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We propose a phenomenological matrix model to study string theory in AdS5 × S5 in

the canonical ensemble. The model reproduces all the known qualitative features of the

theory. In particular, it gives a simple effective potential description of Euclidean black

hole nucleation and the tunnelling between thermal AdS and the big black hole. It also

has some interesting predictions. We find that there exists a critical temperature at which

the Euclidean small black hole undergoes a Gross-Witten phase transition. We identify

the phase transition with the Horowitz-Polchinski point where the black hole horizon size

becomes comparable to the string scale. The appearance of the Hagedorn divergence

of thermal AdS is due to the merger of saddle points corresponding to the Euclidean

small black hole and thermal AdS. The merger can be described in terms of a cusp (A3)

catastrophe and divergences at the perturbative string level are smoothed out at finite

string coupling using standard techniques of catastrophe theory.
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1. Introduction

The AdS/CFT correspondence has enabled us to begin understanding various aspects

of quantum gravity in a more quantitative way [1]. In particular reliable computations of

black hole thermodynamics have been possible using the AdS3/CFT correspondence [1,2].

In this paper we would like to address some aspects of AdS5 black hole physics in the

context of type IIB string theory in AdS5 × S5, using the dual gauge theory at finite

temperature.

The thermodynamic aspects of quantum gravity in AdS spacetime were discussed long

ago in an important paper by Hawking and Page [3], who realized that it is possible to

define a canonical ensemble for quantum gravity and in particular for Schwarzschild black

holes. They found that an asymptotic AdS spacetime allows two Schwarzschild black hole

solutions, which are since called small black hole (SBH) and big black hole (BBH). As the

names suggest SBH can have a horizon radius that can be very small compared to the

size of AdS and BBH has a horizon radius which is comparable to (or much larger than)

the radius of AdS5. Further SBH has negative specific heat and is unstable, while BBH

has positive specific heat and is stable (meta-stable.) Hawking and Page also found that

the system undergoes a first order phase transition at a temperature T1 comparable to the

inverse curvature radius of the spacetime. Below T1, the system is described by a thermal

gas in AdS, while above T1 it is described by a BBH. With the discovery of the AdS/CFT

correspondence [4,5,6], Witten [6,7] realized that a BBH in AdS5 is naturally described by

the deconfinement phase of N = 4 Super-Yang-Mills (SYM) theory on S3×S1. He argued

that the Hawking-Page transition corresponds to a large N deconfinement transition in

the gauge theory at strong coupling.

Several authors [8,9,10] have discussed the partition function of the free N = 4 SYM

theory2 and found that the large N deconfinement transition persists at zero coupling. In

particular it was found that the deconfinement transition happens exactly at the Hagedorn

temperature of the low temperature thermal AdS phase3. Near the Hagedorn temperature,

the free energies of both high and low temperature phases become divergent and string

2 See [11,12,13,14,15,16,17,18] for other recent discussions of phase transitions in weakly cou-

pled Yang-Mills theory.
3 At strong coupling, the Hagedorn temperature for the thermal AdS is much higher than the

Hawking-Page temperature.
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perturbation theory4 breaks down. In [19] the smoothening of the Hagedorn transition

at finite string coupling was discussed. This requires a careful understanding of nonper-

turbative effects in 1/N . It was found that the divergences in perturbation theory are

removed by two distinct mechanisms. The divergent terms in the high temperature phase

can be resummed, leading to a noncritical string description. This happens at a scale

T − TH ∼ N− 4
3 . The Hagedorn divergence of the low temperature phase is removed by

summing over the contributions from the thermal AdS and the noncritical string back-

ground, happening at T − TH ∼ N−2.

In this paper we extend the analysis of [19] to finite ‘t Hooft coupling and study

various non-perturbative aspects of black hole physics in AdS5 using the boundary gauge

theory. The latter is precisely formulated but technically difficult to deal with in the strong

coupling region, where one can make contact with gravity. In such circumstances one is,

naturally led to an effective action approach, relying on the choice of an order parameter

and its symmetries. The difficulty is then transferred to the coupling and temperature

dependence of coefficients of the effective action coding the microscopic theory. In spite of

this difficulty one can hope to make progress. Above all, one is encouraged by the success

of a similar programme in QCD.

The strategy has two parts. First one may try to extract certain universal features of

string theory in AdS5 from the effective action. The hope is that universal features do not

depend on the exact details of the effective action and can be extracted by exact analysis

of a tractable model. Secondly one can approximately determine the coefficients of the

effective action by explicitly matching, in our case, with data in the dual supergravity

description.

String theory backgrounds like thermal AdS, BBH and SBH appear as saddle points

in the Euclidean path integral of Yang-Mills theory. Perturbative string expansion around

each of them is given by the large N expansion around the corresponding saddle point

in the boundary theory5. As one varies the temperature, such expansions break down at

various places where their coefficients develop nonanalytic behavior. One example is the

Hagedorn temperature of thermal AdS. The other is the temperature (called T0 by [3]) at

4 Since the 1/N expansion in the boundary theory corresponds to the perturbative string

expansion in the bulk, in this paper we will use the word “large N expansion” and “perturbative

string expansion” interchangeably.
5 For the perturbative 1/N expansion around the saddle point, it is not important whether

the saddle of interest is stable, metastable or unstable.
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which SBH and BBH saddles appear. While such nonanalytic behavior is rather puzzling

and hard to understand from the perturbative string point of view, in the dual Yang-

Mills theory they arise due to the fact that in the large N limit the number of degrees

of freedom goes to infinity. The non-analyticity occurs for the same reason as in the

thermodynamic limit of classical statistical physics. At these temperatures, as in the case

analyzed in [19], a non-perturbative treatment is required no matter how large N is. Thus

these non-analyticities are excellent probes of the non-perturbative structure of the theory.

Moreover, since their appearance is intrinsically tied to the large N limit, it is expected

thnat they possess a certain degree of universality, just as in critical behavior in condensed

matter systems. One may hope that the qualitative behavior at these critical temperatures

sould be insensitive to the precise details of the theory and could be captured by studying

much simpler systems. This gives us hope that we can study critical behavior, and hence

non-perturbative aspects of large N Yang-Mills theory at finite or strong coupling, and in

turn yielding insights into string theory in AdS5.

It was discussed in [10] that the partition function of the SYM theory can be written

as a matrix integral over the effective action of the Polyakov loop. For Yang-Mills theory at

finite coupling, we have no way of computing this effective action explicitly. Nevertheless,

with universality in mind, here we propose a class of effective actions as “phenomenological

models” to approximate the full theory. We show that models in the class have a large N

phase structure resembling that of a weakly coupled string theory in AdS5×S5. This gives

strong indication that strongly coupled N = 4 SYM theory belongs to the same universality

class. This also gives us reason to believe that critical behaviors of the bulk string theory

at places where string perturbation theory breaks down can indeed be captured by much

simpler models.

The simplest model within the class, which we will refer to as (a, b) model, can be

considered as a truncation of the full effective action of the theory to the lowest nonlinear

terms6. Being exactly solvable to all order in N , this model provides an ideal representative

to study the critical behaviors of the universality class. We proceed to perform a detailed

study of various non-perturbative aspects of this model. The results, when translated into

the language of bulk string theory, can be summarized as follows:

6 The model contains two parameters (a, b), both are functions of the ’t Hooft coupling λ

and temperature T . We will assume some qualitative dependence of (a, b) on T as part of the

phenomenological input data. This model has been briefly discussed earlier in the mean field

approximation as a toy model for weakly coupled gauge theories in [10].
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1. We give an effective potential description of the tunnelling between thermal AdS and

the BBH. The Euclidean SBH plays the role of the bounce (also called a thermalon).

We compute the tunnelling rate in our effective theory.

2. We find that the Euclidean SBH undergoes a third order Gross-Witten [20,21,22]

phase transition in the large N limit at a temperature Tc below the Hagedorn temper-

ature. We identify the phase transition with the Horowitz-Polchinski correspondence

point [23] where the event horizon size of the SBH becomes comparable to string scale.

3. The breakdown of the perturbative string expansion of thermal AdS at the Hagedorn

temperature is due to the merger of the saddle points corresponding to the SBH and

thermal AdS. The merger can be described in terms of a cusp (A3) catastrophe. The

simplest possibility allowed by the symmetry. Similarly the breakdown of perturbative

string theory around the BBH when it merges with the SBH saddle can be understood

in terms of a fold (A2) catastrophe. The divergences at the perturbative level are

smoothed out at finite N using the standard techniques of catastrophe theory.

4. A common theme in our study of the critical behavior when a CFT approaches a

singular point is that there always exists a double scaling limit and it is likely that

the theory in the double scaling limit is described by a noncritical string background.

This also resonates with the result of [19] and the behavior of other singular CFTs

discussed in [24,25,26].

While these features are studied explicitly only in the simplest (a, b) model, we believe

they persist for all models in the class due to universality of the large N phase transition

and the catastrophe.

