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The detection of gravitational waves from a neutron star merger has opened up the possibility of

detecting the presence or creation of deconfined quark matter using the gravitational wave signal. To

investigate this possibility, we construct a family of neutron star matter equations of state at nonzero density

and temperature by combining state-of-the-art nuclear matter equations of state with holographic equations

of state for strongly interacting quark matter. The emerging picture consistently points toward a strong first

order deconfinement transition, with a temperature-dependent critical density and latent heat that we

quantitatively examine. Recent neutron star mass measurements are further used to discriminate between

the different equations of state obtained, leaving a tightly constrained family of preferred equations of state.

DOI: 10.1103/PhysRevD.100.066027

I. INTRODUCTION

The simultaneous measurement of gravitational wave

(GW) and electromagnetic (EM) signals from the apparent

merger of two neutron stars (NSs) in August 2017 marked

the birth of a new era of multimessenger astronomy [1].

At the same time, this event also solidified the role of NSs

as a laboratory for dense QCD, as demonstrated by the

multitude of subsequent studies using this observation to

constrain the properties of nuclear and even quark matter

[2–24]. The inspiral gravitational wave signal is consistent

with fairly small tidal deformabilities and neutron star radii

[12], indicating a relatively soft equation of state (EoS) at

zero temperature.

What was not recorded in the GW170817 event was any

trace of postmerger dynamics, which is likely due to the

high frequencies involved in this part of the GW signal.

Numerical simulations of mergers yield differentially

rotating remnants with temperatures typically reaching

tens of MeV (for reviews of this topic, see [25–27]).

The vibrational modes of the remnant, which are sensitive

to its size and the speed of sound, excite gravitational waves

[25–31]. Hence, information about the finite temperature

EoS is contained in the postmerger gravitational wave

signal. A particularly interesting scenario, studied e.g., in

[32,33], is one where the two colliding stars initially

contain no deconfined matter, but the system traverses

through a phase transition region during the merger (note,

however, that the authors of [33] in addition looked into

mergers of hybrid stars). An obvious question then

becomes, whether the phase transition and the appearance

of deconfined matter may be observable in the postmerger

gravitational wave signal [34,35]. The results of [32,33],

obtained using various model EoSs for nuclear and quark

matter, indicate that the answer is yes. In order to confirm

the robustness of these conclusions in future simulations, it

is, however, very important to complement the EoSs used

with further modern microscopic descriptions of both

phases.

Optimally, the EoS of dense QCD matter should be

determined using a single nonperturbative method, such as

lattice QCD, which has indeed provided accurate results in

the limit of high temperatures and small or vanishing

chemical potentials [36,37]. At finite density, lattice QCD

unfortunately suffers from the so-called sign problem (see

e.g., [38] for a discussion of this topic), which ultimately

means that this method is at present not suitable for

generating an EoS for NS mergers. A robust but less

accurate alternative is to generate families of NS matter

EoSs by interpolating between reliable first principles

calculations at low [39,40] and high [41,42] densities.

Such an approach has indeed been successfully followed at

exactly zero temperature [4,5,43,44], with results that are

becoming sensitive to the characteristics of the deconfine-

ment transition in the T ¼ 0 limit [18]. At nonzero temper-

atures, these types of studies do not exist yet, which is

largely due to the first ab initio nuclear theory study having

appeared only very recently [45], although its high-density

counterparts have been available for some time [46,47].

Recalling that the accuracy of the interpolation studies will

in any case be fairly limited in the most interesting density

interval, containing the deconfinement transition, it is clear
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that fundamentally new approaches to the physics of dense

QCD matter are direly needed.

A promising nonperturbative tool to tackle the finite-

density thermodynamics of strongly interacting matter is

the holographic duality [48]. Its utility stems from the fact

that it maps challenging strongly coupled quantum field

theory problems onto classical partial differential equations

in higher dimensions, which can be solved numerically.

Holographic models have been widely employed to study

the dynamics of strongly coupled quark-gluon plasma

produced at RHIC and the LHC; for a review, see [49].

Highlights include studies of e.g., thermalization [50–52],

jet quenching [53–55], and transport coefficients [56–58].

Applications of holography to heavy-ion collisions have

focused on the limit where the chemical potential is small

compared to the temperature, and consequently few studies

have been performed in the context of dense and cold QCD

matter (for some exceptions, see, however, [10,14,59–65]).

