
TENSOR CATEGORIES

P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik

These are lecture notes for the course 18.769 “Tensor categories”,
taught by P. Etingof at MIT in the spring of 2009.

In these notes we will assume that the reader is familiar with the
basic theory of categories and functors; a detailed discussion of this
theory can be found in the book [ML]. We will also assume the basics
of the theory of abelian categories (for a more detailed treatment see
the book [F]).

If C is a category, the notation X ∈ C will mean that X is an object
of C, and the set of morphisms between X, Y ∈ C will be denoted by
Hom(X, Y ).

Throughout the notes, for simplicity we will assume that the ground
field k is algebraically closed unless otherwise specified, even though in
many cases this assumption will not be needed.

1. Monoidal categories

1.1. The definition of a monoidal category. A good way of think-
ing about category theory (which will be especially useful throughout
these notes) is that category theory is a refinement (or “categorifica-
tion”) of ordinary algebra. In other words, there exists a dictionary
between these two subjects, such that usual algebraic structures are
recovered from the corresponding categorical structures by passing to
the set of isomorphism classes of objects.

For example, the notion of a (small) category is a categorification of
the notion of a set. Similarly, abelian categories are a categorification
of abelian groups 1 (which justifies the terminology).

This dictionary goes surprisingly far, and many important construc-
tions below will come from an attempt to enter into it a categorical
“translation” of an algebraic notion.

In particular, the notion of a monoidal category is the categorification
of the notion of a monoid.

Recall that a monoid may be defined as a set C with an associative
multiplication operation (x, y) → x · y (i.e., a semigroup), with an
element 1 such that 12 = 1 and the maps 1·, ·1 : C → C are bijections.
It is easy to show that in a semigroup, the last condition is equivalent
to the usual unit axiom 1 · x = x · 1 = x.

1To be more precise, the set of isomorphism classes of objects in a (small) abelian
category C is a commutative monoid, but one usually extends it to a group by
considering “virtual objects” of the form X − Y , X, Y ∈ C.
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As usual in category theory, to categorify the definition of a monoid,
we should replace the equalities in the definition of a monoid (namely,
the associativity equation (xy)z = x(yz) and the equation 12 = 1)
by isomorphisms satisfying some consistency properties, and the word
“bijection” by the word “equivalence” (of categories). This leads to
the following definition.

Definition 1.1.1. A monoidal category is a quintuple (C,⊗, a,1, ι)
where C is a category, ⊗ : C × C → C is a bifunctor called the tensor
product bifunctor,
a : • ⊗ (• ⊗ •)

∼
−→ • ⊗ (• ⊗ •) is a functorial isomorphism:

(1.1.1) aX,Y,Z : (X ⊗ Y )⊗ Z
∼
−→ X ⊗ (Y ⊗ Z), X, Y, Z ∈ C

called the associativity constraint (or associativity isomorphism), 1 ∈ C
is an object of C, and ι : 1⊗ 1→ 1 is an isomorphism, subject to the
following two axioms.

1. The pentagon axiom. The diagram
(1.1.2)

((W ⊗X)⊗ Y )⊗ Z
aW,X,Y ⊗IdZ

**UUUUUUUUUUUUUUUU
aW⊗X,Y,Z

ttiiiiiiiiiiiiiiii

(W ⊗X)⊗ (Y ⊗ Z)

aW,X,Y ⊗Z

��

(W ⊗ (X ⊗ Y ))⊗ Z

aW,X⊗Y,Z

��
W ⊗ (X ⊗ (Y ⊗ Z)) W ⊗ ((X ⊗ Y )⊗ Z)

IdW⊗aX,Y,Zoo

is commutative for all objects W,X, Y, Z in C.
2. The unit axiom. The functors L1 and R1 of left and right
multiplication by 1 are equivalences C → C.

The pair (1, ι) is called the unit object of C.2

We see that the set of isomorphism classes of objects in a small
monoidal category indeed has a natural structure of a monoid, with
multiplication ⊗ and unit 1. Thus, in the categorical-algebraic dic-
tionary, monoidal categories indeed correspond to monoids (which ex-
plains their name).

Definition 1.1.2. A monoidal subcategory of a monoidal category
(C,⊗, a,1, ι) is a quintuple (D,⊗, a,1, ι), where D ⊂ C is a subcate-
gory closed under the tensor product of objects and morphisms and
containing 1 and ι.

2We note that there is no condition on the isomorphism ι, so it can be chosen
arbitrarily.
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1.2. Basic properties of unit objects in monoidal categories.
Let (C,⊗, a,1, ι) be a monoidal category. Define the isomorphism lX :
1⊗X → X by the formula

lX = L−1
1

((ι⊗ Id) ◦ a−1
1,1,X),

and the isomorphism rX : X ⊗ 1→ X by the formula

rX = R−1
1

((Id⊗ ι) ◦ aX,1,1).

This gives rise to functorial isomorphisms l : L1 → IdC and r : R1 →
IdC. These isomorphisms are called the unit constraints or unit iso-
morphisms. They provide the categorical counterpart of the unit ax-
iom 1X = X1 = X of a monoid in the same sense as the associativity
isomorphism provides the categorical counterpart of the associativity
equation.

Proposition 1.2.1. The “triangle” diagram

(1.2.1) (X ⊗ 1)⊗ Y
aX,1,Y //

rX⊗IdY ''OOOOOOOOOOO

X ⊗ (1⊗ Y )

IdX⊗lYwwooooooooooo

X ⊗ Y

is commutative for all X, Y ∈ C. In particular, one has r1 = l1 = ι.

Proof. This follows by applying the pentagon axiom for the quadruple
of objects X,1,1, Y . More specifically, we have the following diagram:

(1.2.2)

((X ⊗ 1)⊗ 1)⊗ Y
aX,1,1⊗Id

//

rX⊗Id⊗Id **TTTTTTTTTTTTTTT

aX⊗1,1,Y

��

(X ⊗ (1⊗ 1))⊗ Y

(Id⊗ι)⊗Idttjjjjjjjjjjjjjjj

aX,1⊗1,Y

��

(X ⊗ 1)⊗ Y

aX,1,Y

��
X ⊗ (1⊗ Y )

(X ⊗ 1)⊗ (1⊗ Y )

rX⊗Id
44jjjjjjjjjjjjjjj

aX,1,1⊗Y **TTTTTTTTTTTTTTT

X ⊗ ((1⊗ 1)⊗ Y )
Id⊗(ι⊗Id)

jjTTTTTTTTTTTTTTT

Id⊗a1,1,Y

ttjjjjjjjjjjjjjjj

X ⊗ (1⊗ (1⊗ Y ))

Id⊗l1⊗Y

OO

To prove the proposition, it suffices to establish the commutativity
of the bottom left triangle (as any object of C is isomorphic to one of
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the form 1 ⊗ Y ). Since the outside pentagon is commutative (by the
pentagon axiom), it suffices to establish the commutativity of the other
parts of the pentagon. Now, the two quadrangles are commutative due
to the functoriality of the associativity isomorphisms, the commutativ-
ity of the upper triangle is the definition of r, and the commutativity
of the lower right triangle is the definition of l.

