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FINITE SUBGROUPS OF FORMAL A-MODULES
OVER p-ADIC INTEGER RINGS

BY
TETSUO NAKAMURA

ABSTRACT. Let B D A be p-adic integer rings such that A/Z, is finite and
B/A is unramified. Generalizing a result of Fontaine on finite commutative
p-group schemes, we show that galois homomorphisms of finite subgroups of
one-dimensional formal A-modules over B are given by power series.

Introduction. Let K be a finite extension of the rational p-adic number field
Qp, and A the integer ring of K. Let L be a complete unramified extension of K,
B the ring of integers of L, and p the maximal ideal of B. We write p for the
maximal ideal of the integer ring of the algebraic closure L of L. Let F denote an
n-dimensional formal A-module defined over B of finite A-height. Then F induces
an A-module structure on p", which we denote by F(p); it is an A[®]-module,
where 8 = Gal(L/L). Let P be a finite sub-A[®]-module of F(p) (henceforth,
simply of F). In this paper, we attach to P a couple M L(P) of modules over a
noncommutative power series ring. Let G be another formal A-module over B of
finite A-height and Q be a finite sub-A[®]-module of G. Then we describe the A[®]-
homomorphisms from P to Q by morphisms from M L(Q) to ML(P) (Theorem 1).
If A = Z, (the p-adic integer ring), this result follows from Fontaine [4], but our
proof depends rather on Tate modules of formal groups. Furthermore, if F and G
are one-dimensional, we can show that every A[®]-homomorphism from P to Q is
of the form g=! o cf for some ¢ € B, where f and g are the logarithms of F and
G, respectively (Theorem 3). In [8], Lubin has obtained a rather weaker version of
this result.

In the following, let K, A, L, B, p, p and & be as above. We write 7 for a
fixed prime element of A and ¢ for the cadinality of the residue field of A. Let
o denote the Frobenius automorphism of L/K. We write E = B,[[T]] for the
ring of noncommutative power series ring over B in a variable T with respect to
the multiplication rule: Tb = b°T for all b € B. Call FA(B) the category of
finite-dimensional formal A-modules over B of finite A-height.

I would like to thank the referee for calling my attention to Lubin 8].

1. Homomorphisms of finite subgroups of formal A-modules. We write
T(F) for the Tate module of a formal A-module F. T(F) is an A[®]-module, A-
free of rank h (= A-height of F). Let DH' be the category defined in Decauwert
(2]. Let M(F) and L(F) be as in [2]; M(F) is an E-module, B-free of rank h and
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766 TETSUO NAKAMURA

L(F) is a sub-B-module of M(F). The functor ML(F) = (M(F), L(F)) induces
an antiequivalence between F#(B) and DH' (2, Théoréme 2).

Let a: F — G be a morphism in F4(B). We also write o for the homomorphism
T(F) — T(G) induced by a. We write & for the morphism ML(G) — ML(F)
induced by a.

LEMMA 1. Let F,G and H be objects of FA(B). Leta: F — H and 3: H —» G

be homomorphisms over B. Then 0 — T(F) > T(H) LA T(G) — 0 15 ezact if and

only if 0 — ML(G) 2 ML(H) & ML(F) — 0 s ezact.

SKETCH OF PROOF. For a morphism s in DH’, we see that Ker s and Im s are
in DH'. The “if” part follows easily from this. By Fontaine [5, Chapter V, §2] we
can express M L(F') by means of special elements. Choosing an appropriate special
element of H, we can prove the “only if” part (cf. also Honda [6]).

Now let F € FA(B), and let P be a finite sub-A[6]-module of F. Denote by S
the superlattice of T(F) in T(F) ® 4 K such that S/T(F) = P. Then by Water-
house [10, Theorem 1.3] there exists an isogeny v: F — F’ defined over B such that
S = v~ IT(F'). As S is an A[®]-module, we see that F’ € F4(B). Define ML(P) =
(M(P),L(P)), where M(P) = M(F)/OM(F') and L(P) = L(F)/VL(F’'). Then
M(P) is an E-module and L(P) is a sub-B-module of M(P). Let M, M’ be
left E-modules and N, N’ be sub-B-modules of M and M’, respectively. By
Homg((M,N),(M',N’')) we denote the set of E-linear maps 6: M — M’ such
that §(N) C N’. Then clearly P determines M L(P) up to an E-isomorphism.

THEOREM 1. Let F,G € FA(B). Let P and Q be finite sub-A|®]-modules of
F and G, respectively. Then Hom4(e)(P, Q) ts A-1somorphic to

Homge(ML(Q), ML(P))..

