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Finite-State Markov Modeling of Correlated
Rician-Fading Channels

Cecilio Pimentel, Member, IEEE, Tiago H. Falk, Student Member, IEEE, and Luciano Lisbôa

Abstract—Stochastic properties of the binary channel that de-
scribe the successes and failures of the transmission of a modulated
signal over a time-correlated flat-fading channel are considered
for investigation. This analysis is employed to develop th-order
Markov models for such a burst channel. The order of the Markov
model that generates accurate analytical models is estimated for
a broad range of fading environments. The parameterization and
accuracy of an important class of hidden Markov models, known
as the Gilbert–Elliott channel (GEC), are also investigated. Fading
rates are identified in which the th-order Markov model and
the GEC model approximate the fading channel with similar ac-
curacy. The latter model is useful for approximating slowly fading
processes, since it provides a more compact parameterization.

Index Terms—Flat fading, Gilbert–Elliott channels (GECs),
Markov processes, parameter estimation, statistics of burst chan-
nels.

I. INTRODUCTION

I N A typical mobile communication channel, the transmitted

signal undergoes attenuation and distortion caused by mul-

tipath propagation and shadowing. The nonfrequency-selective

(flat) fading channel imposes multiplicative narrow-band com-

plex Gaussian noise (referred to as the fading process) on the

transmitted signal. As a consequence, abrupt changes in the

mean received signal level may occur and the autocorrelation

function (ACF) of the fading process may lead to the occur-

rence of a burst of bit errors. The analytical analysis of such

a bursty communication system involves the calculation of the

multivariate probability density function (pdf) of the correlated

fading process [1]–[4].

Finite state channel (FSC) models have been widely accepted

as an effective approach to characterize the correlation struc-

ture of the fading process [5]–[20]. An FSC is described by a

deterministic or probabilistic function of a first-order Markov

chain, where each state may be associated with a particular

channel quality. The strategy adopted by many researchers to
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design FSC models for fading channels consists of representing

each state of a first-order Markov chain by a nonoverlapping

interval of the received instantaneous signal-to-noise ratio

(SNR)[6]–[16]. Criteria for partitioning the SNR have been dis-

cussed in [6], [11] and [16]. The modulation and demodulation

schemes are incorporated into the model through the crossover

probability of the binary symmetric channel associated with

each fading state. An information theoretic metric has been

proposed in [7] to validate the first-order model. The limita-

tions of this criterion and the applicability of the first-order

assumption have been discussed in [16]. Other model struc-

tures have also been proposed to represent the quantized SNR,

including higher order Markov models [17], general hidden

Markov models [20], Gilbert–Elliott channels (GECs) [18], and

two-dimensional (2-D) models [19].

This paper concerns the development of FSC models

for a discrete communication system composed by a fre-

quency-shift-keying (FSK) modulator, a time-correlated Rician

flat-fading channel, and a hard quantized noncoherent demod-

ulator. The FSC model describes the successes and failures

of the symbol transmitted over the fading channel, which is

represented mathematically as a binary error sequence. The

majority of models previously reported in the literature to char-

acterize the symbol-by-symbol dynamics of the error sequence

is based on a particular class of hidden Markov models called

the simplified Fritchman model [4], [5]. Models based on a

finite queue have been proposed recently [28].

The main contribution of this paper is to develop a method-

ology to find accurate th-order Markov models for such a

bursty communication system. The order of the Markov process

gives useful information on the memory of the error process

or on how far the successive transmissions over the channel

are temporarily related. We have applied several statistics to

judge model accuracy and to estimate its order. The effect of

the SNR, fading rate, and Rician factor on the accuracy of

the proposed models is analyzed. As the fading rate becomes

slower, the model may grow to inconvenient sizes. Our second

contribution is to identify the system parameters in which the

well-known two-state GEC model satisfactorily approximates

the discrete communication channel. The results presented here

allow us to accurately study coding performance on correlated

fading channels using the analytical techniques developed in

[18]–[27] to analyze burst channels represented as specific FSC

models.

This paper is organized into six sections. Section II describes

a communication system with flat fading and some properties

of FSC models. Section III presents a methodology to estimate

the parameters of two classes of FSC models: the th-order

0018-9545/04$20.00 © 2004 IEEE
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Markov model and the GEC model. In Section IV, several mea-

sures are applied to identify the order of the Markov model

that satisfactorily approximates the channel, for a wide range

of SNRs and fading bandwidth. Fading parameters in which the

GEC model is a good approximation to the discrete communi-

cation system are identified in Section V. Concluding remarks

are given in Section VI.

