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Finite-strain, finite-size mechanics of rigidly cross-linked biopolymer

networks

Stefan B. Lindström,∗a Artem Kulachenkob, Louise M. Jawerth,c and David A. Vaderc

The network geometries of rigidly cross-linked fibrin and collagen type I networks are imaged using confocal microscopy and

characterized statistically. This statistical representation allows for the regeneration of large, three-dimensional biopolymer

networks using an inverse method. Finite element analyses with beam networks are then used to investigate the large deformation,

nonlinear elastic response of these artificial networks in isotropic stretching and simple shear. For simple shear, we investigate

the differential bulk modulus, which displays three regimes: a linear elastic regime dominated by filament bending, a regime

of strain-stiffening associated with a transition from filament bending to stretching, and a regime of weaker strain-stiffening

at large deformations, governed by filament stretching convolved with the geometrical nonlinearity of the simple shear strain

tensor. The differential bulk modulus exhibits a corresponding strain-stiffening, but reaches a distinct plateau at about 5% strain

under isotropic stretch conditions. The small-strain moduli, the bulk modulus in particular, show a significant size-dependence

up to a network size of about 100 mesh sizes. The large-strain differential shear modulus and bulk modulus show very little

size-dependence.

1 Introduction

Filamentous biopolymers self-assemble into stiff bundles, and

form percolating networks through cross-linking or branching

during polymerization.1 Network-forming biopolymers are

pervasive components in biological tissue. The cytoskeleton

is composed of microtubules2, intermediate filaments3 and

filamentous actin networks2, fibrin polymerizes in wounds to

form blood clots4 and collagen constitutes the bulk of the ex-

tracellular matrix and the connective tissues5. Biopolymer

networks display a remarkable range of mechanical proper-

ties; they can be extremely extensible6,7 and exhibit strong

strain-stiffening6–9 to ensure cell and tissue integrity8. The

mechanical characteristics of branched, athermal biopolymer

networks derive from the individual strand behavior10,11, the

angle distribution between filaments12, the number of branch-

points per coherent fiber13 and the network topology14–16.

In this work, we study the finite-strain mechanical char-

acteristics of reconstituted, cross-linked collagen type I and

fibrin networks in the low-frequency limit. The networks we

study have rigid branch-points and are athermal in the sense

that the persistence length of the filaments exceeds the mesh

size. Moreover, we only consider the linear-elastic regime of

filament deformations. The range of this regime depends on

the biopolymer species and the preparation process. Cross-
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linked fibrin filaments have a linear force–deformation rela-

tion up to 120 % elongation17, and cross-linked collagen is

linear to about 25 % elongation18,19. The microscopic mech-

anism behind these force-elongation characteristics is beyond

the scope of this work.

Previous modeling work on the mechanics of disorganized

fiber networks have been largely concerned with regular lat-

tices with variable filament stiffness20,21, random network

geometries12,14,16,22–26 and networks created through a simu-

lated polymerization process27. An important generic result is

that the hyperelastic response of low-connectivity networks is

due to the excitation of nonaffine, bending-dominated modes

of deformation at small strains, followed by a transition to

stretching-dominated filament deformation at large network

strains12,13,20,23. This mechanism for strain-stiffening is man-

ifested at the macroscopic scale by an inflating differential

shear modulus, observed in rheological experiments for col-

lagen6,9 as well as fibrin7,9. Also, the effects of nonlinear ma-

terial characteristics of the strands have been previously mod-

eled, including the effect of entropy of the polymer strands28

and protein unfolding29 in the case of fibrin. In this work,

however, we focus on geometrical nonlinearities at large de-

formations.

To achieve a quantitative predictive capability of the large-

deformation material characteristics, a detailed description

of the network geometry is required15,30, which is available

through confocal microscopy28,31. It has been previously

demonstrated, for one instance of a small collagen network,

that the filament length distribution, the valency distribution

and the distribution of direction cosines between filaments

is sufficient for predicting the mechanical response to simple

1–13 | 1



shear deformations up to a shear strain of γ = 0.315. Large

deformations of individual filaments, including buckling, must

also be taken into account. This can be achieved using a semi-

flexible, worm-like chain model16,28,30, or e.g. large defor-

mation Timoshenko beam elements15. Such detailed models

have been employed for the case of small, reconstituted colla-

gen15,30 and fibrin28 networks. Knowing that the details of the

geometry is accounted for and having a well-defined and very

realistic model for large filament deformations enable us to

address outstanding research questions specific to biopolymer

networks:

a. Statistical network representation. Is it possible to de-

scribe the network geometry statistically while still capturing

its mechanical characteristics? And if so, what are the sim-

ilarities and differences between the network geometries of

different biopolymer species?

b. Size-dependence. To what extent does network size affect

the elastic mechanical response? The shear stiffness of thin

collagen discs are known to be size-dependent32, and finite-

size behavior is key to understanding confined networks and

boundary effects. The mechanisms behind these size-effects

have not been previously addressed in the literature, to the

knowledge of the authors.

c. Validity of the linear-elastic assumption for describ-

ing filaments. Can the nonlinear large deformation response

of biopolymer networks be understood from the geometrical

nonlinearity at the level of filaments and the finite strain non-

linearity of the bulk, using a linear-elastic beam model to rep-

resent the filaments? and what is the range of validity for this

linear-elastic assumption for the filament material?

We use confocal microscopy to obtain three-dimensional

micrographs of the biopolymer network structure31, and char-

acterize these structures statistically. Using an inverse method,

these network statistics enable a numerical reconstruction of

artificial networks of arbitrary size15. We numerically show

that the physical and the artificial network structures are me-

chanically equivalent, in the sense that they exhibit the same

large deformation mechanical response in simple shear and

isotropic stretching. Finite-size effects are studied for artifi-

cial networks corresponding to collagen-I and fibrin network

structures. We also separate the total strain energy into ener-

gies stored in the longitudinal, bending, torsional and trans-

verse shear filament deformations to identify the governing

microscale filament deformation mechanism. Importantly, we

use state-of-the-art beam models implemented in commer-

cially available finite element software to capture the filament-

level geometrical nonlinearity, and the results are interpreted

on the bulk level taking the nonlinearity of the strain tensor for

simple shear and isotropic stretch into account.

b

a

Fig. 1 (a) Confocal microscope image of a 1.0 g/L collagen network,

with an image depth of 5µm. (b) Confocal microscope image of a

0.4 g/L fibrin network, with an image depth of 28µm. The scalebars

are 20µm.

