FINITE SUBGROUPS OF FORMAL A-MODULES OVER p-ADIC INTEGER RINGS

BY
TETSUO NAKAMURA

Abstract

Let $B \supset A$ be \mathfrak{p}-adic integer rings such that A / Z_{p} is finite and B / A is unramified. Generalizing a result of Fontaine on finite commutative p-group schemes, we show that galois homomorphisms of finite subgroups of one-dimensional formal A-modules over B are given by power series.

Introduction. Let K be a finite extension of the rational p-adic number field Q_{p}, and A the integer ring of K. Let L be a complete unramified extension of K, B the ring of integers of L, and \mathfrak{p} the maximal ideal of B. We write $\overline{\mathfrak{p}}$ for the maximal ideal of the integer ring of the algebraic closure \bar{L} of L. Let F denote an n-dimensional formal A-module defined over B of finite A-height. Then F induces an A-module structure on $\overline{\mathfrak{p}}^{n}$, which we denote by $F(\overline{\mathfrak{p}})$; it is an $A[\mathfrak{G}]$-module, where $\mathfrak{G}=\operatorname{Gal}(\bar{L} / L)$. Let P be a finite sub- $A[\mathfrak{G}]$-module of $F(\mathfrak{p})$ (henceforth, simply of F). In this paper, we attach to P a couple $M L(P)$ of modules over a noncommutative power series ring. Let G be another formal A-module over B of finite A-height and Q be a finite sub- $A[\mathfrak{G}]$-module of G. Then we describe the $A[\mathfrak{G}]-$ homomorphisms from P to Q by morphisms from $M L(Q)$ to $M L(P)$ (Theorem 1). If $A=Z_{p}$ (the p-adic integer ring), this result follows from Fontaine [4], but our proof depends rather on Tate modules of formal groups. Furthermore, if F and G are one-dimensional, we can show that every $A[\mathcal{G}]$-homomorphism from P to Q is of the form $g^{-1} \circ c f$ for some $c \in B$, where f and g are the logarithms of F and G, respectively (Theorem 3). In [8], Lubin has obtained a rather weaker version of this result.

In the following, let $K, A, L, B, \mathfrak{p}, \overline{\mathfrak{p}}$ and \mathfrak{G} be as above. We write π for a fixed prime element of A and q for the cadinality of the residue field of A. Let σ denote the Frobenius automorphism of L / K. We write $E=B_{\sigma}[[T]]$ for the ring of noncommutative power series ring over B in a variable T with respect to the multiplication rule: $T b=b^{\sigma} T$ for all $b \in B$. Call $F^{A}(B)$ the category of finite-dimensional formal A-modules over B of finite A-height.

I would like to thank the referee for calling my attention to Lubin [8].

1. Homomorphisms of finite subgroups of formal A-modules. We write $T(F)$ for the Tate module of a formal A-module $F . T(F)$ is an $A[\mathcal{B}]$-module, A free of rank $h\left(=A\right.$-height of F). Let $D H^{\prime}$ be the category defined in Decauwert [2]. Let $M(F)$ and $L(F)$ be as in [2]; $M(F)$ is an E-module, B-free of rank h and

[^0]$L(F)$ is a sub- B-module of $M(F)$. The functor $M L(F)=(M(F), L(F))$ induces an antiequivalence between $F^{A}(B)$ and $D H^{\prime}[\mathbf{2}$, Théorème 2].

Let $\alpha: F \rightarrow G$ be a morphism in $F^{A}(B)$. We also write α for the homomorphism $T(F) \rightarrow T(G)$ induced by α. We write $\tilde{\alpha}$ for the morphism $M L(G) \rightarrow M L(F)$ induced by α.

Lemma 1. Let F, G and H be objects of $F^{A}(B)$. Let $\alpha: F \rightarrow H$ and $\beta: H \rightarrow G$ be homomorphisms over B. Then $0 \rightarrow T(F) \xrightarrow{\alpha} T(H) \xrightarrow{\beta} T(G) \rightarrow 0$ is exact if and only if $0 \rightarrow M L(G) \xrightarrow{\bar{\beta}} M L(H) \xrightarrow{\stackrel{\alpha}{\alpha}} M L(F) \rightarrow 0$ is exact.