For this reason, we focus on the simplest nontrivial models

of high-density QCD matter, namely bottom-up holo-

graphic models of the deconfined phase.

Perhaps the most refined holographic bottom-up model

of QCD is the Veneziano limit (Nf ∼ Nc → ∞) of the

improved holographic QCD (V-QCD) framework [66–69].

This model has been designed to not only respect the

correct symmetries of QCD and match the lattice QCD

thermodynamics in the zero-density limit but also to have

the right UV properties, including the perturbative running

of the gauge coupling. Very recently, this setup has been

analyzed in detail in the limit of high densities and small

temperatures [14], which offers a way to nonperturbatively

model the quark matter phase in NSs and their mergers. In

this paper, our goal is to match the predictions of this model

with state-of-the-art EoSs for nuclear matter [70–72],

ending up with a family of EoSs for NS matter at nonzero

temperatures. We have chosen the low-density models to

ensure both compatibility with all existing robust NS

observations and availability of the resulting matched

EoSs for a wide range of temperatures.

Our paper is organized as follows. In Sec. II, we review

our setup in some detail, concentrating in particular on the

novel description of the quark matter phase via V-QCD. In

Sec. III, we then present our results for the matched EoSs

and analyze the resulting phase diagrams and the properties

of the deconfinement transition. Finally, Sec. IV contains

our conclusions, and in the ancillary material of the arXiv

entry we provide our quark matter EoSs in a tabular format.

II. MODELS AND MATCHING SETUP

As explained above, we model the confining phase of

QCD using state-of-the-art phenomenological EoSs that are

tabulated for a sufficient set of nonzero temperatures. Our

criteria for choosing the EoSs are that they should be

maximally different, yet consistent with robust observational

information concerning theirT ¼ 0 limit (assuming nophase

transition to quark matter):

(i) The T ¼ 0 EoSs must support the heaviest known

NSs with M ≈ 2 M⊙ [73,74].

(ii) The T ¼ 0 EoSs must produce tidal deformabilities

for 1.4 M⊙ NSs consistent with the 90% confidence

limits provided by LIGO and Virgo [12]. Note that

this constraint has been translated to limits for NS

radii [10] with results that are in agreement with

recent direct radius measurements; cf. e.g., [75].

Of the EoSs available in [76], these constraints are satisfied

by the “DD2” EoS of [70], the “IUF” EoS of [71] (see also

[77]), aswell as the “SFHx”EoS of [72], ofwhich the second

is in mild tension with the observation of two-solar-mass

stars. For simplicity of presentation, we implement local

charge neutrality and beta equilibrium. We have, however,

explicitly checked that the qualitative aspects of our results

are insensitive to the electron fractionYe, and in addition note

that we provide our quark matter EoSs for different fixed

values of Ye in the ancillary material of the arXiv version

of this paper. Finally, we remark that in order to reproduce

the propermass-radius (MR) relations in thesemodels at zero

temperature, we use the crustal EoS of [78] at the lowest

densities; for the majority of our discussion, this detail is,

however, unimportant.

On the quark matter side, we employ the holographic

model V-QCD, which can be viewed as a merger of two

ingredients. Gluon dynamics is modeled through the five-

dimensional improved holographic QCD model of [66,67],

while the fundamental flavor degrees of freedom are added

by the introduction of Nf copies of the tachyonic Dirac-

Born-Infeld (DBI) action [69,79–84]. We consider the

quarks dynamical, i.e., work in the Veneziano limit of the

theory, keeping Nc=Nf ¼ 1 fixed in the limits Nc → ∞,

Nf → ∞ [68]. As usual, the ’t Hooft coupling g2Nc is also

kept fixed in this limit. On the gravity side, this means that

we need to consider the full backreaction of the flavor action.

Our gravitational theory is discussed in detail in [14,69],

so here we merely outline the salient details. The gravi-

tational theory consists of the metric gμν, aUð1Þ gauge field
Aμ, a dilaton λ, and a tachyon τ. The action reads

S ¼ N2
cM

3

pl

Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p

�

R −
4

3

ð∂λÞ2

λ2
þ VgðλÞ

�

− NfNcM
3

pl

Z

d5xVf0ðλÞe
−τ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detðgμν þ κðλÞ∂μτ∂ντ þ wðλÞFμνÞ
q

; ð1Þ

where R is the Ricci scalar, Fμν is the field strength of Aμ,

Mpl is the five-dimensional Planck mass, and VgðλÞ,

Vf0ðλÞ, κðλÞ, and wðλÞ are potentials.

