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Finite-temperature mutual information in a simple phase transition

Johannes Wilms,1, ∗ Julien Vidal,2, † Frank Verstraete,1, ‡ and Sébastien Dusuel3, §

1University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Wien, Austria
2Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600,

Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
3Lycée Saint-Louis, 44 Boulevard Saint-Michel, 75006 Paris, France

We study the finite-temperature behavior of the Lipkin-Meshkov-Glick model with a focus on
correlation properties as measured by the mutual information. The latter, which quantifies the
amount of both classical and quantum correlations, is computed exactly in the two limiting cases
of vanishing magnetic field and vanishing temperature. For all other situations , numerical results
provide evidence of a finite mutual information at all temperatures except at criticality. There, it
diverges as the logarithm of the system size, with a prefactor that can take only two values, depending
on whether the critical temperature vanishes or not. Our work provides a simple example in which
the mutual information appears as a powerful tool to detect finite-temperature phase transitions,
contrary to entanglement measures such as the concurrence.

PACS numbers: 03.65.Ud, 03.67.-a,89.70.Cf,05.70.Fh

I. INTRODUCTION

The theory of entanglement, originally developed in
the field of quantum information theory, has recently be-
come a very valuable tool to describe the phase diagram
and the properties of strongly-correlated quantum many-
body systems1. For example, the study of the scaling of
the entanglement entropy as a function of the system
size has become the standard tool to detect the central
charge in critical quantum spin chains2,3, and the entan-
glement spectrum in topological insulators is providing
a very nice characterization of the spectrum of the cor-
responding edge modes4,5. Also, second-order quantum
phase transitions are characterized by the emergence of
a large amount of entanglement.
Almost all of those results were obtained in the zero-

temperature regime, i.e., for ground states. In that
regime, all correlations are quantum correlations, and
the subtleties of mixed-state quantum entanglement are
avoided. From the point of view of quantum systems at
finite temperature, interesting questions about separabil-
ity, entanglement cost and entanglement of distillation
could in principle be posed, but those concepts do not
seem to have any clear operational meaning in the con-
text of a quantum many-body system as there is no clear
separation of the different degrees of freedom in that case.
Indeed, at finite temperature, it seems to make much
more sense to look at the total correlations in the system,
without trying to distinguish classical from quantum de-
grees of freedom: it is precisely the fact that (quasi-) long
range correlations emerge in the many-body system that
makes them so interesting, and whether those correla-
tions are quantum or classical is a question that would
anyway depend on the way the system is partitioned and
on the definition of entanglement.
The most appealing quantity that measures the to-

tal amount of correlations in a quantum system is the
mutual information. For pure (zero-temperature) states
it reduces to twice the entanglement entropy, and effec-

tively quantifies the amount of (Shannon) information we
acquire about the configuration of part of the system by
measuring another part. For instance, in the case of an
Ising ferromagnet at zero temperature, the mutual infor-
mation between two parts of the system is one bit, as the
measurement of the spins in one part reveals one bit of
information (up or down) about the configuration of the
spins in the other part. In such purely classical cases, the
behavior of the mutual information as a function of the
temperature and the system size is very intriguing and
has been discussed in Refs. 6–10. The really nice features
of the mutual information are that: (i) it provides a nat-
ural way of extending the study of entanglement entropy
to the case of finite temperature; (ii) it has a nice oper-
ational interpretation; (iii) it provides a measure of all
correlations in a quantum many-body system, not just
the two- or three-body correlations. This last point is of
special importance when studying collective models such
as the Lipkin-Meshkov-Glick (LMG) model11–13, where
there is no clear notion of locality.

The goal of this paper is to initiate the study of
the behavior of the mutual information in quantum
many-body systems at finite temperature following re-
cent studies14–17. Questions that will be addressed in-
clude, e.g., the study of how the scaling of the mutual in-
formation depends on the temperature, and how precisely
the mutual information allows one to identify phase tran-
sitions. We will focus our attention on the LMG model,
because it is a quantum many-body system that exhibits
a nontrivial phase transition with true many-body cor-
relations, while still being simple enough such that the
calculation of the mutual information is tractable.

We will show that the mutual information yields pre-
cise information about the location of the phase transi-
tion. An intriguing difference in its finite-size scaling is
obtained between the zero versus non-zero temperature
case.
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II. MODEL

A. Hamiltonian and symmetries

Let us consider a system of N fully-connected spins
1/2 whose Hamiltonian reads

H = −S2
x

N
− hSz, (1)

where Sα = 1
2

∑N
j=1 σ

α
j is the total-spin operator along

the α = x, y, z direction, σα
j being the usual Pauli ma-

trix at site j. Without loss of generality, we suppose
that h > 0. The Hamiltonian (1) can be seen as a ferro-
magnetic transverse-field Ising model with infinite-range
interactions (see Ref. 18 for a recent review). It is also a
special case of the LMG model11–13 whose ground-state
entanglement properties have triggered much attention
during the last years19–26.

As can be seen easily, this Hamiltonian preserves the
total spin, i.e., [H,S2] = 0. This conservation rule, to-
gether with the so-called spin-flip symmetry [H,

∏

j σ
z
j ] =

0, allows one to investigate this model both analytically
and numerically. Recently, the exact spectrum has been
obtained in the thermodynamical limit, in the maximum
spin sector s = N/2 where the ground state lies27,28. Un-
fortunately, a complete derivation of the full spectrum (in
arbitrary s sectors) that is crucial for the understanding
of the finite-temperature properties is still missing.