Sketch of Proof. For a morphism s in $D H^{\prime}$, we see that $\operatorname{Ker} s$ and $\operatorname{Im} s$ are in $D H^{\prime}$. The "if" part follows easily from this. By Fontaine [$\mathbf{5}$, Chapter V, §2] we can express $M L(F)$ by means of special elements. Choosing an appropriate special element of H, we can prove the "only if" part (cf. also Honda [6]).

Now let $F \in F^{A}(B)$, and let P be a finite sub- $A[\mathcal{B}]$-module of F. Denote by S the superlattice of $T(F)$ in $T(F) \otimes_{A} K$ such that $S / T(F) \cong P$. Then by Waterhouse $\left[10\right.$, Theorem 1.3] there exists an isogeny $\nu: F \rightarrow F^{\prime}$ defined over B such that $S=\nu^{-1} T\left(F^{\prime}\right)$. As S is an $A[\mathfrak{G}]$-module, we see that $F^{\prime} \in F^{A}(B)$. Define $M L(P)=$ $(M(P), L(P))$, where $M(P)=M(F) / \tilde{\nu} M\left(F^{\prime}\right)$ and $L(P)=L(F) / \tilde{\nu} L\left(F^{\prime}\right)$. Then $M(P)$ is an E-module and $L(P)$ is a sub- B-module of $M(P)$. Let M, M^{\prime} be left E-modules and N, N^{\prime} be sub- B-modules of M and M^{\prime}, respectively. By $\operatorname{Hom}_{E}\left((M, N),\left(M^{\prime}, N^{\prime}\right)\right)$ we denote the set of E-linear maps $\delta: M \rightarrow M^{\prime}$ such that $\delta(N) \subset N^{\prime}$. Then clearly P determines $M L(P)$ up to an E-isomorphism.

Theorem 1. Let $F, G \in F^{A}(B)$. Let P and Q be finite sub- $A[\mathcal{G}]$-modules of F and G, respectively. Then $\operatorname{Hom}_{A[\mathcal{B}]}(P, Q)$ is A-isomorphic to

$$
\operatorname{Hom}_{E}(M L(Q), M L(P)) .
$$

Sketch of Proof. We refer to the method used in Oort [9]. Let $\alpha: F \rightarrow F^{\prime}$ and $\beta: G \rightarrow G^{\prime}$ be isogenies over B such that $\operatorname{Ker} \alpha=P$ and $\operatorname{ker} \beta=Q$. Write $T_{1}=T(F), T_{2}=T(G), M_{1}=M L(F)$ and $M_{2}=M L(G) ;$ let $T_{1}^{\prime}, T_{2}^{\prime}, M_{1}^{\prime}, M_{2}^{\prime}$ be similarly defined for F^{\prime} and G^{\prime}. We note that $P \cong T_{1}^{\prime} / \alpha\left(T_{1}\right)$ and $Q \cong T_{2}^{\prime} / \beta\left(T_{2}\right)$. Let $\eta \in \operatorname{Hom}_{A[\mathcal{G}]}(P, Q)$ and $\Gamma(\eta)$ be the superlattice of $\alpha\left(T_{1}\right) \times \beta\left(T_{2}\right)$ in $T_{1}^{\prime} \times T_{2}^{\prime}$ such that $\Gamma(\eta) / \alpha\left(T_{1}\right) \times \beta\left(T_{2}\right)$ is the graph of η. We have the following commutative diagram with exact rows:

where i, i^{\prime} are the canonical injections, j, j^{\prime} the canonical projections and ε the composite map $T_{1} \times T_{2} \xrightarrow{\alpha \times \beta} \alpha\left(T_{1}\right) \times \beta\left(T_{2}\right) \hookrightarrow \Gamma$. Then the functor $M L$ gives the
following commutative diagram, whose rows are exact by Lemma 1:

$$
\begin{array}{ccccccccc}
0 & \rightarrow & M_{1}^{\prime} & \rightarrow & M_{1}^{\prime} \times M_{2}^{\prime} & \rightarrow & M_{2}^{\prime} & \rightarrow & 0 \\
& & \| & & \downarrow & & \downarrow \tilde{\beta} & & \\
0 & \rightarrow & M_{1}^{\prime} & \rightarrow & M L(H) & \rightarrow & M_{2} & \rightarrow & 0 \\
& & \downarrow \dot{\alpha} & & \downarrow & & & \| & \\
& & & M_{1} & \rightarrow & M_{1} \times M_{2} & \rightarrow & M_{2} & \rightarrow
\end{array}
$$

