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Abstract

The constitutive formulation of the finite-strain thermoelas-
ticity is revisited within the thermodynamic framework and the
multiplicative decomposition of the deformation gradient into
its elastic and thermal parts. An appealing structure of the
Helmholtz free energy is proposed. The corresponding stress re-
sponse and the entropy expressions are derived. The results are
specified in the case of quadratic dependence of the elastic strain
energy on the finite elastic strain. The specific and latent heats
are discussed, and the comparison with the results of the classical
thermoelasticity are given.

1 Introduction

The constitutive theory of finite-strain thermoelasticity is a classical
and well developed topic of the non-linear continuum mechanics (e.g.,
Truesdell and Noll [1], Nowacki [2]). The formulation of the general
theory is given in the thermodynamic framework by introducing the
Helmholtz free energy as a function of the finite strain and tempera-
ture, and by exploring the conservation of energy and the second law of
thermodynamics. This yields the constitutive expressions for the stress
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and entropy, and the condition for the positive-definiteness of the heat
conductivity tensor. Only two configurations of the material sample are
considered in this approach at an arbitrary instant of deformation: the
initial unstressed configuration at the uniform reference temperature,
and the deformed configuration characterized by the non-uniform stress
and temperature fields. There is an alternative but less employed ap-
proach to develop the thermoelastic constitutive theory, which is based
on three configurations of the material sample. In addition to initial
and deformed configurations, the third configuration is introduced by
a conceptual isothermal destressing of the current configuration to zero
stress. The total deformation gradient is then decomposed into the prod-
uct of purely elastic and thermal parts. The resulting decomposition is
then used to build the constitutive analysis. This approach was first
introduced in the non-linear continuum mechanics by Stojanović and
his associates [3–6], who considered both non-polar and polar materials.
An inherent incompatibility of the intermediate configuration and its
consequences on the development of the theory were examined in their
work in detail. Further results were reported in a series of papers by
Mićunović [7]. However, in contrast to an analogous decomposition of
the elastoplastic deformation gradient into its elastic and plastic parts,
introduced in the phenomenological finite-strain plasticity by Lee [8],
which gained much attention in both single crystal and polycrystalline
studies (e.g., Havner [9], Lubarda [10]), the decomposition of the ther-
moelastic deformation gradient was far less explored. An exception is
a recent contribution by Imam and Johnson [11], who, apparently un-
aware of the original work by Stojanović et al., used the decomposition
to study the constitutive structure of the finite-deformation thermoe-
lasticity. The objective of the present paper is to further elaborate on
this topic, and to compare the results obtained by using two different
approaches. In Section 2 we give a summary of the classical thermoelas-
ticity, adding some new points in the consideration of the latent heats at
finite strain and the derivation of the constitutive equations. Particular
accent is given to the quadratic dependence of the free energy on the
finite Lagrangian strain. The thermodynamic theory of thermoelastic-
ity based on the multiplicative decomposition of deformation gradient
is presented in Section 3. The results are explicitly given for elasti-
cally and thermally isotropic materials, with an indicated extension to
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transversely isotropic and orthotropic materials. A physically appealing
representation of the free energy is introduced and employed to derive
the stress response and the entropy expression. The exact results are
obtained in the case of the quadratic dependence of the elastic strain
energy on the finite elastic strain. The relationships between the spe-
cific and latent heats at constant elastic and total strain are discussed,
as well as the general connection between the two constitutive formula-
tions. The concluding remarks are given in Section 4.

2 Classical theory of finite-strain

thermoelasticity

In the classical thermodynamic formulation of the finite-strain thermoe-
lasticity two configurations of the material sample are considered: the
initial unstressed configuration B0 at the uniform reference temperature
θ0, and the deformed configuration B at the state of Cauchy stress σ and
the temperature field θ (Fig. 1). The deformation gradient from B0 to
B is F, and the corresponding Lagrangian strain is E = (FT · F − I)/2.
The second-order unit tensor is denoted by I, and the superposed T
denotes the transpose. If q is the rate of heat flow by conduction in
the deformed configuration, and q0 = (detF)F−1 · q is the correspond-
ing nominal vector in the initial configuration, the principle of energy
conservation gives

u̇ =
1

ρ0

(

T : Ė − ∇0 · q0

)

. (1)