The last statement is obtained by setting X = Y = 1 in (1.2.1). �

Proposition 1.2.2. The following diagrams commute for all objects
X, Y ∈ C:

(1.2.3) (1⊗X)⊗ Y
a1,X,Y //

lX⊗IdY ''OOOOOOOOOOO

1⊗ (X ⊗ Y )

lX⊗Ywwooooooooooo

X ⊗ Y

(1.2.4) (X ⊗ Y )⊗ 1
aX,Y,1 //

rX⊗Y ''OOOOOOOOOOO

X ⊗ (Y ⊗ 1)

IdX⊗rYwwooooooooooo

X ⊗ Y

Proof. Consider the diagram
(1.2.5)

((X ⊗ 1)⊗ Y )⊗ Z
aX,1,Y ⊗Id

//

(rX⊗Id)⊗Id

**TTTTTTTTTTTTTTTT

aX⊗1,Y,Z

��

(X ⊗ (1⊗ Y ))⊗ Z

(Id⊗lY )⊗Idttjjjjjjjjjjjjjjjj

aX,1⊗Y,Z

��

(X ⊗ Y )⊗ Z

aX,Y,Z

��
X ⊗ (Y ⊗ Z)

(X ⊗ 1)⊗ (Y ⊗ Z)

rX⊗Id
44jjjjjjjjjjjjjjjj

aX,1,Y ⊗Z **TTTTTTTTTTTTTTTT

X ⊗ ((1⊗ Y )⊗ Z)
Id⊗(lY ⊗Id)

jjTTTTTTTTTTTTTTTT

Id⊗a1,Y,Z

ttjjjjjjjjjjjjjjjj

X ⊗ (1⊗ (Y ⊗ Z))

Id⊗lY ⊗Z

OO

where X, Y, Z are objects in C. The outside pentagon commutes by
the pentagon axiom (1.1.2). The functoriality of a implies the com-
mutativity of the two middle quadrangles. The triangle axiom (1.2.1)
implies the commutativity of the upper triangle and the lower left tri-
angle. Consequently, the lower right triangle commutes as well. Setting
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X = 1 and applying the functor L−1
1

to the lower right triangle, we
obtain commutativity of the triangle (1.2.3). The commutativity of the
triangle (1.2.4) is proved similarly. �

Proposition 1.2.3. For any object X in C one has the equalities
l1⊗X = Id⊗ lX and rX⊗1 = rX ⊗ Id.

Proof. It follows from the functoriality of l that the following diagram
commutes

(1.2.6) 1⊗ (1⊗X)
Id⊗lX //

l1⊗X

��

1⊗X

lX
��

1⊗X
lX

// X

Since lX is an isomorphism, the first identity follows. The second iden-
tity follows similarly from the functoriality of r. �

Proposition 1.2.4. The unit object in a monoidal category is unique
up to a unique isomorphism.

Proof. Let (1, ι), (1′, ι′) be two unit objects. Let (r, l), (r′, l′) be the
corresponding unit constraints. Then we have the isomorphism η :=
l1′ ◦ (r′

1
)−1 : 1→ 1′.

It is easy to show using commutativity of the above triangle diagrams
that η maps ι to ι′. It remains to show that η is the only isomorphism
with this property. To do so, it suffices to show that if b : 1→ 1 is an
isomorphism such that the diagram

(1.2.7) 1⊗ 1
b⊗b //

ι

��

1⊗ 1

ι

��
1

b
// 1

is commutative, then b = Id. To see this, it suffices to note that for
any morphism c : 1→ 1 the diagram

(1.2.8) 1⊗ 1
c⊗Id //

ι

��

1⊗ 1

ι

��
1 c

// 1

is commutative (as ι = r1), so b⊗ b = b⊗ Id and hence b = Id. �

Exercise 1.2.5. Verify the assertion in the proof of Proposition 1.2.4
that η maps ι to ι′.

Hint. Use Propositions 1.2.1 and 1.2.2.
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The results of this subsection show that a monoidal category can be
alternatively defined as follows:

Definition 1.2.6. A monoidal category is a sextuple (C,⊗, a,1, l, r)
satisfying the pentagon axiom (1.1.2) and the triangle axiom (1.2.1).

This definition is perhaps more traditional than Definition 1.1.1, but
Definition 1.1.1 is simpler. Besides, Proposition 1.2.4 implies that for
a triple (C,⊗, a) satisfying a pentagon axiom (which should perhaps
be called a “semigroup category”, as it categorifies the notion of a
semigroup), being a monoidal category is a property and not a structure
(similarly to how it is for semigroups and monoids).

Furthermore, one can show that the commutativity of the triangles
implies that in a monoidal category one can safely identify 1⊗X and
X ⊗ 1 with X using the unit isomorphisms, and assume that the unit
isomorphism are the identities (which we will usually do from now on).3

In a sense, all this means that in constructions with monoidal cat-
egories, unit objects and isomorphisms always “go for the ride”, and
one need not worry about them especially seriously. For this reason,
below we will typically take less care dealing with them than we have
done in this subsection.

Proposition 1.2.7. ([SR, 1.3.3.1]) The monoid End(1) of endomor-
phisms of the unit object of a monoidal category is commutative.

Proof. The unit isomorphism ι : 1 ⊗ 1
∼
−→ 1 induces the isomorphism

ψ : End(1⊗1)
∼
−→ End(1). It is easy to see that ψ(a⊗1) = ψ(1⊗a) = a

for any a ∈ End(1). Therefore,

(1.2.9) ab = ψ((a⊗ 1)(1⊗ b)) = ψ((1⊗ b)(a⊗ 1)) = ba,

for any a, b ∈ End(1). �

1.3. First examples of monoidal categories. Monoidal categories
are ubiquitous. You will see one whichever way you look. Here are
some examples.

Example 1.3.1. The category Sets of sets is a monoidal category,
where the tensor product is the Cartesian product and the unit object
is a one element set; the structure morphisms a, ι, l, r are obvious. The
same holds for the subcategory of finite sets, which will be denoted
by Sets 4. This example can be widely generalized: one can take the

3We will return to this issue later when we discuss MacLane’s coherence theorem.
4Here and below, the absence of a finiteness condition condition is indicated by

the boldface font, while its presence is indicated by the Roman font.
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category of sets with some structure, such as groups, topological spaces,
etc.

Example 1.3.2. Any additive category is monoidal, with ⊗ being the
direct sum functor ⊕, and 1 being the zero object.

The remaining examples will be especially important below.

Example 1.3.3. Let k be any field. The category k − Vec of all
k−vector spaces is a monoidal category, where ⊗ = ⊗k, 1 = k, and the
morphisms a, ι, l, r are the obvious ones. The same is true about the
category of finite dimensional vector spaces over k, denoted by k−Vec.
We will often drop k from the notation when no confusion is possible.

More generally, if R is a commutative unital ring, then replacing k
by R we can define monoidal categories R −mod of R-modules and
R−mod of R-modules of finite type.