2 Materials and methods

2.1 Experiments

We study isotropic, reconstituted networks of collagen type I

(Fig. 1a) and fibrin (Fig. 1b). Bovine collagen type I is

fluorescently labeled with tetramethylrhodamine isocyanate

(TRITC), following a previously described protocol33. It

is polymerized at final collagen concentrations 1.0, 2.0 and

4.0 g/L34. Fibrinogen is fluorescently labeled with TAMRA

(c-1171 from invitrogen) and subsequently polymerized

through the addition of thrombin, as previously described35,36,

at final fibrin concentrations of 0.4 and 1.6 g/L. The biopoly-

mers are imaged in three dimensions using a Leica SP5

confocal microscope (Wetzlar, Germany) equipped with a

63×/1.2 NA water immersion lens, yielding voxel-based net-

work representations with a width exceeding 30 mesh-sizes.

The confocal microscope image stacks are converted into

Euclidean graph representations using Amira’s skeletoniza-

tion package (TGS, San Diego, CA). The nodes of the

graph represent branch-points, while the edges represent fil-

aments14,15,23,31. The Euclidean graphs are subsequently ana-

lyzed for geometry statistics (Sec. 2.2).

For the mechanical characterization, collagen and fibrin

gels are polymerized in a plate–plate geometry of an AR-G2

stress-controlled rheometer (TA Instruments, New Castle,

DE). Strain ramps are used to measure the differential shear

modulus as a function of shear strain in the low-frequency

limit.
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Fig. 2 Statistical description of the network geometry, where the analytical distributions are least-squares fitted in linear space. The Efron

pseudo-R2 value is provided for the fits. (a) Filament length distributions P (ℓ), normalized using the average filament length L, for a 1.0 g/L

collagen network (squares, solid line) and a 0.4 g/L fibrin network (circles, dashed line). (b) Measured distribution N(p) of valencies p and

shifted geometric distributions. (c) Measured direction cosines distributions B(β) and power series approximations.

2.2 Network characterization

A statistical network description has been previously proposed

and shown to be sufficient for capturing the nonlinear elas-

tic response of collagen-I15. This description includes (a) the

filament length distribution P (ℓ), which enforces macroscale

homogeneity by precluding too many short or long filaments.

The filament length ℓ is taken as the edge length. (b) The va-

lency distribution N(p), which enforces the correct topology;

the valency p ∈ [3,∞) is the number of incident edges to a

node. (c) The direction cosines distribution B(β), which is

the probability density of cosines β between edges incident to

the same node and enforces direction correlations within the

network.

Experimentally, we observe that the fibrin and collagen net-

works have a log-normal filament length distribution P (ℓ)
(Fig. 2a), although we make no claim that this is generally

the case. We have

P (ℓ) =
1

ℓ
√

2πζ2
exp

[

−
(λ− ln ℓ)2

2ζ2

]

, (1)

ζ2 = ln

(

s2

L2
+ 1

)

, λ = lnL−
ζ2

2
,

where L and s2 are the mean and variance of P (ℓ). We

choose to parameterize the filament length distributions us-

ing the mean L and normalized variance v = s2/L2 of the

filament length. This distribution is fit in linear space to ex-

perimental data from collagen and fibrin networks (Fig. 2a).

In fibrin and collagen networks alike, experiments indicate

that N(p) decreases exponentially with valency. We thus pro-

pose a shifted geometric distribution

N(p) = q(1− q)p−3 , q = 1/(Z − 2), (2)

with Z =
∑∞

p=3 pN(p) the coordination number. This distri-

bution is fit in linear space to experimental data from collagen

and fibrin networks, as shown in Fig. 2b. The discrepancy be-

tween the data points and the fit at the tail of the distribution

is exaggerated due to the logarithmic plot.

The direction cosines distribution B(β), β ∈ [−1, 1] does

not take the shape of any standard distribution. The excluded

volume of filaments ensures that B(1) = 0 for straight fil-

aments. Therefore, we choose to approximate B(β) using a

truncated power series

B(β) =

m
∑

k=1

bk(1− β)2k−1. (3)

Requiring that
∫ 1

−1
B(β)dβ = 1 leaves m − 1 independent

parameters to be determined by data fitting. In this work,

we choose m = 3. Measured direction cosines distributions

from fibrin (0.4 g/L) and collagen (1.0 g/L) are plotted with

corresponding fitted distributions in Fig. 2c. The maximum

of B is located at β = −1, for all biopolymers. This max-

imum B̂ = B(−1) is a manifestation of cross-linking be-

tween longer, straight fibers and the corresponding increase

in the direction correlation of incident filaments. The peak

at β = 1 represents the case when two filaments connect the

same pair of nodes; such loops are permissible for non-straight

filaments, but neglected in this proposed statistical descrip-

tion.