where $H \in F^{A}(B)$ is such that $T(H) \cong \Gamma(\eta)$ (cf. [10]). By the above diagram we have a morphism $M L(Q)=M_{2} / \tilde{\beta} M_{2}^{\prime} \rightarrow M L(P)=M_{1} / \tilde{\alpha} M_{1}^{\prime}$, which does not depend on the choice of H; we denote it by $\theta(\eta)$. By construction we see easily that $\theta: \operatorname{Hom}_{A[\mathcal{E}]}(P, Q) \rightarrow \operatorname{Hom}_{E}(M L(Q), M L(P))$ is a bijection. Let $\eta_{1}, \eta_{2} \in$ $\operatorname{Hom}_{A[\mathcal{O}]}(P, Q)$. As the exact sequence $0 \rightarrow T_{2} \rightarrow \Gamma\left(\eta_{1}+\eta_{2}\right) \rightarrow T_{1}^{\prime} \rightarrow 0$ is the Baer sum of the extensions $0 \rightarrow T_{2} \rightarrow \Gamma\left(\eta_{i}\right)-T_{1}^{\prime} \rightarrow 0(i=1,2)$, we see that θ is a homomorphism using the functor $M L$. Clearly θ is an A-isomorphism.
2. One-dimensional formal A-modules. Let v be the valuation of \bar{L} which is normalized so that $v(\pi)=1$. Here we assume that all formal A-modules are one-dimensional. Let $u=\pi+\sum_{\nu=1}^{\infty} b_{\nu} T^{\nu}$ be a special element in E. We write $\left(u^{-1} \pi\right)^{*}(x)$ for the element $f(x)$ of $L[[x]]$ such that $f(0)=0$ and $\pi x=\pi f(x)+$ $\sum_{\nu=1}^{\infty} b_{\nu} f^{\sigma^{\nu}}\left(x^{q^{\nu}}\right)$. Then $F(x, y)=f^{-1}(f(x)+f(y))$ is a formal A-module over B. This shows that the strong isomorphism classes of formal A-modules over B, of A height h, correspond bijectively to the special elements of the form $\pi+\sum_{\nu=1}^{h} b_{\nu} T^{\nu}$, where $b_{1}, \ldots, b_{h-1} \in \mathfrak{p}$ but b_{h} is a unit of B (cf. Cox [1]). Let F be a formal A-module of A-height h defined over B. We write $\Lambda_{F, m}=\operatorname{Ker}\left[\pi^{m}\right]_{F}=\{x \in$ $\left.\overline{\mathfrak{p}} \mid\left[\pi^{m}\right]_{F}(x)=0\right\}$ for $m \geq 0$, which is a finite subgroup of order $q^{h m}$ in $F(\overline{\mathfrak{p}})$.

THEOREM 2. Let $u_{1}=\pi+\sum_{i=1}^{h} b_{i} T^{i}$ and $u_{2}=\pi+\sum_{i=1}^{h} c_{i} T^{i}$ be special elements of E such that $b_{i}, c_{i} \in \mathfrak{p}(1 \leq i \leq h-1)$ and b_{h}, c_{h} are units of B. Let $f_{1}(x)=\left(u_{1}^{-1} \pi\right)^{*}(x)=\sum_{n=0}^{\infty} a_{n} x^{q^{n}}, f_{2}(x)=\left(u_{2}^{-1} \pi\right)^{*}(x)=\sum_{n=0}^{\infty} a_{n}^{\prime} x^{q^{n}}$ and $\psi=f_{2}^{-1} \circ f_{1}$. Let m be an integer such that $u_{1} \equiv u_{2} \bmod \mathfrak{p}^{m}$ but $u_{1} \not \equiv u_{2} \bmod \mathfrak{p}^{m+1}$. Put $w_{i}=\left(b_{i}-c_{i}\right) / \pi^{m}$ for $1 \leq i \leq h$ and let $e(1 \leq e \leq h)$ be such that $w_{i} \in \mathfrak{p}$ for $1 \leq i \leq e-1$ and w_{e} is a unit. Then the convergence domain of ψ contains $\left\{x \in \overline{\mathfrak{p}} \mid v(x)>q^{-e} r^{-m+1}(r-1)^{-1}\right\}$, where $r=q^{h}$.

For the proof of Theorem 2 we need the following
Lemma 2. Assume the same hypothesis as in Theorem 2, and put $A_{n}=a_{n}-a_{n}^{\prime}$. Then we have $v\left(A_{n}\right) \geq(m-1)-[(n-e) / h]$ for $n \geq 0$, where $[\alpha]$ denotes the largest integer not exceeding α.