B. Phase diagram

In order to get a first feeling about the model, let us
start with a discussion of the finite-temperature phase
diagram. It can be obtained using a standard mean-
field approach (see for instance Refs. 18 and 29) that we
briefly describe here. We introduce the order param-
eter (proportional to the average magnetization along
the x-direction) mx = 〈σx

j 〉 = 2
N 〈Sx〉, and write that

σx
j = mx + (σx

j − mx). Then one can plug this ex-
pression into the Hamiltonian, neglect fluctuations in-
volving (σx

j − mx)
2 and keep only dominant terms in a

1/N -expansion. This yields an effective Hamiltonian of a
large spin S = (Sx, Sy, Sz) in an effective magnetic field
heff = (mx, 0, h), that reads

Heff = −heff · S, (2)

up to an unimportant constant shift of N
m2

x

4 . One still
has to ensure that mx coincides with the thermodynam-
ical average 2

N 〈Sx〉. Therefore, one needs the partition
function

Zeff = Tr
(

e−βHeff
)

=

[

2 cosh

(

β
√

m2
x + h2

2

)]N

, (3)
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FIG. 1. Density plot of the order parameter m in the (h, T )
plane for a finite-size system (N = 256). The black line in-
dicates the transition line Tc(h) whose expression is given in
Eq. (6).

where we have used the inverse temperature β = 1/T .
Noticing that

mx =
1

Zeff
Tr

(

2Sx

N
e−βHeff

)

=
2

Nβ

∂ lnZeff

∂mx
, (4)

one obtains that either mx = 0 or mx satisfies

√

m2
x + h2 = tanh

(

√

m2
x + h2

2T

)

. (5)

The above equation has a solution only for T < Tc(h),
where the critical temperature reads

Tc(h) =
h

2 tanh−1(h)
. (6)

This critical temperature, which is always smaller than
1/2, is represented as a black line in Fig. 1. We thus find,
as expected, a disordered (paramagnetic) phase at high
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FIG. 2. Order parameter m for h = 1/2 as a function of tem-
perature for different values of N . The critical exponent is
βMF = 1/2. The black line indicates the transition tempera-
ture Tc(1/2) ≃ 0.46.
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FIG. 3. Density plot of the heat capacity per spin c in the
(h, T ) plane for a finite-size system (N = 256). The black line
indicates the transition line Tc(h).

temperature T > Tc(h) with a vanishing order parameter
mx and an ordered (ferromagnetic) phase for T < Tc(h)
where mx acquires a finite value. One can also easily
show that, in the vicinity of Tc(h), the order parameter
vanishes as mx ∼ (Tc − T )βMF with the standard mean-
field exponent βMF = 1/2 (see for instance Ref. 30).
The validity of the mean-field approach can be

checked numerically, provided one considers the alter-
native quantity m = 2

N

√

〈S2
x〉. Indeed, there is no

symmetry breaking for any finite value of N , so that mx

always vanishes in numerical simulations. As the system
is fully connected, one furthermore expects that m2 and
m2

x become equal in the thermodynamical limit. Exact
diagonalization results are compared with the mean-field
prediction in Figs. 1 and 2 where an excellent agreement
can be observed.
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FIG. 4. Heat capacity per spin c for h = 1/2 as a function
of temperature for different values of N . The discontinuity
at Tc(1/2) ≃ 0.46 (black vertical line) is associated with the
critical mean-field exponent αMF = 0.

Along the same line, one can compute the heat capa-
city defined as C = ∂U

∂T , where U is the average energy

U =
1

Zeff
Tr
(

Heffe
−βHeff

)

= −∂ lnZeff

∂β
. (7)

The heat capacity per spin thus reads

c =
C

N
=

β2

N

∂2 lnZeff

∂β2
, (8)

which can be straightforwardly evaluated using Eq. (3).
As can be seen in Figs. 3 and 4, analytical results stem-
ming from the mean-field approach are still perfectly con-
sistent with the numerical data. Note that one recovers
the (well-known) fact that the heat capacity displays a
jump at the transition, so that C ∼ |T − Tc|−αMF with
αMF = 0.

C. Finite-size corrections

Mean-field results obtained in Sec. II B are valid in the
thermodynamical limit (N → ∞). However, it is inter-
esting to pay attention to finite-size corrections that con-
tain valuable informations. These can be studied quan-
titatively since, contrary to usual quantum spin systems,
the symmetries of the LMG model discussed in Sec. IIA
allow one to perform numerical computations for rela-
tively large system sizes (at least N ∼ 103 for all quanti-
ties considered in this work).

At zero temperature, these finite-size corrections
have been shown to be very sensitive to the
transition20,21,30,31. For instance, corrections to the ther-
modynamical value of the order parameter m behave as
N−1/3 at the critical point and as N−1/2 otherwise. At
finite temperature, we found numerical evidence for a
similar behavior for m away from criticality [more pre-
cisely, m2 = m2

x + a/N + O(1/N2)] but, on the critical
line Tc(h) > 0, m rather seems to vanish as N−1/4 as
can be seen in Fig. 5. Unfortunately, methods developed
to analyze the zero-temperature problem20,21 cannot be
used at finite temperature. This is mainly due to the fact
that, for T 6= 0, one needs to consider all spin s sectors
and not only the maximum s sector where the ground
state lies. However, for h = 0 (no quantum fluctuations),
one can compute the leading finite-size corrections of all
quantities at and away from criticality (Tc(0) = 1/2). In
this special case, as shown in Sec. III B, m is found to
vanish as N−1/4 giving a first indication that the non-
trivial finite-size behavior at Tc(h) > 0 might be inferred
from the zero-field problem. Although one can argue
that quantum fluctuations are irrelevant for the study of
critical behavior at finite-temperature, it is striking to
recover these behaviors from the trivial h = 0 case.
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2
plot of m vs N for h = 0, 1/2, and 1

computed at the critical temperature Tc(h) and at high tem-
perature T = 0.7 where mx = 0. Red lines are straight lines
with slopes −1/2, −1/3, and −1/4 (see the text).