The plan of the paper is as follows. In the next section we review some aspects of the

thermodynamics of quantum gravity in AdS5 ×S5 which we aim to reproduce in the large

N limit of our “phenomenological” models. In section 3, we review some aspects of the

computation of the Yang-Mills partition function using the effective action of the Polyakov

loop and present the truncated models. Section 4 is devoted to a detailed study of the phase

structure of the (a, b) model at large N . We discuss in detail the thermal history of the

theory in the canonical ensemble. We also show that the sharp Hawking-Page transition in

supergravity is smoothed out to a finite cross region at finite N . In section 5 we elucidate

the role of SBH as the bounce which mediates the tunnelling between BBH and thermal

AdS (and vice versa depending on the temperature) and calculate the tunnelling rate. We

also connect the bounce and the large order behavior of perturbative theory. In section

6 we study the critical behaviors of the theory at temperatures where the perturbative
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string expansion breaks down around at least one of the three backgrounds. They can

be understood using catastrophe theory. We conclude in section 7 with a discussion of

future directions. We have also include a few appendices which contain details of some

calculations.

2. Review of Hawking-Page transition in Euclidean Quantum gravity

In this section we review the results of [3], to be reproduced using the matrix models

in later sections.

The canonical ensemble for quantum gravity in AdS can be defined as a path integral

over the metric and all other fields asymptotic to AdS with time direction periodically

identified with a period β = 1/T . At semi-classical level, i.e. R2/l2p ≫ 1, where R is

the curvature radius of AdS, such a path integral is dominated by configurations near the

saddle points, i.e. classical solutions to the Einstein equations. If we assume spherical

symmetry and zero charge, there are three possible critical points, which are thermal

AdS5 (Euclidean AdS with time direction periodically identified), a big (Schwarzschild)

black hole (BBH) and a small black hole (SBH). Among them thermal AdS and BBH

are locally stable, while SBH has a negative mode and it is unstable. The thermal AdS

background has topology S1×R4, while SBH and BBH have topology R2×S3, all of them

with a common boundary S1×S3. The Euclidean time direction in black hole backgrounds

are contractible and the winding numbers are not conserved. In contrast the time circle

in thermal AdS is noncontractible and the winding number is conserved.

The classical action for thermal AdS is I1 = 0. This is standard in string theory: with

a noncontractible time circle, there is no genus zero contribution to the free energy. A

Schwarzschild black hole solution exists in AdS only for a Hawking temperature greater

than

T0 =

√
2

πR
, β0 =

1

T0
=

πR√
2

(2.1)

For T > T0, there are two possible black holes, whose horizon sizes are given by

r+

R
=

1√
2


β0

β
±
√

β2
0

β2
− 1


 (2.2)

The corresponding classical Euclidean action is given by

I =
R3

2κ2
2πΩ3

(r+

R

)3 1 −
( r+

R

)2

1 + 2
( r+

R

)2 , (2.3)
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where 2κ2 is the five-dimensional Newton’s constant7. We will denote I+, I− the classical

actions for large and small black hole respectively. The specific heat of the large black

hole is positive and thus it is thermodynamically stable (i.e. it can reach locally stable

thermal equilibrium with thermal radiation). The small black hole has a negative specific

heat. The action I− of the small black hole is always greater than the action of thermal

AdS and of the big black hole. At temperature

T1 =
3

2πR
> T0 (2.4)

the action for the big black hole is I+ = 0 = I1. When T0 < T < T1, I+ > 0, and the

saddle corresponding to thermal AdS dominates. When T > T1, I+ < 0, the big black

hole (BBH) dominates. There is a change of dominance at T1. This is the Hawking-Page

transition. In the classical limit κ2 → 0, this is a sharp first order transition. We expect

that at finite κ2 the transition should be smoothed out. This we will see explicitly in the

gauge theory description.

In the Minkowski description the spectrum of fluctuations around AdS5 and BBH (all

of positive frequency in Euclidean and Minkowski descriptions) can be interpreted in terms

of physical particles and they constitute the meta-stable thermal ensemble around these

backgrounds. The SBH on the other hand has a negative eigenvalue in the spectrum of

small fluctuations in the Euclidean description. Hence the SBH fits the description of an

instanton relevant for the tunnelling between thermal AdS5 and the BBH. For example,

one expects the rate for a BBH to tunnel into a thermal AdS is expected to be

Γ1 = A1e
−(I−−I+) (2.5)

That is, through thermal fluctuation, a big black hole can turn into a small black hole. The

small black hole (since it has a negative specific heat) then can either shrink to thermal AdS

by emitting thermal radiation or grow back into a big black hole by absorbing radiation.

Similarly, the thermal AdS background has also a nonzero probability to nucleate a small

black hole with probability

Γ2 = A2e
−I− (2.6)

Afterwards the small black hole can shrink back to the thermal AdS or grow into a big

black hole. The prefactors A1, A2 in (2.5) and (2.6) are given by the determinants of small

7 Note that R
3

2κ2 ∝ N2, where N is the rank of the gauge group in the boundary Yang-Mills

theory.
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fluctuations around the relevant background. In thermal equilibrium, the probability to

go from a typical state in thermal AdS to that of a big black hole or back should be the

same.

When T0 < T < T1, the big black hole phase is metastable, since it has a higher free

energy than that of that of thermal AdS and Γ1 > Γ2. But string perturbation theory

around it is well defined until T0 is reached where we expect the perturbation theory to

break down. Similarly, when T > T1, thermal AdS becomes metastable and Γ2 > Γ1. For

a large AdS with R ≫ ls (ls is the string length) the perturbation theory around thermal

AdS breaks down at a much higher Hagedorn temperature TH ∼ 1
ls

. In the Hawking-Page

discussion, there also exists a temperature T2 beyond which the thermal graviton gas in

AdS will collapse into a big black hole. For a weakly coupled string theory in AdS5×S5, T2

is of order 1

(Rl4p)
1
5

and is much higher than the Hagedorn temperature TH ∼ 1
ls

for thermal

AdS.

3. Effective action at finite temperature

In this section we will introduce a phenomenological matrix model for understanding

string theory in AdS5 × S5 at finite temperature.

We first give some general discussion of the partition function of N = 4 SYM theory

on S3. We consider the theory in the canonical ensemble, i.e. the Euclidean time direction

is periodically identified with a period of β = 1
T . It was pointed out in [10] (see also [27])

that the Yang-Mills theory partition function on S3 at a temperature T can be reduced to

an integral over a unitary U(N) matrix U , which is the zero mode of Polyakov loop on S3,

Z(λ, T ) =

∫
dU eSeff (U) (3.1)

with

U = P exp

(
i

∫ β

0

Adτ

)
(3.2)

where A(τ) is the zero mode of the time component of the gauge field in S3. This follows

from the fact that apart from A all modes of N = 4 SYM on S3 are massive. Hence one

can integrate them out to obtain an effective action for A. Gauge invariance requires that

the effective action must be expressed in terms of products of trUn with n an integer, since

7



these are the only gauge invariant quantity that can be constructed from A alone. Seff (U)

has a ZN symmetry

U → e
2πi
N U

due to global gauge transformations which are periodic in the Euclidean time direction up

to ZN factors. A generic term in Seff (U) will have the form

trUn1trUn2 · · · trUnk , n1 + · · ·nk = 0 (mod N), k > 1

We can expand Seff in terms of a complete set of such operators, with the first few terms

Seff (U) = a1trUtrU−1 + b1

(
trUtrU†)2 + a2trU

2trU−2 + c1trU
2trU†trU† + · · · (3.3)

The coefficients in the expansion are functions of ’t Hooft’s coupling λ, and T . While these

coefficients are in principle calculable at weak coupling, the explicit computations are in

general very complicated (see e.g. [28]). At finite or large ‘t Hooft coupling, there is no

available tool at the moment to attempt such a computation. Even one were able to find

the expansion (3.3) explicitly, to perform a finite N computation of the matrix integral

(3.1) is still a daunting task, if not impossible.

In order to make progress, in this paper, we will consider the truncation of (3.3) to

terms containing only powers of trUtrU−1, i.e. we consider an effective action of the form

Seff (U) = S(x), x =
1

N2
trUtrU†

= atrUtrU−1 +
b

N2

(
trUtrU†)2 +

c

N4

(
trUtrU†)3 + · · ·

(3.4)

Our consideration is phenomenological, motivated by the AdS/CFT correspondence to

search for effective actions which lie within the same universality class as that of the SYM

theory at finite coupling. At a heuristic level, one may also consider (3.4) as arising from

(3.3) by “integrating out” all the higher moments trUn, trU−n (n > 1). In [27] it was also

argued based on group theory considerations that terms of the form (3.4) dominate over

other types terms in (3.3) in the large N limit.

We will consider a class of matrix models of the form (3.4) satisfying the conditions

that S(x) is convex and S′(x) is concave. We show in the next section and in Appendix

A that in this class the large N phase structure appears to be universal. In particular,
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the phase structure precisely reproduces8 the phase structure of a weakly coupled string

theory in AdS. We believe this is a strong indication that strongly coupled N = 4 SYM

theory also lies in this class. The simplest model in this universality class is given by the

first two terms in (3.4)

Z(a, b) =

∫
dU exp

[
atrUtrU† +

b

N2

(
trUtrU†)2

]
(3.5)

with b > 0.

As discussed in the introduction, we are interested in the critical behaviors in regions

of parameter space where large N expansions around various saddle points break down.