The specific internal energy (per unit mass) is u, the symmetric Piola–
Kirchhoff stress T is the work-conjugate to E (such that T : Ė = τ : D,
where τ = (detF) σ is the Kirchhoff stress and D is the rate of deforma-
tion tensor – the symmetric part of the velocity gradient L = Ḟ · F−1),
the superposed dot stands for the material time derivative, the column :
denotes the trace product, and ∇0 is the gradient operator with respect
to initial coordinates (∇0 = FT · ∇). The mass densities in the initial
and deformed configurations are denoted by ρ0 and ρ, respectively. Since
there are no dissipative microstructural changes caused by thermoelas-
tic deformation and the associated entropy production, the rate of the
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Figure 1: The initial unstressed configuration B0 at the uniform reference
temperature θ0, and the deformed configuration B at the temperature
θ and the stress state σ. The deformation gradient from the initial to
deformed configuration is F.

specific entropy η is due to heat flow only, so that

θη̇ = −
1

ρ0

∇0 · q0 = −
1

ρ
∇ · q . (2)

Since the heat spontaneously flows in the direction of the negative tem-
perature gradient, it is required that

1

ρ0

q0 · ∇0θ =
1

ρ
q · ∇θ < 0 . (3)

The Helmholtz free energy per unit mass is ψ = u− θη. By differen-
tiation and incorporation of Eqs. (1) and (2), its rate can be expressed
as

ψ̇ =
1

ρ0

T : Ė − η θ̇ . (4)
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This shows that the function ψ = ψ(E, θ) is a thermodynamic potential
for determining the stress T and the entropy η. Indeed,

ψ̇ =
∂ψ

∂E
: Ė +

∂ψ

∂θ
θ̇ , (5)

and the comparison with Eq. (4) establishes the constitutive relations
(e.g., Truesdell and Noll [1])

T = ρ0

∂ψ

∂E
, (6)

η = −
∂ψ

∂θ
. (7)

2.1 Coupled heat equation

Suppose that the heat flow is governed by a generalized Fourier law of
heat conduction

q = −k(θ) · ∇θ , q0 = −k0(F, θ) · ∇0θ , (8)

where the symmetric tensors of conductivities k and k0 are related by

k0(F, θ) = (detF)F−1 · k(θ) · F−T . (9)

In view of the requirement (3), the tensors k and k0 are both positive-
definite. The substitution of Eq. (8) into Eq. (2) gives

θη̇ =
1

ρ0

[

k0 : (∇0 ⊗ ∇0)θ +
∂k0

∂θ
: (∇0θ ⊗ ∇0θ)

]

, (10)

and

θη̇ =
1

ρ

[

k : (∇ ⊗ ∇)θ +
dk

dθ
: (∇θ ⊗ ∇θ)

]

, (11)

where ⊗ stands for the outer tensor product. Usually k is assumed to be
temperature-independent, and the second term on the right-hand side
can be omitted. On the other hand, from Eq. (7) one has

θη̇ = −θ

(

∂2ψ

∂E∂θ
: Ė +

∂2ψ

∂θ2
θ̇

)

. (12)
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Introducing the second-order tensor of the latent heat `E and the specific
heat cE, both at constant strain, by

`E = −
1

ρ0

θ
∂T

∂θ
= −θ

∂2ψ

∂E∂θ
, (13)

cE = θ
∂η

∂θ
= −θ

∂2ψ

∂θ2
, (14)

we can rewrite Eq. (12) as

θη̇ = `E : Ė + cE θ̇ . (15)

The coupled heat equation is obtained by combining Eqs. (10) and
(15). This yields

1

ρ0

[

K0 : (∇0 ⊗ ∇0)θ +
∂K0

∂θ
: (∇0θ ⊗ ∇0θ)

]

= `E : Ė + cE θ̇ . (16)

Recalling that Ė = FT · D · F, an alternative representation is

1

ρ

[

k : (∇ ⊗ ∇)θ +
dk

dθ
: (∇θ ⊗ ∇θ)

]

=
(

F · `E · FT
)

: D + cE θ̇ . (17)

Since the symmetric Piola–Kirchhoff stress tensor is related to the Cauchy
stress by F · T · FT = (detF) σ, the latent heat tensor in Eq. (17) can
be expressed as

F · `E · FT = −
1

ρ
θ
∂σ

∂θ
. (18)

2.2 Free energy representation

If it is assumed that the stress T linearly depends on the finite strain E,
and if the specific and latent heats depend linearly on the temperature
θ according to

cE = c0E + c(θ − θ0) , `E =
θ

θ0

`
0

E , (19)
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where c = const., while c0E and `
0

E are the the specific and latent heats
at θ = θ0 and E = 0, it readily follows that the free energy is

ψ =
1

2ρ0

Λ0 :: (E ⊗ E) − (`0

E : E)
θ − θ0

θ0

+ (c0E − cθ0)

(

θ − θ0 − θ ln
θ

θ0

)

−
1

2
c (θ − θ0)

2 .