III. MUTUAL INFORMATION

A. Generalities

We now turn to the main focus of the paper, namely
the analysis of the finite-temperature correlations. As
already mentioned, ground-state entanglement proper-
ties relevant for the zero-temperature problem have been
studied extensively19–26. Note also that several quanti-
ties based on fidelity have also been proposed to capture
the zero-temperature transition in the LMG model32,33

but they do not measure entanglement properties. By
contrast, there have only been a few investigations
concerning entanglement in the LMG model at finite
temperature34,35 mainly because entanglement measures
for mixed states are rare and hardly computable.
This last decade, many studies have shown that en-

tanglement measures could be used to detect quantum
(zero-temperature) phase transitions (see for instance
Ref. 36 for a review). Here, following recent works in
two-dimensional quantum spin systems14–16, we wish to
investigate the same problem at finite temperature. Con-
cerning the LMG model, the concurrence37 (which char-
acterizes the entanglement between two spins in an arbi-
trary state) is up to now the only entanglement measure
that has been computed both at zero19–21 and at finite
temperature35. However, as can be seen in Fig. 6, this
quantity is quite surprisingly insensitive to the transition
line at finite temperature.
Alternatively, one may consider the negativity38 that

is also a good measure for mixed states and that is not re-
stricted to two-spin correlations. This measure has been
successfully used to study the quantum phase transition
in the LMG model26 and other fully-connected models39.
It is however already difficult to compute at zero tem-
perature, so one can expect troubles to obtain it at fi-
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FIG. 6. Density plot of the concurrence in the (h, T ) plane
for a finite-size system (N = 256). The black line indicates
the transition line Tc(h).

nite temperature for systems of decent sizes (analytical
expressions in the thermodynamical limit being out of
reach). To our knowledge, apart from these two mea-
sures (concurrence and negativity), there exists only one
reliable quantity susceptible to be used for mixed states,
namely the mutual information, whose definition is based
on entanglement entropy.
To obtain informations about many-body correlations

of a system, the entanglement entropy is usually the mea-
sure of choice for pure states. It is defined as the entropy
of the reduced density matrix ρA obtained, after parti-
tioning the system into two parts A and B, by tracing
out the density matrix ρ over subsystem B : ρA = TrBρ.
For pure states, the same entropy is obtained if one ex-
changes A and B, although the result obviously depends
on the bipartition. For mixed states, however, the entan-
glement entropy is dominated by a contribution related
to the total entropy of the system under consideration
(which vanishes for pure states). Therefore, the natural
thing to do is to subtract this total entropy in a suitable
way. This leads to the following definition of the mutual
information

I(A,B) = EA + EB − EAB , (9)

where the von Neumann entropy EA = −Tr(ρA log2 ρA) is
the quantum generalization of the Shannon entropy. The
Shannon entropy provides an asymptotic description of
the properties of a system (a probability distribution of
states), in the sense that it describes the average number
of bits needed to encode a state of the system. This aver-
age is taken over all the states of the system, using their
respective probabilities of occurrence. In other words,
Shannon entropy corresponds to the average amount of
randomness that can be extracted from the system. Note
that it is also possible to work with Rényi entropies de-
fined as EA(κ) = 1

1−κ log2 Trρ
κ
A
40, but let us simply un-

derline that when κ → 1, they become identical to the
aforementioned Shannon/von Neumann version that is
considered in the following.
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Before discussing the results, it is important to under-
stand that mutual information is not a measure for the
“quantumness” of a system: it captures both classical
and quantum correlations alike. To make the distinc-
tion between both, one could rather study the so-called
quantum discord41,42. However, such a measure is clearly
artificial as the quantum discord of two states arbitrarily
close to each other can vanish for one of them and be
positive for the other one43. Such mixed-state entangle-
ment measures were constructed from the point of view
of delocalized systems, and do not necessarily make sense
in the context of condensed-matter systems.
In the present work, we shall not try to distinguish be-

tween quantum and classical correlations and will stick
to computing the mutual information. Indeed, such a
quantity should be sensitive to strong fluctuations of
the many-body correlations arising at a phase transition.
Numerical results are displayed in Fig. 7. Following a ray
in the (h, T ) plane of this figure, one gets that I(A,B)
is almost equal to 1 near the origin, grows as one goes
away from the origin, reaches a maximum before transi-
tion line, and then decreases to zero. Assuming that the
maximum is located at the transition line in the thermo-
dynamical limit (see Sec. III C for a confirmation of this),
one might thus argue that I(A,B) detects the phase tran-
sition at least as well as usual thermodynamic quantities
such as the order parameter or the heat capacity dis-
cussed in Sec. II B. However, one should keep in mind
that computing the mutual information is not as easy as
computing an order parameter, even in the simplest case
(h = 0) that we shall now discuss.