SKETCH OF PROOF. We refer to the method used in Oort (9]. Let a: F — F’
and 8: G — G’ be isogenies over B such that Kera = P and ker8 = Q. Write
T, = T(F), T, = T(G), M, = ML(F) and M, = ML(G); let T{,T;, M], M} be
similarly defined for F’' and G’. We note that P = T|/a(T}) and Q = T3/5(T3).
Let n € Homa(e)(P, Q) and I'(n) be the superlattice of a(T1) x 3(Tz) in T} x T3
such that I'(n)/a(T)) x B(T>) is the graph of . We have the following commutative
diagram with exact rows:

0T, 5 TyxTa & T, — 0

I le la
0-T, — T(®m - T — 0

|8 ! o
0-T, & TixTy & T; — 0

where 7,7’ are the canonical injections, j,7’ the canonical projections and ¢ the
composite map T x T, axp a(Ty) x B(T2) — T'. Then the functor ML gives the
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following commutative diagram, whose rows are exact by Lemma 1:

0 — M, — M/ xM, — M, — 0

I l | B
0 - My —- MLH - My —- 0
la l I

0O - My - MixM, —- M, —- 0

where H € FA(B) is such that T(H) = T'(n) (cf. [10]). By the above diagram
we have a morphism ML(Q) = Mg/BMé — ML(P) = M,/aM;j, which does not
depend on the choice of H; we denote it by 6(n). By construction we see easily
that §: Hom(¢)(P,Q) — Homg(ML(Q), ML(P)) is a bijection. Let 71,72 €
Homg(e)(P, Q). As the exact sequence 0 — Tp — I'(n; +72) — T] — 0 is the
Baer sum of the extensions 0 — T2 — I'(n;) — T} — 0 (: = 1,2), we see that 6 is a
homomorphism using the functor M L. Clearly 6 is an A-isomorphism.

2. One-dimensional formal A-modules. Let v be the valuation of L which
is normalized so that v(n) = 1. Here we assume that all formal A-modules are
one-dimensional. Let u = 7+ ) oo, b,T" be a special element in E. We write
(u™!m)*(z) for the element f(z) of L[[z]] such that f(0) = 0 and 7z = nf(z) +
S 1 buf7(z9°). Then F(z,y) = f~1(f(z) + f(v)) is a formal A-module over B.
This shows that the strong isomorphism classes of formal A-modules over B, of A-
height h, correspond bijectively to the special elements of the form 7+ Z',f:l b, T,
where by,...,bp—1 € p but by is a unit of B (cf. Cox [1]). Let F be a formal
A-module of A-height h defined over B. We write Ap, = Ker[n™|p = {z €
p|[m™]F(x) = 0} for m > 0, which is a finite subgroup of order ¢"™ in F(p).

THEOREM 2. Let u; = 7+ Y bT* and ug = 7 + 3.r_, &;T" be special
elements of E such that b;,c; € p (1 < ¢ < h—1) and bn,cr are units of B.
Let fi(z) = (uy'm)*(z) = Totoanz?, fa(z) = (u3'7)"(z) = Yolpanz? and
¥ = fy'of1. Let m be an integer such that u; = uy mod p™ but u; # up mod p™+?.
Put w; = (b; — ¢;)/7™ for 1 < i < h and let e (1 < e < h) be such that w; € p
for 1 <1 <e—1 and we ts a unit. Then the convergence domain of ¥ contains
{z €plv(z) > g er ™+ (r — 1)1}, where r = ¢gh.

For the proof of Theoremn 2 we need the following

LEMMA 2. Assume the same hypothesis as in Theorem 2, and put A, = an—al,.
Then we have v(An) > (m—1)—[(n—e)/h| for n > 0, where [a] denotes the largest
integer not ezceeding «.

PROOF. We proceed by induction on n. First we note that v(a}) > —[t/h] by
(1, Proposition 4.1.1]. By the definition of f; and f, we can show that

h h
_ 1 _ 1
A, = - E m1b;A7_, — 7™ ! E w;a)’_,.
' i=1 i=1

Then it is clear that v(A,) > m for 0 < n < e. Hence we may assume that the
assertion of our lemma holds for n’ with n’ <n=h(j—1)+e+k, where0 < k < h
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and j > 1. We have v(r~'b;A,_;) >m—1-[(n—i—¢€)/h] >m—jfor1<i< h-1
and v(m~'bhA,_p) > m — 5. Noting e + k < 2h, we have

o™ wal) 2 m = 1= [(n = h)/hl = m— j ~ [+ k= h)/W) 2 m ~ j.

Therefore v(A,) > m —j = (m — 1) — [(n — €)/h]. This completes our proof by
induction.