(20)

The fully symmetric fourth-order tensor Λ0 is the isothermal elastic
moduli tensor (at the temperature θ = θ0). The corresponding stress
and entropy expressions are

T = Λ0 : E −
ρ0

θ0

`
0

E (θ − θ0) , (21)

and

η =
1

θ0

`
0

E : E + (c0E − cθ0) ln
θ

θ0

+ c (θ − θ0) . (22)

Introducing the second-order tensor of thermal expansion α0 by

Λ0 : α0 =
ρ0

θ0

`
0

E , (23)

equation (21) can be rewritten as

E = Λ−1

0
: T + α0 (θ − θ0) . (24)

For the elastically and thermally isotropic material,

Λ0 = λ0 I ⊗ I + 2µ0 II , α0 = α0 I ,
ρ0

θ0

`
0

E = 3α0κ0 I , (25)

where II is the symmetric fourth-order unit tensor with the rectangular
components (δikδjl + δilδjk)/2 (δij being the Kronecker delta), λ0 and µ0

are the Lamé constants, κ0 = λ0 + 2µ0/3 is the elastic bulk modulus,
and α0 is the coefficient of linear thermal expansion. The constitutive
equations (21), (22), and (24) accordingly become

T = λ0 (trE) I + 2µ0 E − 3α0(θ − θ0)κ0 I , (26)

η =
3

ρ0

α0κ0 trE + (c0E − cθ0) ln
θ

θ0

+ c(θ − θ0) , (27)
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E =
1

2µ0

[

T −
λ0

3κ0

(trT) I

]

+ α0(θ − θ0) I . (28)

The trace of E is trE = E : I, and similarly for trT. With the isotropic
tensor of heat conductivities

k = k I , k = const. , (29)

the heat equation (16) becomes

(detF) k∇2 θ = 3α0κ0θ tr Ė + ρ0

[

c0E + c(θ − θ0)
]

θ̇ . (30)

The Laplacian operator is ∇2 = ∇ · ∇ = ∇0 · C
−1 · ∇0, and the right

Cauchy–Green deformation tensor is C = FT · F. If the approximation
θ ≈ θ0 is made on the right-hand side, and if E is taken to be the
infinitesimal strain, Eq. (30) reduces to the well-known coupled heat
equation of the isotropic linear thermoelasticity (e.g., Boley and Weiner
[12], Parkus [13]).

It is noted that for c 6= c0E/θ0 in Eq. (20), the strain E and the
temperature θ cannot be expressed explicitly in terms of the stress T

and the entropy η. However, for c = c0E/θ0 (resulting in the quadratic
dependence of ψ on θ), we obtain

E =

[

Λ−1

0
−

1

a0

(α0 ⊗ α0)

]

: T +
ρ0

a0

ηα0 , (31)

θ = θ0 +
1

a0

(ρ0 η − α0 : T) . (32)

The scalar parameter a0 is defined by

a0 =
ρ0 c

0

E

θ0

+ α0 : Λ0 : α0 . (33)

In the isotropic case these expressions simplify to

E =
1

2µ0

[

T −
λ0

3κ0

(trT) I

]

+
α0

a0

(ρ0 η − α0 trT) I , (34)

θ = θ0 +
1

a0

(ρ0 η − α0 trT) , (35)
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a0 =
ρ0 c

0

E

θ0

+ 9α2

0
κ0 . (36)

Finally, the comment is made regarding the temperature dependence of
the elastic moduli. If ψ is taken to be a cubic function of the strain com-
ponents and temperature, the resulting second-order elastic moduli are
temperature-dependent, but not the third-order elastic moduli. Some
aspects of this analysis can be found in [14]. Analogous statement holds
for higher-order polynomial representations of the free energy function.