B. Exact results for h = 0

Let us consider the classical (quantum fluctuation free)
case h = 0 for which the Hamiltonian (1) simplifies to

H = −S2
x

N
. (10)

Its eigenstates are those of Sx and can be chosen as sep-
arable states |p, i〉, with p spins pointing in the −x di-
rection and (N − p) spins pointing in the +x direction.

The variable i allows to distinguish between the

(

N
p

)

such states which are degenerate and have eigenenergy

Ep = −N
(

p
N − 1

2

)2
.

To obtain the mutual information, one first needs to
compute the total entropy of the system at finite tem-
perature and, hence, the partition function

Z(β) = Tr e−βH =

N
∑

p=0

(

N
p

)

e−βEp , (11)

where as before, β = 1/T denotes the inverse tempera-
ture. Despite the apparent simplicity of H, it is difficult
to compute Z analytically for arbitrary finite N . Thus,
in the following, we shall focus on the physically relevant
large-N limit to analyze the thermodynamical limit and
its neighborhood. Computations get easier in this limit
because the discrete sum in (11) can be approximated by
an integral with, as is well-known, an error of the order
1/N2. This is fortunate since, in order to compute the
mutual entropy in the present problem, we will need to
compute the first correction to the infinite N limit.
The very first step in the calculation is to perform a

large-N expansion of the binomials

(

N
p

)

=
N !

p! (N − p)!
=

Γ(N + 1)

Γ(p+ 1)Γ(N − p+ 1)
. (12)

Using the series expansion of the Euler-Γ function at
large N (or the Stirling formula) and skipping terms of
relative order 1/N2, one gets

(

N
p

)

=

√

2

πN

1√
1− 4ε2

×

e−N[( 1
2−ε) log(( 1

2−ε)+( 1
2+ε) log( 1

2+ε)] ×
[

1− 1

N

3 + 4ε2

12(1− 4ε2)
+O

(

1/N2
)

]

, (13)

where we set ε = p
N − 1

2 . Then, replacing the sum by an
integral in Eq. (11) gives

Z(β) = 2N
√

2N

π

∫ + 1
2

− 1
2

dε√
1− 4ε2

×
[

1− 1

N

3 + 4ε2

12(1− 4ε2)
+O

(

1/N2
)

]

e−Nϕ(ε), (14)

with

ϕ(ε) =

(

1

2
− ε

)

log

(

1

2
− ε

)

+

(

1

2
+ ε

)

log

(

1

2
+ ε

)

+ log 2− βε2. (15)
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Furthermore, the exponential term e−Nϕ(ε) allows us to
extend the integration range to R. Indeed, the effect
of this extension consists in exponentially small terms
(∝ e−αN ) to which we anyway do not have access.
The resulting integrals can be evaluated using the stan-
dard Laplace’s method (also known as saddle-point or
stationary-phase approximation) though one has to take
care of computing the subleading corrections44.
At and above the critical temperature (β 6 βc(0) = 2),

the minimum of ϕ(ε) is found for ε = 0 and the result of
the saddle-point approximation reads

Z(β < 2) = 2N
√

2

2− β

[

1− 1

N

β2

4(2− β)2
+O(1/N2)

]

,

(16)
and

Z(β = 2) = 2N−1 3
1/4N1/4Γ(1/4)√

π

[

1 +
2
√
3 Γ(3/4)

5
√
N Γ(1/4)

− 1

280N
− Γ(3/4)

20
√
3N3/2 Γ(1/4)

+O(1/N2)

]

.

(17)

Note that, in this approach, Z(β = 2) does not coin-
cide with limβ→2 Z(β < 2) (which is divergent) since the
integrals stemming from the stationary-phase approxi-
mation is not gaussian anymore at criticality. Further-
more, we see that Z(β = 2)/2N diverges with a non-
trivial finite-size scaling exponent, as N1/4. This result,
which is obtained by directly computing Z(β = 2), is

consistent with Eq. (16). Indeed, adapting the finite-size
scaling argument developed in Refs. 20 and 21 for the
zero-temperature problem, one can write (for β smaller
than 2 but close to 2) Z(β . 2)/2N = z∞f [N(2 − β)2]

where z∞ =
√

2/(β − 2) is the thermodynamical limit
value of Z(β < 2)/2N , and f is a scaling function. As
this quantity cannot be singular for finite N , one must
have f(x) ∼ x1/4 so that the singularity at β = 2 disap-
pears : Z(β . 2)/2N ∼ (β−2)−1/2[N(2−β)2]1/4 ∼ N1/4.
In the low-temperature phase (β > 2), ϕ(ε) has two

symmetric minima the position of which can only be
computed numerically. Once determined, one can still
perform the Gaussian integral resulting from the second-
order Taylor expansion around these minima, which
yields a “numerically exact” result in the infinite-N limit.
As a consequence, we only give analytical expressions for
β 6 2 but we also show the exact numerical results for
β > 2 in the figures.
To compute the entropy in the thermodynamical limit,

one needs to compute the internal energy of the system
using the same approximation (13) of the binomials. This
quantity is defined as

U(β) = Tr(ρH) = −∂ lnZ(β)

∂β
, (18)

where ρ = 1
Z e−βH is the thermal density matrix. For

β < 2, it can be obtained from Eq. (16) but, as previously,
special care must be taken to deal with the critical case
for which one can show that

U(β = 2) = −
√
3N Γ(3/4)

2Γ(1/4)

[

1− 2
√
3 Γ(3/4)

5
√
N Γ(1/4)

+ 12
Γ(1/4)2 + 7 Γ(3/4)2

175N Γ(1/4)2

−10 Γ(1/4)4 + 32 Γ(1/4)2 Γ(3/4)2 + 504 Γ(3/4)4

875
√
3N3/2 Γ(1/4)3Γ(3/4)

+O(1/N2)

]

, (19)

so that the internal energy diverges as N1/2.
Given that, U(β) = 〈H〉 = − 2

N 〈S2
x〉, this latter result

directly implies that the order parameter m = 2
N

√

〈S2
x〉

vanishes at criticality as N−1/4, as was already noticed
in Fig. 5.

