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Abstract. Every finite subunital of any generalized hermitian unital is
itself a hermitian unital; the embedding is given by an embedding of qua-
dratic field extensions. In particular, a generalized hermitian unital with
a finite subunital is a hermitian one (i.e., it originates from a separable
field extension).
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A hermitian unital in a pappian projective plane consists of the absolute points
of a unitary polarity of that plane, with blocks induced by secant lines (see
Sect. 1). The finite hermitian unitals of order q are the classical examples of
2-(q3 + 1, q + 1, 1)-designs, cp. [6, II.8, pp. 57–63 and p. 246], or [2, Ch. 2].
We consider generalized hermitian unitals H(C|R) where C|R is any quadrat-
ic extension of fields; separable extensions C|R yield the hermitian unitals,
inseparable extensions give certain projections of quadrics.

If one has an embedding of field extensions from E|F into C|R (in the sense
of 1.5) then clearly the unital H(E|F ) is embedded into H(C|R). Our Main
Theorem asserts, in the converse direction, that every embedding of a finite
unital into one of those generalized hermitian unitals comes from an embed-
ding of field extensions. This also implies that no finite subunitals exist in
generalized hermitian unitals that are not hermitian unitals.

If U is a unital of order q embedded in the hermitian unital H(Fr2 |Fr) of
order r then our result says that U is the hermitian unital of order q, and
there is an odd integer e such that r = qe.

We remark that an analogous result holds for generalized polygons (where
the Moufang property singles out the classical examples), see [12, 5.2.2]: any
(thick) subpolygon of a Moufang polygon is Moufang, as well.
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1. Generalized hermitian unitals

Let C|R be any quadratic (possibly inseparable) extension of fields; so C =
R + εR, with ε ∈ C � R. There exist t, d ∈ R such that ε2 − tε + d = 0, since
ε2 ∈ R + εR. The mapping

σ : C → C : x + εy �→ (x + ty) − εy for x, y ∈ R

is a field automorphism which generates AutRC: if C|R is separable, then σ
has order 2; if C|R is inseparable, then σ is the identity.

Now we introduce our geometric objects. We consider the pappian projective
plane PG(2, C) arising from the 3-dimensional vector space C3 over C, and
we use homogeneous coordinates [X,Y,Z] := (X,Y,Z)C for the points of
PG(2, C).

Definition 1.1. The generalized hermitian unital H(C|R) is the incidence struc-
ture (H,M) with the point set H := {[X,Y,Z] |XσY + ZσZ ∈ εR}, and the
set M of blocks consists of the intersections of H with secant lines, i.e. lines
of PG(2, C) containing more than one point of H.

Remark 1.2. The name “generalized hermitian unital” is motivated by the
following observations.

If C|R is separable, then H(C|R) is the hermitian unital arising from the
skew-hermitian form h : C3 × C3 → C defined by

h ((X,Y,Z), (X ′, Y ′, Z ′)) = εσXσY ′ − εY σX ′ + (εσ − ε)ZσZ ′ ,

see [4, 2.2]. So the elements of H are the absolute points of a polarity of
PG(2, C), in this case.

If C|R is inseparable, then H(C|R) is the projection of an ordinary quadric
Q in some projective space of dimension at least 3 from a subspace of codi-
mension 1 in the nucleus of Q, see [4, 2.2]. In this case, there is no polarity of
PG(2, C) such that the elements of H are absolute points.

In any case, we have for each point p of H(C|R) a unique line of PG(2, C)
passing through p and containing no other point of H(C|R), see [4, 2.3]. We
will refer to this line as the tangent line to H(C|R) at p in PG(2, C).

The unital H(C|R) admits all conceivable translations (i.e., automorphisms
that fix a point and every block through it), and these are induced by elations
of PG(2, C), see [4, 2.13].

Each block of H(C|R) is a Baer subline in PG(2, C), see [4, 2.8], cp. [5].

By an O’Nan configuration, we mean four blocks intersecting in six points of
the unital (i.e., a (62 43) configuration). Naming this configuration in honor of
O’Nan [8] is customary in the context of unitals, see [2, p. 87]; the configuration
is named after Veblen and Young in the axiomatics of projective spaces, or after
Pasch in the context of ordered (Euclidean) geometry.
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We will use the following properties of generalized hermitian unitals:

Lemma 1.3. Let C|R be a quadratic field extension.