Example 1.3.4. Let G be a group. The category Repk(G) of all
representations of G over k is a monoidal category, with ⊗ being the
tensor product of representations: if for a representation V one denotes
by ρV the corresponding map G→ GL(V ), then

ρV ⊗W (g) := ρV (g)⊗ ρW (g).

The unit object in this category is the trivial representation 1 = k. A
similar statement holds for the category Repk(G) of finite dimensional
representations of G. Again, we will drop the subscript k when no
confusion is possible.

Example 1.3.5. Let G be an affine (pro)algebraic group over k. The
categories Rep(G) of all algebraic representations of G over k is a
monoidal category (similarly to Example 1.3.4).

Similarly, if g is a Lie algebra over k, then the category of its repre-
sentations Rep(g) and the category of its finite dimensional represen-
tations Rep(g) are monoidal categories: the tensor product is defined
by

ρV ⊗W (a) = ρV (a)⊗ IdW + IdV ⊗ ρW (a)

(where ρY : g→ gl(Y ) is the homomorphism associated to a represen-
tation Y of g), and 1 is the 1-dimensional representation with the zero
action of g.

Example 1.3.6. Let G be a monoid (which we will usually take to
be a group), and let A be an abelian group (with operation written
multiplicatively). Let CG = CG(A) be the category whose objects δg
are labeled by elements of G (so there is only one object in each iso-
morphism class), Hom(δg1 , δg2) = ∅ if g1 6= g2, and Hom(δg, δg) = A,
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with the functor ⊗ defined by δg ⊗ δh = δgh, and the tensor tensor
product of morphisms defined by a ⊗ b = ab. Then CG is a monoidal
category with the associativity isomorphism being the identity, and 1
being the unit element of G. This shows that in a monoidal category,
X ⊗ Y need not be isomorphic to Y ⊗X (indeed, it suffices to take a
non-commutative monoid G).

This example has a “linear” version. Namely, let k be a field, and
k − VecG denote the category of G-graded vector spaces over k, i.e.
vector spaces V with a decomposition V = ⊕g∈GVg. Morphisms in this
category are linear operators which preserve the grading. Define the
tensor product on this category by the formula

(V ⊗W )g = ⊕x,y∈G:xy=gVx ⊗Wy,

and the unit object 1 by 11 = k and 1g = 0 for g 6= 1. Then,
defining a, ι in an obvious way, we equip k −VecG with the structure
of a monoidal category. Similarly one defines the monoidal category
k − VecG of finite dimensional G-graded k-vector spaces.

In the category k − VecG, we have pairwise non-isomorphic objects
δg, g ∈ G, defined by the formula (δg)x = k if x = g and (δg)x =
0 otherwise. For these objects, we have δg ⊗ δh ∼= δgh. Thus the
category CG(k×) is a (non-full) monoidal subcategory of k−VecG. This
subcategory can be viewed as a “basis” of VecG (and VecG as “the linear
span” of CG), as any object of VecG is isomorphic to a direct sum of
objects δg with nonnegative integer multiplicities.

When no confusion is possible, we will denote the categories k−VecG,
k −VecG simply by VecG, VecG.

Example 1.3.7. This is really a generalization of Example 1.3.6, which
shows that the associativity isomorphism is not always “the obvious
one”.

Let G be a group, A an abelian group, and ω be a 3-cocycle of G
with values in A. This means that ω : G × G × G → A is a function
satisfying the equation
(1.3.1)
ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)ω(g2, g3, g4),

for all g1, g2, g3, g4 ∈ G.
Let us define the monoidal category Cω

G = Cω
G(A) as follows. As a

category, it is the same as the category CG defined above. The bifunctor
⊗ and the unit object (1, ι) in this category is also the same as those
in CG. The only difference is in the new associativity isomorphism aω,
which is not “the obvious one” (i.e., the identity) like in CG, but rather
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is defined by the formula

(1.3.2) aω
δg ,δh,δm

= ω(g, h,m) : (δg ⊗ δh)⊗ δm → δg ⊗ (δh ⊗ δm),

where g, h,m ∈ G.
The fact that Cω

G with these structures is indeed a monoidal category
follows from the properties of ω. Namely, the pentagon axiom (1.1.2)
follows from equation (1.3.1), and the unit axiom is obvious.

Similarly, for a field k, one can define the category (k−)Vecω
G, which

differs from VecG just by the associativity isomorphism. This is done
by extending the associativity isomorphism of Cω

G by additivity to ar-
bitrary direct sums of objects δg. This category contains a monoidal
subcategory Vecω

G of finite dimensional G-graded vector spaces with
associativity defined by ω.

Remark 1.3.8. It is straightforward to verify that the unit morphisms
l, r in Vecω

G are given on 1-dimensional spaces by the formulas

lδg
= ω(1, 1, g)−1Idg, rδg

= ω(g, 1, 1)Idg,

and the triangle axiom says that ω(g, 1, h) = ω(g, 1, 1)ω(1, 1, h). Thus,
we have lX = rX = Id if and only if

(1.3.3) ω(g, 1, 1) = ω(1, 1, g),

for any g ∈ G or, equivalently,

(1.3.4) ω(g, 1, h) = 1, g, h ∈ G.

A cocycle satisfying this condition is said to be normalized.

Example 1.3.9. Let C be a category. Then the category End(C) of
all functors from C to itself is a monoidal category, where ⊗ is given
by composition of functors. The associativity isomorphism in this cat-
egory is the identity. The unit object is the identity functor, and the
structure morphisms are obvious. If C is an abelian category, the same
is true about the categories of additive, left exact, right exact, and
exact endofunctors of C.

Example 1.3.10. Let A be an associative ring with unit. Then the
category A−bimod of bimodules over A is a monoidal category, with
tensor product ⊗ = ⊗A, over A. The unit object in this category is
the ring A itself (regarded as an A-bimodule).

If A is commutative, this category has a full monoidal subcategory
A − mod, consisting of A-modules, regarded as bimodules in which
the left and right actions of A coincide. More generally, if X is a
scheme, one can define the monoidal category QCoh(X) of quasico-
herent sheaves on X; if X is affine and A = OX , then QCoh(X) =
A−mod.
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Similarly, if A is a finite dimensional algebra, we can define the
monoidal category A−bimod of finite dimensional A-bimodules. Other
similar examples which often arise in geometry are the category Coh(X)
of coherent sheaves on a scheme X, its subcategory VB(X) of vector
bundles (i.e., locally free coherent sheaves) on X, and the category
Loc(X) of locally constant sheaves of finite dimensional k-vector spaces
(also called local systems) on any topological space X. All of these are
monoidal categories in a natural way.

Example 1.3.11. The category of tangles.
Let Sm,n be the disjoint union of m circles R/Z and n intervals

[0, 1]. A tangle is a piecewise smooth embedding f : Sm,n → R2× [0, 1]
such that the boundary maps to the boundary and the interior to the
interior. We will abuse the terminology by also using the term “tangle”
for the image of f .