Being exactly solvable at finite N , (3.5) provides a simple, nice representative to study the

critical behaviors of the universality class.

To conclude this section, we note that (3.5) was discussed in [10] in the Hartree-Fock

approximation. It was noted that for b > 0 a first-order phase transition resembling the

Hawking-Page transition occurs. This observation was a motivation for the investigations

in this paper.

4. Large N phase structure of the universality class

In this section we study the large N phase structure of (3.4) and (3.5) (b > 0). For

our later purpose of studying the critical behaviors of (3.5), we give a detailed discussion

of the phase structure of (3.5) using a method suitable for finite N analysis. We point out

general matrix model (3.4)

Z =

∫
dU eN2S(x), x =

1

N2
trUtrU† (4.1)

has the same large N phase structure as (3.5) provided that S(x) is convex and S′(x) is

concave. For completeness we have included in Appendix A an alternative discussion of

the phase structure of (4.1) using the Hartree-Fock method.

8 We will assume some qualitative dependence of S(x) on T as part of the phenomenological

input data.
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4.1. Effective potential

For b > 0, equation (3.5) can be rewritten using a Lagrange multiplier µ:

Z(a, b) =
N

2
√

πb

∫ ∞

−∞
dµ e−

N2

4b
(µ−a)2

∫
dU exp

[
µtrUtrU†] . (4.2)

The matrix integral in (4.2) can be further simplified by introducing another Lagrange

multiplier g. For example for µ0, one finds

eN2F(µ) =

∫
dU exp

[
µtrUtrU†]

=
N2

2µ

∫ ∞

0

dg g e−
N2g2

4µ
+N2F (g)

(4.3)

with

eN2F (g) =

∫
dU exp

[
Ng

2

(
trU + trU†)

]
(4.4)

The formula for µ < 0 is obtained by taking g → ig.

The large N expansion of (4.4) and the corresponding third order phase transition is

well known [20,21,29]

F (g) =






g2

4 + nonperturbative g ≤ 1 or g imaginary

g − 1
2 log g − 3

4 + O(1/N2) g > 1

(4.5)

The order parameter of (4.4) can be taken to be

ρ1(g) =
1

N
〈TrU〉g =

1

N

〈
TrU†〉

g
=

∂F

∂g

=






g
2 + · · · g < 1 or g imaginary

1 − 1
2g + · · · g > 1

(4.6)

characterizing the eigenvalue distribution of U . When 0 ≤ ρ1 < 1
2 (g < 1), the system is in

a phase whose eigenvalue distribution does not have a gap on the unit circle. In particular,

for g = 0, the distribution is uniform. When for 1 > ρ1 > 1
2 (g > 1), the distribution

develops a gap. (4.5) and (4.6) do not apply to g ≈ 1, where the system undergoes a third

order phase transition [20] in the large N limit. At finite N the third order discontinuity

in (4.5) is smoothened out by non-perturbative effects. They will be discussed in later

sections when needed.
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One can now rewrite (3.5) as a two dimensional integral

Z =
N3

4
√

πb

∫ ∞

−∞

dµ

µ

∫ ∞

0

gdg e−N2V (µ,g) (4.7)

with

V (µ, g) =





1
4b

(µ − a)2 − g2

4
1−µ

µ
µ < 0

1
4b (µ − a)2 + g2

4
1−µ

µ µ > 0, 0 ≤ g < 1

1
4b (µ − a)2 + g2

4µ − g + 1
2 log g + 3

4 + O(1/N2) µ > 0, g > 1

(4.8)

It is often convenient to integrate out g to reduce (4.7) to a one dimensional integral

Z(a, b) =
N

2
√

πb

∫ ∞

−∞
dµ e−N2Q(µ) (4.9)

with

Q(µ) =
1

4b
(µ − a)2 −F(µ) (4.10)

and F(µ) was defined in (4.3). The large N expansion for F(µ) was found in [19], e.g. the

leading order terms are

F(µ) =





0 − 1
N2 log(1 − µ) + · · · µ < 1

1
2

w
1−w + 1

2 log(1 − w) + O
(

1
N2

)
µ > 1

(4.11)

where for µ > 1 we have introduced

w =

√
1 − 1

µ
. (4.12)

Inherited from (4.5), (4.8) has a third order discontinuity at g = 1 which needs to

be supplemented with a non-perturbative treatment. (4.10) with F given by (4.11) has

divergences9 and first order discontinuity at µ = 1. Again a non-perturbative treatment

is necessary, as discussed in detail in [19]. Part of the subtlety at µ = 1 in (4.10) has to

do with that at µ = 1, g becomes massless and the effective potential V (µ, g) is flat in

the range 0 < g < 1. Thus near µ = 1 it is more convenient to use the two dimensional

effective potential (4.8). Also in (4.11) we have suppressed a subdominant term which

should be taken into account in the analysis of the phase structure. This is automatically

9 The second and higher derivatives of F(µ) are also divergent for µ → 1+.
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taken care of in the two-dimensional integral (4.7). In this and following sections we will

use both forms of the effective potential (4.8) and (4.10) depending on convenience. The

one-dimensional effective potential Q(µ) is easier to visualize than the two-dimensional

potential V (µ, g). But as we mentioned, equation (4.8) is more convenient around µ = 1.

We note that the trick used in (4.2) to reduce (3.5) to an integral transform of (4.3)

can be generalized to find the large N phase structure of general matrix models (4.1) with

S(x) convex. Since S(x) is convex, it admits a Legendre transform10:

S(µ) = Maxx(µx − S(x))

The Legendre transform is involutive. If we do it twice we get back the same function.

Hence S(µ) is also convex. We can then write (4.1) as

Z =

∫
dU eN2S(x) =

∫
dU

∫
dµ eN2(µx−S(µ)) (4.13)

and the second integral over µ is carried out using saddle points. For large N this will give

an excellent approximation. Convexity in fact guarantees that there is a unique saddle

point contributing. If we now exchange the order of integration in (4.13) and use (4.3), we

find that

Z =

∫
dµ e−N2Q(µ) (4.14)

where

Q(µ) = S(µ) − F(µ) (4.15)

and F(µ) is given by (4.11) in the large N limit. We will show in next subsection that

Q(µ) leads to the same large N phase structure as (4.10) provided S′(µ) is also convex11.

4.2. Phase structure

In the large N limit the critical points of V in (4.7) describe different phases of the

theory which in turn correspond to different bulk string theory geometries. The minima

correspond to (meta)stable phases, while saddle points12 (or maxima) to unstable phases.

Note that in the large N limit, the eigenvalue distribution of the Polyakov loop U at a

critical point follows from (4.4) with g given by its value at the critical point. Since there

10 For general properties of Legendre transformations see for instance the book [30].
11 That S

′(µ) is convex means that S′(x) is concave.
12 By saddle here we refer to saddle points of V (µ, g) on the real µ − g plane.
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is a one-to-one map (4.6) between ρ1 and g, g can be considered as the order parameter of

the theory. After integrating out g one can also interpret µ in (4.9) as the order parameter

(at least in the range µ1).

Before discussing the critical points of the theory in detail (which is somewhat in-

volved), we note that qualitative features of the critical point structure of (3.5) can be

conveniently visualized by plotting the one dimensional effective potential Q(µ) (4.10) in

the large N limit. Depending on the values of (a, b), Q can have one or three critical points

(see fig. 2). The critical point structure in the (a, b) plane is plotted in fig. 1 (see below).

Below curve I in fig. 1, Q has one minimum. Between curve I and curve H, it has three

critical points µ1 < µ2 < µ3, with two minima (µ1 and µ3) and one maximum (µ2). The

two minima change dominance on curve II. On curve I, µ2 and µ3 merge. At curve H, µ1

and µ2 merge. To the right of curve H, in addition to µ3, (4.8) also has a tachyonic saddle

which is not visible in the leading order Q-plot here.

-1.5 -1 -0.5 0.5 1
a

1

2

3

4

5

b

I

II

III

H

CΛ

Fig. 1: This figure plots the critical point structure of the theory in the a − b

plane. Below line I, there is one critical point. There are three critical points

between line I and line H, two minima, one maximum. At line II, two minima

exchange dominance.

We now describe the critical points of (4.8) in detail:

1. From the first two lines of (4.8) one finds the following critical point

µ1 = a, g1 = 0 (4.16)
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Fig. 2: Plot 2a corresponds to (a, b) below curve I of fig. 1, 2b to (a, b) between

curve I and curve II, 2c to (a, b) between curve II and curve H, and 2d to (a, b)

lying to the right of curve H. Note the discontinuity in the first derivative at µ = 1

is due to the large N approximation. It is smoothened out by non-perturbative

effects.

with

V (µ1, g1) = 0 (4.17)

and

V ′′ =

(
Vµµ Vµg

Vµg Vgg

)
=

1

2

(
1
b 0
0 1−a

a

)
(4.18)

where Vgg denotes ∂2V
∂g2 and so on. For a < 1, it is a local minimum. V ′′ becomes

singular for a = 1 and tachyonic for a > 1. Since g1 = 0, it describes a uniform

eigenvalue distribution in the unit circle.