(NON) There are no O’Nan configurations in H(C|R).
(ALL) For any three distinct points x, y, z on a block, there is a translation of

H(C|R) with center z mapping x to y.

Let p be a point of H(C|R), X, Y, Z and let be three distinct blocks through p.

(TRA) If X,Y,Z intersect a block B not through p, then for each point z �= p
on either of the three blocks, there exists a (unique) block B′ contain-
ing z and intersecting the three blocks in three distinct points. The
block B′ is the image of B under a translation of H(C|R) with cen-
ter p, and each block through p intersecting either of B,B′ intersects
both B and B′.

(TAN) If X,Y,Z intersect two disjoint blocks B and B′ not containing p, then
the intersection point of the two lines containing the blocks B and B′

in the projective plane PG(2, C) is on the tangent line at p.

Proof. Assertions (NON) and (ALL) have been proved in [4, Proposition 2.7,
Remark 2.12]. For Assertion (TRA), we apply the translation with center p
that maps the intersection of the block joining p and z with B to the point z.
Uniqueness of B′ is a consequence of (NON), and the rest of Assertion (TRA)
follows from the fact that B′ is the image of B under a translation with center p.

It remains to verify Assertion (TAN). We have just seen that B′ is the image
of B under a translation of H(C|R) with center p. That translation is the
restriction of an elation of PG(2, C), the center is p and the axis is the tangent
to H(C|R) at p in PG(2, C). The intersection of the lines containing the blocks
B and B′ in the projective plane PG(2, C) is a point fixed by that elation, and
thus contained in the tangent line at p.

Definition 1.4. If (X,B) and (Y,D) are linear spaces then an embedding of
(X,B) into (Y,D) is a pair of injective maps α : X → Y and β : B → D such
that x ∈ X and B ∈ B are incident in (X,B) exactly if xα and Bβ are incident
in (Y,D). We call (X,B) a subunital of (Y,D) if (id, id) is an embedding of a
unital (X,B) into (Y,D).

Definition 1.5. Let E|F and C|R be field extensions. An embedding of field
extensions from E|F into C|R is a field monomorphism η : E → C such that
F η ⊆ R. An embedding (α, β) of H(E|F ) into H(C|R) is called standard
if there is an embedding η of field extensions from E|F into C|R such that(
(x, y, z)E

)α = (xη, yη, zη)C holds for each point (x, y, z)E of H(E|F ), up to
some projective transformation of PG(2, C).
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2. Main result

Lemma 2.1. Let (P,L) be a linear space containing no O’Nan configuration,
let (U,B) be a unital of order q, and let (α, β) be an embedding of (U,B) in
(P,L). If two blocks B1, B2 of (U,B) have no point of U in common, then Bβ

1 ,
Bβ

2 are disjoint blocks of (P,L).

Proof. Aiming at a contradiction, suppose that two blocks B1, B2 ∈ B are
disjoint in U , but that Bβ

1 , Bβ
2 contain a common point x. The absence of

O’Nan configurations in (P,L) implies that two arbitrary blocks of (U,B)
both intersecting B1 ∪ B2 in exactly two points have no points off B1 ∪ B2

in common. Hence the number of points in U lying on a block intersecting
B1 ∪ B2 in exactly two points is greater than (q + 1)2(q − 1) ≥ q3 + 1; this is
a contradiction. �

Theorem 2.2. Let (U,B) be a finite subunital of the generalized hermitian uni-
tal H(C|R). Then (U,B) is a hermitian unital, isomorphic to H(E|F ) for some
quadratic extension E|F of finite fields, and the embedding of (U,B) ∼= H(E|F )
into H(C|R) is standard, coming from an embedding of field extensions from
E|F into C|R. Moreover, the extension C|R is separable, and H(C|R) is a
hermitian unital.

Proof. Let q denote the order of (U,B). In this proof, we suppose q > 2; the
case q = 2 is treated separately in 3.1 below.