Proof. We proceed by induction on n. First we note that $v\left(a_{t}^{\prime}\right) \geq-[t / h]$ by [1, Proposition 4.1.1]. By the definition of f_{1} and f_{2} we can show that

$$
A_{n}=-\sum_{i=1}^{h} \pi^{-1} b_{i} A_{n-i}^{\sigma^{i}}-\pi^{m-1} \sum_{i=1}^{h} w_{i} a_{n-i}^{\prime \sigma^{2}}
$$

Then it is clear that $v\left(A_{n}\right) \geq m$ for $0 \leq n \leq e$. Hence we may assume that the assertion of our lemma holds for n^{\prime} with $n^{\prime}<n=h(j-1)+e+k$, where $0 \leq k<h$
and $j \geq 1$. We have $v\left(\pi^{-1} b_{i} A_{n-i}\right) \geq m-1-[(n-i-e) / h] \geq m-j$ for $1 \leq i \leq h-1$ and $v\left(\pi^{-1} b_{h} A_{n-h}\right) \geq m-j$. Noting $e+k<2 h$, we have

$$
v\left(\pi^{m-1} w_{i} a_{n-i}^{\prime \sigma^{2}}\right) \geq m-1-[(n-h) / h]=m-j-[(e+k-h) / h] \geq m-j
$$

Therefore $v\left(A_{n}\right) \geq m-j=(m-1)-[(n-e) / h]$. This completes our proof by induction.

Proof of Theorem 2. We can write $\psi(x)=\sum_{n=0}^{\infty} \alpha_{n} x^{n(q-1)+1}$ with $\alpha_{n} \in L$ by Lubin [7, p. 475]. Let ξ be an element of $\overline{\mathfrak{p}}$ such that $\xi^{q^{e} r^{m-1}(r-1)}=\pi$. Put $\beta_{n}=\alpha_{n} \xi^{n(q-1)+1}$. By induction on n we shall show that $v\left(\beta_{n}\right) \geq 1 /(r-1)$. Let R be the set whose points are sequences $\mathfrak{n}=\left(n_{0}, n_{1}, n_{2}, \ldots\right)$, where n_{i} are nonnegative integers for all i and $n_{i}=0$ for almost all i. For $n \in R$, define $|\mathfrak{n}|=\sum_{k=0}^{\infty} n_{k}$, $\mathbf{n}^{*}=\sum_{k=0}^{\infty} k n_{k}$ and $C(\mathbf{n})=|n|!/\left(\prod_{k=0}^{\infty}\left(n_{k}!\right)\right)$. They are rational integers. We define an element α^{n} of L to be $\prod_{k=0}^{\infty} \alpha_{k}^{n_{k}}$. Put $Q_{s}=\left(q^{s}-1\right) /(q-1)$. Let t be an integer such that $Q_{t}<N+1 \leq Q_{t+1}$. On comparing the coefficients of $x^{(N+1)(q-1)+1}$, we get by the equation $f_{2}(\psi(x))=f_{1}(x)$ that

$$
\alpha_{N+1}+\sum_{k=1}^{t} a_{k}^{\prime}\left(\sum_{k} C(\mathfrak{n}) \alpha^{n}\right)= \begin{cases}0 & \text { if } N+1<Q_{t+1} \tag{}\\ A_{t+1} & \text { if } N+1=Q_{t+1}\end{cases}
$$

where the sum \sum_{k} is taken over all $\mathfrak{n} \in R$ such that $|\mathfrak{n}|=q^{k}$ and $\mathfrak{n}^{*}=N+1-Q_{k}$. We have easily by Lemma 2 that $v\left(A_{1}\right) \geq m-1$ if $e=1$ and $v\left(A_{1}\right) \geq m$ if $e>1$. Then

$$
v\left(\beta_{1}\right)=v\left(\xi^{q} \alpha_{1}\right) \geq q^{1-e} r^{1-m}(r-1)^{-1}+v\left(A_{1}\right) \geq 1 /(r-1)
$$