2. For a < 1 and c = 2(1−a)
b

< 1, there is an additional saddle point from the second line

of equation (4.8) at

µ2 = 1, g2 =
√

c, c =
2(1 − a)

b
< 1 (4.19)

with

V (µ1, g1) =
(1 − a)2

4b
(4.20)

and

V ′′ =
1

2

(
1
b

+ c −√
c

−√
c 0

)
(4.21)
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Note that V ′′ has a negative eigenvalue. Since ρ1(µ2, g2) = 1
2

√
c < 1

2 , µ2 describes a

gapless phase in the eigenvalue distribution of U . As a → 1, (4.16) and (4.19) merge,

after which (4.19) disappears while (4.16) becomes tachyonic.

3. From the third line of (4.8) the equations for the critical points are given by

1

2b
(µ − a) − g2

4µ2
= 0,

g

2µ
− 1 +

1

2g
= 0 (4.22)

Note that the second equation in (4.22) only has real solutions for µ > 1, in which

case one finds that13

g =
1

1 − w
, (4.23)

where w was introduced in (4.12). The eigenvalue distribution for such a g is given

by

ρ1 = 1 − 1

2g
=

1 + w

2
>

1

2
. (4.24)

Substituting (4.23) into the first equation of (4.22) one finds an equation for µ,

µ − a

2b
=

(w + 1)
2

4
(4.25)

Of course (4.25) can also be obtained directly by extremizing the leading order term

of the effective potential (4.10) for µ > 1, namely

Q(µ) = V (µ, g(µ)) =
(µ − a)2

4b
− 1

2

w

1 − w
− 1

2
log(1 − w) + O

(
1

N2

)
(4.26)

Note that

Q′′(µ) = −1

4

(
−2

b
+

1

µ2
+

1√
µ − 1µ3/2

)
(4.27)

Deriving µ from (4.25), g and ρ1 can then be found from (4.23) and (4.24). Since ρ1

is a monotonic function of µ, one can treat Q(µ) as an effective potential for ρ1.

4. Equation (4.25) can be easily solved by consider the intersections of two functions

f1(µ) = µ−a
2b

and f2(µ) = (1+w)2

4
. Note that f2 is concave in the range µ ∈ [1,∞),

while f1 is a straight line. Thus (4.25) can have at most two real solutions in the

allowed range. The result is as follows. Below curve I in fig. 1 on the a − b plane,

which is determined by

Q′(µ) = 0, and Q′′(µ) = 0 , (4.28)

13 The other real solution has g < 1 and so is discarded.
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(4.25) has no solutions in the desired range. Between curve I and the straight line

(curve III in fig. 1)

c =
2(1 − a)

b
= 1 , (4.29)

there are two solutions14 1 < µ2 < µ3. It can be checked from (4.27) that µ2 is a

maximum of Q with Q′′(µ2) < 0 while µ3 is a local minimum with Q′′(µ3) > 0. At

curve I, µ2 and µ3 merge and move into the complex plane below curve I. As one

approaches (4.29) from below (c → 1+), µ2 → 1+. Above line c = 1, µ2 moves outside

the µ > 1 region to becomes (4.19) and (4.25) has only one solution µ3.

5. Below curve III, ρ1(µ2) > 1
2 . Above curve III, µ2 becomes (4.19) with ρ1(µ2) < 1

2 .

Thus µ2 undergoes a Gross-Witten type phase transition in the large N limit. We

will show in section 5.2 that the transition is precisely the third order Gross-Witten

transition.

6. There is an additional curve (curve II in fig. 1), in the a − b plane, determined by

equation

Q′(µ3) = 0, and Q(µ3) = 0, (4.30)

where the two minima µ1 and µ3 become of equal height

0 = V (µ1, g1) = V (µ3, g3) < V (µ2, g2) .

Below curve II, one has

0 = V (µ1, g1) < V (µ3, g3) < V (µ2, g2) ,

and above curve II

V (µ3, g3) < 0 = V (µ1, g1) < V (µ2, g2) .

To summarize, the structure of critical points for (4.7) in the a−b plane is plotted in fig. 1.

Below curve I (4.28), V has a unique minimum (4.16). Between curve I and line a = 1

(curve H in fig. 1), there are three critical points µ1 < µ2 < µ3 with µ1, µ3 minima, while

µ2 a saddle point in the µ − g plane with one negative eigenvalue. At curve I, µ2 and µ3

merge together. At curve II, µ1 and µ3 exchange dominance and the system has a first

14 We do not give their explicit expressions in terms of (a, b), since they are complicated and

not illuminating. We will specify their qualitative behavior below.
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order phase transition. At curve III, the saddle point µ2 undergoes a Gross-Witten phase

transition. At the vertical line H, µ1 and µ2 merge together. To the right of line H, µ1

becomes tachyonic, µ2 disappears, and µ3 > 1 remains a minimum. Note that curve II

and curve III always lie between curve I and line a = 1, but they can be above or below

each other. Close to a = 1, b = 0, line III lies below curve II and then intersects with and

rises above it.

4.3. Critical points for general models

We now consider the critical point structure of the general effective action (4.1) and

(4.14). As is clear from the derivation above, the overall phase structure of (4.10) presented

in fig. 2 to a large extent only depends on the convexity of the function (µ−a)2

4b and its

derivative. Our discussion above for (4.10) goes through for a convex S(µ) in (4.15)

provided that S′(µ) is also convex. For example, for µ < 1, with F(µ) given by (4.11),

Q(µ) has just one critical point given by the minimum of S(µ). For µ > 1, the critical

points of (4.15) satisfy the equation (which is a generalization of (4.25))

S′(µ) =
(1 + w)2

4
(4.31)

Since the right hand side of (4.31) is concave and S′(µ) is convex, Q can have at most

two critical points in the range µ ∈ (1,∞). The pattern and the evolution of the critical

points with the parameters of the theory also precisely resemble that of (4.10) including a

Gross-Witten phase transition for µ2 at µ = 1. Note that convexity of S′(µ) implies that

S′(x) is concave. We thus conclude that the structure of critical points of (4.1) is universal

if S(x) is convex and S′(x) is concave. In appendix A, we give a more detailed description

of the phase structure of (4.1) using the Hartree-Fock approximation.

4.4. Thermal History

As discussed in section 3, we would like to use the matrix model (3.5) as a phenomeno-

logical model to study weakly coupled string theory in AdS5 × S5 at finite temperature.

The parameters a, b are functions of the ’t Hooft coupling λ and the temperature T . In the

last subsection, we analyzed its large N critical point structure. In this subsection we will

show that with some weak assumptions about the λ and T dependence of a, b, the model

captures all the essential features of the bulk story, which we reviewed in sec. 2.
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We first identify the critical points of V in the large N limit with the saddle points

of the Euclidean gravity. µ1 = a has ρ1 = 0 in large N limit, i.e. the winding in the

Euclidean time direction is a good quantum number. We thus identify it with the thermal

AdS background. µ3, which is a minimum, can then be identified with the Euclidean

big black hole phase (BBH). µ2, which has a unique negative eigenvalue can be identified

with the Euclidean small black hole phase (SBH) in AdS. That a small black hole in AdS

has a unique negative eigenvalue was pointed out in [31]. Moreover, one can show from

the effective potential (4.26) and (4.20) that µ2 has a negative specific heat while µ3 has

a positive specific heat, without knowing their explicit dependence of (a, b) on T . The

derivation is given in Appendix B. This matches well with the thermodynamic properties

of the small and big black holes.

For fixed ’t Hooft coupling λ, as one varies the temperature T , (a(λ, T ), b(λ, T )) trace

a curve in the a−b plane, which we will denote by Cλ. Any curve Cλ in the a−b plane which

starts below curve I in fig. 1 at low enough temperature and ends up to the right of the

vertical line a = 1 at sufficiently high temperature (assuming it intersects curves I,II,III

and H only once) reproduces qualitatively the Hawking-Page picture15. The thermal

history following such a Cλ can be described as follows. At sufficiently low temperature,

we start with some point below curve I, where the theory has a unique critical point µ1,

corresponding to thermal AdS. As T increases to a temperature T0, Cλ will intersect the

curve I (4.28), where new critical points µ2 (SBH) and µ3 (BBH) come into existence. At

T1 > T0, it intersects with curve II, at which µ1 and µ3 change dominance. This is the

Hawking-Page transition. Above T1, µ3 (BBH phase) dominates and thermal AdS becomes

only metastable. As T increases further Cλ will eventually hit a = 1 (line H) from the left,

where the large N expansion (perturbative string expansion) around µ1 (thermal AdS)

breaks down. This temperature should be identified with the Hagedorn temperature TH

in AdS string theory.