The entropy can finally be computed (analytically for
β 6 2 and numerically for β > 2) since

EAB(β) = −Tr(ρ log2 ρ) = log2 Z(β) +
βU(β)

log 2
. (20)

Computing the mutual information is another game,
the most difficult part of which lies in the derivation of
the large-N behavior of the partial entropy

EA(β) = −Tr(ρA log2 ρA), (21)

where ρA = TrBρ is the reduced density matrix. It is
thus mandatory to find an expression for ρA. With this

aim in mind, let us split the system into two parts A
and B containing NA and NB = N − NA spins respec-
tively. Next, let us decompose the eigenstates of H as
|p, i〉 = |pA, iA〉A ⊗ |pB , iB〉B with pA+pB = p and where
|pj , ij〉j denotes a state of subsystem j = A,B that has
pj spins pointing in the −x direction. Variable ij can

take

(

Nj

pj

)

values and depend on which spins point in

the −x direction. This decomposition allows one to write
the reduced density matrix as



7

ρA =
1

Z
TrB

∑

p,i

eNβ( p
N

− 1
2 )

2

|p, i〉〈p, i|, (22)

=
1

Z
TrB

∑

pA,iA,pB ,iB

eNβ( pA
N

+
pB
N

− 1
2 )

2

× (23)

|pA, iA〉A ⊗ |pB , iB〉B A〈pA, iA| ⊗ B〈pB , iB |,
=
∑

pA,iA

R(pA)|pA, iA〉A A〈pA, iA|. (24)

We introduced the quantity

R(pA) =
1

Z

NB
∑

pB=0

(

NB

pB

)

eNβ( pA
N

+
pB
N

− 1
2 )

2

, (25)

The partial entropy then simply reads

EA(β) = −
NA
∑

pA=0

(

NA

pA

)

R(pA) log2 R(pA). (26)

Following the same line as for the partition function cal-
culation and replacing the binomials by the same form
as (13), one can still use Laplace’s method to obtain the
large-N behavior of the partial entropy. Nevertheless,
things are a bit more involved since one now has to deal
with a double sum and thus with a two-variable integral.
After some algebra, one gets

EA(β < 2) = τN − 1

2 log 2

{

β τ

2− β
(27)

+ log

[

2− β

2− β(1− τ)

]}

+O(1/N),

and

EA(β = 2) = τN−τ
√
N

√
3

log 2

Γ(3/4)

Γ(1/4)
+
1

4
log2 N+O(N0),

(28)
where we have set NA/N = τ , and NB/N = 1− τ .
Finally, noting that EB is obtained from EA by ex-

changing τ ↔ (1 − τ) and using (20), one obtains the
following expressions of the mutual information

I(β < 2) =
1

2
log2

{

[2− β τ ][2− β(1− τ)]

2(2− β)

}

+O(1/N),

(29)
and

I(β = 2) =
1

4
log2 N +O(N0). (30)

These expressions together with the exact numerical
results for β > 2 (in the thermodynamical limit) are
compared to finite-size numerical results in Fig. 8 (left
column). In Fig. 8(a), we display the mutual entropy
as a function of T for several values of N and τ = 1/2.
The excellent agreement with Eq. (29) can be observed
at large N . In Fig. 8(d) we provide a numerical check

of Eq. (30) that predicts a logarithmic divergence of the
mutual information at criticality, with a nontrivial pref-
actor 1/4. Note that in the present case (h = 0), it is
possible to perform a numerical study for large system
sizes (up to N = 216 here) that allows one to observe
how this divergence arises.

C. Numerical results for h > 0

Let us now turn to the case h 6= 0 for which the spec-
trum, and hence I can only be computed numerically.
Details of the algorithm we developed to compute I can
be found in Appendix A. In Figs. 8(b) and (c), we dis-
play the behavior of the mutual information as a function
of temperature for h = 1/2 and h ≃ 0.9999 (such that
Tc = 0.1), and for τ = 1/2. For h = 1/2, and as already
observed for h = 0 in Fig. 8(a), I reaches a finite value
away from criticality whereas it increases with the system
size at Tc. Although this is less obvious for h ≃ 0.9999, it
is however still true. Indeed, the apparent increase of I
away from the critical temperature observed in Fig. 8(c)
is a finite-size artifact as can be inferred from the zero-
temperature case. For T = 0 and 0 6 h < 1, one has
I = 2EA−1, since EB = EA (for all τ) and EAB = 1 in the
broken phase (EAB = 0 in the symmetric phase h > 1).
Then, using the expression of EA computed in Refs. 23
and 24, one gets, in thermodynamical limit, I ≃ 6.1113
for h ≃ 0.9999 whereas for N = 512 we find I ≃ 1.9378.
It is thus clear that, in this case, the asymptotic value is
still far from being reached for N = 512. By contrast,
for h = 1/2, one gets I ≃ 1.0286 in the thermodynamic
limit and I ≃ 1.0291 for N = 512.