II. CHANNEL MODEL

We consider a communication system that employs -ary

FSK modulation, a time-correlated flat Rician-fading channel,

and noncoherent demodulation. The complex envelope of the

received signal at the input to the demodulator is corrupted by a

multiplicative Rician fading and by an additive white Gaussian

noise with the one-sided power spectral density equal to .

The complex envelope of the fading process

is a complex, wide-sense stationary, Gaussian process

with real constant mean , where and the quadra-

ture components and are mutually independent

Gaussian process with the same covariance function, named

. Although the analysis carried out here can be applied to

a fading process with arbitrary covariance function, we adopted

the Clarke’s model [29], [30] for

where is the zero-order Bessel function of the first kind,

is the maximum Doppler frequency, and is the variance

of . For a fixed time instant, the fading envelope

(where is the symbol interval) has the

Rician pdf given by

(1)

where is the zero-order modified Bessel function of the

first kind. When the inphase process is zero-mean , the

fading envelope follows the Rayleigh pdf

(2)

At each signaling interval of length , the demodulator forms

the decision variables and decides which signal was more

likely to have been transmitted. We define a binary error process

, where indicates no symbol error at the th

interval and indicates a symbol error. It can be shown

that the probability of an error sequence of length ,

, may be expressed as [4]

(3)

where the th entry of the normalized covariance ma-

trix is , is a diagonal matrix defined as

, is the energy of the

transmitted symbol, is the Rician factor, is

a column vector of ones, , and the superscript

indicates the transpose of a matrix. We consider ;

that is, the received average energy is not affected by the

fading. We will call this discrete fading model from the modu-

lator input to the demodulator output the discrete channel with

Clarke’s autocorrelation (DCCA) model. Hereafter, we consider

binary modulation , so the DCCA model has three pa-

rameters: , , and .

Equation (3) can be used to calculate the probability of any

error event relevant to the analysis of the DCCA fading model.

For example, the probability the error bit is a 1 is

(4)

and the probability of two consecutive ones (errors) is

(5)

where is the correlation coefficient of two consecutive samples

of the fading process

(6)

Equation (3) will be employed to parameterize an FSC model

that accurately reflects the statistical description of the real error

process. A brief description of FSC models is given next.

Consider , an -state first-order Markov chain with

a finite state space . Let be an

transition probability matrix whose th entry is the transi-

tion probability , . The

FSC model generates an error symbol according to the following

probabilistic mechanism. At the th time interval, the chain

makes a transition from state to with proba-

bility and generates an output (error) symbol (in-

dependent of ) with probability .

Conditioned on the state process, the error process is memory-

less; that is, . We are assuming

that the distribution of the initial state is the stationary distri-

bution . The probability of an error

sequence generated by the FSC model, conditioned on the ini-

tial state, is

Hence

(7)

which can be rewritten in the matrix form. Define two

matrices and where . The th

entry of the matrix , is
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Fig. 1. First-order binary Markov model.

, which is the probability that the output

symbol is when the chain makes a transition from state to

. Equation (7) has a matrix form given by

(8)

The FSC model is completely specified by the matrices

and . In Section III, we define relevant properties of FSC

models and discuss the evaluation of its parameters.

III. PARAMETERIZATION OF SPECIFIC FSC MODELS

We consider two classes of FSC models: th-order Markov

models and the GEC model. Following the ideas introduced in

[4], the parameters of each FSC model will be expressed as func-

tions of the probabilities of binary sequences generated by the

model. Then, we apply (3) to estimate these probabilities and

to parameterize FSC models that approximate the DCCA corre-

lated fading model.

