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Finite Temperature Chern-Simons Coefficient
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We compute the exact finite temperature effective action in as0 1 1d-dimensional field theory
containing a topological Chern-Simons term, which has many features in common withs2 1 1d-
dimensional Chern-Simons theories. This exact result explains the origin and meaning of pu
temperature dependent coefficients found in various naive perturbative computations in the h
dimensional models. [S0031-9007(97)03131-1]

PACS numbers: 11.10.Wx, 11.10.Kk
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There are many examples in physics in which the cl
sical Lagrange density contains a term that is not stric
invariant under a certain transformation (for example
“large” gauge transformation), but the classical act
changes by a constant that takes discrete values as
ated with the “winding number” of the transformatio
For such a system the quantum theory is formally
variant provided the amplitude expfisactiondg is invariant;
thus, invariance of the quantum theory can be maintai
provided the coefficient of the noninvariant term in t
Lagrange density is chosen to take appropriate disc
values. This argument is familiar in the theory of th
Dirac magnetic monopole, and in Chern-Simons theo
[1]. It is important to ask what happens to this discretiz
tion condition when quantum interactions are taken i
account. For example, the quantum effective action m
contain induced terms of the same noninvariant form,
with a new coefficient. This subject of induced top
logical terms is relatively well understood in various e
amples of zero temperature quantum field theory [2–
However, there is currently a great deal of confusion
the corresponding theories at nonzero temperature. T
cally [5–8], a naive perturbative computation that mim
ics the zero temperature computation leads to an indu
topological term equal to the zero temperature indu
topological term, but multiplied by an extra factor o
tanhsbjmjy2d. Hereb ­ 1yT is the inverse temperature
and m is a relevant mass scale. Clearly, this coefficie
cannot take only discrete values for allT , even though for-
mal arguments suggest that it should. This dilemma
recently been emphasized [6,9] for the particular case
s2 1 1d-dimensional fermion and/or Chern-Simons th
ories, for which quantum effects may lead to induc
Chern-Simons terms. (Related features also appea
monopole and Aharonov-Bohm systems [10–12].) Th
is one opinion that anyonic superfluidity should bre
down at any finite temperature due to this anomaly [1
There is an opposite opinion that there is no such temp
ture dependent anomaly due to some “nonperturbat
0031-9007y97y78(18)y3434(4)$10.00
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physics. However, we feel that the discussion thus f
has missed an essential point. To illustrate this, we co
sider a simple analog of the Chern-Simons system, wh
has the advantage that it may be solved exactly and
it still retains the essential topological complexities of th
problem.

Consider as0 1 1d-dimensional field theory ofNf

fermionscj , j ­ 1, . . . , Nf , minimally coupled to a Us1d
gauge fieldA. It is not possible to write a Maxwell-like
kinetic term for the gauge field in0 1 1 dimensions,
but we can write a Chern-Simons term—it is linear i
A. (Recall that it is possible to define a Chern-Simon
term in odd dimensional space-time. Some features
“Chern-Simons quantum mechanics” have been stud
previously [14].) We formulate the theory in Euclidea
space (i.e., imaginary time) so that we can go smooth
between nonzero and zero temperature using the ima
nary time formalism [15]. The Lagrange density is

L ­
NfX

j­1

c
y
j s≠t 2 iA 1 mdcj 2 ikA . (1)

There are many similarities between this model and t
s2 1 1d-dimensional model of fermions coupled to a non
Abelian Chern-Simons gauge field. For example, th
model supports gauge transformations with a nontriv
winding number. Under the Us1d gauge transformation
c ! eilc , A ! A 1 ≠tl, the Lagrange density change
by a total derivative and the action changes by

DS ­ 2ik
Z

dt ≠tl ­ 22pikN , (2)

where N ; 1
2p

R
dt ≠tl is the integer-valued winding

number of the topologically nontrivial gauge transforma
tion. Thus, choosingk to be an integer, the Euclidean
action changes by an integer multiple of2pi, so that the
quantum path integral is formally invariant—just as i
three dimensional non-Abelian Chern-Simons theories [