PROOF OF THEOREM 2. We can write ¥(z) = Y o0 j anz™9" D+ with e, € L
by Lubin [7, p. 475]. Let £ be an element of p such that £9°7" (=1 = 7. Put
Br = a,£"(@~V+1 By induction on n we shall show that v(3,) > 1/(r —1). Let R
be the set whose points are sequences n = (ng, n;,ns, . ..), where n; are nonnegative
integers for all < and n; = 0 for almost all i. For n € R, define |n| = Y 32 ng,
n* = Y22 kne and C(n) = |n|!/([Tx=o(nk!)). They are rational integers. We
define an element a™ of L to be [y ar*. Put Qs = (¢° —1)/(g—1). Let ¢
be an integer such that @; < N + 1 < Q;4+1. On comparing the coefficients of
r(N+D(a=D+1we get by the equation fo(¢(z)) = fi(z) that

t .
0 if N+1< Q41

* / n _ )

( ) aN+l+k§la’k (;C(n)a ) _{At+l ifN+l=Qt+ly
where the sum }_, is taken over all n € R such that [n| = ¢* and n* = N +1— Q.
We have easily by Lemma 2 that v(A;) >m —1ife=1and v(4;) >mife> 1.
Then

v(B1) = (%) 2 ¢! T (r — 1) 7 +u(Ar) 2 1/(r - 1).

Therefore by induction hypothesis we assume that v(3,) > 1/(r—1)for1 <n < N.
For n = (ng,n;,na,...) € Rwith |[n| =¢* (k>1)and n* = N + 1 — Qy, let

oo
Dllc\’:-l — é(N+l)(q_l)+la;cC(l'l)a“ — aLC(n)ﬁno H ﬁ’rczk
k=1

Now let g(z) = r*(r — 1)~ ! — z; it is clear that g(n) > 1/(r — 1) for all integers n
and g(n) = 1/(r — 1) if and only if n =0 or n = 1. Now if ng = 0, then

v(DFY) 2 v(ay) +v(C(n)) +¢°/(r — 1) > g([k/h]) 2 1/(r - 1).
If ng # 0, then 0 < ng < g¥. Writing ¢ = p’, no = ¢°d with ¢ fd and d = p? d;
with (p,d;) = 1, we easily get
ordp(xCno) = J(k—8) =3 >k —s.
Clearly 4« Ch, is a divisor of C(n) and ¢* < ¢* — ng. Therefore
v(DPH) > v(ay) +v(C(n)) + ng~r' "M (r = 1) 71 + (¢F — mo)(r — 1)
> —[k/h)+ (k—s)+¢°(r—1)"" > g([s/h]) 2 (r—1)7".
Let us now assume N + 1 = Q;4,. Then, by Lemma 2, we have
w(ENFVE=DHA, ) > g(—(m = 1)+ [(t+1-€)/h) > (r— 1)~

In view of (*), we have thus established that v(8n+1) > 1/(r—1); therefore v(G,) >
1/(r—1) for all n > 1. As 9(z) = 350, Bn(z/&)™9~ D+ the proof is completed.

REMARK. By further computations we can show that v(8g,,,.) = 1/(r — 1) for
s > m. Therefore the convergence domain of v is {x € p|v(z) > ¢ ¢r!~™(r—1)"1}.
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COROLLARY. Assumptions and notation being as in Theorem 2, let Fi(z,y) =
N (fi(@)+ fi(y)) (G = 1,2). Then defines an A[®)-isomorphism A, ., — AF,.m.

As v(z) > r'~™(r — 1)~ for z € AF, m, this is clear.

THEOREM 3. Let F and G be one-dimensional formal A-modules of the same
A-height h defined over B and f,g be the logarithms of F,G, respectively. Then
every element of Hom g¢)(AF,m,AG,m) is of the form g='ocf for somec € B. If f
and g are of type uy = m+ Sor_ b;T* andug = 7+ S ¢, T", respectively (cf. (1,
p. 295)), then g=! o cf € Homg(e|(AF.m,Ac.m) for ¢ € B if and only if uzc = cu,
mod p™.

PROOF. As M(F) = E/Eu; and M(Af ) = E/(Eu; + En1™), we get easily by
Theorem 1 that

Hom 4(¢)(AF,m,Ac,m) = {c € Bluac = cu; modp™}/p™.

Let ¢ € B be such that usc = cu; mod p™. We assume v(c) = s < m and write
¢ = br® with a unit b in B. Let v’ = bu;b~!. Then v’ is special and v’ = us
modp™~*. Let fi(z) = (v'~'m)*(z) and Fi(z,y) = f{'(fi(z) + f1(y)). Then
g tocf = (g7 o f1)[n%)r, o(fi obf), where f{ ' obf: F — F is an isomorphism.
By the Corollary above, g=! o cf defines an element 7(c) of Homge|(AF.m, Ac.m):
clearly n(c) = n(c’) if and only if ¢ = ¢’ mod p™. Our assertion is now obvious.

REMARK. For a formal A-module F over B of finite A-height h, we have the
results which are completely analogous to those in Fontaine [3]. Let p: & —
Aut4(T(F)) (= GLx(A)) be the m-adic representation attached to F. Then by
[3] we have

(1) p(®) O A*. Therefore B-endomorphisms of Ar.,, are A[®]-endomorphisms.

(2) For h = 1 or 2, applying our Theorem 3 we can determine the closed subgroup
p(®) of GLL(A) (up to an isomorphism) by the special element of F.
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