Let x, y, z be the Cartesian coordinates on R2 × [0, 1]. Any tangle
has inputs (points of the image of f with z = 0) and outputs (points of

the image of f with z = 1). For any integers p, q ≥ 0, let T̃p,q be the set
of all tangles which have p inputs and q outputs, all having a vanishing

y-coordinate. Let Tp,q be the set of isotopy classes of elements of T̃p,q;
thus, during an isotopy, the inputs and outputs are allowed to move
(preserving the condition y = 0), but cannot meet each other. We can
define a canonical composition map Tp,q × Tq,r → Tp,r, induced by the
concatenation of tangles. Namely, if s ∈ Tp,q and t ∈ Tq,r, we pick rep-

resentatives s̃ ∈ T̃p,q, t̃ ∈ T̃q,r such that the inputs of t̃ coincide with the
outputs of s̃, concatenate them, perform an appropriate reparametriza-
tion, and rescale z → z/2. The obtained tangle represents the desired
composition ts.

We will now define a monoidal category T called the category of
tangles (see [K, T, BaKi] for more details). The objects of this cat-
egory are nonnegative integers, and the morphisms are defined by
HomT (p, q) = Tp,q, with composition as above. The identity morphisms
are the elements idp ∈ Tp,p represented by p vertical intervals and no
circles (in particular, if p = 0, the identity morphism idp is the empty
tangle).

Now let us define the monoidal structure on the category T . The
tensor product of objects is defined by m⊗n = m+n. However, we also
need to define the tensor product of morphisms. This tensor product
is induced by union of tangles. Namely, if t1 ∈ Tp1,q1 and t2 ∈ Tp2,q2 , we

pick representatives t̃1 ∈ T̃p1,q1 , t̃2 ∈ T̃p2,q2 in such a way that any point

of t̃1 is to the left of any point of t̃2 (i.e., has a smaller x-coordinate).
Then t1 ⊗ t2 is represented by the tangle t̃1 ∪ t̃2.
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We leave it to the reader to check the following:
1. The product t1 ⊗ t2 is well defined, and its definition makes ⊗ a

bifunctor.
2. There is an obvious associativity isomorphism for ⊗, which turns

T into a monoidal category (with unit object being the empty tangle).

1.4. Monoidal functors, equivalence of monoidal categories.
As we have explained, monoidal categories are a categorification of
monoids. Now we pass to categorification of morphisms between monoids,
namely monoidal functors.

Definition 1.4.1. Let (C,⊗,1, a, ι) and (C ′,⊗′,1′, a′, ι′) be two monoidal
categories. A monoidal functor from C to C ′ is a pair (F, J) where

F : C → C ′ is a functor, and J = {JX,Y : F (X) ⊗′ F (Y )
∼
−→ F (X ⊗

Y )|X, Y ∈ C} is a natural isomorphism, such that F (1) is isomorphic
to 1′. and the diagram
(1.4.1)

(F (X)⊗′ F (Y ))⊗′ F (Z)
a′

F (X),F (Y ),F (Z)
−−−−−−−−−→ F (X)⊗′ (F (Y )⊗′ F (Z))

JX,Y ⊗′IdF (Z)

y IdF (X)⊗′JY,Z

y

F (X ⊗ Y )⊗′ F (Z) F (X)⊗′ F (Y ⊗ Z)

JX⊗Y,Z

y JX,Y ⊗Z

y

F ((X ⊗ Y )⊗ Z)
F (a

X,Y,Z
)

−−−−−−→ F (X ⊗ (Y ⊗ Z))

is commutative for all X, Y, Z ∈ C (“the monoidal structure axiom”).
A monoidal functor F is said to be an equivalence of monoidal cate-

gories if it is an equivalence of ordinary categories.

Remark 1.4.2. It is important to stress that, as seen from this defini-
tion, a monoidal functor is not just a functor between monoidal cate-
gories, but a functor with an additional structure (the isomorphism J)
satisfying a certain equation (the monoidal structure axiom). As we
will see later, this equation may have more than one solution, so the
same functor can be equipped with different monoidal structures.

It turns out that if F is a monoidal functor, then there is a canon-
ical isomorphism ϕ : 1′ → F (1). This isomorphism is defined by the
commutative diagram
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(1.4.2)

1′ ⊗′ F (1)
l′
F (1)
−−−→ F (1)

ϕ⊗′IdF (X)

y F (l
1
)

x

F (1)⊗′ F (1)
J1,1

−−−→ F (1⊗ 1)

where l, r, l′, r′ are the unit isomorphisms for C, C ′ defined in Subsection
1.2.

Proposition 1.4.3. For any monoidal functor (F, J) : C → C ′, the
diagrams

(1.4.3)

1′ ⊗′ F (X)
l′
F (X)
−−−→ F (X)

ϕ⊗′IdF (X)

y F (l
X

)

x

F (1)⊗′ F (X)
J1,X

−−−→ F (1⊗X)

and

(1.4.4)

F (X)⊗′ 1′
r′
F (X)
−−−→ F (X)

IdF (X)⊗′ϕ

y F (r
X

)

x

F (X)⊗′ F (1)
JX,1

−−−→ F (X ⊗ 1)

are commutative for all X ∈ C.

Exercise 1.4.4. Prove Proposition 1.4.3.

Proposition 1.4.3 implies that a monoidal functor can be equivalently
defined as follows.

Definition 1.4.5. A monoidal functor C → C′ is a triple (F, J, ϕ) which
satisfies the monoidal structure axiom and Proposition 1.4.3.

This is a more traditional definition of a monoidal functor.

Remark 1.4.6. It can be seen from the above that for any monoidal
functor (F, J) one can safely identify 1′ with F (1) using the isomor-
phism ϕ, and assume that F (1) = 1′ and ϕ = Id (similarly to how we
have identified 1⊗X and X ⊗ 1 with X and assumed that lX = rX =
IdX). We will usually do so from now on. Proposition 1.4.3 implies
that with these conventions, one has

(1.4.5) J1,X = JX,1 = IdX .
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Remark 1.4.7. It is clear that the composition of monoidal functors is
a monoidal functor. Also, the identity functor has a natural structure
of a monoidal functor.

1.5. Morphisms of monoidal functors. Monoidal functors between
two monoidal categories themselves form a category. Namely, one has
the following notion of a morphism (or natural transformation) between
two monoidal functors.

Definition 1.5.1. Let (C,⊗,1, a, ι) and (C ′,⊗′,1′, a′, ι′) be two monoidal
categories, and (F 1, J1), (F 2, J2) two monoidal functors from C to
C ′. A morphism (or a natural transformation) of monoidal functors
η : (F 1, J1) → (F 2, J2) is a natural transformation η : F 1 → F 2 such
that η1 is an isomorphism, and the diagram

(1.5.1)

F 1(X)⊗′ F 1(Y )
J1

X,Y

−−−→ F 1(X ⊗ Y )

ηX⊗′ηY

y
yηX⊗Y

F 2(X)⊗′ F 2(Y )
J2

X,Y

−−−→ F 2(X ⊗ Y )

is commutative for all X, Y ∈ C.