Let p ∈ U be arbitrary, and let B ∈ B be such that p /∈ B. Let B0, B1, . . . , Bq

be the blocks of (U,B) containing p and intersecting B nontrivially, say in
x0, x1, . . . , xq, respectively. Let x be an arbitrary point on B0 � {p, x0}. We
claim that at least one block of (U,B) contains x and intersects B1∪B2∪· · ·∪Bq

in at least two points (different from p). Indeed, if not, then there are q2 blocks
through x different from B0, which is a contradiction. So let Bx be a block
of (U,B) containing at least three points (including x) of B0 ∪ B1 ∪ · · · ∪
Bq. We note that Bx and B are disjoint by (NON). For the same reason (or
by 2.1) their extensions to H(C|R) are also disjoint. It then follows from (TRA)
that Bx intersects Bi for each i ∈ {0, 1, . . . , q}, and 2.1 yields that these
intersection points belong to U . Hence we have shown that (TRA) holds in
the subunital (U,B).

Now let τ be the translation of H(C|R) with center p mapping x0 to x. Let
y be any point of U not on B0. Since B was arbitrary, we may assume that
y ∈ B, so without loss of generality y = x1. By the uniqueness in (TRA), τ
maps x1 to the intersection Bx ∩B1. Since this intersection point belongs to U ,
it follows that τ preserves U . Hence (U,B) admits all translations and hence
is hermitian by the main result of [3].

Now consider the (standard) embedding of H(C|R) in the projective plane
PG(2, C). Then also (U,B) is embedded in PG(2, C) and so by the Main
Theorem of [4] there is a subfield E ≤ C of order q2 and a subplane π ∼=
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PG(2, E) containing U . (Here we use q > 2, for q = 2 the Main Theorem of [4]
does not apply.) Hence there is a polarity ρπ of π with absolute point set U .
We now show that ρπ extends to a polarity ρ of PG(2, C) where the absolute
points are the points of H(C|R).

Consider the lines extending blocks of (U,B) that meet at least three blocks
through p. By (TAN), any two of those lines have an intersection point on the
tangent line T to U at p in π. Varying the blocks to be extended, we obtain
more than one point on T . The same description applies, mutatis mutandis,
to points on the tangent to H(C|R) at p in PG(2, C). So that line extends
the tangent to (U,B) in π. This already implies that not all tangent lines to
H(C|R) contain the same point and so C|R is separable by [4, 2.3(2)]. Hence
there is a polarity ρ of PG(2, C) associated to H(C|R). Since U contains a
quadrangle, and points of U are mapped to lines of π under the action of ρ,
we see that ρ preserves π. Since tangent lines to (U,B) and H(C|R) coincide
in π, we see that ρ|π = ρπ. Hence the generator of the Galois group of C|R
preserves E and induces x �→ xq in E.

This proves our main result completely for q �= 2. For q = 2, see 3.1. �

If C is finite of order r2 then E is unique with given order q2 and the field
automorphism x �→ xr is not trivial on E, which means that E is not contained
in the unique subfield R of order r; hence C is an extension of E of odd degree.
Thus 2.2 gives the following.

Corollary 2.3. If U is a unital of order q embedded in the hermitian unital
H(Fr2 |Fr) of order r, then U is the hermitian unital H(Fq2 |Fq), there is an
odd integer e such that r = qe, and the embedding of the unital is standard.

Up to projective equivalence, the embedded unital is obtained by using a her-
mitian equation over Fq2 |Fq to define the large unital in PG(2, Fr2), and re-
stricting coordinates to Fq2 to define the small unital.

Remark 2.4. Wilbrink [13] has characterized the finite hermitian unitals by
three conditions. His condition (I) is our (NON) in 1.3. Under the assump-
tion (NON), his condition (II) is equivalent to our (TRA). For unitals of even
order, these two conditions alone suffice to characterize the hermitian unitals,
see [7]. Wilbrink’s condition (III) is too technical to state it here; compare [5,
p. 299].

3. The smallest unital

Theorem 3.1. Let C|R be a quadratic field extension. The unital of order 2
is embedded in the generalized hermitian unital H(C|R) if, and only if, R has
characteristic 2 and C ∼= R[X]/(X2+X+1). The embedding is then a standard
one.
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Proof. Each unital of order 2 is isomorphic to the hermitian unital H(F4|F2),
and is clearly embedded in H(C|R) if R has characteristic 2 and C ∼= R[X]/
(X2 + X + 1).

