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Finite Temperature Chern-Simons Coefficient
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We compute the exact finite temperature effective action ifD & 1)-dimensional field theory
containing a topological Chern-Simons term, which has many features in common(2withl)-
dimensional Chern-Simons theories. This exact result explains the origin and meaning of puzzling
temperature dependent coefficients found in various naive perturbative computations in the higher
dimensional models. [S0031-9007(97)03131-1]

PACS numbers: 11.10.Wx, 11.10.Kk

There are many examples in physics in which the clasphysics. However, we feel that the discussion thus far
sical Lagrange density contains a term that is not stricthhas missed an essential point. To illustrate this, we con-
invariant under a certain transformation (for example, aider a simple analog of the Chern-Simons system, which
“large” gauge transformation), but the classical actionhas the advantage that it may be solved exactly and yet
changes by a constant that takes discrete values assoitistill retains the essential topological complexities of the
ated with the “winding number” of the transformation. problem.

For such a system the quantum theory is formally in- Consider a(0 + 1)-dimensional field theory ofNV,
variant provided the amplitude epipaction] is invariant;  fermionsy;, j = 1,..., Ny, minimally coupled to a (1)
thus, invariance of the quantum theory can be maintainedauge fieldA. It is not possible to write a Maxwell-like
provided the coefficient of the noninvariant term in thekinetic term for the gauge field i® + 1 dimensions,
Lagrange density is chosen to take appropriate discreteut we can write a Chern-Simons term—it is linear in
values. This argument is familiar in the theory of theA. (Recall that it is possible to define a Chern-Simons
Dirac magnetic monopole, and in Chern-Simons theorieterm in odd dimensional space-time. Some features of
[1]. Itis important to ask what happens to this discretiza-‘Chern-Simons quantum mechanics” have been studied
tion condition when quantum interactions are taken intgpreviously [14].) We formulate the theory in Euclidean
account. For example, the quantum effective action magpace (i.e., imaginary time) so that we can go smoothly
contain induced terms of the same noninvariant form, bubetween nonzero and zero temperature using the imagi-
with a new coefficient. This subject of induced topo- nary time formalism [15]. The Lagrange density is

logical terms is relatively well understood in various ex- Ny +

amples of zero temperature quantum field theory [2—4]. L=> /0, —iA+mp; — ixA. ()
However, there is currently a great deal of confusion in J=1

the corresponding theories at nonzero temperature. TypiFhere are many similarities between this model and the
cally [5-8], a naive perturbative computation that mim-(2 + 1)-dimensional model of fermions coupled to a non-
ics the zero temperature computation leads to an inducetlbelian Chern-Simons gauge field. For example, this
topological term equal to the zero temperature induceghodel supports gauge transformations with a nontrivial
topological term, but multiplied by an extra factor of winding number. Under the () gauge transformation
taniB|m|/2). Herep = 1/T is the inverse temperature, s — ¢y, A — A + 9, A, the Lagrange density changes
andm is a relevant mass scale. Clearly, this coefficienty a total derivative and the action changes by

cannot take only discrete values for &lleven though for-

mal arguments suggest that it should. This dilemma has AS = —iK[ drd;A = =2mikN, (2)
recently been emphasized [6,9] for the particular case of

(2 + 1)-dimensional fermion and/or Chern-Simons the-where N = % [drd.A is the integer-valued winding
ories, for which quantum effects may lead to inducednumber of the topologically nontrivial gauge transforma-
Chern-Simons terms. (Related features also appear ition. Thus, choosinge to be an integer, the Euclidean
monopole and Aharonov-Bohm systems [10—12].) Therection changes by an integer multiple i, so that the

is one opinion that anyonic superfluidity should breakquantum path integral is formally invariant—just as in
down at any finite temperature due to this anomaly [13]three dimensional non-Abelian Chern-Simons theories [1].
There is an opposite opinion that there is no such tempera- Under naive charge conjugati@h ¢ — 1, A — —A,

ture dependent anomaly due to some “nonperturbativethe fermion mass term and the Chern-Simons term are not
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invariant. This situation is similar to the fermion massusual [16]

term and the Chern-Simons term in three dimensions, q A o m— il 4 @2n—1Dmi
which are not invariant under the parity transformation. (9, — iA + m) = B B