Remark 1.5.2. It is easy to show that η1 ◦ ϕ
1 = ϕ2, so if one makes

the convention that ϕi = Id, one has η1 = Id.

Remark 1.5.3. It is easy to show that if F : C → C′ is an equivalence
of monoidal categories, then there exists a monoidal equivalence F−1 :
C ′ → C such that the functors F ◦ F−1 and F−1 ◦ F are isomorphic
to the identity functor as monoidal functors. Thus, for any monoidal
category C, the monoidal auto-equivalences of C up to isomorphism
form a group with respect to composition.

1.6. Examples of monoidal functors. Let us now give some exam-
ples of monoidal functors and natural transformations.

Example 1.6.1. An important class of examples of monoidal functors
is forgetful functors (e.g. functors of “forgetting the structure”, from
the categories of groups, topological spaces, etc., to the category of
sets). Such functors have an obvious monoidal structure. An example
important in these notes is the forgetful functor RepG → Vec from
the representation category of a group to the category of vector spaces.
More generally, if H ⊂ G is a subgroup, then we have a forgetful
(or restriction) functor RepG → RepH . Still more generally, if f :
H → G is a group homomorphism, then we have the pullback functor
f ∗ : RepG → RepH . All these functors are monoidal.
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Example 1.6.2. Let f : H → G be a homomorphism of groups. Then
any H-graded vector space is naturally G-graded (by pushforward of
grading). Thus we have a natural monoidal functor f∗ : VecH → VecG.
If G is the trivial group, then f∗ is just the forgetful functor VecH →
Vec.

Example 1.6.3. Let A be a k-algebra with unit, and C = A −mod
be the category of left A-modules. Then we have a functor F : A −
bimod → End(C) given by F (M) = M⊗A. This functor is naturally
monoidal. A similar functor F : A− bimod→ End(C). can be defined
if A is a finite dimensional k-algebra, and C = A−mod is the category
of finite dimensional left A-modules.

Proposition 1.6.4. The functor F : A−bimod→ End(C) takes values
in the full monoidal subcategory Endre(C) of right exact endofunctors of
C, and defines an equivalence between monoidal categories A − bimod
and Endre(C)

Proof. The first statement is clear, since the tensor product functor
is right exact. To prove the second statement, let us construct the
quasi-inverse functor F−1. Let G ∈ Endre(C). Define F−1(G) by the
formula F−1(G) = G(A); this is clearly an A-bimodule, since it is a
left A-module with a commuting action EndA(A) = Aop (the opposite
algebra). We leave it to the reader to check that the functor F−1 is
indeed quasi-inverse to F . �

Remark 1.6.5. A similar statement is valid without the finite dimen-
sionality assumption, if one adds the condition that the right exact
functors must commute with inductive limits.

Example 1.6.6. Let S be a monoid, and C = VecS, and IdC the identity
functor of C. It is easy to see that morphisms η : IdC → IdC correspond
to homomorphisms of monoids: η : S → k (where k is equipped with
the multiplication operation). In particular, η(s) may be 0 for some s,
so η does not have to be an isomorphism.

1.7. Monoidal functors between categories Cω
G. Let G1, G2 be

groups, A an abelian group, and ωi ∈ Z
3(Gi, A), i = 1, 2 be 3-cocycles.

Let Ci = Cωi

Gi
, i = 1, 2 (see Example 1.3.7).

Any monoidal functor F : C1 → C2 defines, by restriction to simple
objects, a group homomorphism f : G1 → G2. Using the axiom (1.4.1)
of a monoidal functor we see that a monoidal structure on F is given
by

(1.7.1) Jg,h = µ(g, h)Idδf(gh)
: F (δg)⊗ F (δh)

∼
−→ F (δgh), g, h ∈ G1,



15

where µ : G1 ×G1 → A is a function such that

ω1(g, h, l)µ(gh, l)µ(g, h) = µ(g, hl)µ(h, l)ω2(f(g), f(h), f(l)),

for all g, h, l ∈ G1. That is,

(1.7.2) f ∗ω2 = ω1∂2(µ),

i.e., ω1 and f ∗ω2 are cohomologous in Z3(G1, A).
Conversely, given a group homomorphism f : G1 → G2, a function

µ : G1 × G1 → A satisfying (1.7.2) gives rise to a monoidal functor
F : C1 → C2 defined by F (δg) = δf(g) with the monoidal structure
given by formula (1.7.1). This functor is an equivalence if and only if
f is an isomorphism.

To summarize, monoidal functors Cω1
G1
→ Cω2

G2
correspond to pairs

(f, µ), where f : G1 → G2 is a group homomorphism such that ω1

and f ∗ω2 are cohomologous, and µ is a function satisfying (1.7.2) (such
functions are in a (non-canonical) bijection with A-valued 2-cocycles
on G1). Let Ff,µ denote the corresponding functor.

Let us determine natural monoidal transformations between Ff,µ and
Ff ′,µ′ . Clearly, such a transformation exists if and only if f = f ′, is
always an isomorphism, and is determined by a collection of morphisms
ηg : δf(g) → δf(g) (i.e., ηg ∈ A), satisfying the equation

(1.7.3) µ′(g, h)(ηg ⊗ ηh) = ηghµ(g, h)

for all g, h ∈ G1, i.e.,

(1.7.4) µ′ = µ∂1(η).

Conversely, every function η : G1 → A satisfying (1.7.4) gives rise to
a morphism of monoidal functors η : Ff,µ → Ff,µ′ defined as above.
Thus, functors Ff,µ and Ff ′,µ′ are isomorphic as monoidal functors if
and only if f = f ′ and µ is cohomologous to µ′.

Thus, we have obtained the following proposition.

Proposition 1.7.1. (i) The monoidal isomorphisms Ff,µ → Ff,µ′ of
monoidal functors Ff,µi

: Cω1
G1
→ Cω2

G2
form a torsor over the group

H1(G1, k
×) = Hom(G1, k

×) of characters of G1;
(ii) Given f , the set of µ parametrizing isomorphism classes of Ff,µ

is a torsor over H2(G1, k
×);

(iii) The structures of a monoidal category on (CG,⊗) are parametrized
by H3(G, k×)/Out(G), where Out(G) is the group of outer automor-
phisms of G. 5

5Recall that the group Inn(G) of inner automorphisms of a group G acts trivially
on H∗(G, A) (for any coefficient group A), and thus the action of the group Aut(G)
on H∗(G, A) factors through Out(G).
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Remark 1.7.2. The same results, including Proposition 1.7.1, are
valid if we replace the categories Cω

G by their “linear spans” Vecω
G, and

require that the monoidal functors we consider are additive. To see
this, it is enough to note that by definition, for any morphism η of
monoidal functors, η1 6= 0, so equation (1.7.3) (with h = g−1) implies
that all ηg must be nonzero. Thus, if a morphism η : Ff,µ → Ff ′,µ′

exists, then it is an isomorphism, and we must have f = f ′.