A. th-Order Markov Models

A discrete stochastic process is a Markov process

of th-order if it obeys the relation

(9)

A first-order binary Markov model is a FSC model with two

states represented by the value of . An error symbol

is produced when the chain transitions to state 1. Otherwise,

if the chain transition is to state 0, a correct symbol is pro-

duced. Fig. 1 illustrates the model where the labels assigned

to each branch are the error symbols emitted at each state

transition. Following the specification of the FSC model de-

scribed in Section II, and

. Employing (7) for error

sequences of lengths 1 and 2, we obtain ,

. For example, , and

or . The transition

probability matrix is

The stationary vector is and the matrices

and for the first-order Markov model are

The second-order binary Markov model is specified by the

conditional probabilities . The second-order

Markov model can be represented as a function of a first-order

Markov chain [31]. The idea is to define a pair of successive

Fig. 2. Gilbert–Elliott model for burst channels.

states , as a composite state . The

transition probability from the composite state to is

for . The transition probability from to

is zero if . The conditional probability of gener-

ating an error symbol given that the model is at the com-

posite state is . The methodology described

above can be applied to represent th-order Markov models as

a first-order Markov model. Each state of the th-order model

is represented by a binary string of length . Given two states

and , we say that and

overlap progressively if . If and

overlap progressively, then there is a transition from to

with probability . Otherwise, the state-

transition probability is zero. Given a state ,

. For example, the matrices , , and for

the second-order Markov model are

Clearly, the number of states grows exponentially with the order

.

B. GEC

The GEC is a two-state FSC model composed of state 0,

which produces errors with small probability and

state 1, where errors occur with higher probability ,

where . Clearly, and . The

transition probabilities of the Markov chain are and

, as shown in Fig. 2. The matrices , , where

, for the GEC model are given by

(10)

(11)
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We define next the notation required in this section. Consider

to be any binary sequence of finite length

. Let be an empty sequence, i.e., a sequence of

length zero that possesses the properties and

. Let and be binary symbols. The parameterization of the

GEC is based on the following lemma. This lemma and the next

proposition first appear without proof in [4]. For the sake of

completeness, we offer a proof in this section.

Lemma 1: The probability of any sequence generated by

the GEC satisfies the following recurrence equation:

(12)

where

(13)

(14)

Proof: The probability of any sequence generated by a

GEC model satisfies the relations

(15)

(16)

Hence, and are expressed as

(17)

(18)

The following equation also holds for the GEC model:

(19)

Substituting (17) into (18) and rearranging the terms yields

Equation (12) allows us to express and and,

consequently, , , , and as functions of the probabilities of

error sequences. Substituting and in (12) yields,

respectively

(20)

(21)

Solving this linear system, we obtain

(22)

and

(23)

The following proposition expresses the parameters of the GEC

model in terms of and or, consequently, in terms

of the probability of error sequences of length, at most, 3.

Proposition 1: If , the parameters of

the GEC are uniquely determined by the four probabilities:

and . The parameters and are

the roots of the quadratic equation

(24)

and the parameters and are given by

(25)

Proof: From (13) and (14), we have

(26)

(27)

(28)

(29)

From (26) and (27) and (28) and (29), respectively, we obtain

(30)

(31)

where . Combining (29) and (31) results in the

quadratic equation

(32)

where the same equation holds for . So, substituting (30) into

(32), we conclude that and are the roots of (24). Once we

have determined and , we use (26) and (27) to obtain (25).

IV. MODEL EVALUATION

This section evaluates the accuracy in which the FSC models

described in Section III approximate the DCCA correlated
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Fig. 3. Comparison of the ACFs of the DCCA fading model, the Kth-order
Markov model (K = 0; 1; . . . ; 6), and the GEC model. The DCCA model is
Rayleigh fading (K = 0), with E =N = 15 dB, and f T = 0:1 (a),
f T = 0:05 (b).

fading model. In general, it is difficult to define a unique

measure to judge if a particular model better approximates the

fading channel when compared to other candidates. The criteria

commonly used to make this decision include the minimiza-

tion of a distance measure between the probability-of-error

sequences generated by the model and by the fading channel

(e.g., variational and normalized divergence), an information

theoretic metric [7], and the comparison of certain statistics of

the models, such as ACF and packet error rate [16].

Motivated by the results presented in [16], we next compare

the ACF of the DCCA fading model with the ACF of FSC

models. The ACF of a binary stationary process is

given by

(33)

where denotes the expected value of the random variable

. A closed-form expression for the ACF of the DCCA model

is given by (5), where the correlation coefficient given by (6)

is replaced by . Then, it follows from (5)

that for the special case of Rayleigh fading

(34)

Fig. 4. Comparison of the ACFs of the DCCA fading model, the Kth-order
Markov model (K = 0; 1; . . . ; 6), and the GEC model. The DCCA model is
Rayleigh fading (K = 0), with E =N = 15 dB, and f T = 0:02 (a),
f T = 0:01 (b).