Five independent parameters L, v, Z, b1 and B̂ are thus

needed for the statistical description of the network geom-

etry. These parameters are compiled in Table 1 for differ-

ent biopolymer species and monomer concentrations. In this

limited data set, the normalized variance is particular to the

species: v ≈ 0.34 for fibrin and v ≈ 0.25 for collagen. The

coordination number of the networks is in the range 3.19 <
Z < 3.44, where fibrin has a slightly lower connectivity than

collagen. The fact that B̂ is greater for fibrin than for collagen,

shows that fibrin tends to form more coherent fibers, extending

over several mesh sizes.
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Table 1 Measured parameters of the network statistics for different

biopolymer species and monomer concentrations.

conc. L v Z b1 B̂
[g/L] [µm] [-] [-] [-] [-]

fibrin 0.4 4.87 0.339 3.19 0.94 1.89

≀ 1.6 2.99 0.341 3.33 0.91 1.51

collagen-I 1.0 1.96 0.253 3.38 0.62 0.93

≀ 2.0 1.81 0.247 3.44 0.67 0.91

≀ 4.0 1.28 0.256 3.41 0.74 1.13

From the network geometry parameters, networks can be

generated using the Euclidean Graph Generation (EGG) algo-

rithm15, an inverse method using simulated annealing to cre-

ate artificial networks arbitrarily close to the target statistics.

In this work, the EGG algorithm is slightly modified to en-

hance its performance for very large networks∗.

The stretching modulus µ, flexural rigidity κ and diame-

ter D of individual fibrin and collagen filaments are found

in the literature, or computed from data found in the litera-

ture17,34; no fitting procedure is employed to obtain the fil-

ament properties. For collagen, the average flexural rigid-

ity and filament width was previously measured34. For fib-

rin, the average tensile stiffness and filament width is avail-

able.17 The elastic modulus of the filaments Ef is computed

for both biopolymer species by assuming that the filament

cross-section is circular. The reader should be aware this lat-

ter assumption introduces an error in the computed stretching

modulus of collagen and computed flexural rigidity of fibrin.

We conservatively claim to achieve an order-of-magnitude es-

timate for the stiffness parameters. These are compiled in Ta-

ble 2, including the persistence length ℓp = κ/kBT to show

that the filaments are athermal. The Poisson’s ratio of the ma-

terials comprising the filaments is taken to be ν = 0.3. As pre-

viously demonstrated experimentally, cross-linked fibrin fila-

ments have a linear force–deformation relation up to 120 %

elongation17, and cross-linked collagen is linear to about 25 %

elongation18,19. We limit the scope of our investigation to this

linear regime of filament deformations, understanding that it is

straight-forward to extend the model to the nonlinear material

behavior observed at vary large strain of fibrin and collagen

filaments.

The magnitude of the shear modulus G of entropic net-

works is kBT/L
3. For athermal networks, the shear mod-

ulus becomes κ/L4 when filaments deform mainly in bend-

ing and µ/L2 for isostatic networks when deformations are

dominated by stretching. We assess which is the dominant

mode of deformation by comparing the measured shear mod-

ulus with these magnitude estimates (Table 3). It is observed

∗An additional term |〈ℓ〉/L − 1|, with 〈·〉 the ensemble average, is added to

the energy function in Ref. 15 to penalize very long fibers.

Table 2 Stiffness parameters of fibrin and collagen filaments. Lit-

erature values are used where indicated. The other parameters are

computed using linear elastic beam theory.

D Ef κ µ ℓp
[µm] [MPa] [10−21 Nm2] [µN] [cm]

fibrin 0.39a 4.0a 4.5 0.48 110

collagen-I 0.10b 100 0.5b 0.80 12
aLiu et al. 17.
bVader 34.

Table 3 Measured and predicted magnitudes of the shear modulus.

conc. G kBT/L
3 κ/L4 µ/L2

[g/L] [Pa] [Pa] [Pa] [Pa]

fibrin 0.4 1.2 0.00004 0.89 2.0·104

≀ 1.6 40 0.0002 6.3 5.3·104

collagen-I 1.0 24 0.005 34 2.1·105

that kBT/L
3 ≪ G for all networks, confirming that they are

athermal. Moreover, since µ/L2 ≫ G for all networks con-

sidered, filament bending is the dominant deformation mech-

anism for infinitesimal strains. This is consistent with the fact

that these networks have a coordination number below that of

Maxwell’s isostatic connectivity threshold, i.e. Z < 6 (Ta-

ble 1) for three-dimensional networks37,38. That is to say,

the number of internal degrees of freedom of the network

is greater than the number of constraints originating from

central-force interactions. If there is a bending to stretch-

ing transition at finite strains, as previously proposed20, this

transition could potentially stiffen the networks by a factor

µL2/κ; that is by a factor 103 to 104 for the networks listed in

Table 3.

2.3 Simulation geometry and deformations

A Cartesian coordinate frame with base vectors {ê1, ê2, ê3}
is introduced. For simple shear deformation (Fig. 3a),

investigated to obtain the differential shear modulus, the com-

ponents of the average displacement field u(x) are given by

u1 = γx2, u2 = 0, u3 = 0, (4)

where x is the position vector of a material point in the un-

deformed state and γ is the applied shear. In the case of

isotropic stretching (Fig. 3b), studied to obtain the differen-

tial bulk modulus, the average displacement field is

ui = (λ− 1)xi, i = 1, 2, 3, (5)

where λ is the stretch, and λ = 1 corresponds to an unde-

formed sample.
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a λa
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Fig. 3 Projections of three-dimensional network deformations for a

cubic, regenerated 1.0 g/L collagen network of width a = 20L. The

color (online) represents displacement: blue is zero; red is maximum.

(a) The gradient plane at 40% shear. (b) The x1x2 plane at 10%

isotropic stretch, i.e. in all three directions.

We define the differential shear and bulk moduli, respec-

tively, as

G(γ) =
dτ12
dγ

, K(λ) = −
1

3

dp

dλ
,

where τij is the first Piola–Kirchhoff stress tensor and p =
−ταα/3 is the pressure. The shear and bulk moduli of in-

finitesimal deformations become

G = G(0), K = K(1).

Simulations are conducted in a cubic domain of side

length a aligned with the axes of the chosen coordinate frame.

Each one of the six boundary planes is denoted by Sn̂,

where n̂ is the outward unit normal. The networks are cropped

at these boundaries, and the cut filament ends become bound-

ary nodes. Simple shear or isotropic stretch is enforced by

displacing these boundary nodes. The apparent material char-

acteristics of the finite-size networks depend on the boundary

node constraints applied to achieve the macroscopic deforma-

tion.