To investigate the divergence of the mutual informa-
tion at criticality in more details, we computed I(Tc) for
increasing system sizes. Results shown in Figs. 8(d,e,f)
confirm that I(Tc) diverges logarithmically with N . Fur-
thermore, it seems that the behavior of I for 0 < h < 1 is
the same as for h = 0. This can be seen in Fig. 9 where we
have superimposed data shown in Figs. 8(d,e,f). Thus,
although numerically reachable sizes for 0 < h < 1 (up
to N = 210 here) are not as large as for h = 0, we are
led to conclude that I(Tc) ∼ 1

4 log2 N for all 0 < h < 1.
Actually, if one reminds that a similar result was found
for the order parameter m (see Fig. 5), it is tempting
to conjecture that, for all physical quantities, the lead-
ing finite-size corrections at finite temperatures can be
infered from the zero-field problem. In other words, the
system behaves classically for all nonvanishing tempera-
tures.
However, as already noted for the order parameter

(see Fig. 5), things are dramatically different at zero
temperature. Indeed, in the purely quantum case (no
thermal fluctuations), a phase transition occurs at
h = 1 and the mutual information can be computed
straightforwardly, as discussed above.

Using the fact that EA ∼ 1
6 log2 N for h = 123,24, and
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FIG. 8. Upper row : mutual information I as a function of T for τ = 1/2, various sizes, and for h = 0 (a), h = 1/2 (b)
and h ≃ 0.9999 (c). The black vertical lines indicate the critical temperatures. Lower row : scaling of the critical mutual
information (evaluated at T = Tc(h)) as a function of N , for τ = 1/2, and for h = 0 (d), h = 1/2 (e) and h ≃ 0.9999 (f). The
insets show the behaviour of the slope between two consecutive data points as a function of 1/ log

2
N . Red lines indicate the

large-N behavior I ∼
1

4
log

2
N .

that EAB = 0 at the critical point (the ground state is
unique), one gets

I(h = 1, T = 0) ∼ 1
3 log2 N, (31)

in contrast with the 1
4 log2 N behavior found for

0 < h < 1.
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FIG. 9. Superposition of the curves of Figs. 8(d,e,f).

IV. CONCLUSION

We have studied the finite-temperature LMG model
by focusing on the mutual information I that measures

both classical and quantum many-body correlations in
the system. As already pointed out in other recent
studies9,14–16, we believe that mutual information is a
good detector of finite-temperature phase transitions.
This quantity could turn out to be especially useful in
systems where no obvious or simple order parameter can
be found (for instance in topological phase transitions).
However, this quantity may reveal difficult to compute
even in a simple fully-connected model such as the one
considered here.

In the present work, we managed to get analytical re-
sults in the simplest (purely classical) situation only but
we obtained numerical results in the whole parameter
range for relatively large system sizes (up to N = 210

spins). As already observed for the (zero-temperature)
entanglement entropy23,24, we found that I is always
finite except on the transition line Tc(h) where it di-
verges logarithmically with the system size N . A com-
plete study of the purely classical model allowed us to
conjecture that for 0 6 h < 1 it diverges as 1

4 log2 N

whereas for h = 1, I behaves as 1
3 log2 N at criticality.

We hope that our results will motivate further stud-
ies of the mutual information (and more generally on
many-body correlations) in related models since many
questions remain open. First of all, let us underline
that the model studied here is only a special case of
the LMG model where spin-spin interactions are strongly
anisotropic (Ising-like). Thus, investigating the influence
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of an anisotropy parameter would be valuable especially
since for isotropic interactions (XX-like), the full spec-
trum is known exactly (see for instance21) and, as already
seen at zero temperature24, one might expect a different
behavior of I at the critical point. In addition, when
competing (XY -like) interactions are present, there ex-
ists a special point in the parameter space where the
ground-state is a separable state, the so-called Kurmann
point45. It would be definitely instructive to analyze
many-body correlations near this point at finite temper-
atures.
Second, natural extensions of fully-connected models

have been recently analyzed at zero temperature, reveal-
ing a rich variety of quantum phase transitions39 among
which some are of first order. The framework detailed in
App. A clearly allows for a direct computation of the mu-
tual information in these models46. From that respect, it
would also be interesting to study the finite-temperature
Dicke model47 that shares many entanglement features
with the LMG model, as discussed in Ref. 24. However,
the presence of a bosonic mode coupled to a set of two-
level systems may give rise to interesting challenges if one
aims at computing the mutual information between the
field and the atoms (in particular the procedure described
in App. A will not be sufficient).

Appendix A: General algorithm to compute the

mutual information in spin-conserving Hamiltonian

The Hilbert space of a system consisting of N spins
1/2 has dimension 2N which usually limits the study of
such systems to a number of spins of a few tens. This
restriction can be overcome in the LMG model, because
its Hamiltonian commutes with the total spin operator:
[H,S2] = 0. This symmetry ensures that the Hamilto-
nian is block diagonal and that one can study each block
of fixed s separately. The dimension of the latter is 2s+1
(hence at most linear in N) which allows one to study
larger systems (N ∼ 103 was reached in this paper).
As is known from the theory of addition of angular

momenta, there are dNs distinct ways of obtaining a total
spin s when combining N spins 1/2, where dNs reads

dNs =

(

N
N/2− s

)

−
(

N
N/2− s− 1

)

=
2s+ 1

N/2 + s+ 1

(

N
N/2− s

)

. (A1)

As a consequence, each energy level in the spin s-sector is
(at least) dNs times degenerate. Of course, one can check
that

S
∑

s=[S]