There are a few other important features of our matrix model not visible in the bulk

supergravity analysis:

1. We found that there exists a line III where the SBH phase undergoes a Gross-Witten

transition from a gapped phase to a gapless one in the eigenvalue distribution of

U . We will denote Tc the temperature where Cλ intersects with line III. Since line

III lies between line I and line a = 1, we should have T0 < Tc < TH . Tc can

15 We have drawn such a hypothetic curve in fig. 1.
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be lower or higher than the Hawking-Page temperature T1 depending on where Cλ

hits line III. This phase transition for SBH, while not visible in supergravity, has a

natural interpretation in string theory. We would like to identify it with the so-called

Horowitz-Polchinski correspondence point [23] for SBH, i.e. the point at which the

horizon size of SBH is comparable to the string scale16. In [23] it was argued that

as one adiabatically decreases the string coupling, a black hole makes a transition

to a state of highly excited strings with the same quantum numbers (such as mass,

charge, angular momentum etc). Here we fix the string coupling (i.e. N), but raise

the temperature adiabatically. The horizon radius of a small black hole decreases and

eventually reaches the string scale. Following [23] we would like to argue that beyond

Tc, it is more appropriate to view the critical point (4.19) as describing a set of highly

excited string states. That the phase transition is third order suggests that the energy,

entropy and specific heat of a SBH vary continuously across the correspondence point

as it becomes a highly excited string states, but derivatives of the specific heat jump

in the large N limit. In the limit of large λ, i.e. R ≫ ls, we expect that Tc should

be close to TH and much greater than the Hawking-Page temperature T1. That Tc

is below TH appears to be consistent with the physical picture of the microcanonical

ensemble (see e.g. [32,10]). For notational simplicity, below we will continue to refer

to (4.19) as the SBH phase, keeping in mind that it should really correspond to a

highly excited string state.

2. Our matrix model indicates that at the Hagedorn temperature TH , the critical points

associated with thermal AdS and the SBH merge together. This appears natural since

very close to the Hagedorn temperature, thermal AdS will be dominated by a few long

string states. One expects that the distinction between thermal AdS and the highly

excited string phase which the SBH becomes above Tc disappears at the Hagedorn

temperature. This is again consistent with the physical picture of the microcanonical

ensemble of [32,10].

3. Above TH , i.e. when the Cλ curve goes to the right of line a = 1, thermal AdS becomes

tachyonic and the critical point corresponding to SBH disappears. BBH remains the

only stable phase. The physical interpretation of a tachyonic thermal AdS is not

completely clear to us. In the past, it has been argued that string theory above the

Hagedorn temperature can be interpreted again as some kind of long string phase

16 Note that the SBH should be considered as a ten-dimensional black hole.
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which can be analyzed by analytic continuation17 (see e.g. [33]). Our result does not

contradict this point of view. But we should note that this tachyonic thermal AdS

phase cannot be reached from the microcanonical ensemble. Whether it plays any role

in the canonical ensemble is not clear to us.

We now make some comments on the possible dependence of curve Cλ (i.e. curve

(a(λ, T ), b(λ, T )) with λ fixed) on the ’t Hooft coupling λ. At λ = 0, i.e. free theory,

b(T ) = 0 [8,10]. C0 moves along the a-axis from a = 0 at T = 0 to a → ∞ at T → ∞. It

crosses all lines in fig. 1 at a single point (a = 1, b = 0). This was the case analyzed in [19].

At weak coupling it has been shown in [28] that for pure gauge theory at weak coupling,

b(λ, T ) = O(λ2) > 0 and a(λ, T ) = a(0, T )+O(λ2). If the result also holds for N = 4 SYM

theory, then, Cλ≪1 corresponds to a curve slightly rising above the horizontal a−axis. In

this case Tc < T1. In the supergravity limit λ ≫ 1, T0, T1 ∼ 1
R

while Tc, TH ∼ 1
ls

, i.e. there

is a big hierarchy between these temperature scales. One can in principle determine part

of Cλ for λ → ∞ by equating the free energy in the gauge theory with the corresponding

free energy in supergravity. To leading order in large N we equate the Euclidean actions

of the SBH and BBH to the corresponding actions of µ2 and µ3 in the gauge theory. More

explicitly,

Q(µ2) =
I−
N2

, Q(µ3) =
I+

N2
(4.32)

where I− and I+ are the Euclidean actions (given in (2.3)) of the SBH and BBH respectively

and Q is given by (4.26). Since I− and I+ are functions of the single variable t = T/T0, we

can use (4.32) to determine a(t) and b(t) in the λ → ∞ limit. Note that this comparison

is only valid between curve I and curve III, since above curve III, µ2 undergoes a large N

phase transition which is not visible in supergravity.

To summarize, our phenomenological (a, b) model reproduces all the important fea-

tures of string theory in AdS5 × S5 at finite temperature. In fact we got more. We found

a description of the Horowitz-Polchinski correspondence point in terms of a Gross-Witten

transition and a non-perturbative picture at and beyond the Hagedorn temperature for

thermal AdS.

After finding the critical points one can then use (4.2) to find the large N expansion

of Z(a, b) around them. These expansions should correspond to perturbative string expan-

sions around the corresponding bulk geometries. In the rest of the paper we will examine

17 This argument was made in flat space. When the radius of AdS is much larger than the

string scale, we expect the behavior of thermal AdS to be similar to that of flat space.
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in detail various regions of the parameter space where these expansions break down and

study the physics there. Such regions include:

1. At T0, where the BBH and SBH saddles merge together. Perturbative string expan-

sions around BBH and SBH are not valid.

2. At the Hawking-Page temperature T1, where there is a first order phase transition

between thermal AdS and BBH. Although the large N expansion around each critical

point does not break down, the large N expansion of the full partition function requires

a special treatment.

3. At Tc, where the Gross-Witten transition for SBH takes place.

4. At TH , the Hagedorn temperature of thermal AdS.

Note that in 1 and 4 above, the breakdown in the large N expansion happens for the

metastable phases. In the terminology of the first order phase transitions, T0 and TH are

the spinodal temperatures for the BBH and thermal AdS respectively, beyond which the

metastable phase become unstable.

4.5. Full partition function and smoothening of Hawking-Page transition

An immediate consequence of considering the theory at finite N is that the sharp

Hawking-Page transition is smoothed out to a region of width of order N−2.

In the infinite N limit, the partition function of the system is

logZ =





log K1 + O(1/N2) T < T1

−N2Q(µ3) + log K3 + O(1/N2) T > T1

(4.33)

where K1 and K3 are Gaussian factors computed from the integral (4.7). Recall that

Q(µ1) = 0. Q(µ3) equals to zero at T1 and become negative (positive) above (below) T1.

The transition is first order with a nonzero latent heat given by

E = N2 ∂Q(µ3)

∂β

∣∣∣∣
T1

+ O(1) (4.34)

The expectation value of the Polyakov loop also jumps at T1

ρ2
1(T ) =





O(1/N2) T < T1

1
4

(
1 +

√
1 − 1

µ3

)2

T > T1

(4.35)
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At finite N we need to include contributions from both geometries. The full partition

function of the system between temperature T0 and TH can then be written in terms of

the following asymptotic expansion

Z ≈ e−N2Q(µ1)A1 + e−N2Q(µ3)A3 (4.36)

where A1, A3 are asymptotic series around µ1 and µ3 respectively

A1 = K1

(
1 +

∞∑

n=1

N−2ncn(a, b)

)

A3 = K3

(
1 +

∞∑

n=1

N−2ndn(a, b)

) (4.37)

Note that there is no contribution from µ2, which is a maximum of Q(µ). Below the

Hawking-Page temperature T1, the µ1 saddle dominates and µ3 is only metastable. The

contribution of the second term in (4.36) is exponentially small compared with the first.

Their roles reverse above T1.

The sharp transition at T1 in smoothened out at finite N into a finite region T −T1 ∼
O(N−2). We now examine this cross over region in some detail. At T−T1

T1
= ǫ ≪ 1, we can

expand Q(µ3) as

Q(µ3(a(T ), b(T )), a(T ), b(T )) = −νǫ + O(ǫ2), (4.38)

where

ν = ρ2p1 + ρ4q1 > 0, p1 = T1
∂a

∂T

∣∣∣∣
T1

, q1 = T1
∂b

∂T

∣∣∣∣
T1

(4.39)

and ρ2 = ρ2
1(µ3(T1)). Note the latent heat (4.34) is related to ν by E = N2νT1.

To focus on the transition region we consider the following limit

N → ∞, ǫ → 0, t = ǫN2 = finite

In this limit we find that

logZ = log
(
K1(T1) + K3(T1)e

νt
)

+ O(N−2) (4.40)

(4.40) smoothly interpolates between the first and second line of (4.33) as t varies from

−∞ to +∞. The expectation value of the Polyakov loop is given by

ρ2
1(t) =

1

N2

∂ log Z

∂a
= ρ2 K3(T1)e

νt

K1(T1) + K3(T1)eνt
+ O(1/N2) (4.41)

ρ2
1 smoothly interpolates between the first and the second line of (4.35).
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5. SBH and tunnelling

As pointed out in [3] when T > T0
18 thermal AdS and BBH can tunnel into each other

with the Euclidean SBH as the instanton bounce [34]. Our effective potential Q(µ) (see

fig. 2) gives a concrete realization of the physical picture. Through thermal fluctuations,

BBH or thermal AdS can jump to the top of the barrier to become a SBH. Since it

has negative specific heat, the small black hole then can either become thermal AdS by

emitting thermal Hawking radiation or become a big black hole by absorbing radiation. In

the Euclidean description, this corresponds to rolling down the hill from the two sides of

the effective potential. In thermal equilibrium, of course the total probability to go from

thermal AdS to BBH or vice versa should be the same.