We seek homogeneous and isotropic black brane sol-

utions to the above equations. We employ the ansatz
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ds2 ¼ e2AðrÞ
�

−fðrÞdt2 þ dx⃗2 þ
dr2

fðrÞ

�

; ð2Þ

AμðrÞ ¼ A0ðrÞδμ0; ð3Þ

with r the radial coordinate of the geometry. The boundary

resides at r ¼ 0, which is where the field theory lives.

Boundary conditions must be imposed at r ¼ 0. For

the metric, we impose the boundary condition that the

geometry at r ¼ 0 is conformally equivalent to (3þ 1)-

dimensional Minkowski spacetime. The gauge field is dual

to the baryon current, and the boundary value of A0

corresponds to the quark chemical potential μq,

A0jr¼0 ¼ μq: ð4Þ

As such, with μq ≠ 0 the gauge field is nonzero and the

corresponding black brane solution is charged. The tachyon

τ is, on the other hand, dual to the condensate q̄q, and its

boundary value sources the bare mass of quarks. We choose

to neglect the bare quark masses of all three lightest quarks,

which also means that the beta equilibrium and charge

neutrality conditions are automatically attained.

With vanishing quark masses, the tachyon behaves close

to the boundary as [85]

τjr→0 ≃ σr3; ð5Þ

where σ is proportional to the chiral condensate.

Interestingly, it turns out that the dominant phase in the

setup is the chirally symmetric one with τ ¼ 0 throughout

the bulk geometry. Finally, the dilaton is dual to the ’t Hooft

coupling g2Nc of the Yang-Mills theory. Near r ¼ 0, we

impose the boundary condition that the dilaton has the

expansion

λ ¼ −
1

b0 logðrΛUVÞ
−
8b1 log½− logðrΛUVÞ�

9b2
0
logðrΛUVÞ

2
þ � � � ; ð6Þ

where ΛUV is an energy scale and b0 ¼ 3; b1 ¼ 7=2 are the
coefficients of the QCD beta function in the Veneziano

limit: βðg2NcÞ ¼ −b0ðg
2NcÞ

2 þ b1ðg
2NcÞ

3 þ � � �.
For given potentials VgðλÞ; Vf0ðλÞ, κðλÞ, wðλÞ and

boundary conditions, we may next proceed to solve the

equations of motion for charged black brane solutions. The

Hawking temperature T of the black brane corresponds to

the temperature of the dual quark matter. For given μq and

T, the quark matter pressure pðμq; TÞ in the grand canoni-

cal ensemble can then be obtained by evaluating the on-

shell action (1), together with appropriate counterterms

and the Gibbons-Hawking boundary action [85,86]. We

note that the Plank mass Mpl and the energy scale ΛUV

determine the overall normalization of the pressure.

The potentials VgðλÞ; Vf0ðλÞ, κðλÞ, and wðλÞ are con-

strained by matching onto QCD thermodynamics at van-

ishing density. Their functional forms read

Vg

12
¼ 1þ V1λþ

V2λ
2

1þ λ
λ0

þ VIRe
−
λ0
λ

�

λ

λ0

�

4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
λ

λ0

s

;

Vf0 ¼ W0 þW1λþ
W2λ

2

1þ λ
λ0

þWIRe
−
λ0
λ

�

λ

λ0

�

2

;

w−1
0

wðλÞ
¼ 1þ

w1
λ
λ0

1þ λ
λ0

þ w̄0e
−

λ0
wsλ

ðwsλ

λ0
Þ
4

3

logð1þ wsλ

λ0
Þ
;

κ−1
0

κðλÞ
¼ 1þ κ1λþ κ̄0

�

1þ
κ̄1λ0

λ

�

e−
λ0
λ

ð λ
λ0
Þ
4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logð1þ λ
λ0
Þ

q ; ð7Þ

where V1, V2, VIR, λ0,W0,W1,W2, κ0,WIR, w0, w1, w̄0,ws,

κ̄0, and κ̄1 are parameters. As shown in [67], the parameters

V1, V2, VIR, and λ0 in the potential VgðλÞ can be determined

by matching to pure Yang-Mills theory both on the lattice

and at weak coupling [87]. In the presence of quarks, lattice

data at vanishing chemical potentials constrain Vf0ðλÞ by
the interaction measure [36] and wðλÞ by the baryon

number susceptibility [88]. In particular, the UV dimension

of the qq̄ operator and the renormalization group (RG) flow

of the quark mass and the coupling fix W1, W2, κ0, and κ1.