The unital of order 2 is also isomorphic to the affine plane of order 3 (see [11,
10.16]), and we know the embeddings of the latter into Moufang planes ([10,
3.7], cp. [1, 5.2], [9]): Such an embedding is possible only if the coordinatizing
alternative field contains an element u with u2 + u + 1 = 0; the points of
the embedded plane are then given as (0, 0), (1, 0), (0, 1), (−u, 1), (1,−u2),
(−u,−u2), (0), (u), (∞), in suitable inhomogeneous coordinates.

Consider a separable extension C|R first, and assume that there is an embed-
ding of the unital of order 2 into the hermitian unital H(C|R). We introduce
homogeneous coordinates such that the points in question are [1, 0, 0], [1, 1, 0],
[1, 0, 1], [1,−u, 1], [1, 1,−u2], [1,−u,−u2], [0, 1, 0], [0, 1, u], and [0, 0, 1]. In those
homogeneous coordinates, the hermitian unital consists of all points [x, y, z]
satisfying the equation (x̄, ȳ, z̄)M(x, y, z)T = 0, where x �→ x̄ is the generator
of the Galois group of C|R, and M is a non-singular hermitian 3 × 3 matrix
over C. (Multiplying M by a skew-symmetric field element swaps hermitian
with skew-hermitian forms but preserves the unital, so we are in accordance
with 1.2.) Now [1, 0, 0], [0, 1, 0], [0, 0, 1] ∈ H(C|R) implies that each diagonal
entry of M is zero. Thus M =

(
0 a b̄
ā 0 c
b c̄ 0

)
and the equation becomes

tr(x̄ay) + tr(z̄bx) + tr(ȳcz) = 0 ;

where tr(w) := w + w̄ is the trace of w.

Evaluating this equation for [1, 1, 0], [1, 0, 1], and [0, 1, u], respectively, we ob-
tain tr(a) = tr(b) = tr(cu) = 0.

If ū = u then 0 = tr(cu) = (c̄+c)u yields tr(c) = 0 and then detM = tr(abc) =
ab tr(c) = 0, a contradiction. So ū �= u is another root of X2 + X + 1. This
entails ū = −u − 1 = u2 and ū2 = u.

Now we evaluate the equation above for [1, 1,−u2] = [1, 1,−ū], [1,−u, 1], and
[1,−u,−u2] = [1,−u,−ū], respectively, and obtain

0 = tr(a) − tr(ūb) − tr(ūc) = b(ū − u) − tr(ūc)
0 = − tr(au) + tr(b) − tr(ūc) = a(ū − u) − tr(ūc)
0 = − tr(au) − tr(ub) + tr(cū2) = (a + b)(ū − u) .

As ū − u �= 0, these equations give a = b and then 0 = 2a. So R has char-
acteristic 2, and F2(u) ∼= F4 is contained in C but not in R. We obtain an
embedding of the field extension F4|F2 into C|R, and the embedding of the
unital H(F4|F2) of order 2 in H(C|R) is a standard embedding; see 1.5.

It remains to show that the unital of order 2 is not embedded in H(C|R)
if C|R is inseparable. As above, we know from [10, 3.7] that any embedding
of H(F4|F2) into PG(2, C) is projectively equivalent to the one where the
embedded points have coordinates in {0, 1, u, u2}, with u ∈ C and u2 = u + 1;
we use that C has characteristic 2 because C|R is inseparable. Now the set
{0, 1, u, u2} is a subfield of order 4 in C, and it is contained in R because
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otherwise the extension C|R would be separable. Thus the embedded unital
of order 2 is contained in a finite subplane π ∼= PG(2, F4) of PG(2, C).

Let B be a block of H(C|R) joining two points of the embedded unital of
order 2. Then B ∩ π is a set of three points. We introduce coordinates for
the line L of PG(2, C) containing B in such a way that 0, 1, and ∞ are the
coordinates of the three points in B ∩ π. Then B consists of the points with
coordinates in R ∪ {∞} because the blocks of H(C|R) are Baer sublines with
respect to C|R, see [4, 2.8]. Thus B ∩ π contains all points of L ∩ π (i.e., those
with coordinates 0, 1, u, u2, and ∞), contradicting the fact that |B ∩ π| = 3.
This contradiction yields that there is no embedding of H(F4|F2) in H(C|R)
if C|R is inseparable. �
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