In that case, introducing an equal number of fermions of detd, + m) n=-o0 m + w
opposite sign mass, the fermion mass term can be made Bm _ .a

invariant under a generalized parity transformation. Simi- = w_ (10)
larly, with an equal number of fermion fields of opposite COSV(BTm)

sign mass, one can generalize charge conjugation
make the mass term invariant in oir + 1)-dimensional
model. a ) Bm\ . (a

There is a global part of the U) symmetry, whose 1Al = Nfln[cos<3> - ’tam<7>3'”<?>] (11)
conserved charge is

t?hus the exact finite temperature effective action is

| It is interesting to notice thal’'[A] is not an extensive
Or = — Z(%Wj — %4;}), (3) quantity (i.e., it is not an integral of a density) in
2 J Euclidean time. Rather, it is a complicated function of
the time integral ofA.
In the zero temperature limit, the tanh function reduces

Hp = % Z(%T% — lpjlp;) = mQr . (4) to tank(BTm) — %, so that
j

The fermionic Hamiltonian is

i m
Both Qr and Hy change sign under charge conjugation. [Alr-0 = =5 mef dr A(7). (12)
In addition to the 1) gauge symmetry, there is a global

SU(N;) flavor symmetry, whose conserved charges are The zero temperature effective actios an extensive
‘ guantity in Euclidean time. Indeed;[A]r—y has the

RY = Zlﬂ?T{l‘lﬂj, (5) same form as the original Chern-Simons term, and we
i ! conclude that the Chern-Simons coefficianis shifted in

where the ¢ are the generators of SN,) in the the combined, classical plus effective, action:

fundamental representation. 1 m
The canonical commutation relations a{'$,-,¢p;r} = KmET S lm|"
8;;, and the ground staf®) is chosen so that the ener . .
/ g ) oy The shift 6« at T = 0 is exactly the charge (6) of the

is lowest: ¢;]0) = 0 if m > 0, and %Tl()) =0if m < 7 _ g fermion ground state, which should dominate the
0. Then the vacuum expectation value of the fermionic, e, temperature correction. This is quantized in half
chargeQr at zero temperature is integer units. (This is the quantum mechanical analog
of the global anomaly [2,16].) If the number of fermion
flavors is even, the vacuum charge is an integer and there
is no global anomaly. This is the same as(h+ 1)-
Bim| dimensional fermion-Chern-Simons theories.

__m pbim| The finite temperature effective action is more compli-
Olerl0)s = 2|m|Nf tanr( 2 > () cated. An expansion of the exact result (11) in powers of

Note that theT = 0 answer (6) is regained smoothly in 1€ gauge field yields

(13)

Ny, (6)

while at nonzero temperature

the zeroT (B — ) limit. i Bm 1 BmY ,
We now compute the effective action for this theory: ~ T'lA] = Nf[_ 5 tan!'<7>a - §Se0H<T>a

de(BT — A + m) Ny i m m
I'A] In{ detd, + m) } : (8) - gtam(%)secﬁ(%)cf + }

Recalling that the fermion fields at finite temperature (14)
are antiperiodic, (0) = —(B), the eigenvalues of the
operatord, — iA + m are We can compare this exact result with a standard field

a @n — Vi theoretic perturbative computation:
Ap=m—i— + ——, n=-—xo,,.,+two,

B B I'[A] = NyIndef(1 — iSA)

9) =, P
where a = /{f d7 A(r). To get these, we can make a =N Z ~ (SASA...54), (15)

=1
small gauge transformation so thattakes the constant :
valuea/B. Then the determinants may be computed asvheresS is Green'’s function for the free operateor, + m).
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It is instructive to consider first the case in whighis  in which case the perturbative expansion (15) yields the
constantA = a/B. Then expansion (14) of the exact result.
i 1 For a general gauge field(r) [recall thatA(7) is a
tr(s¥) = Z (Cn—Dmi periodic function ofr in the imaginary time formulation
=== (T +m) of the finite temperature theory] we can compute all orders

_k (=1r1! <i>pl tan}(@> (16) in the perturbation series (15) using Green’s function
2 (p— D'\ om 2 |
1(2n Hmi/B

=L N __1 o — mp _
S(r —7) = B :Z @n—Dmi | 1)m m Z[Slnf’(mlT al tam( 2 >Cosﬁm|7 Tl)j|
1
2