(2s+ 1)dNs = 2N , (A2)

where S = N/2 is the maximum spin, and [S] is the
minimum spin, namely [S] = 0 if N is even and [S] = 1/2

if N is odd. The fact that the sum over s runs over
integers (half-odds) if N is even (odd) is implicit.
The goal of this appendix is to explain how to use the

spin-conserving property to compute the reduced density
matrix from which the mutual information is extracted.
Additional symmetries, such as the spin-flip symmetry
[H,
∏

j σ
z
j ] = 0 present in the LMG model, will not be

considered thereafter in order to give general results for
any Hamiltonian satisfying [H,S2] = 0. Of course, ad-
ditional symmetries can be implemented to fasten the
algorithm.
From the discussion given above, such a spin-

conserving Hamiltonian can be block-diagonalized and
written as

H =

S
∑

s=[S]

dN
s
∑

i=1

H
(s)
i , (A3)

=

S
∑

s=[S]

dN
s
∑

i=1

s
∑

m=−s

s
∑

m′=−s

h
(s)
m′,m |s,m′〉i i〈s,m|, (A4)

where i labels the dNs degenerate subspaces of spin s, and
where the notations of the sums over s have already been
introduced above. Furthermore, we introduced eigen-
states |s,m〉i of operators S

2 and Sz with eigenvalues
s(s+ 1) and m respectively. It is worth noting that ma-

trix elements h
(s)
m′,m are independent of i so that, for each

s, one has dNs copies of the same matrix to diagonalize.
Once the diagonalizations are performed, one can write

H =
S
∑

s=[S]

dN
s
∑

i=1

2s+1
∑

α=1

E(s)
α |s;α〉i i〈s;α|, (A5)

where eigenvalues E
(s)
α of H

(s)
i are independent of i and

where the corresponding eigenvector |s;α〉i is given by

|s;α〉i =
s
∑

m=−s

a(s)α;m|s,m〉i, (A6)

with coefficients a
(s)
α;m ∈ C being independent of i.

The partition function is then evaluated as

Z = Tr e−βH , (A7)

=

S
∑

s=[S]

dN
s
∑

i=1

2s+1
∑

α=1

e−βE(s)
α , (A8)

=

S
∑

s=[S]

dNs

[

2s+1
∑

α=1

e−βE(s)
α

]

=

S
∑

s=[S]

dNs Z(s), (A9)

where Z(s) = Tr e−βH
(s)
ref is the partition function associ-

ated to any of the H
(s)
i (here we choose a reference index

i = ref).
In the same vein, one can write the entropy as

EAB = −Tr[ρ log2 ρ] =
S
∑

s=[S]

dNs E(s)
AB , (A10)



10

where ρ = 1
Z e−βH is the density matrix and where we

defined E(s)
AB = −Tr

[

ρ
(s)
ref log2 ρ

(s)
ref

]

and ρ
(s)
ref =

1
Z e−βH

(s)
ref .

Computation of EA and EB

We split the system in two subsystems A and B con-
taining L = τN and N − L = (1 − τ)N spins respec-
tively, with the aim to compute the reduced density ma-
trices ρA = TrBρ and ρB = TrAρ. The partial traces
can be performed most easily by applying the technique
introduced above, for each subsystem. Therefore, one de-
composes each spin sector s into spin subsector s1 and s2
(indices 1 and 2 refer to subsystem A and B respectively).
The Hamiltonian then reads

H =

S
∑

s=[S]

S1
∑

s1=[S1]

′
S2
∑

s2=[S2]

′
dL
s1
∑

i1=1

dN−L
s2
∑

i2=1

H
(s1,s2;s)
i1,i2

, (A11)

=

S
∑

s=[S]

S1
∑

s1=[S1]

′
S2
∑

s2=[S2]

′
dL
s1
∑

i1=1

dN−L
s2
∑

i2=1

s
∑

m=−s

s
∑

m′=−s

h
(s)
m′,m |s1, s2; s,m′〉i1,i2 i1,i2〈s1, s2; s,m|, (A12)

where |s1, s2; s,m〉i1,i2 denotes an eigenstate of operators
S
2
1,S

2
2,S

2 and Sz with eigenvalues s1(s1 +1), s2(s2 +1),
s(s + 1) and m respectively. Index i1 (i2) labels the dLs1
(dN−L

s2 ) degenerate subspaces of spin s1 (s2) that can be
built from L (N − L) spins 1/2. For a given s, primed

sums are restricted to values of s1 and s2 that can add
to a total spin s. That is to say, one must fulfill the in-
equalities |s1−s2| 6 s 6 s1+s2, so one can alternatively
write :

S
∑

s=[S]

S1
∑

s1=[S1]

′
S2
∑

s2=[S2]

′
=

S1
∑

s1=[S1]

S2
∑

s2=[S2]

s1+s2
∑

s=|s1−s2|

. (A13)

We have denoted S = N/2, S1 = L/2 and S2 = (N −
L)/2 the maximum spins of the whole system and of each
subsystems. As before, minimum spins are denoted with
square brackets. Note that the degeneracy dNs of the
spin-s sector can be recovered from

S1
∑

s1=[S1]

′
S2
∑

s2=[S2]

′
dLs1d

N−L
s2 = dNs . (A14)

The matrix elements h
(s)
m′,m are the same as in Eq. (A4),

and do not depend on s1, s2, i1 or i2. Thus, all Hamil-

tonians H
(s1,s2;s)
i1,i2

have the same eigenvalues E
(s)
α [which

are the same as in Eq. (A5)], with the corresponding
eigenvectors

|s1, s2; s;α〉i1,i2 =

s
∑

m=−s

a(s)α;m|s1, s2; s,m〉i1,i2 . (A15)

