6 442 47.1 12.3 429 48.7
styr 6 34.9 587 35.5 32.9 611 32.8
sand 15 42.5 1030 10.2 39.8 972 15.2
tbk 10 -22.1 928 46.2 -23.2 975 43.5
s510 7 45.7 372 55.3 37.8 224 73.1
planet 9 31.7 896 51.1 29.9 888 51.6
s1488 4 -1.1 345 79.5 -2.7 438 73.9
s1494 6 -3.4 392 76.6 -5.0 435 74.0
scf 14 47.1 582 47.9 42.8 734 34.3

We have experimented using latches andAND gates as blocking
devices for the primary inputs (see Figure 5). In Table II, we give the
percentage area increase, power dissipation of the decomposed FSM
and the corresponding percentage power reduction using latches and
and gates. As we can observe from the table, impressive power sav-
ings can be obtained, up to 80%. As it should be expected, the higher
savings correspond to larger FSMs. In fact, for smaller FSMs there is
no gain. This is due to the fact that the decomposed FSM has some
extra logic circuitry and two extra states, the RESET state in each sub-
FSM. This can represent a large overhead for small machines, but is
less important for larger FSMs.

As should be expected, using latches leads to larger increase in
area, with (sometimes significantly) higher power savings. This is not
true for all circuits as latches have larger input and internal capaci-
tances thanAND gates, thus offsetting the reduced switching activity
at the outputs.

VII. C ONCLUSIONS AND FUTURE WORK

We presented a methodology for the decomposition of finite state
machines targeted towards low power dissipation. The methodology
uses well known decomposition techniques to obtain a state machine
that, for the majority of the large examples tested, exhibits a much
smaller power dissipation than the original. The results show that
power savings of up to 80% are possible in some of the examples.

Despite the good quality of the results obtained, there are several
directions for future work that may improve these results and extend
the range of applicability of the technique.

The single most important direction is probably the extension of
this work to the case where the state transition graph cannot be ex-
plicitly described. In our experiments, we verified that the bottleneck
resides in the extraction of the STG from the sequential circuit de-

scription. Because the decomposition algorithm works with an ex-
plicit description of the STG, it is not possible to apply the method to
machines where the STG cannot even be extracted.

However, it may be possible to apply the decomposition idea even
in this case, if a set of transitions with high enough probability exist
to justify the method. The basic idea is that, in many cases, this set of
transitions can be identified using Monte Carlo methods even without
doing a complete traversal of the STG. With this set of transitions
available, it is possible to perform a partition of the STG, considering
only the states involved in these transitions and using only an implicit
representation of the STG. Once the STG is partitioned, the rest of
the method is directly applicable, making it feasible to use it in cases
where the machine is too large to permit the extraction of the STG.

Another interesting direction for future research is on the auto-
matic selection of the size of thesmallmachine. Although, in some
cases, significant gains can be obtained with a variety of sizes for this
machine, in other cases the result depends strongly on the adequate
selection of the value of this parameter. It may be possible to modify
the cost function described above to automatically include a term that
depends on the number of states, thereby removing the need for the
user to specify the value of this parameter or to perform a search for
its right value.

Finally, it is clear that the results obtained in this paper can be im-
proved if a more efficient implementation of the decomposition strat-
egy is selected. In particular, it should be possible to reduce the over-
head incurred by the addition of the extra outputs to each sub-FSM,
by encoding these outputs in a different way that take into account the
encoding of each of the sub-machines.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou.
Precomputation-Based Sequential Logic Optimization for Low Power.
IEEE Transactions on VLSI Systems, 2(4):426–436, December 1994.

[2] L. Benini, P. Siegel, and G. De Micheli. Automatic Synthesis of
Low-Power Gated-Clock Finite-State Machines.IEEE Transactions on
Computer-Aided Design, 15(6):630–643, June 1996.

[3] L. Benini, P. Vuillod, C. Coelho, and G. De Micheli. Synthesis of Low-
Power Partially-Clocked Systems from High-Level Specifications. In
9th International Symposium on System Synthesis, November 1996.

[4] A. Chandrakasan and R. Brodersen.Low Power Digital CMOS Design.
Kluwer Academic Publishers, 1995.

[5] S-H. Chow, Y-C. Ho, and T. Hwang. Low Power Realization of Finite
State Machines – A Decomposition Approach.ACM Transactions on
Design Automation of Electronic Systems, 1(3):315–340, July 1996.

[6] S. Devadas and A. Newton. Decomposition and Factorization of Se-
quential Finite State Machines.IEEE Transactions on Computer-Aided
Design, 8(11):1206–1217, November 1989.

[7] J. Hartmanis. Symbolic Analysis of a Decomposition of Information
Processing.Information Control, 3:154–178, June 1960.

[8] B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Par-
titioning Graphs. The Bell System Technical Journal, pages 291–307,
February 1970.

[9] J. Monteiro, S. Devadas, and A. Ghosh. Retiming Sequential Circuits
for Low Power. InProceedings of the International Conference on
Computer-Aided Design, pages 398–402, November 1993.

[10] F. Najm. A Survey of Power Estimation Techniques in VLSI Circuits
(Invited Paper). IEEE Transactions on VLSI Systems, 2(4):446–455,
December 1994.

[11] A. Papoulis. Probability, Random Variables and Stochastic Processes.
McGraw-Hill, 2nd edition, 1984.

[12] K. Roy and S. Prasad. Circuit Activity Based Logic Synthesis for
Low Power Reliable Operations.IEEE Transactions on VLSI Systems,
1(4):503–513, December 1993.

[13] C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain, and B. Lin.
Power Estimation Methods for Sequential Logic Circuits.IEEE Trans-
actions on VLSI Systems, 3(3):404–416, September 1995.