Remark 1.7.3. The above discussion implies that in the definition
of the categories Cω

G and Vecω
G, it may be assumed without loss of

generality that the cocycle ω is normalized, i.e., ω(g, 1, h) = 1, and
thus lδg

= rδg
= Id (which is convenient in computations). Indeed, we

claim that any 3-cocycle ω is cohomologous to a normalized one. To
see this, it is enough to alter ω by dividing it by ∂2µ, where µ is any
2-cochain such that µ(g, 1) = ω(g, 1, 1), and µ(1, h) = ω(1, 1, h)−1.

Example 1.7.4. Let G = Z/nZ where n > 1 is an integer, and k = C.
Consider the cohomology of Z/nZ.

Since H i(Z/nZ, C) = 0 for all i > 0, writing the long exact sequence
of cohomology for the short exact sequence of coefficient groups

0 −→ Z −→ C −→ C× = C/Z −→ 0,

we obtain a natural isomorphism H i(Z/nZ, C×) ∼= H i+1(Z/nZ, Z).
It is well known [Br] that the graded ring H∗(Z/nZ, Z) is (Z/nZ)[x]

where x is a generator in degree 2. Moreover, as a module over Aut(Z/nZ) =
(Z/nZ)×, we have H2(Z/nZ, Z) ∼= H1(Z/nZ, C×) = (Z/nZ)∨. There-
fore, using the graded ring structure, we find that H2m(Z/nZ, Z) ∼=
H2m−1(Z/nZ, C×) = ((Z/nZ)∨)⊗m as an Aut(Z/nZ)-module. In par-
ticular, H3(Z/nZ, C×) = ((Z/nZ)∨)⊗2.

This consideration shows that if n = 2 then the categorification
problem has 2 solutions (the cases of trivial and non-trivial cocycle),
while if n is a prime greater than 2 then there are 3 solutions: the trivial
cocycle, and two non-trivial cocycles corresponding (non-canonically)
to quadratic residues and non-residues modn.

Let us give an explicit formula for the 3-cocycles on Z/nZ. Modulo
coboundaries, these cocycles are given by

(1.7.5) φ(i, j, k) = ε
si(j+k−(j+k)′)

n ,

where ε is a primitive nth root of unity, s ∈ Z/nZ, and for an integer
m we denote by m′ the remainder of division of m by n.

Exercise 1.7.5. Show that when s runs over Z/nZ this formula defines
cocycles representing all cohomology classes in H3(Z/nZ, C×).
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1.8. MacLane’s strictness theorem. As we have seen above, it is
much simpler to work with monoidal categories in which the associa-
tivity and unit constrains are the identity maps.

Definition 1.8.1. A monoidal category C is strict if for all objects
X, Y, Z in C one has equalities (X ⊗ Y ) ⊗ Z = X ⊗ (Y ⊗ Z) and
X⊗1 = X = 1⊗X, and the associativity and unit constraints are the
identity maps.

Example 1.8.2. The category End(C) endofunctors of a category C is
strict.

Example 1.8.3. Let Sets be the category whose objects are nonnega-
tive integers, and Hom(m,n) is the set of maps from {0, ...,m− 1} to
{0, ..., n− 1}. Define the tensor product functor on objects by m⊗n =
mn, and for f1 : m1 → n1, f2 : m2 → n2, define f1 ⊗ f2 : m1m2 → n1n2

by

(f1⊗ f2)(m2x+ y) = n2f1(x)+ f2(y), 0 ≤ x ≤ m1− 1, 0 ≤ y ≤ m2− 1.

Then Sets is a strict monoidal category. Moreover, we have a natural
inclusion Sets →֒ Sets, which is obviously a monoidal equivalence.

Example 1.8.4. This is really a linear version of the previous example.
Let k−Vec be the category whose objects are nonnegative integers, and
Hom(m,n) is the set of matrices with m columns and n rows over some
field k (and the composition of morphisms is the product of matrices).
Define the tensor product functor on objects by m⊗ n = mn, and for
f1 : m1 → n1, f2 : m2 → n2, define f1 ⊗ f2 : m1m2 → n1n2 to be the
Kronecker product of f1 and f2. Then k − Vec is a strict monoidal
category. Moreover, we have a natural inclusion k − Vec →֒ k − Vec,
which is obviously a monoidal equivalence.

Similarly, for any group G one can define a strict monoidal category
k − VecG, whose objects are Z+-valued functions on G with finitely
many nonzero values, and which is monoidally equivalent to k−VecG.
We leave this definition to the reader.

On the other hand, some of the most important monoidal categories,
such as Sets, Vec, VecG, Sets, Vec, VecG, should be regarded as non-
strict (at least if one defines them in the usual way). It is even more
indisputable that the categories Vecω

G, Vecω
G for cohomologically non-

trivial ω are not strict.
However, the following remarkable theorem of MacLane implies that

in practice, one may always assume that a monoidal category is strict.

Theorem 1.8.5. Any monoidal category is monoidally equivalent to a
strict monoidal category.
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Proof. The proof presented below was given in [JS]. We will establish
an equivalence between C and the monoidal category of right C-module
endofunctors of C, which we will discuss in more detail later. The non-
categorical algebraic counterpart of this result is of course the fact that
every monoid M is isomorphic to the monoid consisting of maps from
M to itself commuting with the right multiplication.

For a monoidal category C, let C ′ be the monoidal category defined
as follows. The objects of C are pairs (F, c) where F : C → C is a
functor and

cX,Y : F (X)⊗ Y
∼
−→ F (X ⊗ Y )

is a functorial isomorphism, such that the following diagram is com-
mutative for all objects X, Y, Z in C:
(1.8.1)

(F (X)⊗ Y )⊗ Z
cX,Y ⊗IdZ

uukkkkkkkkkkkkkk aF (X),Y,Z

))SSSSSSSSSSSSSSS

F (X ⊗ Y )⊗ Z

cX⊗Y ,Z

��

F (X)⊗ (Y ⊗ Z)

cX,Y ⊗Z

��
F ((X ⊗ Y )⊗ Z)

F (aX,Y,Z)
// F (X ⊗ (Y ⊗ Z)).

A morphism θ : (F 1, c1) → (F 2, c2) in C ′ is a natural transformation
θ : F 1 → F 2 such that the following square commutes for all objects
X, Y in C:

(1.8.2) F 1(X)⊗ Y
c1X,Y //

θX⊗IdY

��

F 1(X ⊗ Y )

θX⊗Y

��
F2(X)⊗ Y

c2X,Y

// F 2(X ⊗ Y )

Composition of morphisms is the vertical composition of natural trans-
formations. The tensor product of objects is given by (F 1, c1) ⊗
(F 2, c2) = (F 1F 2, c) where c is given by a composition

(1.8.3) F 1F 2(X)⊗Y
c1
F2(X),Y

−−−−−→ F 1(F 2(X)⊗Y )
F1(c2X,Y )
−−−−−→ F 1F 2(X ⊗Y )

for all X, Y ∈ C, and the tensor product of morphisms is the horizontal
composition of natural transformations. Thus C ′ is a strict monoidal
category (the unit object is the identity functor).