3 Thermoelastic analysis based on

the multiplicative decomposition

An alternative approach to develop the constitutive theory of thermoe-
lastic material response is based on the introduction of an intermediate
configuration Bθ, which is obtained from the current configuration B

by isothermal elastic unloading to zero stress (Fig. 2). The isothermal
elastic deformation gradient from Bθ to B is denoted by Fe, and the
thermal deformation gradient from B0 to Bθ by Fθ. The total deforma-
tion gradient F, which maps an infinitesimal material element dX from
the initial configuration to dx = F ·dX in the current configuration, can
then be decomposed as

F = Fe · Fθ . (37)

This decomposition was first introduced in (the non-polar and polar)
finite-strain thermoelasticity by Stojanović et al. [3–6]. An analogous
decomposition of the elastoplastic deformation gradient in its elastic
and plastic parts was introduced by Lee [8]. Earlier contributions to-
ward the introduction of the intermediate configuration in the constitu-
tive analysis of different materials include Eckart [15] and Kröner [16].
For the inhomogeneous deformation and temperature fields only F is
a true deformation gradient, whose components are the partial deriva-
tives ∂x/∂X. In contrast, the mappings from Bθ to B and from B0 to
Bθ are not, in general, continuous one-to-one mappings, so that Fe and
Fθ are not defined as the gradients of the respective mappings (which
may not exist), but as the point functions (local deformation gradients).
Various geometric and kinematic aspects of the incompatibility of the
intermediate configuration are discussed in [17].
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Figure 2: The intermediate configuration Bθ at nonuniform temperature
θ is obtained from the deformed configuration B by isothermal destress-
ing to zero stress. The deformation gradient from initial to deformed
configuration F is decomposed into elastic part Fe and thermal part Fθ,
such that F = Fe · Fθ.

The decomposition (37) is not unique because arbitrary rigid-body
rotation can be superposed to Bθ preserving it unstressed. However, we
shall be able to specify Fθ, and thus the decomposition (37), uniquely
in each considered case or type of the material anisotropy. For example,
for transversely isotropic material with the axis of isotropy parallel to
the unit vector n0 in the configuration B0, we specify Fθ by

Fθ = (ζ − ϑ)n0 ⊗ n0 + ϑ I , (38)

where ζ = ζ(θ) is the stretch ratio due to thermal expansion in the
direction n0, while ϑ = ϑ(θ) is the thermal stretch ratio in any direction
within the plane of isotropy (orthogonal to n0). An extension of the
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representation (38) to orthotropic materials is straightforward. In each
case, the Lagrangian strain can be decomposed as

E = ET
θ · Ee · Fθ + Eθ . (39)

The elastic and thermal strain tensors are

Ee =
1

2

(

FT
e
· Fe − I

)

, Eθ =
1

2

(

FT
θ · Fθ − I

)

. (40)

Thus, the elastic strain and its rate can be expressed as

Ee = F−T
θ · (E − Eθ) · F

−1

θ , (41)

Ėe = F−T
θ · Ė · F−1

θ − Dθ − Ee · Lθ − LT
θ · Ee , (42)

where Lθ = Ḟθ · F
−1

θ and Dθ is its symmetric part.
The analysis will be restricted in the sequel to isotropic materials,

for which the thermal part of the deformation gradient is

Fθ = ϑ(θ) I . (43)

The scalar ϑ = ϑ(θ) is the thermal stretch ratio in an arbitrary direction.
In this case

Ee =
1

ϑ2
(E − Eθ) , Eθ =

1

2

(

ϑ2 − 1
)

I . (44)

Upon thermal expansion from the initial temperature θ0 to the current
temperature θ, an infinitesimal volume element dV0 from the configura-
tion B0 becomes dVθ = (detFθ) dV0 in the configuration Bθ, such that

d

dt
(dVθ) = (trLθ) dVθ . (45)

The time differentiation is designated by d/dt, and

Lθ =
ϑ̇

ϑ
I =

1

ϑ

dϑ

dθ
θ̇ I . (46)

The substitution of Eq. (46) into Eq. (45) gives

d

dt
(dVθ) =

3

ϑ

dϑ

dθ
dVθ θ̇ . (47)
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The temperature-dependent coefficient of linear thermal expansion α =
α(θ) is defined by (e.g., [18,19])

d

dt
(dVθ) = 3α(θ)dVθ θ̇ . (48)

The coefficient of volumetric thermal expansion is equal to 3α. Compar-
ing Eqs. (47) and (48) establishes the differential connection between
the thermal stretch ratio and the coefficient of thermal expansion,

α(θ) =
1

ϑ

dϑ

dθ
. (49)