The potential for the tachyon kinetic term, κðλÞ, is

insensitive to fitting to lattice QCD data. However, in

the dominant phase probed in this work τ ¼ 0, so also the

thermodynamic quantities are insensitive to the parameter

values in κðλÞ. We are therefore left with W0, WIR, w0, w1,

w̄0, ws, κ̄0, and κ̄1 as the free parameters of the potentials.

In Ref. [14], it was demonstrated that at μq > 0 and

T ¼ 0, our holographic model automatically leads to

thermodynamic results which fall in a very reasonable

range. Out of the potentials studied in [14], we focus on

those that are not in conflict with any robust NS observa-

tions, implying in particular that they do not predict a

strong first order deconfinement transition at such a low

density that two-solar-mass stars would not exist. This

singles out the potentials in (7) for which W0 ≠ 0, denoted

by 4–9 in [14], of which we choose as three representative

examples the potentials 5b and 7a, and 8b. The parameters

corresponding to these three potential choices can be found

in Appendix A.2 of [14]. Of these, 5b and 8b correspond to

the maximum allowed variance, while the potential 7a can

be considered a typical, or average, V-QCD prediction. We

note that the potential 7a also leads to phenomenologically

reasonable baryon physics, as recently discussed in [65].

III. RESULTS

Having established the procedure, with which we

describe the confined and deconfined phases of QCD,
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let us proceed to inspect the resulting thermodynamic

properties of NS matter at different temperatures.

Figure 1 (left) demonstrates our basic procedure for sorting

out the phase structure of the theory. For two different

temperatures, chosen as 6.9 and 73 MeV for illustrative

purposes, we compare here the grand canonical pressures

of the DD2, IUF, and SFHx nuclear matter models with

those obtained using the V-QCD potentials 5b, 7a, and 8b

of [14]—all evaluated in beta equilibrium as explained

above. In each case, we assume the phase transition from

the nuclear to the quark matter phase to occur at the quark

chemical potential, where the two curves meet. This

implies that we ignore the so-called mixed-phases scenario

that would become relevant if the (unknown) microscopic

surface tension of high-density QCD, describing a domain

wall separating its confined and deconfined phases, was

sufficiently low. In the present work, we make this choice

for the sake of simplicity, but note that it would be useful to

address the so-called Gibbs construction featuring mixed

phases in future work.

Repeating the above procedure for tens of different

temperatures, we obtain a set of points to mark the

phase transition line on the phase diagram of the theory,

shown in Fig. 1 (right). For each nuclear matter EoS, we

display three curves corresponding to the three V-QCD

potentials, such that the left- and rightmost curves stand

for the potentials 5b and 8b, and the middle curve to

7a. In a loose sense, these “bands” can be considered

uncertainty estimates for our results, given a fixed low-

energy EoS. As is evident from this figure, at temper-

atures T ≳ 75 MeV all combinations of nuclear matter

EoSs and V-QCD potentials yield nearly identical phase

diagrams, which all end at a temperature around

T ¼ 155 MeV, beyond which a phase transition no

longer exists. However, in the zero-temperature limit

the transition chemical potential varies between 460 and

700 MeV. We note that the main source of this variation

originates from the V-QCD potentials and not the

nuclear EoSs.
1

In Fig. 2, we next plot the transition baryon number

density nB (left panel) and latent heat Δϵ (right panel), in

both of which the lowest curves of each color correspond to

the potential 5b and the uppermost ones to 8b. Depending

on the nuclear matter model and V-QCD potential, the

T ¼ 0 transition baryon number density lies between 3 and

14ns, with ns the nuclear saturation density. Here, it turns

out that the IUF model is responsible for the largest values.