Consider now the functor of left multiplication L : C → C′ given by

L(X) = (X ⊗ •, aX,•,•), L(f) = f ⊗ •.
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Note that the diagram (1.8.1) for L(X) is nothing but the pentagon
diagram (1.1.2).

We claim that this functor L is a monoidal equivalence.
First of all, L essentially surjective: it is easy to check that for any

(F, c) ∈ C′, (F, c) is isomorphic to L(F (1)).
Let us now show that L is fully faithful. Let θ : L(X)→ L(Y ) be a

morphism in C. Define f : X → Y to be the composite

(1.8.4) X
r−1
X−−→ X ⊗ 1

θ1−→ Y ⊗ 1
rY−→ Y.

We claim that for all Z in C one has θZ = f⊗IdZ (so that θ = L(f) and
L is full). Indeed, this follows from the commutativity of the diagram
(1.8.5)

X ⊗ Z
r−1
X

⊗IdZ

−−−−−→ (X ⊗ 1)⊗ Z
aX,1,Z

−−−−→ X ⊗ (1⊗ Z)
IdX⊗lZ−−−−→ X ⊗ Z

f⊗IdZ

y θ1⊗Z

y θ1⊗IdZ

y θZ

y

Y ⊗ Z −−−−−→
r−1
Y

⊗IdZ

(Y ⊗ 1)⊗ Z −−−→
aY,1,Z

Y ⊗ (1⊗ Z) −−−−→
IdY ⊗lZ

Y ⊗ Z,

where the rows are the identity morphisms by the triangle axiom (1.2.1),
the left square commutes by the definition of f , the right square com-
mutes by naturality of θ, and the central square commutes since θ is a
morphism in C ′.

Next, if L(f) = L(g) for some morphisms f, g in C then, in particular
f ⊗ Id1 = g ⊗ Id1 so that f = g. Thus L is faithful.

Finally, we define a monoidal functor structure JX,Y : L(X)◦L(Y )
∼
−→

L(X ⊗ Y ) on L by

JX,Y = a−1
X,Y,• : X ⊗ (Y ⊗ •), ((IdX ⊗ aY,•,•) ◦ aX,Y ⊗•,•)

∼
−→ ((X ⊗ Y )⊗ •, aX⊗Y,•,•).

The diagram (1.8.2) for the latter natural isomorphism is just the pen-
tagon diagram in C. For the functor L the hexagon diagram (1.4.1)
in the definition of a monoidal functor also reduces to the pentagon
diagram in C. The theorem is proved. �

Remark 1.8.6. The nontrivial nature of MacLane’s strictness theo-
rem is demonstrated by the following instructive example, which shows
that even though a monoidal category is always equivalent to a strict
category, it need not be isomorphic to one. (By definition, an iso-
morphism of monoidal categories is a monoidal equivalence which is an
isomorphism of categories).
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Namely, let C be the category Cω
G. If ω is cohomologically nontrivial,

this category is clearly not isomorphic to a strict one. However, by
Maclane’s strictness theorem, it is equivalent to a strict category C ′.

In fact, in this example a strict category C ′ monoidally equivalent

to C can be constructed quite explicitly, as follows. Let G̃ be another

group with a surjective homomorphism f : G̃ → G such that the 3-

cocycle f ∗ω is cohomologically trivial. Such G̃ always exists, e.g., a
free group (recall that the cohomology of a free group in degrees higher
than 1 is trivial, see [Br]). Let C ′ be the category whose objects δg
are labeled by elements of G̃, Hom(δg, δh) = A if g, h have the same
image in G, and Hom(δg, δh) = ∅ otherwise. This category has an
obvious tensor product, and a monoidal structure defined by the 3-
cocycle f ∗ω. We have an obvious monoidal functor F : C ′ → C defined

by the homomorphism G̃ → G, and it is an equivalence, even though
not an isomorphism. However, since the cocycle f ∗ω is cohomologically
trivial, the category C ′ is isomorphic to the same category with the
trivial associativity isomorphism, which is strict.

Remark 1.8.7. 6 A category is called skeletal if it has only one object
in each isomorphism class. The axiom of choice implies that any cate-
gory is equivalent to a skeletal one. Also, by MacLane’s theorem, any
monoidal category is monoidally equivalent to a strict one. However,
Remark 1.8.6 shows that a monoidal category need not be monoidally
equivalent to a category which is skeletal and strict at the same time.
Indeed, as we have seen, to make a monoidal category strict, it may
be necessary to add new objects to it (which are isomorphic, but not
equal to already existing ones). In fact, the desire to avoid adding
such objects is the reason why we sometimes use nontrivial associa-
tivity isomorphisms, even though MacLane’s strictness theorem tells
us we don’t have to. This also makes precise the sense in which the
categories Sets, Vec, VecG, are “more strict” than the category Vecω

G

for cohomologically nontrivial ω. Namely, the first three categories
are monoidally equivalent to strict skeletal categories Sets, Vec, VecG,
while the category Vecω

G is not monoidally equivalent to a strict skeletal
category.

Exercise 1.8.8. Show that any monoidal category C is monoidally
equivalent to a skeletal monoidal category C. Moreover, C can be chosen
in such a way that lX , rX = IdX for all objects X ∈ C.

Hint. Without loss of generality one can assume that 1 ⊗ X =
X ⊗ 1 = X and lX , rX = IdX for all objects X ∈ C. Now in every

6This remark is borrowed from the paper [Kup2].
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isomorphism class i of objects of C fix a representative Xi, so that X1 =
1, and for any two classes i, j fix an isomorphism µij : Xi⊗Xj → Xi·j,
so that µi1 = µ1i = IdXi

. Let C be the full subcategory of C consisting
of the objects Xi, with tensor product defined by Xi⊗Xj = Xi·j, and
with all the structure transported using the isomorphisms µij. Then C
is the required skeletal category, monoidally equivalent to C.

1.9. The MacLane coherence theorem. In a monoidal category,
one can form n-fold tensor products of any ordered sequence of objects
X1, ..., Xn. Namely, such a product can be attached to any parenthe-
sizing of the expression X1⊗ ...⊗Xn, and such products are, in general,
distinct objects of C.

However, for n = 3, the associativity isomorphism gives a canonical
identification of the two possible parenthesizings, (X1 ⊗X2)⊗X3 and
X1⊗ (X2⊗X3). An easy combinatorial argument then shows that one
can identify any two parenthesized products of X1, ..., Xn, n ≥ 3, using
a chain of associativity isomorphisms.

We would like to say that for this reason we can completely ignore
parentheses in computations in any monoidal category, identifying all
possible parenthesized products with each other. But this runs into the
following problem: for n ≥ 4 there may be two or more different chains
of associativity isomorphisms connecting two different parenthesizings,
and a priori it is not clear that they provide the same identification.

Luckily, for n = 4, this is settled by the pentagon axiom, which
states exactly that the two possible identifications are the same. But
what about n > 4?

This problem is solved by the following theorem of MacLane, which
is the first important result in the theory of monoidal categories.