Upon integration this gives

ϑ(θ) = exp

[
∫ θ

θ0

α(θ) dθ

]

. (50)

In view of Eqs. (42) and (49), the rate of elastic strain can now be
written as

Ėe =
1

ϑ2(θ)

[

Ė − α(θ)(I + 2E) θ̇
]

. (51)

3.1 Free energy and constitutive expressions

The following representation of the Helmholtz free energy suggests itself
in the framework of finite-strain thermoelasticity based on the multi-
plicative decomposition

ψ = ψe(Ee, θ) + ψθ(θ) , (52)

where ψe is an isotropic function of the elastic strain Ee and temperature
θ. This should be compared with the representation (20) of classical
theory, in which ψ depends on the total strain E and temperature θ.
The time-rate of the free energy is

ψ̇ =
∂ψe

∂Ee

: Ėe +
∂ψe

∂θ
θ̇ +

dψθ

dθ
θ̇ . (53)

Upon substitution of Eq. (51), there follows

ψ̇ =
1

ϑ2

∂ψe

∂Ee

: Ė −

[

α

ϑ2

∂ψe

∂Ee

: (I + 2E) −
∂ψe

∂θ
−

dψθ

dθ

]

θ̇ . (54)
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The comparison with Eq. (4) then yields the constitutive relations

T =
ρ0

ϑ2

∂ψe

∂Ee

, (55)

η = α
∂ψe

∂Ee

: (I + 2Ee) −
∂ψe

∂θ
−

dψθ

dθ
. (56)

The identity is here noted,

I + 2E = ϑ2(I + 2Ee). (57)

Owing to the relationship ρ0 = (detFθ)ρθ = ϑ3ρθ between the densities
ρ0 in the configuration B0 and ρθ in the configuration Bθ, the stress
response in Eq. (55) can be written as

T = ϑTe , Te = ρθ

∂ψe

∂Ee

. (58)

The last expression also follows from the more general relationship

T = (detFθ)F
−1

θ · Te · F
−T
θ . (59)

3.2 Analysis of stress response

An appealing feature of the thermoelastic constitutive formulation based
on the multiplicative decomposition is that the function ψe(Ee, θ) can
be taken as one of the well-known strain energy functions of the isother-
mal finite-strain elasticity (e.g., Ogden [20], Holzapfel [21]), except that
the coefficients of the strain-dependent terms are now functions of the
temperature. For example, suppose that ψe is a quadratic function of
the strain components, such that

ρθ ψe =
1

2
λ(θ)(trEe)

2 + µ(θ)Ee : Ee , (60)

where λ(θ) and µ(θ) ate the temperature-dependent Lamé moduli. It
follows that

Te = λ(θ)(trEe) I + 2µ(θ)Ee = Λe(θ) : Ee . (61)
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The elastic moduli tensor is

Λe(θ) = λ(θ) I ⊗ I + 2µ(θ) II . (62)

Consequently, substituting Eqs. (51) and (61) into T = ϑTe, the stress
response becomes

T =
1

ϑ(θ)

[

λ(θ)(trE) I + 2µ(θ)E
]

−
3

2

[

ϑ(θ) −
1

ϑ(θ)

]

κ(θ) I . (63)

The temperature-dependent bulk modulus is κ(θ) = λ(θ) + 2µ(θ)/3.
This is an exact expression for the thermoelastic stress response associ-
ated with the quadratic representation of ψe in terms of the finite elastic
strain Ee. If the Lamé moduli are taken to be temperature-independent,
and if the approximation

ϑ(θ) ≈ 1 + α0(θ − θ0) (64)

is adopted (α0 being the coefficient of linear thermal expansion at θ =
θ0), Eq. (63) reduces to Eq. (26). When E and T are there interpreted
as the infinitesimal strain and the Cauchy stress, the equation coincides
with the well-known Duhamel–Neumann expression of isotropic linear
thermoelasticity. Note also that the elastic strain energy ψe of Eq. (60)
can be recast in terms of the total strain as

ρ0 ψe =
1

ϑ

[

1

2
λ(θ)(trE)2 + µ(θ)E : E

]

−
3

2
κ(θ)

(

ϑ−
1

ϑ

)[

trE −
3

4
(ϑ2 − 1)

]

.

(65)

This confirms the result (63) through T = ρ0 ∂ψe/∂E.