Boundary conditions are chosen to create deformations sim-

ilar to those of the bulk of a large network. The physical net-

works are not periodic, prohibiting the use of periodic bound-

ary conditions. Moreover, employing free boundary condi-

tions at the S±ê2
boundaries creates a necking effect and a

stress-band along the diagonal of the sample in simple shear.

Due to these considerations, two types of boundary condi-

tions are employed herein: with determinate boundary con-

ditions (DBC), all boundary nodes are subjected to a pre-

scribed displacement according to Eq. (4) for simple shear

or Eq. (5) for isotropic stretch, while being allowed to rotate

freely. With indeterminate boundary conditions (IBC), simple

shear is achieved by applying

u1 = γx2 on S±ê1
and S±ê2

u2 = 0 on S±ê1
and S±ê2

u3 = 0 on S±ê3
.

For isotropic stretch, we apply

ui = (λ− 1)xi on S±êi
for i = 1, 2, 3.

Note that with IBC, the nodes are allowed to move freely in

the lateral directions of the boundary planes. While DBC cor-

respond to the network being anchored to surrounding mem-

branes, IBC may better represent the conditions in the interior

of a very large networks, as demonstrated in later Sec. 3.2.

For each simulation, γ ∈ [0, 2.0] or λ ∈ [1.0, 1.2] is in-

creased linearly, in small steps, from the undeformed state to

some target deformation. The stress tensor τij is obtained by

integrating the total node force on the boundary planes of the

simulation domain at each step, and dividing by the original

area.

2.4 Finite element model

We perform numerical simulations for simple shear and

isotropic stretch of regenerated and physical network geome-

tries, using a commercial, implicit time integration finite el-

ement code (ANSYS39). Since the filaments are reasonably

slender, a beam theory is employed to model their mechan-

ics. We test two classes of beam elements, representing the

Timoshenko beam theory and a modified Euler beam theory

augmented with a transverse shear effect. In the case of Tim-

oshenko beam theory, the filaments are meshed with a 3-node

quadratic beam element (BEAM189 in ANSYS). In the case

of modified Euler beam theory, we use a 2-node beam ele-

ment (BEAM4 in ANSYS) as well as a custom beam element

programmed and linked through a user-element interface. All

these elements are able to account for linearly varying bend-

ing moments, large rotations and large deformations. In the

filament network, the beams are connected through the nodes

at the branch-points, which ensures rigid translational and ro-

tational connections between the filaments.

The custom beam element and BEAM4 are identical in the

sense that they both implement the same stiffness matrix. Both

are derived from the engineering theory of bending, which—

although being based on the classical Euler beam theory—

accounts for the transverse shear forces40. Linearly varying

longitudinal displacement is assumed within the element and

cubic Hermite polynomials are used for transverse displace-

ments. The calculations are performed in the local element

coordinate system after the finite rotation transformation41.

We use a projector-consistent stress–stiffness matrix42,43 to

achieve a quadratic rate of convergence.

The custom beam element is implemented for two reasons.

The first reason is to compute the fractions of longitudinal,

bending, torsional and shear energy of the total elastic energy

stored in the network, as described in Appendix A. The parti-

tion of strain energy is investigated in later Sec. 3.3. The sec-

ond reason is a more time-efficient implementation, achieved
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by using an elastic, constant-temperature, pre-integrated beam

that does not require any history variables to be passed be-

tween the Newton–Raphson iterations performed at each sub-

step. Otherwise, history variables are required by the BEAM4

implementation to, for instance, store the temperature history.

3 Results

3.1 Discretization and integration

The filaments are modeled as chains of aligned, rigidly inter-

connected beam elements. The resolution or the mesh den-

sity is controlled by setting a maximum length L/Ndiv for the

beam elements, whereNdiv is a numerical parameter. The dif-

ferential shear modulus of artificial, 1.0 g/L collagen network

is obtained by simulating simple shear using modified Euler

beam elements and different discretizations Ndiv ∈ (0, 10],
with IBC (Fig. 4a). Here and in the following, each simula-

tion is repeated for three different network realizations. The

resolution has very little effect on the prediction of the elastic

response; these variations are much smaller than the variabil-

ity between network realizations. Without any subdivision of

the filaments, the simulations are terminated at γmax ≈ 0.4.

At this point, the implicit solution scheme fails due to diver-

gence. By increasing the number of subdivisions, this limiting

shear strain can be increased to γmax > 1.0 for Ndiv = 2.5.

Further refinement does not improve the performance in this

respect.

For the same type of network and boundary conditions with

Ndiv = 5, we compare the differential shear modulus inte-

grated using Timoshenko and modified Euler beam elements,

respectively (Fig. 4b). The simulations using Timoshenko and

modified Euler elements differ very little as compared to the

difference between statistical realizations. It is also shown in

Fig. 4b that the custom beam implementation produces results

consistent with the BEAM4 implementation in ANSYS.

We conclude that the custom, pre-integrated Euler beam el-

ement captures the mechanics with sufficient accuracy, and

that an almost optimal beam element length, in terms of com-

putational speed and attained level of strain, is obtained us-

ing Ndiv = 3 (Fig. 4a, inset). The remaining simulations are

performed using custom Euler beam elements with Ndiv = 3.

3.2 Finite-size dependence

To explore the finite-size dependence of biopolymer networks,

we first consider artificial, 1.0 g/L collagen networks, and con-

duct numerical simulations to obtain G(γ) and K(λ) for differ-

ent network sizes a/L ∈ {5, 10, 20, 40, 80} with either DBC

or IBC.