Under naive charge conjugationC: c ! cy, A ! 2A,
the fermion mass term and the Chern-Simons term are
© 1997 The American Physical Society
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invariant. This situation is similar to the fermion mas
term and the Chern-Simons term in three dimension
which are not invariant under the parity transformatio
In that case, introducing an equal number of fermions
opposite sign mass, the fermion mass term can be m
invariant under a generalized parity transformation. Sim
larly, with an equal number of fermion fields of opposit
sign mass, one can generalize charge conjugation
make the mass term invariant in ours0 1 1d-dimensional
model.

There is a global part of the Us1d symmetry, whose
conserved charge is

QF ­
1
2

X
j

scy
j cj 2 cjc

y
j d . (3)

The fermionic Hamiltonian is

HF ­
m
2

X
j

scy
j cj 2 cjc

y
j d ­ mQF . (4)

Both QF and HF change sign under charge conjugatio
In addition to the Us1d gauge symmetry, there is a globa
SUsNf d flavor symmetry, whose conserved charges are

Ra ­
X
i,j

c
y
i T a

ijcj , (5)

where the T a are the generators of SUsNfd in the
fundamental representation.

The canonical commutation relations arehci , c
y
j j ­

dij, and the ground statej0l is chosen so that the energy
is lowest: cjj0l ­ 0 if m . 0, and c

y
j j0l ­ 0 if m ,

0. Then the vacuum expectation value of the fermion
chargeQF at zero temperature is

k0jQF j0l ­ 2
m

2jmj
Nf , (6)

while at nonzero temperature

k0jQF j0lb ­ 2
m

2jmj
Nf tanh

µ
bjmj

2

∂
. (7)

Note that theT ­ 0 answer (6) is regained smoothly in
the zeroT (b ! `) limit.

We now compute the effective action for this theory:

GfAg ­ ln

∑
dets≠t 2 iA 1 md

dets≠t 1 md

∏Nf

. (8)

Recalling that the fermion fields at finite temperatur
are antiperiodic, cs0d ­ 2csbd, the eigenvalues of the
operator≠t 2 iA 1 m are

Ln ­ m 2 i
a
b

1
s2n 2 1dpi

b
, n ­ 2`, . . . , 1` ,

(9)

where a ;
R

b
0 dt Astd. To get these, we can make a

small gauge transformation so thatA takes the constant
value ayb. Then the determinants may be computed
s,
.
f
de
i-

to

.

c

e

s

usual [16]

dets≠t 2 iA 1 md
dets≠t 1 md

­
Ỳ

n­2`

24m 2 i
a
b 1

s2n21dpi
b

m 1
s2n21dpi

b

35
­

coshs bm
2 2 i

a
2 d

coshs bm
2 d

. (10)

Thus the exact finite temperature effective action is

GfAg ­ Nf ln

∑
cos

µ
a
2

∂
2 i tanh

µ
bm

2

∂
sin

µ
a
2

∂∏
. (11)

It is interesting to notice thatGfAg is not an extensive
quantity (i.e., it is not an integral of a density) in
Euclidean time. Rather, it is a complicated function o
the time integral ofA.

In the zero temperature limit, the tanh function reduce
to tanhs bm

2 d !
m
jmj , so that

GfAgT­0 ­ 2
i
2

m
jmj

Nf

Z
dt Astd . (12)

The zero temperature effective actionis an extensive
quantity in Euclidean time. Indeed,GfAgT­0 has the
same form as the original Chern-Simons term, and w
conclude that the Chern-Simons coefficientk is shifted in
the combined, classical plus effective, action:

k ! k 2
1
2

m
jmj

Nf . (13)

The shift dk at T ­ 0 is exactly the charge (6) of the
T ­ 0 fermion ground state, which should dominate th
zero temperature correction. This is quantized in ha
integer units. (This is the quantum mechanical analo
of the global anomaly [2,16].) If the number of fermion
flavors is even, the vacuum charge is an integer and the
is no global anomaly. This is the same as ins2 1 1d-
dimensional fermion-Chern-Simons theories.