Therefore by induction hypothesis we assume that $v\left(\beta_{n}\right) \geq 1 /(r-1)$ for $1 \leq n \leq N$. For $\mathfrak{n}=\left(n_{0}, n_{1}, n_{2}, \ldots\right) \in R$ with $|\mathfrak{n}|=q^{k}(k \geq 1)$ and $\mathfrak{n}^{*}=N+1-Q_{k}$, let

$$
D_{k, n}^{N+1}=\xi^{(N+1)(q-1)+1} a_{k}^{\prime} C(\mathfrak{n}) \alpha^{\mathfrak{n}}=a_{k}^{\prime} C(\mathfrak{n}) \xi^{n_{0}} \prod_{k=1}^{\infty} \beta_{k}^{n_{k}}
$$

Now let $g(x)=r^{x}(r-1)^{-1}-x$; it is clear that $g(n) \geq 1 /(r-1)$ for all integers n and $g(n)=1 /(r-1)$ if and only if $n=0$ or $n=1$. Now if $n_{0}=0$, then

$$
v\left(D_{k, n}^{N+1}\right) \geq v\left(a_{k}^{\prime}\right)+v(C(\mathfrak{n}))+q^{k} /(r-1) \geq g([k / h]) \geq 1 /(r-1)
$$

If $n_{0} \neq 0$, then $0<n_{0}<q^{k}$. Writing $q=p^{j}, n_{0}=q^{s} d$ with $q \not \backslash d$ and $d=\dot{p}^{j^{\prime}} d_{1}$ with $\left(p, d_{1}\right)=1$, we easily get

$$
\operatorname{ord}_{p}\left({ }_{q^{k}} C_{n_{0}}\right)=j(k-s)-j^{\prime} \geq k-s
$$

Clearly ${ }_{q^{k}} C_{n_{0}}$ is a divisor of $C(\mathbf{n})$ and $q^{s} \leq q^{k}-n_{0}$. Therefore

$$
\begin{aligned}
v\left(D_{k, n}^{N+1}\right) & \geq v\left(a_{k}^{\prime}\right)+v(C(\mathfrak{n}))+n q^{-e} r^{1-m}(r-1)^{-1}+\left(q^{k}-n_{0}\right)(r-1)^{-1} \\
& >-[k / h]+(k-s)+q^{s}(r-1)^{-1} \geq g([s / h]) \geq(r-1)^{-1} .
\end{aligned}
$$

Let us now assume $N+1=Q_{t+1}$. Then, by Lemma 2, we have

$$
v\left(\xi^{(N+1)(q-1)+1} A_{t+1}\right) \geq g(-(m-1)+[(t+1-e) / h]) \geq(r-1)^{-1}
$$

In view of $\left({ }^{*}\right)$, we have thus established that $v\left(\beta_{N+1}\right) \geq 1 /(r-1)$; therefore $v\left(\beta_{n}\right) \geq$ $1 /(r-1)$ for all $n \geq 1$. As $\psi(x)=\sum_{n=0}^{\infty} \beta_{n}(x / \xi)^{n(q-1)+1}$, the proof is completed.

REMARK. By further computations we can show that $v\left(\beta_{Q_{h o+e}}\right)=1 /(r-1)$ for $s \geq m$. Therefore the convergence domain of ψ is $\left\{x \in \overline{\mathfrak{p}} \mid v(x)>q^{-e} r^{1-m}(r-1)^{-1}\right\}$.

COROLLARY. Assumptions and notation being as in Theorem 2, let $F_{i}(x, y)=$ $f_{i}^{-1}\left(f_{i}(x)+f_{i}(y)\right)(i=1,2)$. Then ψ defines an $A[\mathcal{B}]$-isomorphism $\Lambda_{F_{1}, m} \rightarrow \Lambda_{F_{2}, m}$.

As $v(x) \geq r^{1-m}(r-1)^{-1}$ for $x \in A_{F_{1}, m}$, this is clear.
Theorem 3. Let F and G be one-dimensional formal A-modules of the same A-height h defined over B and f, g be the logarithms of F, G, respectively. Then every element of $\operatorname{Hom}_{A[\mathcal{B}]}\left(\Lambda_{F, m}, \Lambda_{G, m}\right)$ is of the form $g^{-1} \circ c f$ for some $c \in B$. If f and g are of type $u_{1}=\pi+\sum_{i=1}^{h} b_{i} T^{i}$ and $u_{2}=\pi+\sum_{i=1}^{h} c_{i} T^{i}$, respectively (cf. [1, p. 295]), then $g^{-1} \circ c f \in \operatorname{Hom}_{A[\mathcal{G}]}\left(\Lambda_{F, m}, \Lambda_{G, m}\right)$ for $c \in B$ if and only if $u_{2} c \equiv c u_{1}$ $\bmod \boldsymbol{p}^{m}$.