For all network sizes, the mechanical response in simple

shear is similar. At least three regimes of elastic deformations

a

b

Fig. 4 Differential shear modulus of artificial, 1.0 g/L collagen

networks, a/L = 40 with IBC. The error bars represent variabil-

ity between statistical realizations. (a) Simulations using custom

Euler beam elements with different resolution: no limit (squares),

Ndiv = 2.5 (circles), Ndiv = 10 (up-triangles). The inset shows

how the maximum strain γmax, captured by the simulations, changes

with resolution. (b) Simulations with Ndiv = 5 using custom Eu-

ler beam elements (squares), ANSYS Euler beam elements, BEAM4

(circles) and Timoshenko beam elements, BEAM189 (triangles).

can be identified (Fig. 5a): At relatively small strains, γ < 0.1,

the response is linear elastic, as indicated by essentially con-

stant G. In the range 0.1 < γ < 0.4, the network is strain-

stiffening at an increasing rate. Finally, for γ > 0.4, the strain-

stiffening proceeds at a somewhat slower rate, without reach-

ing any distinct plateau before simulations are terminated at

about γ = 1.5 strain due to divergence. The three regimes are

consistent with experimentally observed mechanical response

for highly extensible filaments, including collagen6 and fib-

rin7, and the strain-stiffening is usually attributed to a transi-

tion from bending-dominated to stretching-dominated modes

of filament deformations21. According to Table 3, the theo-

retical upper limit of G is in the order of 105 Pa, which is not

reached in the simulations, indicating that the strain-stiffening

in simple shear could proceed even when γ ≫ 1.

For each network size, the differential shear modulus of

simulations with DBC is always greater than that of IBC
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a

b

Fig. 5 Finite-strain material characteristics of artificial, 1.0 g/L col-

lagen networks of different network sizes a/L = 20 (squares),

a/L = 40 (circles) and a/L = 80 (triangles). Open symbols repre-

sent DBC and filled symbols IBC.

(Fig. 5a). This is explained by the additional displacement

constraints imposed by DBC. This difference between DBC

and IBC is reduced for larger networks, presumably because

the number of boundary constraints per unit volume dimin-

ishes. A reduction of the shear modulus G is seen for

larger networks, which is also rationalized by the reduction of

boundary constraints per unit volume. Interestingly, for large

strain, γ & 0.40, neither network size nor the type of boundary

conditions affect G (Fig. 5a).

The differential bulk modulus K(λ) displays three regimes

in the stretch λ (Fig. 5b): For very little stretch, λ−1 < 0.005,

the network is linear elastic, as manifested by an almost con-

stant K. Then, there is a regime of strain-stiffening in the

approximate range 0.005 < λ − 1 < 0.05. Finally, a distinct

plateau in K is reached. The behavior is in qualitative agree-

ment with the recently reported nonlinear mean-field-theory

for disordered networks44.

The DBC and IBC curve families of the differential bulk

modulus show a size-dependent bulk modulus K (Fig. 5b).

The DBC yield an overestimate of K(λ), while IBC yield an

underestimate. The DBC and IBC curve families converge to-

ward the bulk mechanical response of the network as the do-

b c

a

Fig. 6 (a) Computed density for finite-size domains of three dif-

ferent 1.0 g/L collagen network realizations. (b) Normalized moduli

of 1.0 g/L collagen network realizations for different domain sizes;

shear modulus GL4/κ (squares), bulk modulus KL4/κ (circles) and

large-strain differential bulk modulus K∞L2/µ (triangles). Open

symbols represent DBC and filled symbols IBC. (c) Normalized

moduli of 0.4 g/L fibrin network realizations, with the same point

representations as in (b).

main size increases. The differential bulk modulus ultimately

reaches a plateau K∞ that does not show any significant size-

dependence.

To investigate at which size a homogenization of the

biopolymer material is possible, we seek the Representative

Elementary Volume (REV) for stress in simple shear and

isotropic stretch, respectively. This investigation is limited to

the collagen (1.0 g/L) and the fibrin (0.4 g/L) networks; the

microstructures of these examples differ significantly in terms

of coordination number and direction cosines distribution (Ta-

ble 1). The density REV sets a lower bound on the REV of any

density-dependent property. We thus investigate the length

density ρ as a function of the size a/L of a control volume

for different network realizations. The variability of the nor-

malized length density ρL2 diminishes as a/L increases, and

the density REV is about a/L = 10 for collagen (Fig. 6a) and

fibrin (not shown).

The size of the REV depends on the mechanical property we

consider and on the boundary conditions, DBC or IBC, we ap-

ply. The simulated shear and bulk moduli,G andK, as well as

the large-stretch differential bulk modulus K∞ are plotted as

functions of a/L for 1.0 g/L collagen (Fig. 6b) and for 0.4 g/L
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fibrin (Fig. 6c). The infinitesimal strain characteristics depend

on sample size and boundary conditions.

For 1.0 g/L collagen and DBC, corresponding to a network

firmly anchored to surrounding boundaries, the bulk and shear

moduli decreases by an order of magnitude from a/L = 5
to a/L = 80, approaching K ≈ 10κ/L4 for the largest

networks (Fig. 6b). Conversely, relaxing the constraints on

the boundary nodes using IBC, the bulk modulus increases

with the network size, so that DBC and IBC gives an upper

and a lower bound, respectively, for the mechanical proper-

ties of an infinitely large network. The large-stain differential

bulk modulus K∞ does not show any dependence on network

size or boundary conditions. The relatively small value for

K∞ ≈ 0.06µ/L2 shows that only a fraction of the filaments

become loaded in tension at the plateau. To accurately capture

the material behavior in a general deformation, it is a neces-

sary condition that both G(γ) and K(λ) is captured, so the size

of the stress REV for the collagen network is about a/L = 100
(Fig. 6b).

In the case of 0.4 g/L fibrin (Fig. 6c), the situation is similar

to that of the collagen network. Again, DBC and IBC simu-

lations give upper and lower bounds for the bulk mechanical

response. The normalized bulk modulus is almost ten times

lower than that of the collagen network. This reduced nor-

malized bulk modulus may be due to a smaller coordination

number for fibrin (Table 1), which has been previously demon-

strated to reduce the network stiffness15.