In contrast, the latent heat at T ¼ 0 varies only by about a

factor of 2, lying between 700 and 1500 MeV=fm3. The

latent heat is thus of the order of the energy density of

nuclear matter, which indicates a strong first order phase

transition. For all nuclear models and V-QCD potentials,

both the transition baryon number density and latent heat

decrease as T increases. Likewise, the variance of both the

transition baryon number density and latent heat decrease

as T increases.

Returning momentarily to the limit of zero temperature,

we display the speed of sound squared c2s ¼ dp=dϵ and

MR-relation originating from each of the nuclear matter

models and V-QCD potentials in Figs. 3 and 4, respectively

(see also Table I, relevant for the speed of sound plot). In the

latter, the most interesting quantity is clearly the corre-

sponding maximal mass of stable NSs, where the MR

curves either bend down or end due to a strong first order

phase transition. To date, the heaviest commonly accepted

NS mass measurement reads M ¼ 2.01� 0.04 M⊙ [74],

but one should in addition recall the very recent detection of

an extraordinarily massive NS with M ¼ 2.17� 0.1 M⊙

[89]. Combining the latter measurement with claims of the

EM counterpart of GW170817 constraining the maximum

FIG. 1. Left: The pressures of the DD2 (dashed green curve), IUF (dotted turquoise curve), and SFHx (dashed orange curve) nuclear

matter models, shown together with those obtained with the 5b (red solid curve), 7a (blue solid curve), and 8b (black solid curve)

potentials of V-QCD, for the temperatures of 6.9 (lower curves) and 75.9 MeV (upper curves). Right: The phase diagram of QCD as

suggested by the comparison of the nuclear and quark matter pressures utilized in our work. Corresponding to each of the three nuclear

matter EoSs (same color coding as in the left figure), we have three curves corresponding to the V-QCD potentials 5b (left solid curves),

7a (middle dashed or dotted curves), and 8b (right solid curves).

1
This variation can be traced to the normalization of the bulk

gauge field, wðλÞ. Fixing it would require the existence of robust
lattice data either at nonzero μq or external magnetic field B.
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NS mass from above by 2.16� 0.16 M⊙ [2,3], we are left

with the conclusion that the maximal mass of stable NSs

should fall within the range 2.07–2.33 M⊙.

Due to the large latent heats obtained in our setup, the

presence of a quark matter core in a quiescent (T ¼ 0) NS

always results in the star becoming unstable to gravitational

collapse. To this end, the NS mass, for which a quark matter

core just begins to form, i.e., where the central density of the

NS reaches the critical one, uniquely determines the maxi-

mum mass with the exception of one case (model IUF with

potential 8b), where the star becomes unstable before the

onset of quark matter. In Table II, we display the maximal

masses for all combinations of the three nuclear matter EoSs

and V-QCD potentials, as well as for the pure nuclear matter

cases. From here, we see that the potential 8b has a

negligible effect on the maximum NS mass for all nuclear

EoSs, which is a direct consequence of the fact that the

transition density is always relatively large for this potential;

cf. Fig. 2 (left). In contrast, the potentials 5b and 7a reduce

the maximum neutron star mass by as much as 15%,

although for the IUF model this effect is smaller, again

due to large transition densities.

Strictly enforcing the existence of the M ¼ 2.01�
0.04 M⊙ NS (barely) rules out the IUF model both with

and without any of the three V-QCD potentials. With

these EoSs excluded, the variance of the phase diagram in

Fig. 1 greatly decreases, with the T ¼ 0 transition chemical

potentials now lying in the range 460–630 MeV and the

corresponding baryon number densities in the range2.5–7ns.
Taking the constraint Mmax=M⊙ ∈ ½2.07; 2.33� further into
account, we also remove the combinations DD2 and 8b as

well as SFHx and 5b. After this, the transition density is

constrained to lie between 3.3 and 7.0ns and the latent heat

between 770 and 1550 MeV=fm3. To assess the universality

of these findings, it would clearly be very interesting to study

how they get modified with other holographic models of

quark matter, such as the Sakai-Sugimoto model [90].

Finally, we note in passing that we have also studied the

behavior of the so-called thermal index Γth ≡ 1þ Δp
Δϵ
,

FIG. 2. Left: The transition density as a function of temperature, given for the three nuclear physics models considered (same color

coding as before). For each nuclear EoS, we again have three curves corresponding to the V-QCD potentials 5b (lower solid curves), 7a

(middle dashed or dotted curves), and 8b (upper solid curves). Right: The latent heat of the (first order) deconfinement transition as a

function of temperature. The notation follows the left figure.