Once again, coefficients a
(s)
α;m ∈ C are independent of s1,

s2, i1 and i2, and are the same as in Eq. (A6).
Then, the density matrix ρ = 1

Z e−βH reads

ρ =
1

Z

S1
∑

s1=[S1]

S2
∑

s2=[S2]

s1+s2
∑

s=|s1−s2|

dL
s1
∑

i1=1

dN−L
s2
∑

i2=1

2s+1
∑

α=1

e−βE(s)
α |s1, s2; s;α〉i1,i2 i1,i2〈s1, s2; s;α|, (A16)

=
1

Z

S1
∑

s1=[S1]

S2
∑

s2=[S2]

s1+s2
∑

s=|s1−s2|

dL
s1
∑

i1=1

dN−L
s2
∑

i2=1

2s+1
∑

α=1

s
∑

m=−s

s
∑

m′=−s

e−βE(s)
α a(s)α;m

∗
a
(s)
α;m′ |s1, s2; s,m′〉i1,i2 i1,i2〈s1, s2; s,m|. (A17)

where a∗ denotes the complex conjugate of a.
One of the final steps is to decompose each basis state

|s1, s2; s,m′〉i1,i2 on the tensor-product state basis using
the Clebsch-Gordan coefficients

|s1, s2; s,m′〉i1,i2 = (A18)
s1
∑

m1=−s1

s2
∑

m2=−s2

Cm1,m2;m
s1,s2;s |s1,m1〉i1 ⊗ |s2,m2〉i2 ,

with obvious notations. The only couples (m1,m2) that
contribute to the above sum are such that m1+m2 = m,
since the Clebsch-Gordan coefficients vanish otherwise.

Introducing the shorthand notation

∑

all

=

S1
∑

s1=[S1]

S2
∑

s2=[S2]

s1+s2
∑

s=|s1−s2|

dL
s1
∑

i1=1

dN−L
s2
∑

i2=1

2s+1
∑

α=1

s
∑

m=−s

s
∑

m′=−s

s1
∑

m1=−s1

s2
∑

m2=−s2

s1
∑

m′

1=−s1

s2
∑

m′

2=−s2

, (A19)
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one then gets

ρ =
1

Z

∑

all

e−βE(s)
α a(s)α;m

∗
a
(s)
α;m′C

m1,m2;m
s1,s2;s C

m′

1,m
′

2;m
′

s1,s2;s |s1,m′
1〉i1 i1〈s1,m1| ⊗ |s2,m′

2〉i2 i2〈s2,m2|. (A20)

It is now possible to perform a partial trace. Let us focus on computing ρA = TrBρ. This partial trace will enforce

m′
2 = m2 in

∑

all. Furthermore, the index i2 disappears from the quantity to be summed over, so that
∑dN−L

s2
i2=1 simply

yields a factor dN−L
s2 . At the end of the day, one finds

ρA =
1

Z

S1
∑

s1=[S1]

dL
s1
∑

i1=1

s1
∑

m1=−s1

s1
∑

m′

1=−s1

rA
(s1)
m′

1,m1
|s1,m′

1〉i1 i1〈s1,m1| with

rA
(s1)
m′

1,m1
=

S2
∑

s2=[S2]

dN−L
s2

s1+s2
∑

s=|s1−s2|

maxm
∑

m=minm

(

2s+1
∑

α=1

e−βE(s)
α a(s)α;m

∗
a
(s)
α;m+m′

1−m1

)

Cm1,m−m1;m
s1,s2;s C

m′

1,m−m1;m+m′

1−m1
s1,s2;s , (A21)

with

minm = max(−s,−s+m1 −m′
1,−s2 +m1),

maxm = min(s, s+m1 −m′
1, s2 +m1). (A22)

These limits come from the fact that all values
of m are not allowed in between −s and s, but
one must also ensure that −s2 6 m−m1 6 s2 and
−s 6 m+m′

1 −m1 6 s. Let us remark that, here, we
have got rid of the sum over m2 and kept the sum over m.
One could have of course done the opposite, resulting in
a somewhat different implementation. Expression (A21)
of ρA allows one to compute EA. The partial entropy EB
can be computed similarly. Once these are known, the
mutual information I is simply obtained from its defini-
tion (9).

It should be noted that the above calculation requires
the numerical computation of many Clebsch-Gordan co-
efficients. As there are too many of them, these cannot
be stored and must be computed when they are needed.
This was achieved by implementing the algorithm devel-
oped by Schulten and Gordon in Ref. 48, which is fast
and stable.
As a final comment, let us give an estimate of the

computational complexity of our algorithm. Looking at
Eq. (A21), one sees that eight sums are involved. How-
ever, the sum over i1 will only yield a multiplicity, which

leaves seven sums. Furthermore, the values of the inner
sum over α, namely

2s+1
∑

α=1

e−βE(s)
α a(s)α;m

∗
a
(s)
α;m′ , (A23)

can be computed once (for a given s), and stored in a
matrix. This matrix is nothing but the density matrix
in the spin-s sector (up to a factor of 1/Z). The
computation cost of this sum is thus negligible, and one
is left with a sum over six variables, namely s1, m1,
m′

1, s2, s and m, which all take a number of values
scaling linearly with N (at most). So we expect that our
algorithm roughly scales as N6 (which we observed in
practice).
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