The finite temperature effective action is more compl
cated. An expansion of the exact result (11) in powers
the gauge field yields

GfAg ­ Nf

∑
2

i
2

tanh

µ
bm

2

∂
a 2

1
8

sech2
µ

bm
2

∂
a2

2
i

24
tanh

µ
bm

2

∂
sech2

µ
bm

2

∂
a3 1 . . .

∏
.

(14)

We can compare this exact result with a standard fie
theoretic perturbative computation:

GfAg ­ Nf ln dets1 2 iSAd

­ 2Nf

X̀
p­1

ip

p
trsSASA . . . SAd , (15)

whereS is Green’s function for the free operators≠t 1 md.
3435
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It is instructive to consider first the case in whichA is
constant:A ­ ayb. Then

trsSpd ­
X̀

n­2`

1

s s2n21dpi
b 1 mdp

­
b

2
s21dp21

sp 2 1d!

µ
≠

≠m

∂p21

tanh

µ
mb

2

∂
(16)
(

r
d

s

b
x
n
i

i
h
o

3436
in which case the perturbative expansion (15) yields th
expansion (14) of the exact result.

For a general gauge fieldAstd [recall that Astd is a
periodic function oft in the imaginary time formulation
of the finite temperature theory] we can compute all order
in the perturbation series (15) using Green’s function
Sst 2 t0d ­
1
b

X̀
n­2`

eis2n21dpiyb

s2n21dpi
b 1 m

­ 2
1
2

∑
sinhsmjt 2 t0jd 2 tanh

µ
mb

2

∂
coshsmjt 2 t0jd

∏
1

1
2

ebst 2 t0d
∑
coshsmjt 2 t0jd 2 tanh

µ
mb

2

∂
sinhsmjt 2 t0jd

∏
. (17)

Hereebstd is the periodic step function:

ebstd ­

Ω
11, 0 , t , b ,
21, 2b , t , 0 , (18)

with ebsnbd ; 0. Thus Ss0d ­
1
2 tanhs mb

2 d, and Ssbd ­ 2
1
2 tanhs mb

2 d; while for 0 , t , b, Sstd ­
1
2 f1 1

tanhs mb

2 dge2mt, and for 2b , t , 0, Sstd ­ 2
1
2 f1 2 tanhs mb

2 dge2mt . Equipped with these results for Green’s
function we can now compute thepth order contribution to the perturbative expansion (15) of the effective action:

2
ip

p

Z b

0
dt1

Z b

0
dt2 · · ·

Z b

0
dtp Sst1 2 t2dAst2dSst22t3dAst3d · · · Sstp 2 t1dAst1d

­
s2idp

2pp!

"√
≠

≠s mb

2 d

!p21

tanh

µ
mb

2

∂# "Z b

0
Astd dt

#p

. (19)
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We obtain the same expansion as the expansion
of the exact answer (11). Once again we see that
full effective actionGfAg is not an extensive quantity in
Euclidean time.

We can alternatively derive the finite temperatu
effective action from the partition function in a gran
canonical ensemble. Consider a constant gauge fi
Astd ­ 2im. Then

eGfAg ­
tr expf2bHF 1 bmQFg

tr expf2bHFg
, (20)

whereHF is the fermionic Hamiltonian (4) andQF is the
fermionic charge (3). A straightforward calculation yield

eGfAg ­

"
coshbsm2md

2

coshbm
2

#Nf

(21)

in agreement with (10) and (11).
Our s0 1 1d-dimensional model is special in the sen