5.1. Tunnelling between thermal AdS and BBH

In this subsection we will calculate the tunnelling rates between thermal AdS and

BBH using our effective potential description. For definiteness, we will restrict to the

temperature range Tc > TT0 (i.e for (a, b) lying between line I and line III). In this range

the details of smoothening of singular behavior of the effective potential (4.10) at µ = 1

by non-perturbative effects will not be relevant and we will use (4.10) to perform the

analysis. The discussion for the range TH > T > Tc is similar, and will not be repeated.

The only difference is that since the SBH is precisely located at µ = 1 for TH > T > Tc,

it is therefore more convenient to use the two-dimensional effective potential (4.8). The

perturbative expansion around SBH breaks down near Tc, and will be discused in next

subsection.

The tunnelling rates between thermal AdS and BBH can be readily computed using

the effective potential following the standard procedure [35,36,37]. To be definite, let us

first consider the tunnelling rate for thermal AdS over the barrier. In computing (4.2),

instead of using the µ contour going from −∞ to +∞ along the real axis, we consider a

contour C1 along the real axis from −∞ to µ2 and then deform the contour at µ2 along

a steepest descent contour to the complex µ plane (see Fig. 3a). The partition function

obtained using contour C1 is given by

Z1 ≈ e−N2Q(µ1)K1

(
1 + O(N−2)

)
+

i

2
e−N2Q(µ2)K2

(
1 + O(N−2)

)
(5.1)

18 In contrast, the flat space has a non-perturbative instability at any finite temperature [34].
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where K1 and K2 arise from the Gaussian factor in the saddle point approximation. The

resulting free energy (let us call it F1) has an imaginary part given by

ImF1 ≈ 1

2β
e−N2(Q(µ2)−Q(µ1))

K2

K1

(
1 + O(N−2)

)
(5.2)

The tunnelling rate is then obtained from (5.2) by [37]

Γ1 ≈ ω0β

π
ImF1 =

ω0

2π
e−N2(Q(µ2)−Q(µ1)) K2

K1

(
1 + O(N−2)

)
(5.3)

where ω0 is the frequency for the unstable mode around the SBH background. Similarly

the tunnelling rate from BBH to thermal AdS can be obtained by computing (4.2) along

a contour C2 (see Fig. 3b) to be

Γ2 ≈ ω0

2π
e−N2(Q(µ2)−Q(µ3))

K2

K3

(
1 + O(N−2)

)
(5.4)

Fig. 3: (a) plots the contour C1 which is used to compute (5.2) and (b) plots the

contour C2 used to compute (5.4).

Note that the imaginary part of the partition functions with contours C1, C2 can also

be obtained by a Borel resummation over the perturbative expansion around the BBH and

thermal AdS respectively. For example, the asymptotic expansion around the BBH µ3 has

the form

e−N2Q(µ3)K3

(
1 +

∞∑

n=1

N−2ndn(a, b)

)
(5.5)
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Due to the presence of a maximum at µ2, the coefficients dn at large n are given by

dn ≈ K2

2πK3

Γ(n)

(Q(µ2) − Q(µ3))n
(5.6)

The asymptotic expansion (5.5) is clearly divergent and not Borel summable. In fact the

Borel transform
∑

n
dnzn

n!
of
∑

n
dn

N2n is singular at z = Q(µ2) − Q(µ3), thus preventing

Borel summability if the difference between the action of SBH and BBH Q(µ2) − Q(µ3)

is positive. This is a familiar situation in instanton physics, where we can interpret the

singularity in the Borel transform in the positive axis as real instantons. One can integrate

the Borel transform just above the singularity on the real positive axis, producing an

imaginary part. Using this procedure, we find that (5.5) becomes19

e−N2Q(µ3)K3

(
1 + O(N−2)

)
− i

2
e−N2Q(µ2)K2

(
1 + O(N−2)

)
(5.7)

which is precisely what we get by computing the partition function following contour C2 in

Fig. 3b and leads to the tunnelling rate (5.4). Similar discussions apply to the perturbative

expansion around thermal AdS. Note that the instanton effect we have obtained associated

with the SBH is of order e
− 1

g2
s for gs = 1

N and not of order e−
1

gs typical of D-instantons.

In some sense, the effect we are describing could be interpreted as a collective state of N

D-instantons.

Of course the total partition function is real and therefore cannot contain any imag-

inary part. Physically this is equivalent to a balance rule between the probability to

nucleate a SBH from thermal AdS and the probability of decay of the metastable BBH.

The two imaginary parts that we obtain in contours C1 and C2 should cancel in the com-

plete partition function that is real. This is in fact the case once we realize that the sum

of contours C1 and C2 gives the real contour which defined the total partition function Z.

To conclude this subsection we will briefly comment on the asymptotic expansion for

T < T0. Below line I the two saddles µ2 and µ3 move into the complex plane, in other words

the real instanton that we have associated with the SBH above line I becomes complex.

This in particular means that the corresponding singularity in the Borel transform is not

any more on the real positive axis and Borel summability is potentially restored20. From

the physical point of view this means that the thermal AdS saddle is stable below line I.

19 One keeps only finite number of terms in the first term below. Also there is a sign ambiguity

here. We take the sign to be the same as that of contour C2.
20 This phenomena is well known in quantum field theory. For instance for the λφ4 theory

we have complex instanton solutions that produce a priori harmless singularities in the Borel

transform on the negative real axis.
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5.2. A Gross-Witten transition for small black hole

In this subsection we examine in detail the behavior of SBH as it crosses line III

(c = 1) in the a− b plane. It undergoes a third order phase transition in the large N limit

and the large N expansion around SBH breaks down there. We will define a double scaling

limit to smooth out the transition.

When c = 1 + ǫ with 0 < ǫ ≪ 1, we find from (4.23)–(4.25) that the critical point

corresponding to the SBH is given by

µ2 = 1 +
ǫ2

4
+ · · · , g2 = 1 +

ǫ

2
+ · · · , ρ1(g2) =

1

2
+

ǫ

4
+ · · · (5.8)

When c = 1 − ǫ, one finds from (4.19) that

µ2 = 1, g2 = 1 − ǫ

2
+ · · · , ρ1(g2) =

1

2
− ǫ

4
+ · · · (5.9)

Thus as c crosses 1, g2 crosses 1 and the eigenvalue distribution of µ2 crosses ρ1 = 1
2 . One

can also check that the second derivatives around the SBH varies smoothly across c = 1.

As we commented after equation (4.12), (4.8) has a third order discontinuity at g = 1

which is smoothened out at finite N . More precisely, let

g = 1 − N− 2
3 y (5.10)

Then V should be replaced by21

V =
1

4b
(µ − a)2 +

g2

4

1 − µ

µ
−

∞∑

n=0

N− 2
3 nFn(y) (5.11)

where the Fn(y)’s are smooth functions of y. In particular, F0 describes the doubling

scaling limit of (4.4) with the following asymptotic expansion

F0(y) =





y3

6
− 1

8
log(−y) + · · · −y ≫ 1

1
2π

e−
4
√

2
3 y

3
2

(
− 1

8
√

2y
3
2

+ · · ·
)

y ≫ 1
(5.12)

Note that (5.11) smoothly interpolates between the second and the third line of (4.8).

21 See e.g. sec. 3.1 of [19]. Fn below correspond to F
(2)
n there.
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Equations (5.8)–(5.11) suggest that to study the physics of the SBH near c = 1, we

can consider the following scaling

a(T ) = a0 + a1ǫq, b(T ) = b0 + b1qǫ,
2(1 − a0)

b0
= 1 (5.13)

µ = 1 + ǫ2x, g = 1 − ǫy, ǫ = N− 2
3 (5.14)

where a0 = a(Tc), a1 = Tca
′(Tc) (similar for b) and ǫq = T−Tc

Tc
. Thus we have

c =
2(1 − a)

b
= 1 − c1ǫq, c1 =

a1

1 − a0
+

b1

b0
=

1

b0
(2a1 + b1)

Note c1 > 0 according to our assumptions on the thermal history of the model and q < 0

as we approach line III form below.

Plugging (5.13) and (5.14) into (5.11), we find that

N2V =
N2(1 − a)2

4b
+

1

2
x
(
y − c1q

2

)
− F0(y) + O(ǫ) (5.15)

Note that in the last expression, x simply plays the role of a Lagrange multiplier. The

integral over x, y in (4.7) is not well defined since we are integrating around the neighbor-

hood of a saddle point in the x − y plane. If we rotate the integration contour of x to be

along the imaginary axis, the x integral will result in a delta function for y and we find

that the partition function around the SBH is given by

ZSBH = iN

√
π

b
e−

N2(1−a)2

4b
+F0( c1q

2 ) (1 + O(ǫ)) (5.16)

The prefator i can be understood as due to the tachyonic mode of the SBH. We find

that around Tc, one can define a double scaling limit where the SBH is described by

F0. It was argued in [38] that F0(t) describes the full partition function of the type 0B

theory in d = 0 dimension, i.e. pure 2-d supergravity. The parameter t is proportional

to the cosmological constant µ in the super-Liouville interaction. We are then led to the

conclusion that in a double scaling limit around Tc (as we argued earlier in the Horowitz-

Polchinski correspondence point) the SBH appears to be described by type 0B theory in

zero dimension.
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6. Catastrophes and the break down of perturbative string expansions

In this section we examine the critical behavior of the BBH at T0 where its saddle

merges with that of the SBH and the critical behavior of the thermal AdS at the Hagedorn

temperature TH . We find in both places that the breakdown of the large N expansion can

be understood in terms of the simplest type of catastrophes allowed by the symmetry. The

divergences at the perturbative level can be smoothened out at finite N using the standard

techniques of catastrophe theory.