3.3 Entropy expression

The entropy expression (56) can be recast by using the stress expression
(55) as

η =
1

ρ0

αT : (I + 2E) −
∂ψe

∂θ
−

dψθ

dθ
. (66)
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We proceed next with the evaluation of the term ∂ψe/∂θ. In the case of
the quadratic strain energy representation (60), we have

ρ0 ψe =
1

2
ϑ3 Te : Ee . (67)

Thus,

ρ0

(

∂ψe

∂θ

)

Ee

=
3

2
ϑ2

dϑ

dθ
Te : Ee +

1

2
ϑ3

(

∂Te

∂θ

)

Ee

: Ee , (68)

i.e.,

ρ0

(

∂ψe

∂θ

)

Ee

=
3

2
α

[

T : E −
1

2
(ϑ2 − 1) trT

]

+
1

2
ϑ3

(

∂Te

∂θ

)

Ee

: Ee .

(69)
The temperature gradient of the stress tensor is

(

∂Te

∂θ

)

Ee

=
dΛe

dθ
: Ee . (70)

Recalling the stress expression

T =
1

ϑ
Λe :

[

E −
1

2
(ϑ2 − 1) I

]

, (71)

it can be readily verified that

ϑ

(

∂Te

∂θ

)

Ee

=

(

∂T

∂θ

)

E

+ α (T + 3ϑκ I) . (72)

Consequently,

ϑ3

(

∂Te

∂θ

)

Ee

: Ee =

(

∂T

∂θ

)

E

:

[

E −
1

2
(ϑ2 − 1) I

]

+ α

[

T : E +
1

2
(1 + ϑ2) trT

]

.

(73)

Inserting Eq. (73) into Eq. (69) gives

ρ0

(

∂ψe

∂θ

)

Ee

= 2αT : E +
1

2
α (2 − ϑ2) trT

+
1

2

(

∂T

∂θ

)

E

:

[

E −
1

2
(ϑ2 − 1) I

]

.

(74)



394 L. Vujošević, V. A. Lubarda

When this is substituted into Eq. (66), the entropy becomes

η =
1

2ρ0

ϑ2 α trT −
1

2ρ0

(

∂T

∂θ

)

E

:

[

E −
1

2
(ϑ2 − 1) I

]

−
dψθ

dθ
. (75)

Since

ϑ trT = 3κ

[

trE −
3

2
(ϑ2 − 1)

]

, (76)

equation (75) can be rearranged as

η =
1

2ρ0

[

3ϑακ I −

(

∂T

∂θ

)

E

]

:

[

E −
1

2
(ϑ2 − 1) I

]

−
dψθ

dθ
. (77)

Finally, recalling the expression for the latent heat (13), the entropy is

η =
1

2

(

1

θ
`E +

3

ρ0

ϑακ I

)

:

[

E −
1

2
(ϑ2 − 1) I

]

−
dψθ

dθ
. (78)

This is an exact expression for η within the approximation used for the
strain energy, Eq. (60).

An alternative route to derive Eq. (78) is to express the elastic strain
energy ψe as

ρ0 ψe =
1

2
T : E −

1

4
(ϑ2 − 1) trT . (79)

The partial differentiation then gives

(

∂ψe

∂θ

)

E

= −
1

2θ
`E : E +

1

4θ
(ϑ2 − 1) tr `E −

1

2ρ0

ϑ2 α trT , (80)

which recovers Eq. (78) via η = −(∂ψ/∂θ)E.
The latent heat `E can be calculated from Eq. (72) as

`E = −
1

ρ0

θ

(

∂T

∂θ

)

E

= −
1

ρ0

θ

[

ϑ

(

∂Te

∂θ

)

Ee

− α (T + 3ϑκ I)

]

. (81)

The substitution of Eq. (70) with Eq. (44) gives

`E =
1

ρ0

θ

{

α (T + 3ϑκ I) −
1

ϑ

dΛe

dθ
:

[

E −
1

2
(ϑ2 − 1) I

] }

. (82)
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If elastic moduli are independent of temperature, and the components
of the stress T are much smaller that the bulk modulus κ, above reduces
to

`E =
3

ρ0

ϑα θ κ I , (83)

while the entropy expression (78) becomes

η =
3

ρ0

ϑακ

[

trE −
3

2
(ϑ2 − 1)

]

−
dψθ

dθ
. (84)

The function ψθ can be constructed to fit experimental data for the
specific heat cE. For example, if

ψθ = −
1

2

(

c0E
θ0

+
9

ρ0

α2

0
κ0

)

(θ − θ0)
2 , (85)

equation (84) reduces to

η =
1

ρ0

α0 trT +

(

c0E
θ0

+
9

ρ0

α2

0
κ0

)

(θ − θ0)

=
3

ρ0

α0 κ0 trE +
c0E
θ0

(θ − θ0) ,

(86)

in agreement with Eq. (35).