that we are able to computeevery orderin perturbation
theory, and furthermore we are able tore-sumthe pertur-
bative expansion to obtain theexacteffective action. In
higher dimensional examples it is generally not possi
to compute the exact effective action, because of the e
momentum integrations and the additional tensor or spi
structure. Thus, a field theoretic computation of the fin
temperature effective action in2 1 1 dimensions [5–9] is
a perturbative one that typically looks only for thelowest
order term, which happens to be the same as the or
nal Chern-Simons term. Applying this same philosop
to the example treated here, we would (erroneously) c
14)
the

e
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s
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clude that the effective action is just the first term in th
expansion (14), and hence that the Chern-Simons coe
cient is shifted by a temperature-dependent amount

k ! k 2
1
2

m
jmj

tanh

µ
bjmj

2

∂
Nf . (22)

This temperature dependent shiftdk is precisely the
result obtained [5–8] in fermion and/or Chern-Simon
theory in2 1 1 dimensions. There is an obvious physica
interpretation of the correction in (22): this shift is just
the finite temperature expectation value (7) of the fermio
charge. In the three dimensional theory the correspondi
correction tok can be interpreted as the induced charg
density per magnetic field. In the high temperature limi
the expectation value of the fermion charge goes to ze
as the energy gap between the excited states and
ground state is negligible in this limit.

Attempting to identify the shifted coefficient in (22) as
a new Chern-Simons coefficient, which should take dis
crete values in its own right, leads immediately to the dif
ficulties discussed in the introduction and in Refs. [6,9
However, as is very clear from our exactly solvable
model, such an identification isincorrectat finite tempera-
ture because it ignores the higher terms in the perturbati
expansion of the effective action. At zero temperature
happens to be correct to make this identification becau
only the first term in the expansion (14) survives in th
zero temperature limit. Indeed, we see from the exact
nite T effective action (11) that the entire effective action
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has a well-defined behavior under a large gauge transf
mation, independent of the temperature,even though at
any given finite order of a perturbation expansion there
a temperature dependence. Under a large gauge tra
formation, a ! a 1 2pN , the effective action (11) is
shifted by NfNpi, which is exactly the same behavio
as at zero temperature—see (12) and (13). This glob
flavor anomaly may be avoided, independent of the tem
perature, by considering an even number of fermion fl
vors. However, if the effective action is computed to an
finite order in perturbation theory, its transformation unde
a large gauge transformation is complicated and tempe
ture dependent.

This simple model implies that discussion of th
gauge invariance of finite temperature effective actio
and induced Chern-Simons terms in higher dimensio
requires, at the very least, consideration of the fu
perturbation series. Conversely, no sensible conclusi
may be drawn by considering only the first term in th
expansion, as previous work has attempted to do. O
work suggests that once we remove the global flav
anomaly we expect the entire finite temperature effecti
action to be invariant under large gauge transformations

An interesting feature of this model is that the finite
temperature effective action is not an extensive quant
in Euclidean time. While we expect an effective actio
to be an extensive quantity in space, there is no reas
why it should be so in Euclidean time. We expect that
the three dimensional calculation of the finite temperatu
effective action we could expand in the spatial derivative
and spatial components of the gauge field, but we wou
need to keepall terms in time integrations and time
derivatives and inA0. This requirement explains why
the standard argument for gauge invariance of just t
Chern-Simons-like term in the effective action, based o
an arbitrary scaling of large gauge transformations, wor
at zeroT but fails at nonzeroT [6]. Nevertheless, the
leading order term in a spatial expansion should itself b
invariant under large gauge transformations. It would b
interesting to find the exact expression for this effectiv
action and its physical meaning.

Finally, the Chern-Simons quantum mechanics mod
considered here may be generalized to incorporate a
bosonic degrees of freedom, with conserved Us1d charge
QB. Then the Gauss law constraint becomesk 1 QF 1

QB ­ 0, which leads to interesting superselection secto
of integer total charge. In addition, one can introduc
Yukawa couplings between the bosonic and fermion
r-
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fields, and supersymmetrize the system. We believ
further investigation in this direction will be rewarding.
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