3.3 Filament deformations

We reconsider the shear strain and isotropic stretch data of

1.0 g/L collagen, now focusing on the partition of strain energy

between different modes of filament deformation; the differ-

ent types of strain energies of the custom beam element are

defined in Appendix A. Let the index k enumerate the four

modes of filament deformation: longitudinal, bending, torsion

and transverse shear. We define ψk to be the strain energy

density associated with deformation type k. The total strain

energy density of a linear elastic, isotropic material is given

by45

ψ =

(

1

2
K −

1

3
G

)

(eαα)
2 +Geijeij , (6)

with eij the components of the Euler–Almansi strain tensor e.

For simple shear deformation, the Euler–Almansi finite

strain tensor is45

ess =
1

2





0 γ 0
γ −γ2 0
0 0 0



 . (7)

Inserting ess into Eq. (6) yields the total strain energy den-

sity expected for a linear-elastic, isotropic material in simple

shear:

ψss(γ) =
1

2
Gγ2 +

(

1

6
G+

1

8
K

)

γ4.

Consequently, the differential shear modulus G = d2ψ/dγ2 of

linear elastic materials always exhibits strain-stiffening due to

the biquadratic term of ψss associated with finite strain non-

linearity. To separate the finite strain bulk nonlinearity from

the filament-level geometrical nonlinearity, it is of interest to

investigate whether biopolymers strain-stiffen in excess of a

linear-elastic material. Therefore, we study the normalized

strain energy density ψk(γ)/ψss(γ) for each type of filament

deformation k.

Since the transition from the bending-dominated to the

stretching-dominated regime of filament deformations is of

particular interest, we use a network size, a/L = 40, some-

what smaller than the REV in these simulations; the numerical

scheme fails to converge at a relatively early stage (γ ≈ 0.4)

for a/L = 80. The mechanical response is still qualitatively

reproduced for a/L = 40, as shown in Fig. 5. The different

types of strain energy is plotted for an artificial, 1.0 g/L colla-

gen network in Fig. 7a. Bending strain energy dominates the

initial material response. The initial strain-stiffening is asso-

ciated with an increase in all types of strain energy; of which

bending energy is still dominant. The energy due to stretching

starts to dominate the mechanics at about γ = 0.37. At this

point the strain energy increases rapidly and plateaus at about

γ = 1.0. The fact that the normalized strain energy density

reaches a plateau shows that the material behavior is similar to

that of a linear elastic solid, ψ ∝ γ4, for large strains. Impor-

tantly, this means that the absence of a plateau in simulated G
at large strains γ & 1.0 for both collagen and fibrin (Fig 9ab)

is due to finite strain bulk nonlinearity, not to inflation of the

moduli of the biopolymer network.

For isotropic stretch, the Euler–Almansi strain tensor be-

comes45

eis =
λ2 − 1

2λ2





1 0 0
0 1 0
0 0 1



 . (8)

We insert eis into Eq. (6) to obtain the total strain energy den-

sity of a linear elastic, isotropic material:

ψis(λ) =
9(λ2 − 1)2K

8λ4
.

The normalized strain energy density ψk(λ)/ψis(λ) for each

type of filament deformation k for isotropic stretching of the

collagen network is plotted in Fig. 7b. Similarly to the case

of simple shear, the initial strain-stiffening is dominated by

filament bending until the point of equipartition of bending

and stretching energy at λ− 1 ≈ 0.05.

We consider the distribution of beam element nominal elon-

gational strain ǫn, defined as ǫn = σℓ/Ef , where σℓ is the
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a b

c

Fig. 7 (a) Normalized strain energy density of different modes of

filament deformation for the artificial, 1.0 g/L collagen network in

simple shear: tension (solid), bending (dashed), torsion (dotted) and

transverse shear (dash-dotted). (b) The same strain energy partition

for isotropic stretch. (c) The cumulative distribution function of the

nominal tensile strain of the beams for the artificial, 1.0 g/L collagen

network in simple shear. The curves correspond to different levels of

shear strain: γ = 0.1 (solid), γ = 0.2 (dashed), γ = 0.4 (dotted),

γ = 0.8 (dash-dotted) and γ = 1.6 (double-dashed).

nominal axial stress. The cumulative distribution function

(CDF) of nominal strain Φ(ǫn) of the beams of the network

is plotted for the artificial 1.0 g/L collagen network for γ ∈
{0.1, 0.2, 0.4, 0.8, 1.6} in Fig. 7c. The CDF of nominal strain

is symmetric for low levels of shear strain, but becomes in-

creasingly asymmetric as the shear strain increases. That is,

at small shear strains, the filaments carry load in both tension

and compression, whereas at high shear strain the filaments

mainly carry load in tension. At the highest recorded shear

strain γ = 1.6, most beams, 88%, are loaded in tension. At a

shear strain of γ = 0.8, essentially all filaments are elongated

less than 25%, which is within the linear force–deformation

regime of cross-linked collagen18,19. That is, the network

structure effectively promotes load-sharing among the fibers

and ensures that no single fiber is subjected to an extreme load.

A projection of the artificial 1.0 g/L collagen network

(a/L = 40) is depicted in Fig. 8a in its undeformed state. The

spatial distribution and orientation distribution of the strain en-

ergy in the network are qualitatively studied by plotting the

20% fraction of beam elements storing the greatest strain en-

a b

dc

Fig. 8 Plots of the undeformed geometry of an artificial 1.0 g/L col-

lagen network (a/L = 40). The cross-hairs indicate the principal

directions of the Almansi strain tensor. (a) The full network. (b)

The 20 % fraction of beam elements with the highest bending strain

energy at γ = 0.05. (c) The 10 % fraction of beam elements with

the highest bending strain energy, and the 10 % fraction of beam ele-

ments with the highest elongational strain energy at the point of strain

energy equipartition, γ = 0.37. (d) The 20 % fraction of beam ele-

ments with the highest elongational strain energy at γ = 1.0.

ergy on the undeformed geometry. In the bending-dominated

regime, exemplified by γ = 0.05 (Fig. 8b), the strain en-

ergy is randomly distributed across the network without any

direction correlation with the principal strain directions, in-

dicated by the cross-hair. The principal strain directions in

the undeformed geometry are the eigendirections of the Euler–

Almansi finite strain tensor, and correspond to removing rigid

body rotation from the principal directions of the deformed ge-

ometry. In the stretching-dominated regime, here represented

by γ = 1.0 (Fig. 8d), the strain energy is localized to fila-

ments that are oriented in the tensile principal strain direction.