The ACF of an FSC model described by the matrices and

is expressed as [23]

(35)

for .

A. Rayleigh Fading

The ACF over 20 values of of the DCCA and the FSC

models are compared in Figs. 3 and 4. The parameters of the

DCCA model are , dB, and ,

0.05 (Fig. 3) and , 0.01 (Fig. 4). Markov models of

orders up to six have been considered. It is observed in Fig. 3(a)

that there is a significant gain in accuracy when the order of

the Markov model is increased from (memoryless) to

. A little gain is obtained for and no further gain

is observed for . Also, the ACFs of the second-order

Markov and the GEC models are very alike. The curves indi-

cate that the first-order Markov model satisfactorily approxi-

mates the DCCA fading model for . It is worth men-

tioning that we could have chosen either the second-order or

GEC model to approximate the DCCA model, since the ACFs

of these three models can barely be distinguished in Fig. 3(a).

However, we want to obtain as simple an analytical model as

possible with acceptable accuracy. This tradeoff between accu-

racy and complexity makes this decision somewhat arbitrary.

When the fading rate gets slower, the order of the Markov model
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Fig. 5. Comparison of the ACFs of the DCCA fading model, the Kth-order
Markov model (K = 0; 1; . . . ; 6), and the GEC model. The DCCA model is
Rayleigh-fading (K = 0) with E =N = 25 dB, f T = 0:01.

increases, as expected. For example, we observe from Fig. 3(b)

that the second-order Markov is satisfactory for .

However, we notice that the ACF of the third-order Markov

model is a bit closer to that of the DCCA model, but this strict-

ness may not compensate for the doubling of the number of

states (we will use other statistics to confirm this assumption

later). Again, the ACFs of the third-order Markov and the GEC

models are very similar. When (curves not shown),

the ACF of the GEC model diverges from the ACF of the DCCA

model. This fact is illustrated in Fig. 4(a), where the curve of

the fifth-order Markov model better approximates the ACF of

the DCCA model than that of the GEC model. This value of

can be considered as a satisfactory approximation of the

DCCA model for . Fig. 4(b) indicates that the GEC

model is a poor approximation and should be used for

. Notice that the ACF of the th-order Markov

model matches that of the DCCA model perfectly over an in-

terval of length .

Markov models may not be practical for very slowly fading

channels , since the number of states grows ex-

ponentially with and large data sizes are necessary to param-

eterize the model. Fig. 5 displays a similar comparison for the

case dB, . It is observed that the

ACF of the DCCA model decreases more rapidly with when

compared to Fig. 4(b), indicating a potential to reduce the order

of the Markov approximation. It is also observed that the GEC

model becomes accurate for a wider range of when the

SNR increases.

In order to verify the order of the Markov model indicated by

the ACF method using a different perspective, we calculate the

variational distance between the -dimensional target measure

given by (3) and the measure obtained by the th-order

Markov model, namely, , which is calculated using

(8). The matrices and are described in Section III.

The variational distance is defined as

Fig. 6 reports the variational distance versus the order

for several values of , for dB (a) and

dB (b). Because of the complexity in obtaining

the possible values of , we have considered .

Fig. 6. Variational distance versus the order K having f T as a parameter.
Rayleigh-fading (K = 0), (a) E =N = 15 dB, (b)E =N = 25 dB.
f T = 0:1, 0.05, 0.03, 0.02, 0.01, 0.001.

TABLE I
ORDER OF THE MARKOV MODEL THAT APPROXIMATES THE DCCA

RAYLEIGH-FADING MODEL FOR SEVERAL VALUES OF f T

A smaller distance value indicates that the th-order Markov

model agrees with the DCCA model better. We say that the

order of the Markov chain is , when the distance converges

to approximately a constant value for . (The choice

of a particular value of , as mentioned before, is somewhat

arbitrary.) The orders indicated by the convergence of the

variational distance, for the range of fading environments

investigated, are consistent with those obtained by the ACF

method. Table I summarizes the choice of deducted from

the curves for selected values of (the curves used to
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Fig. 7. Comparison of the ACFs of the DCCA fading model, the Kth-order
Markov model (K = 0; 1; . . . ; 6), and the GEC model. The DCCA model is
Rician-fading (K = 5 dB) with E =N = 15 dB, (a) f T = 0:05, (b)
f T = 0:02.

estimate for dB were not shown for brevity).