3.4 Relationships between latent heats and related

expressions

As recognized from the previous analysis, the specific entropy can be
expressed as either of the two functions

η = η̂(E, θ) = η̄(Ee, θ) . (87)

Consequently,

θdη = `E : dE + cE dθ = `Ee
: dEe + cEe

dθ . (88)

The two tensors of latent heats are here

`E = θ
∂η̂

∂E
, `Ee

= θ
∂η̄

∂Ee

, (89)



396 L. Vujošević, V. A. Lubarda

while the two specific heats are

cE = θ
∂η̂

∂θ
, cEe

= θ
∂η̄

∂θ
. (90)

For example, the specific heat at constant elastic strain cEe
represents

the heat amount required to increase the temperature of the unit mass
by dθ at the constant elastic strain (dEe = 0). The latent heat `Ee

is
the second-order tensor whose ij component represents the heat amount
associated with a change of the corresponding strain component by dEe

ij,
at fixed temperature and fixed values of the remaining five elastic strain
components. Similar interpretations hold for cE and `E. It readily
follows that

`Ee
= ϑ2

`E , (91)

cEe
= cE + α `E : (I + 2E) . (92)

It is noted that

`E : (I + 2E) = `Ee
: (I + 2Ee) . (93)

Furthermore, one can show that

(

∂η̄

∂Ee

)

θ

=
α

ρθ

(3κ I + 4Te) −
∂2ψe

∂Ee∂θ
, (94)

and
(

∂Te

∂θ

)

Ee

= −3αTe + ρθ

∂2ψe

∂Ee∂θ
. (95)

Therefore, there is a relationship

ρθ `Ee
= α θ (3κ I + Te) − θ

(

∂Te

∂θ

)

Ee

. (96)

This should be compared with the classical expression

ρ0 `E = −θ

(

∂T

∂θ

)

E

. (97)

The transition between the two expressions is straightforward by using
Eq. (72).
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4 Conclusion

Based on the multiplicative decomposition of thermoelastic deformation
gradient into its elastic and thermal parts, we proposed the Helmholtz
free energy representation according to Eq. (52). This yields the expres-
sion (58) for the stress response and the expression (56) for the entropy.
In the case of the quadratic dependence of the elastic strain energy on
finite elastic strain (60), the stress and entropy expressions are given by
Eqs. (63) and (78). The corresponding latent heat at constant strain
is given by Eq. (82). The latent and specific heats at constant elastic
and total strain are related by Eqs. (91) and (92). The derived results
appear to be attractive for the application because of their simplicity
and the suitability for the direct incorporation of the experimental data
regarding the temperature dependence of the elastic moduli, thermal
expansion, and specific heats. An extension of the theory to anisotropic
and composite materials with more involved representations of the elas-
tic strain energy is also possible and worthwhile further research (see
Mićunović [22]). A continuation of the study of thermoelastic polar
materials within the framework of the multiplicative decomposition, ini-
tiated by Stojanović et al. [3–6], is another important objective, partic-
ularly in view of the recently revived interest in the non-local theories of
elastic and inelastic material behavior (e.g., Aifantis [23], Bardenhagen
and Triantafyllidis [24], Fleck and Hutchinson [25]).
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Termoelastičnost konačnih deformacija zasnovana
na multiplikativnoj dekompoziciji deformacionog

gradijenta

UDK 531.01, 536.76

Konstitutivna formulacija termoelastičnosti konačnih deformacija je
revidirana unutar thermodynamičkog pogleda i multiplikativne dekom-
pozicije deformacionog gradijenta u njegov elastični and termički deo.
Jedna sugestivna struktura Helmholtzove slobodne energije je zatim
predložena. Odgovarajući izrazi za naponski dgovor i entropiju su izve-
deni. Rezultati se ograničavaju na slučaj kvadratne zavisnosti slobodne
energije od konačne elastične deformacije. Diskutuju se specifična i la-
tentna toplota i daju uporedjenja sa klasičnom termoelastičnošću.