For γ = 0.37, the strain energy of bending and stretching de-

formations are equal. At this point of strain energy equiparti-

tion, bending strain energy is uniformly distributed across the

network, seemingly without any preferred direction. Elonga-

tional strain energy is localized in bands which are oriented in

the tensile principal strain direction. This indicates the forma-

tion of shear bands in the structure.
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ba

Fig. 9 (a) Differential shear modulus of 1.0 g/L collagen from sim-

ulations of regenerated networks using IBC (squares), simulations of

physical network using IBC (+) and rheology (solid line). (b) Differ-

ential shear modulus of fibrin (0.4 g/L and 1.6 g/L), from regenerated

networks using IBC (circles/triangles), physical network using IBC

(×/∗) and rheology (solid/dashed line).

3.4 Comparing physical and artificial networks

Two questions arise regarding the validity of the proposed

model: First, does the EGG algorithm capture the salient

features of the network geometry to reproduce its mechani-

cal response? Secondly, does the beam network model ac-

curately capture the experimentally observed mechanical re-

sponse? We address these questions by first comparing the

simulated simple shear response of regenerated and physi-

cal network geometries, and then comparing the simulated

response of regenerated networks with rheological measure-

ments.

The physical network geometries, used above for network

characterization, are cropped and subjected to simple shear

FEM simulations using IBC, which captures the macroscale

mechanical response of very large networks slightly better

than DBC (Fig. 5a). The simulated differential shear modu-

lus G(γ) of the regenerated networks is in quantitative agree-

ment with that of the physical network geometries for colla-

gen (Fig. 9a) as well as fibrin (Fig. 9b). This result is obtained

without any fitting procedure. This confirms that the network

characterization and regeneration successfully capture the net-

work geometry.

Knowing now that the network geometries are correctly re-

produced, we proceed to investigate the FEM model by com-

paring simulation results with rheometer measurements. We

use the domain size a/L = 40 for these simulations, which is

sufficient for capturing the shear modulus (Fig. 6bc). Note that

all parameters of the network and constituents are obtained ex-

perimentally, so that no fitting procedure is involved.

For collagen (1.0 g/L), the simulated finite strain response

is in fair agreement to the point of yielding at about γ = 0.3
(Fig. 9a). The discrepancy between experiment and simula-

tions is likely due to the uncertainty associated with determin-

ing the collagen filament diameter and elastic modulus, and

possibly the presence of a macroscopic concentration gradient

in the polymerized network across sample, from the top plate

of the rheometer holding the sample to the bottom plate.

In the case of 0.4 g/L fibrin, the simulated finite strain re-

sponse up to about γ = 0.3 is again in a fair agreement with

experiments, considering the uncertainty associated with the

mechanical properties of the fibrin filaments. At very large de-

formations, γ > 0.3, the physical network displays a weaker

strain-stiffening than the artificial network. Because the ten-

sile force–deformation relation of cross-linked fibrin filaments

is linear up 120% elongation17, the weaker strain-stiffening

found in the experiments suggests inelastic material behavior

at very large network deformations, which is beyond the scope

of the present investigation.

For the higher-concentration 1.6 g/L fibrin network the

shear modulus is predicted reasonably well for infinitesimal

strains. However, at finite strains, the simulation results

are not in qualitative agreement with experiments; strain-

stiffening is initiated at γ ≈ 0.1 in simulations, but already

at γ ≈ 0.02 in the experiments. Repeating the simulations for

a larger network size, a/L = 80 (not shown), does not signif-

icantly affect the critical strain of strain-stiffening. It has been

experimentally shown elsewhere that the rate-dependence of

these cross-linked fibrin networks is very small at the low fre-

quencies used herein7, asserting that viscous effects could not

be responsible for the premature strain-stiffening. Also, given

the linear force-deformation relation of fibrin filaments17, the

effect is not due to material nonlinearity. One hypothesis, that

will be investigated elsewhere, is that a concentration gradient

across the sample, between the plates of the rheometer, yields

an apparent early strain-stiffening, but this is not within the

scope of this study.

4 Discussion

4.1 Network structures

The salient features of athermal biopolymer network struc-

tures are captured by the valency distribution, the filament

length distribution and the distribution of direction cosines.

Reconstituted collagen and fibrin networks have many fea-

tures in common. Their filament length is log-normally dis-

tributed in the observed networks, but with a slightly higher

normalized variance for the fibrin networks. This normal-

ized variance does not show any density-dependence, but

varies between biopolymer species (Table 1). Also, for both

species, the node valency of the networks follows a shifted

geometric distribution. The coordination number of the col-

lagen networks are found in a narrow range Z ∈ [3.38, 3.44],
while fibrin has a lower and more spread coordination number

Z ∈ [3.19, 3.33]. The orientation of filaments in the fibrin net-

10 |1–13



works are correlated, indicating the presence of coherent fibers

spanning multiple mesh sizes. These direction correlations are

weaker for collagen, as indicated by a lower B̂ (Table 1).

4.2 Infinitesimal strains

Infinitesimal macroscopic deformations are achieved by fila-

ment bending and torsion12,23, leading to nonaffine node dis-

placements12,20. Limiting the size of the network constrains

these nonaffine deformations at the boundary, suggesting that

the mechanical properties could be size-dependent. In rheol-

ogy experiments, thin collagen discs in simple shear become

stiffer as the sample thickness is decreased32. Our simulations

confirm this size-dependence. Particularly, the shear modulus

typically decreases with an increasing sample volume. The

bulk modulus decreases with increasing sample volume for

DBC boundary conditions but increases with increasing sam-

ple volume for IBC boundary conditions.