For the range of SNR considered, a memoryless model results

for fast fading , while a first-order Markov model

is adequate for . We notice that, for moderate fading

rate , the increase of the SNR from 10

to 15 dB and from 15 to 25 dB reduces the estimated order

by 1.

B. Rician Fading

The analysis presented in Section IV-A is now employed to

the DCCA model with Rician fading. ACF curves are plotted in

Fig. 7 for Rician fading with dB, dB,

(a) , (b) . For small values of

[ in Fig. 7(a) and in Fig. 7(b)], the ACF of

the DCCA model has a monotonic decreasing exponential be-

havior that is well approximated by that of FSC models. How-

ever, a good fit is not possible at the oscillatory portion of the

AFC curve. A comparison of Fig. 7 with Figs. 3(b) and 4(a)re-

veals that the Markov models provide a better fit for Rayleigh

fading when dB. On the other hand, Fig. 8 shows

that for dB the differences between the ACF of

the DCCA and Markov models are greatly reduced. We observe

from Fig. 8(b) that the GEC model is accurate for .

Fig. 8. Comparison of the ACFs of the DCCA fading model, the Kth-order
Markov model (K = 0; 1; . . . ; 6), and the GEC model. The DCCA model is
Rician-fading (K = 5 dB) with E =N = 25 dB, (a) f T = 0:05, (b)
f T = 0:02.

Fig. 9. Variational distance versus the order K having f T as a parameter.
Rician-fading (K = 5 dB), E =N = 15 dB, f T = 0:1, 0.05, 0.03, 0.02,
0.01.

The variational distance versus the order of the Markov model

is presented in Fig. 9 for several values of , block length

, dB, dB. The estimated orders

of the Markov model obtained from the ACF curves and the

convergence of the variational distance are shown in Table II.

The values of in Table II are greater than their corresponding
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TABLE II
ORDER OF THE MARKOV MODEL THAT APPROXIMATES THE DCCA

RICIAN-FADING CHANNEL FOR SEVERAL VALUES OF f T . K = 5 dB

TABLE III
ORDER OF THE MARKOV MODEL THAT APPROXIMATES THE DCCA

RICIAN-FADING CHANNEL FOR SEVERAL VALUES OF f T . E =N = 15 dB

TABLE IV
RANGE OF FADING PARAMETERS WHERE THE GEC MODEL IS EQUIVALENT

TO THE DCCA MODEL

values in Table I. This can be explained by the fact that the mis-

match of the ACF curves for Rician fading reflects in the conver-

gence rate of the variational distance. It is worth mentioning that

the Markov models indicated in Table II for dB

reach good approximation at the first portion of the ACF curve

(small ).

We have investigated the effect of the Rician factor on the

estimated order . We have repeated the analysis for

dB and dB and have found model orders similar to

those given in Table II. Specific models are shown in Table III

for dB, dB, and dB. The

curves of several statistics show that the order is relatively

insensitive to a small variation of the Rician factor. We may

consider that, for the range of values considered, the increase

of the Rician factor by 3 dB increases the estimated order by 1.

V. EQUIVALENCE BETWEEN DCCA AND GEC MODELS

Tables I and II indicate that the number of states of the

Markov models may grow to an inconvenient size for slow

fading. We have also observed that the more compact two-state

GEC and DCCA models exhibit greater ACF discrepancies

when becomes smaller. It is, therefore, of interest to

Fig. 10. Capacity versus the order K having f T as a parameter for
E =N = 15 dB. Rayleigh-fading (K = 0), f T = 0:1, 0.05, 0.03, 0.02,
0.01.

evaluate the effectiveness of the GEC model for a wide range

of fading parameters. Table IV classifies the minimum value

of , in which the GEC model is approximately statistically

equivalent to the DCCA model. Figs. 3(b), 5(b), and 8(b) verify

the accuracy of the GEC model at the lower bound to

shown in Table IV. This table shows that, for Rayleigh fading,

dB, , the GEC model may be an in-

teresting alternative with respect to the 32-state Markov model

indicated in Table I. We found that the GEC model is not ade-

quate when dB. Although the GEC model is suit-

able for fast fading, the zeroth- and first-order Markov models

are simpler to analyze. This is the reason for the upper bound

in Table IV. For a given SNR, the range of fading

rates where the GEC model is accurate becomes narrower when

the Rician factor increases.