6.1. Nucleation of black holes

The large N expansion around the big black hole saddle breaks down near line I,

where it coalesces with the unstable small black hole saddle. We will show that the critical

behavior there is given by the fold catastrophe. One can define a double scaling limit in

which the partition function for this sector is given by an Airy function.

From (4.28), curve I can be parameterized by

a(w) =
1 − 2w

(1 − w)2(1 + w)
,

b(w) =
2w

(1 − w)2(1 + w)3
, w ∈ [0, 1] .

(6.1)

Suppose that at temperature T0, the curve (a(T ), b(T )) intersects the curve I (6.1) at a

point labelled by w0, i.e. a(T0) = a(w0), b(T0) = b(w0). At the intersection point, (4.25)

has a double root given by w0, which is an inflection point of Q(w). We will consider the

behavior of Q(w) (4.26) near w = w0 and T = T0. Let

a(T ) = a(T0) + a1ǫ, b(T ) = b(T0) + b1ǫ, w = w0 + y (6.2)

with ǫ = T−T0

T0
and a1 = T0a

′(T0), b1 = T0b
′(T0). We will consider the regime |ǫ| ≪ 1 and

|y| ∼
√
|ǫ| ≪ 1. Plugging (6.2) into (4.26) and expanding in ǫ and y we find that22

Q = C0(ǫ, w0) − f

(
−1

3
y3 + qǫy

)
+ O(ǫ2, y4, y2ǫ) (6.3)

22 The expansion below breaks down at w0 = 0, where it can be checked that C0 and various

higher order terms become singular. At w0 = 0, we have a0 = 1, b0 = 0 and the physics goes over

to that of [19].
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with

f = −1

2
a′(w0), q =

(1 + w0)a1

b′(w0)

(
tan θ0 −

b1

a1

)
(6.4)

where tan θ0 is the slope of line I at w0. Note that

a′(w0) < 0, b′(w0) > 0, tan θ0 =
b′(w0)

a′(w0)
= − 2

(1 + w0)2
, θ0 ∈ (π/2, π)

From our assumption of the thermal history of the theory, q is positive. Note that C0(ǫ, w0)

is analytic in ǫ.

For ǫ > 0, from (6.3) Q has one maximum and one minimum at y = ±√
ǫq. The two

extrema merge at q = 0 and move to complex values for ǫ < 0. The values of Q at the

minimum and the maximum are given by (ǫ > 0)

Q0 = C0(ǫ) ∓
2fq

3
2

3
ǫ

3
2 + O(ǫ2) (6.5)

The second term gives the leading nonanalytic term in ǫ and the specific heat has a critical

exponent γ = 1
2 .

It is instructive to compare (6.5) with the result (2.3) from supergravity. Expanding

(2.3) in ǫ around β0 for big and small black holes we find

I = C̃0(ǫ) ∓ 2ǫ
3
2 + · · · (6.6)

with C̃0 an analytic function of ǫ. We see exact agreement between (6.5) and (6.6) in the

critical exponent. The critical exponent 1
2

is universal, depending only on the fact that a

maximum and a minimum merge together (fold catastrophe).

As T → T0, the large N expansion around the big and small black holes break down.

The physics around them can be captured by a double scaling limit. Since we are interested

only in the BBH and SBH, we will again consider (4.2) along contour C2 in Fig. 3b. From

(6.3) we introduce a new variable

z = qǫ(N2f)
2
3

and consider the scaling limit

ǫ → 0, N → ∞, z = finite
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In this limit, the partition function becomes

Z2 = C0

∫

C2

ds e−
1
3 s3+zs (6.7)

which is given by an Airy function. C0 is a non-universal factor

C0 = (N2f)−
1
3

2w0

(1 − w2
0)

2
eF1(w0)e−N2C0

where F1 is the O(1/N2) term in F(µ) (4.11) (not given explicitly there). It is easy to

check that our choice of contour gives the Airy function

Z2 = 2πi C0e
− 2πi

3 Ai(ze−
2πi
3 ) (6.8)

(6.8) smoothes out the divergences in perturbative expansions. Also note that the argu-

ment of the Airy functions precisely sits on the Stokes line. This is a consequence of the

fact that for µ2, µ3 real, ImQ(µ2) = ImQ(µ3) = 0. Although (6.8) is complex, the full

partition function should be real when including the contribution from the contour C1 of

fig. 3a.23

6.2. Hagedorn behavior for thermal AdS

We will now examine the merger of thermal AdS and the SBH (or more precisely long

string phase). For this purpose, let us first look at the free energy near the thermal AdS

background for a < 1, which can be found by expanding the partition function around the

saddle (4.16). Around (4.16), the partition function can be approximated as

Z1 =
N

2
√

πb

∫ 1

−∞
dµ e−

N2

4b
(µ−a)2 1

(1 − a) − (µ − a)

≈ N

2
√

πb

∞∑

n=0

∫ ∞

−∞
dx e−

N2

4b
x2 xn

(1 − a)n+1

=
1

1 − a

∞∑

n=0

Γ(n + 1
2)√

π

(
2
√

b

N(1 − a)

)2n

(6.9)

There are also nonperturbative corrections which are omitted here. Thus the free energy

around the thermal AdS background can be written as

logZ1 = − log(1 − a) +
2b

(1 − a)2N2
+ +

10b2

(1 − a)4N4
+

296b3

3(1 − a)6N6
+ · · · (6.10)

23 We would like to thank G. Festuccia and A. Scardicchio for extensive discussions regarding

this point.
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Note that in contrast to the free theory case analyzed in [19], the free energy now receives

perturbative contributions to all orders. The free energy diverges as a → 1. The leading

order divergence, arising from genus one contribution, is

logZ1 = − log(T − TH) + const (6.11)

since as a → 1, 1 − a ∝ T − TH . (6.11) is precisely the Hagedorn divergence for string

theory in a spacetime with all directions compactified (recall that AdS behaves like a box).

By a Laplace transform of (6.11) one finds that the density of states is given by

Ω(E) ≈ const eβHE
(
1 + O(1/E2)

)
(6.12)

Also note that as T → TH , the free energy around SBH is given by

logZ1 ∝ −N2(T − TH)2 + · · · (6.13)

The perturbative expansion (6.10) breaks down at 1 − a ∼ N−1. To explore the

physics near this point, we let24

a = 1 − N−1q, µ = 1 − N−1x, g = 2N− 1
2 y (6.14)

and consider a double scaling limit with N → ∞ with q, x, y finite. We find that

Q = N−2P + O(N−3)

with

P =
(x − q)2

4b
+ xy2 . (6.15)

Note that P has two critical points for q > 0

(1) x1 = q, y1 = 0, P ′′ =

(
1
2b 0
0 2q

)

(2) x2 = 0, y2 =

√
q

2b
, P ′′ =




1
2b

√
2q
b√

2q
b 0




24 Below for notational simplicity we will assume b does not change as a = 1 is crossed. To

incorporate the change in b is straightforward.
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corresponding to (µ1, g1) and (µ2, g2). They merge at q = 0 and for q < 0 only the first

solution remains. The relevant part of the partition function (4.7) then becomes

Z1 =
N√
πb

∫ ∞

−∞
dx

∫ ∞

0

ydy e−P (x,y)

= 2N

∫
ydy e−qy2+by4

(6.16)

Introducing a (0-dimensional) complex scalar φ with y = |φ|, the second line of (6.16)

can also be written as

Z1 =

∫
dφdφ∗ exp

[
−m2(β)φ∗φ + b(φφ∗)2

]
(6.17)

with m2(β) = q ∝ T − TH . It is tempting to identify φ with the so-called thermal scalar

(a winding tachyon) in string theory25. Indeed (6.17) coincides with the effective action

one expects for a thermal scalar near Hagedorn temperature [39]. It is clear from the

second line of (6.16) or (6.17) that the merger of thermal AdS and SBH is described by a

cusp catastrophe with q = 0 (i.e. a = 1) corresponding to the cusp point. Note that the

appearance of effective action (6.17) is forced on us by the U(1) symmetry of the complex

scalar field φ, which corresponds to the ZN symmetry of the boundary effective action in

the large N limit. The cusp catastrophe is the simplest possibility consistent with this

symmetry. The only nontrivial dynamical input in (6.17) is that b > 0, following from the

existence of a first order Hawking-Page transition.

The integral in (6.16) is not bounded as is expected since we are focusing in the

neighborhood of the effective potential containing only thermal AdS and SBH. To define

the integral in (6.16) we will choose an integration contour analogous to C1 of Fig. 3a in

section 5. We take the contour in the y-plane to go from y = 0 to the maximum y2 =
√

q
2b

along the real axis and then go straight up to the complex value at y2. The integration

along the real axis will give us an error function, which smoothes out the divergences of

the perturbative expansion at q = 0.