Proof. As $M(F) \cong E / E u_{1}$ and $M\left(\Lambda_{F, m}\right) \cong E /\left(E u_{1}+E \pi^{m}\right)$, we get easily by Theorem 1 that

$$
\operatorname{Hom}_{A[\mathcal{G}]}\left(\Lambda_{F, m}, \Lambda_{G, m}\right) \cong\left\{c \in B \mid u_{2} c \equiv c u_{1} \bmod \mathfrak{p}^{m}\right\} / \mathfrak{p}^{m}
$$

Let $c \in B$ be such that $u_{2} c \equiv c u_{1} \bmod p^{m}$. We assume $v(c)=s \leq m$ and write $c=b \pi^{s}$ with a unit b in B. Let $u^{\prime}=b u_{1} b^{-1}$. Then u^{\prime} is special and $u^{\prime} \equiv u_{2}$ $\bmod \mathfrak{p}^{m-s}$. Let $f_{1}(x)=\left(u^{\prime-1} \pi\right)^{*}(x)$ and $F_{1}(x, y)=f_{1}^{-1}\left(f_{1}(x)+f_{1}(y)\right)$. Then $g^{-1} \circ c f=\left(g^{-1} \circ f_{1}\right)\left[\pi^{s}\right]_{F_{1}} \circ\left(f_{1}^{-1} \circ b f\right)$, where $f_{1}^{-1} \circ b f: F \rightarrow F_{1}$ is an isomorphism. By the Corollary above, $g^{-1} \circ c f$ defines an element $\eta(c)$ of $\operatorname{Hom}_{A\{\mathcal{B}]}\left(\Lambda_{F, m}, \Lambda_{G, m}\right)$: clearly $\eta(c)=\eta\left(c^{\prime}\right)$ if and only if $c \equiv c^{\prime} \bmod \mathfrak{p}^{m}$. Our assertion is now obvious.

Remark. For a formal A-module F over B of finite A-height h, we have the results which are completely analogous to those in Fontaine [3]. Let $\rho: \mathfrak{B} \rightarrow$ $\operatorname{Aut}_{A}(T(F))\left(\cong \mathrm{GL}_{h}(A)\right)$ be the π-adic representation attached to F. Then by [3] we have
(1) $\rho(\mathfrak{G}) \supset A^{\times}$. Therefore \mathfrak{G}-endomorphisms of $\Lambda_{F, m}$ are $A[\mathfrak{C}]$-endomorphisms.
(2) For $h=1$ or 2 , applying our Theorem 3 we can determine the closed subgroup $\rho(\mathscr{B})$ of $\mathrm{GL}_{\boldsymbol{h}}(A)$ (up to an isomorphism) by the special element of F.

References

1. L. H. Cox, Formal A-modules over p-adic integer rings, Compositio Math. 29 (1974), 287-308.
2. J.-M. Decauwert, Classification des A-modules formels, C. R. Acad. Sci. Paris 282 (1976), 1413 1416.
3. J.-M. Fontaine, Points d'ordre fini d'un groupe formel sur une extension non ramifiée de Z_{p}, Bull. Soc. Math. France 37 (1974), 75-79.
4.__, Groupes finis commutatifs sur les vectuers de Witt, C. R. Acad. Sci. Paris 280 (1975). 1423-1425.
5._, Groupes p-divisibles sur les corps locaux, Astérisque 47-48, Soc. Math. de France, 1977.
4. T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213246.
5. J. Lubin, One parameter formal Lie groups over \mathfrak{p}-adic integer rings, Ann. of Math. (2) 80 (1964), 464-484.
6. _, Galois endomorphisms of the torsion subgroup of certain formal groups, Proc. Amer. Math. Soc. 20 (1969), 229-331.
7. F. Oort, Dieudonné modules of finite local group schemes, Nederl. Akad. Wetensch. Proc. Ser. A 77 (1974), 284-292.
8. W. Waterhouse, On p-divisible groups over complete valuation rings, Ann. of Math. (2) 95 (1972), 55-65.

Department of Mathematics, College of General Education, Tôhoku UniVERSITY, KAWAUCHI, SENDAI 980, JAPAN

[^0]: Received by the editors February 15, 1983.
 1980 Mathematics Subject Classification. Primary 14L05.
 Key words and phrases. Formal module (group), Tate module, special element, logarithm of formal group.