To investigate this equivalence further, we will compare the

capacity of FSC models. The capacity of the Markov models

has closed-form solution, while the capacity of the GEC model

was calculated using the algorithm published by Mushkin and

Bar-David [32]. In Fig. 10, the capacities are plotted versus the

Markov order , for dB, . The flat curves

correspond to the capacities of the GEC models. For each ,

the capacity of the Markov models increases with and con-

verges to the capacity of the DCCA model. The estimated values

of indicated by the convergence of the capacity curves agree

with those shown in Tables I and II. For each , a crossover

between the capacity curves reveals the value of where the

th-order Markov model and the GEC model have similar ca-

pacities. If this value of agrees with the value indicated in

Table I, we have established an equivalence between the GEC

and DCCA models.

Our results indicate that, for practical values of SNR, the GEC

model is valid for moderate fading rates. ACF curves for very

slow Rayleigh-fading are shown in Fig. 11. It

is seen that Markov models are infeasible and that more sophis-

ticated hidden Markov Models are required.

A. Codeword Error Probability (PCE)

In order to investigate the impact of the results shown in Ta-

bles I, II, and IV on higher layer protocols, we discuss the effect
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Fig. 11. Comparison of the ACFs of the DCCA fading model, the sixth-order
Markov model, and the GEC model. The DCCA model is Rayleigh-fading
(K = 0) with E =N = 15 dB, f T = 0:001.

Fig. 12. Codeword error probability (PCE) versus f T of the Kth-order
Markov model (K = 0; 1; . . . ; 6), the GEC model, and the DCCA
fading model (simulations). The DCCA model is Rayleigh fading with (a)
E =N = 15 dB and (b) E =N = 25 dB.

of the channel models on the PCE of block codes. We consider

the binary (15,7) block code [33] with error-correcting capa-

bility . The PCE is defined as the probability of occurrence

of received words with more than erroneous symbols. Thus

Fig. 13. PCE versus f T of the Kth-order Markov model (K =
0; 1; . . . ; 6), the GEC model, and the DCCA fading model (simulations).
The DCCA model is Rician fading (K = 5 dB) with (a) E =N = 15 dB
and (b) E =N = 25 dB.

where is the probability the FSC model generates

errors in a block of length .

Fig. 12 presents PCE curves for FSC models as a function

of , for Rayleigh fading with (a) 15 dB and (b)

25 dB. Simulated curves for the DCCA model are shown for

comparison. We observe that the orders of the Markov models

shown in Table I match the simulation results closely. The GEC

model provides an excellent prediction of the performance in

the range shown in Table IV. Similar conclusions can be drawn

from the PCE curves for Rician fading shown in Fig. 13.

Fig. 12(b) reveals that the range of fading rates in Table IV can

be expanded with no severe penalty in accuracy. For example,

for dB, the GEC model may be a good approxi-

mation to the DCCA Rayleigh fading for .

This means that a small discrepancy on the ACF curves [com-

pare the DCCA and GEC curves in Fig. 4(a)] may be acceptable

for protocol evaluation.

VI. CONCLUSION

We have developed FSC models that characterize the error

sequence of a communication system operating over a fading

channel. Markov models of order up to six have been proposed

as an approximation to the DCCA model for a broad range of

fading environments. We have used several criteria to estimate
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the order of the Markov process, e.g., ACF, variational distance,

and capacity. These criteria lead to a similar conclusion that the

th-order Markov model is a good approximation to the DCCA

model. This analysis reinforces the results in [16] regarding the

effectiveness of the ACF criterion to judge the fitness of FSC

models to approximate correlated fading channels. The use of

other criteria helps to resolve the tradeoff between accuracy and

complexity.

It is observed that the first-order approximation is satisfactory

to model DCCA channels with Rayleigh fading for values of

around 0.1. In the range of SNR considered, the th-order

Markov (for judiciously selected ) is an accurate model for

fast and medium fading rates . For slower fading

rates, Markov models of order greater than

six are required. The GEC model is not adequate for low SNR

dB , but its becomes accurate for a broad range of

fading rates when the SNR increases. Higher order models are

needed to approximate Rician fading with respect to Rayleigh

fading with the same fading parameters.
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