The Poisson’s ratio ν of the network in its linear-elastic

regime is defined by45

ν =
3K − 2G

2(3K +G)
, (9)

and thus inherit the dependence on size and boundary condi-

tions from the shear and bulk moduli. The Poisson’s ratio of

1.0 g/L collagen networks with a/L = 80 is ν = 0.36± 0.01,

while that of 0.4 g/L fibrin networks is ν = 0.20±0.07, where

the error interval is the variability due to different boundary

conditions.

Considering the simplifying assumption that all filaments

have the same diameter and modulus, and considering that

the average flexural rigidity of the filaments are associated

with considerable uncertainty—only the order of magnitude

could be established (Sec. 2.2)—the simulation prediction of

the shear modulus is in fair agreement with rheological exper-

iments.

4.3 Large strains

For simple shear deformations, strain-stiffening begins at a

critical strain γc with an increase in the bending energy of the

filaments. This is accompanied by a rapid increase in the elon-

gational strain energy. Bending and stretching equipartition

at a shear strain γeq > γc. For large strains γ > γeq, cen-

tral force interactions dominate and networks become weakly

strain-stiffening. Ultimately, the strain energy increases as γ4,

which is consistent with the large strain nonlinearity of simple

shear. That is, no significant effect from the geometrical non-

linearity on the filament level is found. This can be explained

by the fact that the greatest contribution to the response at

larger strains comes from longitudinal deformation of the fil-

aments, masking the stress-stiffening effect which would be

manifested through filament bending.

The intermediate, strain stiffening regime γc < γ < γeq
is still dominated by so-called floppy modes of deformation,

that is, mainly bending deformations invoking nonaffine dis-

placements12,25. Beyond this regime γ > γeq, deformations

are governed by filament stretching, and no network size-

dependence is observed. This large strains regime observed

in the simulations can thus be viewed as central-force interac-

tions of linear springs. This theoretical picture for very large

strains is, however, not in good agreement with rheology ex-

periments for fibrin. Even though cross-linked fibrin has a

linear force–deformation relation at least up to 120 % elonga-

tion17, and we confirm that the elongation of individual fila-

ments in the simulations is below 100 %, the strain-stiffening

at large shear strains is remarkably overpredicted, as can be

seen in Fig. 9b. This suggests a significant effect of deforma-

tion processes beyond the proposed theoretical frame of linear

elastic filaments. One possibility is that irreversible damage

is inflicted on the network, including fracture of filaments or

branch-points, and possibly plastic deformation of filaments.

A possible test of this hypothesis would be to conduct cyclic

loading tests on the network.

Isotropic stretching of the network displays strain-stiffening

similar to that of simple shear in the sense that a linear elas-

tic regime, a strain-stiffening, bending-dominated regime, and

a large-deformation, stretching-dominated regime can be ob-

served. However, this occurs at relatively small deformations,

so that the differential bulk modulus reaches a plateau already

at about λ − 1 = 0.05. The strain-stiffening behavior of

isotropic stretch has been previously attributed to the emer-

gence of isostatic connectivity at a critical stretch44, and our

integrated differential bulk modulus is in qualitative agree-

ment with previous simulations and a nonlinear mean-field

model44.

5 Conclusions

Both fibrin and collagen network geometries can be character-

ized statistically, in the sense that an inverse method can create

network instances from the statistics, such that the large defor-

mations mechanical response reproduces that of the physical

networks. While network structures of collagen and fibrin are

similar, the connectivity of fibrin is slightly lower, and the dis-

tribution of the filament length is wider. Moreover, the orien-

tation of adjacent filaments are more correlated in fibrin, sug-

gesting that coherent fibers significantly longer than the mesh

size are present in the network.

While the density REV of biopolymers is about ten mesh

sizes, the nonlocality of stresses, in conjunction with the het-

erogeneous microstructures, makes the stress REV of biopoly-

mers very large, in the order of 102 mesh sizes. Therefore, the

network characteristics near boundaries, in a composite struc-

ture or between membranes, differs significantly from the bulk

1–13 | 11



characteristics of the network. This may include the interior

of the cell, narrow regions of healing (cuts), fibrosis and the

basement membrane.

Small deformations, as well as the initial strain-stiffening,

are governed by filament bending. Large strains are governed

by filament stretching in the simulations and may be viewed

as central-force interactions. However, simulations and exper-

iments are not in good agreement for large strains, indicating

that irreversible damage processes may be significant.
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A Energy partition of the custom beam ele-

ment

Consider a beam element and a Cartesian coordinate frame

with the x direction along the length of a beam. The total

elastic energy stored in a single beam element is computed as

Utot =
1

2
u
T
defKudef ,

where udef is the displacement and K is the combined elastic

and geometrical stiffness matrix. We separate this total energy

into longitudinal tension/compression energy

Uℓ =
1

2

∫ Lf

0

Fx

EfA
dx,

bending energy

Ub =
1

2

(

∫ Lf

0

M2
xy

EfIxy
dx+

∫ Lf

0

M2
xz

EfIxz
dx

)

,

torsional energy

Ut =
1

2

∫ Lf

0

T 2

GfJ
dx

and the transverse shear energy

Us = Utot − Uℓ − Ub − Ut,

where Lf is the length of the beam, Fx is the axial force in

the beam, Mxy and Mxz are the bending moments with re-

spect to the y and z axes, T is the torsional moment, Ef is

the elastic modulus, Gf is the shear modulus, Ixy and Ixz are

the geometrical moments of inertia with respect to the y and

z axes and J is the polar moment of inertia. The cross-section

area A is constant along the element, which, together with the

assumed shape function, results in constant longitudinal force

and torsional moment along the element and linearly varying

bending moments.
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