25 Note that we see a zero dimensional scalar since AdS may be considered as a box.
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7. Conclusions and discussions

In this paper we introduced a class of phenomenological models to understand string

theory in AdS5 × S5 in the canonical ensemble. Our models reproduces all the known

qualitative features of the theory. They also have some interesting predictions includ-

ing the existence of a third order phase transition for SBH, which we identify with the

Horowitz-Polchinski point. We studied the simplest model (3.5) in great detail. We found

the Hagedorn behavior of thermal AdS at TH and the critical behavior of nucleation of

Euclidean SBH and BBH at T0 are governed respectively by cusp (A3) and fold (A2)

catastrophe. It is clear these features persist for all models in the class due to universality

of the catastrophe. We believe this gives strong indication that they capture qualitative

behaviors of a weakly coupled string theory in a large AdS spacetime. Since for a large

radius AdS, the SBH resembles a ten dimensional Schwarzschild black hole in flat space-

time, and the Hagedorn behavior for strings in AdS resembles that of flat space, we expect

that the behaviors we observe here may yield clues to answers for similar questions in flat

spacetime.

There are many other questions which can be explored along the lines of our investi-

gation. For example, it would be nice to have a better understanding of our proposal that

the Horowitz-Polchinski point for a small black hole should correspond to a Gross-Witten

transition in the boundary theory. It would be interesting to understand whether the

process involves changing the spacetime topology. Also, since the saddles corresponding

to thermal AdS and SBH merge at TH , we expect that in the worldsheet sigma model

of thermal AdS, turning on the marginal operator corresponding to the thermal scalar at

TH , the theory can be deformed into a SBH background. It would also be interesting to

understand from the worldsheet point of view what happens when the tachyon in thermal

AdS above the Hagedorn temperature condenses26. The discussion of [40] might be useful

for this purpose.

We believe that the phenomenological approach developed here can have many other

applications. For example, it would be interesting to develop an effective potential ap-

proach for the tunnelling discussed in [41]. It would also be interesting to see whether one

can use our methods to address the problem of black hole information loss.

26 It appears clear from the effective potential picture that the theory will flow to the BBH

background.
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Appendix A. Large N phase structure and thermal history for general matrix

model (4.1)

For completeness, in this section we discuss the phase structure and thermal history

of matrix model (4.1) using the Hartree-Fock approximation. The Hartree-Fock treatment

of double trace operators was earlier discussed in [42]. The Hartree-Fock approximation

gives equations of motion which can be solved to find the critical points of the theory and

the value of the action evaluated at the critical points. However from this method one

cannot find the off-shell effective potential (essential for our purposes).

In the infinite N limit, it is convenient to introduce the density of eigenvalues

ρ(θ) =
1

N

N∑

i=1

δ(θ − θi), −π ≤ θ < π (A.1)

with
1

N
TrUn = ρn =

∫ π

−π

dθ ρ(θ) einθ

(4.1) can be written as

Z =

∫
[Dρ] e−N2V [ρ] (A.2)

where V [ρ] has the form

V [ρ] = −1

2

∫
dθdφ ρ(θ)ρ(φ) P log

(
2 sin

θ − φ

2

)2

− S(|ρ1|2) (A.3)
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Since the potential is symmetric, we can take ρ1 to be real. The equations of motion

following from (A.3) can be written as

∫
dφ ρ(φ) cot

θ − φ

2
= κ sin θ (A.4)

with

κ = 2S′(x)ρ1 , x = ρ2
1 .

The solutions to the above equation are well known [20,21,22], leading to the self-consistent

equations for ρ1 (using (4.6) with g replaced by κ above)

ρ1 = S′(x)ρ1, 0 ≤ ρ1 ≤ 1

2

S′(x) =
1

4ρ1(1 − ρ1)
,

1

2
≤ ρ1 ≤ 1

(A.5)

Note that the first line of (A.5) implies that

ρ1 = 0 (A.6)

or

S′(x) = 1, x = ρ2
1 ∈ [0, 1/4] (A.7)

We can slightly rewrite the second equation of (A.5) as

S′(x) = f(x), f(x) =
1

4
√

x(1 −√
x)

, x ∈ [1/4, 1] (A.8)

Note S(x) are also functions of ’t Hooft coupling λ and temperature T . We will show

that given the following assumptions about S(x; λ, T ), (A.2) has exactly the same large N

phase structure as that of the (a, b) model analyzed in the main text and thus that of the

AdS supergravity:

1. S(x) is convex, i.e. S′(x) is monotonically increasing;

2. S′(x) is concave;

3. For sufficiently low temperature, S′(x) lies below f(x) defined in (A.8) in x ∈ [1/4, 1].

For sufficiently high temperature S′(0) > 1;

4. S′(1/4) is a monotonically increasing function of T .

We note that for (a, b) model (3.5), conditions 1 and 2 are automatically satisfied. Con-

dition 3 corresponds to our assumption that the Cλ curve starts below line I of fig. 1 at

sufficiently low temperature and ends to the right of line H at high enough temperature.
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Condition 4 makes sure that Cλ intersects all lines in fig. 1 only once as T is varied. Note

that conditions 4 may be further relaxed.

We first note that f(x) is a monotonically increasing and convex function which takes

values

f(1/4) = 1, f(1) = +∞ (A.9)

At a sufficiently low T , condition 3 implies (A.8) has no solution. Since S′(1/4) < 1 and S′

is monotonically increasing, equation (A.7) also does not have a solution. The only phase

of the system at this temperature is thus given by (A.6), i.e.

x1 = 0

This is the thermal AdS. It is a minimum of V for S′(0) < 1. As we increase the tem-

perature, the curve S′(x) will start intersecting27 with f(x). The temperature at which

they become tangent is T0, where the critical points corresponding to SBH and BBH start

appearing. Immediately above T0, (A.8) will have two solutions 1
4

< x2 < x3 < 1 and from

condition 2 it can only have two solutions. Since V is bounded from below, x3 should be

minimum (BBH), while x2 a maximum (SBH). At this temperature (A.7) again does not

have any solution since S′(1/4) < 1. At a temperature Tc > T0, when S′(1/4) = 1, x2 = 1
4

is both a solution of (A.7) and (A.8). When T > Tc, S′(1/4) > 1, (A.8) only has one

solution x3. x2 moves to the region x < 1/4 and becomes a solution to (A.7). Convexity of

S(x) implies that the solution to (A.7) is unique. At a temperature TH , when S′(0) = 1,

x2 and x1 coincide. Above TH , x2 no longer exists and x1 becomes tachyonic due to that

S′(0) > 1. Since at TH , x1 and x2 coincide, we have V (x2) = V (x1) = 0 in the large N .

Since V (x2) > V (x3), V (x3) must be smaller than zero at TH . We thus conclude that

there must be a first order Hawking-Page transition at some temperature T0 < T1 < TH .

To summarize, the general model satisfying the four assumptions above have exactly

the same phase structure as that of the (a, b) model including the Gross-Witten phase

transition for SBH and the merger of SBH and thermal AdS at TH .

27 This is guaranteed following our assumptions.
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Appendix B. Specific heat of small and big black holes

In this appendix, we show that the phases corresponding to µ2 and µ3 have negative

and positive specific heat respectively.

We first show that (4.19) has a negative specific heat. From (4.20),

cv(µ2) = −N2β2 ∂2V

∂β2

= −N2β2

2b

(
∂a

∂β
+

1 − a

b

∂b

∂β

)2

< 0

(B.1)

We now look at the specific heat of a solution to equation (4.25). Evaluated at a

critical point µc(β), the action is given by Q(β, µc(β)). We first note an identity

− d2

dβ2
Q(β, µc(β)) =

(
∂Q2(β,µ)

∂µ∂β

)2

∂2Q
∂µ2

∣∣∣∣
µc

− ∂2Q

∂β2

∣∣∣∣
µc

(B.2)

In deriving the above equation we have used the equation of motion ∂Q
∂µ

|µc
= 0 and

∂µc

∂β
= −

∂2Q
∂µ∂β

∂2Q
∂µ2

∣∣∣∣
µ=µc

(B.3)

We note from (4.26) that

∂2Q

∂β2

∣∣∣∣
µc

=
1

2b

(
∂a

∂β
+

µc − a

b

∂b

∂β

)2

∂2Q

∂β∂µ

∣∣∣∣
µc

= − 1

2b

(
∂a

∂β
+

µc − a

b

∂b

∂β

) (B.4)

Thus the specific heat for µc can be written as

cv(µc(β)) = −N2β2 d2

dβ2
Q(β, µc(β))

=
N2β2

4b2

(
∂a

∂β
+

µc − a

b

∂b

∂β

)2
(

1
∂2Q
∂µ2

∣∣∣∣
µ=µc

− 2b

) (B.5)

For µc = µ2,
∂2Q
∂µ2

∣∣
µ2

< 0, and we find

cv(µ2) < 0 .

For µc = µ3, it follows from (4.27) that

0 < Q′′(µ3) =
1

2b
− 1

4µ2
− 1

4
√

µ − 1µ3/2
<

1

2b
(B.6)

Plugging (B.6) into (B.5) we find:

cv(µ3) > 0 .
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