+ —eplt — T’)[cosﬁmlr - 7)) = tanl‘( 2’8>S|nl'(m|7- - T/l)j| (17)

Hereeg(7) is the periodic step function:

+1, 0<7<§B,
fﬁ(T)z{—L —/32750, (18)
with ei(n,B) = 0. Thus S(0) = %tanl’(%), and S(B) = —%tanr(%); while for 0 <7< B, S(r) = %[1 +
tanh(5=)]e ™7, and for - < 7 <0, S(1) = —%[1 - tanl’(%)]e‘””. Equipped with these results for Green'’s

function we can now compute theh order contribution to the perturbative expansion (15) of the effective action:

B B P
_%fo dﬁfo de"'j;) drp S(r1 = T2)A(72)S(T2—73)A(T3) --- S(7) — T1)A(T1)

el o N (mp 8 ’
- 2Pp!|:(a(%)) tam<7>:||:fo A(T)dT:|. (29)

We obtain the same expansion as the expansion &14:)ude that the effective action is just the first term in the
of the exact answer (11). Once again we see that thexpansion (14), and hence that the Chern-Simons coeffi-
full effective actionI'[A] is not an extensive quantity in cient is shifted by a temperature-dependent amount

Euclidean time Blm
We can alternatively derive the finite temperature K— K — ——t r( >Nf (22)
effective action from the partition function in a grand
canonical ensemble. Consider a constant gauge fieltlhis temperature dependent shidtk is precisely the
A(t) = —iu. Then result obtained [5—8] in fermion and/or Chern-Simons
ra] _ trexd—BHr + BuQr] 20 theory in2 + 1 dimensions. There is an obvious physical
¢ o tr exf — BHF] ’ (20) interpretation of the correction in (22): this shift is just

fermionic charge (3). A straightforward calculation yields charge. In the three dimensional theory the corresponding

COSh,B(m w) Ny correction tox can be interpreted as the induced charge
el = |:—52:| (21)  density per magnetic field. In the high temperature limit,
cosh5" the expectation value of the fermion charge goes to zero
in agreement with (10) and (11). as the energy gap between the excited states and the
Our (0 + 1)-dimensional model is special in the senseground state is negligible in this limit.
that we are able to compuevery orderin perturbation Attempting to identify the shifted coefficient in (22) as

theory, and furthermore we are ablersssumthe pertur- a new Chern-Simons coefficient, which should take dis-
bative expansion to obtain thexacteffective action. In crete values in its own right, leads immediately to the dif-
higher dimensional examples it is generally not possibldiculties discussed in the introduction and in Refs. [6,9].
to compute the exact effective action, because of the extidowever, as is very clear from our exactly solvable
momentum integrations and the additional tensor or spinomodel, such an identification iscorrectat finite tempera-
structure. Thus, a field theoretic computation of the finiteture because it ignores the higher terms in the perturbative
temperature effective action h+ 1 dimensions [5-9]is expansion of the effective action. At zero temperature it
a perturbative one that typically looks only for tlmvest happens to be correct to make this identification because
order term, which happens to be the same as the origienly the first term in the expansion (14) survives in the
nal Chern-Simons term. Applying this same philosophyzero temperature limit. Indeed, we see from the exact fi-
to the example treated here, we would (erroneously) comite T effective action (11) that the entire effective action

3436



VOLUME 78, NUMBER 18 PHYSICAL REVIEW LETTERS 5 My 1997

has a well-defined behavior under a large gauge transfofields, and supersymmetrize the system. We believe
mation, independent of the temperatureyven though at further investigation in this direction will be rewarding.
any given finite order of a perturbation expansion there is Each author thanks the U.S. Department of Energy for
a temperature dependence. Under a large gauge trargipport. K. L. is supported by an NSF Presidential Young
formation, a — a + 27N, the effective action (11) is Investigator Fellowship.
shifted by NN i, which is exactly the same behavior
as at zero temperature—see (12) and (13). This global
flavor anomaly may be avoided, independent of the tem-
perature, by considering an even number of fermion fla-
Vors. How_ever, if the gffective acf[ion is Comput_ed to any *Electronic address: dunne@hep.phys.uconn.edu
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