FIG. 3. The speed of sound squared c2s , or stiffness dp=dϵ,
as a function of baryon density for the nuclear matter models and

V-QCD potentials at vanishing temperature. The color codings

follow the choices made in Fig. 1 (left), while the dotted lines

indicate the transitions between the two descriptions in all

combinations of models and potentials (see also Table I).

FIG. 4. The mass-radius curves resulting from each of the

three nuclear matter models considered, with the color scheme

following the previous figures. The straight line segments

correspond to the unstable branches, where the cores are popu-

lated by holographic quark matter described by the different

V-QCD potentials.
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where Δx≡ x − xjT¼0 for fixed baryon density, with all

three nuclear matter models considered. This quantity was

recently determined for the first time in an ab initio

calculation in [45] (see also the related work [91]), giving

us an opportunity to perform a valuable cross-check of the

low-density behaviors of our model EoSs. The result of this

exercise was encouraging, as we witnessed all three EoSs

reproducing the qualitative behavior of the findings of [45]

at both T ¼ 20 and 50 MeV.

IV. DISCUSSION

We have approached the problem of building realistic

finite-T EoSs for neutron star merger simulations using

different state-of-the-art descriptions of the confined and

deconfined phases of QCD. On the low-density side, we

have employed three well-known model setups available on

the market—DD2 [70], IUF [71], and SFHx [72]—which

are all at least marginally compatible with robust obser-

vational information on NS properties and for which

tabulated EoSs are available for a wide range of temper-

atures. On the high-density side, we have, on the other

hand, used different phenomenological potentials within

the V-QCD model of [14,66–69], which is a highly

developed holographic framework for the description of

quark matter, built by fitting the associated potentials to

lattice QCD data at zero or small density.

On both the nuclear and the quark matter sides, the

models and V-QCD potentials were chosen to produce

maximal allowed variance for the thermodynamic proper-

ties of QCD, which resulted in sizable differences for

quantities such as the T ¼ 0 transition density and the size

of the latent heat. On the contrary, the qualitative form of

the phase diagram—and even the quantitative location of

the transition line at higher temperatures—was seen to be

highly model-independent. A more detailed analysis of the

maximal masses of stable NS solutions allowed us to

further discriminate between the EoSs, leaving only

four combinations of nuclear matter models and V-QCD

potentials intact.

The fact that NS observations constrain the possible

behavior of the T ¼ 0 NS matter EoS significantly is not a

new discovery (see e.g., [4,5,18] for related discussions),

but the fact that this observation pertains to nonzero

temperatures is a very interesting and nontrivial result.

The four EoS combinations we have singled out above

represent very different, yet observationally viable, behav-

iors of NS matter and are immediately amenable to use in

simulations. The viable low-density EoSs, i.e., DD2 and

SFHx, are tabulated for several fixed electron fractions Ye

e.g., in [76], while the quark matter EoSs we have

constructed in this work are similarly tabulated in the

ancillary material of this paper.
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TABLE I. The values of the pressure, energy density, and baryon density at the T ¼ 0 transition from nuclear to

quark matter, given separately for all combinations of nuclear matter models and V-QCD potentials.

p, ϵ [MeV=fm3], n½ns� Potential 5b Potential 7a Potential 8b

DD2 159, 578, 3.33 217, 671, 3.73 380, 908, 4.65

IUF 253, 973, 5.24 411, 1379, 6.88 1246, 3561, 14.06

SFHx 250, 825, 4.60 351, 993, 5.29 645, 1462, 6.98

TABLE II. Maximal masses of NSs (at T ¼ 0) built using

different nuclear matter models and V-QCD potentials for the

quark matter phase. The “Pure NM” column refers to NSs built

purely from the low-density EoS, i.e., with no transition to quark

matter (QM) at all. Note that the maximal masses in the other

cases originate from the star becoming unstable upon the central

density reaching the critical density for the deconfinement

transition in our “Maxwell construction” setup.

Mmax=M⊙ Pot. 5b Pot. 7a Pot. 8b Pure NM

DD2 2.17 2.29 2.41 2.42

IUF 1.93 1.95 1.95 1.95

SFHx 2.02 2.09 2.13 2.13
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