Theorem 1.9.1. (MacLane’s Coherence Theorem) [ML] Let X1, . . . , Xn ∈
C. Let P1, P2 be any two parenthesized products of X1, ..., Xn (in this
order) with arbitrary insertions of unit objects 1. Let f, g : P1 → P2

be two isomorphisms, obtained by composing associativity and unit
isomorphisms and their inverses possibly tensored with identity mor-
phisms. Then f = g.

Proof. We derive this theorem as a corollary of the MacLane’s strictness
Theorem 1.8.5. Let L : C → C ′ be a monoidal equivalence between C
and a strict monoidal category C ′. Consider a diagram in C representing
f and g and apply L to it. Over each arrow of the resulting diagram
representing an associativity isomorphism, let us build a rectangle as
in (1.4.1), and do similarly for the unit morphisms. This way we obtain
a prism one of whose faces consists of identity maps (associativity and
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unit isomorphisms in C ′) and whose sides are commutative. Hence, the
other face is commutative as well, i.e., f = g. �

As we mentioned, this implies that any two parenthesized products
of X1, ..., Xn with insertions of unit objects are indeed canonically iso-
morphic, and thus one can safely identify all of them with each other
and ignore bracketings in calculations in a monoidal category. We will
do so from now on, unless confusion is possible.

1.10. Rigid monoidal categories. Let (C,⊗,1, a, ι) be a monoidal
category, and let X be an object of C. In what follows, we suppress
the unit morphisms l, r.

Definition 1.10.1. A right dual of an object X in C is an object X∗

in C equipped with morphisms evX : X∗ ⊗ X → 1 and coevX : 1 →
X ⊗X∗, called the evaluation and coevaluation morphisms, such that
the compositions

X
coevX⊗IdX−−−−−−→ (X ⊗X∗)⊗X

aX,X∗,X

−−−−−→ X ⊗ (X∗ ⊗X)
IdX⊗evX−−−−−→ X,

(1.10.1)

X∗ IdX∗⊗coevX
−−−−−−−→ X∗ ⊗ (X ⊗X∗)

a−1
X∗,X,X∗

−−−−−→ (X∗ ⊗X)⊗X∗ evX⊗IdX∗

−−−−−−→ X∗

(1.10.2)

are the identity morphisms.

Definition 1.10.2. A left dual of an object X in C is an object ∗X in C
equipped with morphisms ev′

X : X⊗ ∗X → 1 and coev′
X : 1→ ∗X⊗X

such that the compositions

X
IdX⊗coev′

X−−−−−−→ X ⊗ (∗X ⊗X)
a−1

X,∗X,X

−−−−−→ (X ⊗ ∗X)⊗X
ev′

X⊗IdX

−−−−−→ X,

(1.10.3)

∗X
coev′

X⊗Id∗X
−−−−−−−→ (∗X ⊗X)⊗ ∗X

a∗X,X,∗X

−−−−−→ ∗X ⊗ (X ⊗ ∗X)
Id∗X⊗ev′

X−−−−−−→ X∗

(1.10.4)

are the identity morphisms.

Remark 1.10.3. It is obvious that if X∗ is a right dual of an object
X then X is a left dual of X∗ with ev′

X∗ = evX and coev′
X∗ = coevX ,

and vice versa. Also, in any monoidal category, 1∗ = ∗1 = 1 with the
structure morphisms ι and ι−1. Also note that changing the order of
tensor product switches right duals and left duals, so to any statement
about right duals there corresponds a symmetric statement about left
duals.
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Proposition 1.10.4. If X ∈ C has a right (respectively, left) dual
object, then it is unique up to a unique isomorphism.

Proof. Let X∗
1 , X

∗
2 be two right duals to X. Denote by e1, c1, e2, c2 the

corresponding evaluation and coevaluation morphisms. Then we have
a morphism α : X∗

1 → X∗
2 defined as the composition

X∗
1

IdX∗
1
⊗c2

−−−−−→ X∗
1 ⊗ (X ⊗X∗

2 )
a−1

X∗
1 ,X,X∗

2−−−−−→ (X∗
1 ⊗X)⊗X∗

2

e1⊗IdX∗
2−−−−−→ X∗

2 .

Similarly one defines a morphism β : X∗
2 → X∗

1 . We claim that β ◦ α
and α ◦ β are the identity morphisms, so α is an isomorphism. Indeed
consider the following diagram:

X∗
1

Id⊗c1 //

Id⊗c2
��

X∗
1 ⊗X ⊗X

∗
1

Id⊗c2⊗Id

��

Id

++WWWWWWWWWWWWWWWWWWW

X∗
1 ⊗X ⊗X

∗
2 Id⊗c1

//

e1⊗Id

��

X∗
1 ⊗X ⊗X

∗
2 ⊗X ⊗X

∗
1Id⊗e2⊗Id

//

e1⊗Id

��

X∗
1 ⊗X ⊗X

∗
1

e1⊗Id

��
X∗

2 Id⊗c1

// X∗
2 ⊗X ⊗X

∗
1 e2⊗Id

// X∗
1 .

Here we suppress the associativity constraints. It is clear that the three
small squares commute. The triangle in the upper right corner com-
mutes by axiom (1.10.1) applied to X∗

2 . Hence, the perimeter of the
diagram commutes. The composition through the top row is the iden-
tity by (1.10.2) applied to X∗

1 . The composition through the bottom
row is β ◦ α and so β ◦ α = Id. The proof of α ◦ β = Id is completely
similar.

Moreover, it is easy to check that α : X∗
1 → X∗

2 is the only iso-
morphism which preserves the evaluation and coevaluation morphisms.
This proves the proposition for right duals. The proof for left duals is
similar. �

Exercise 1.10.5. Fill in the details in the proof of Proposition 1.10.4.

IfX, Y are objects in C which have right dualsX∗, Y ∗ and f : X → Y
is a morphism, one defines the right dual f ∗ : Y ∗ → X∗ of f as the
composition

Y ∗ IdY ∗⊗coevX
−−−−−−−→ Y ∗ ⊗ (X ⊗X∗)

a−1
Y ∗,X,X∗

−−−−−→ (Y ∗ ⊗X)⊗X∗

(IdY ∗⊗f)⊗IdX∗

−−−−−−−−−→ (Y ∗ ⊗ Y )⊗X∗ evY ⊗IdX∗

−−−−−−→ X∗.

(1.10.5)

Similarly, if X, Y are objects in C which have left duals ∗X, ∗Y and
f : X → Y is a morphism, one defines the left dual ∗f : ∗Y → ∗X of f
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as the composition

∗Y
coev′

X⊗Id∗Y
−−−−−−−→ (∗X ⊗X)⊗ ∗Y

a∗X,X,∗Y

−−−−−→ ∗X ⊗ (X ⊗ ∗Y )

Id∗X⊗(f⊗Id∗Y )
−−−−−−−−−→ ∗X ⊗ (Y ⊗ ∗Y )

Id∗X⊗ev′
Y−−−−−−→ ∗X.

(1.10.6)

Exercise 1.10.6. Let C,D be monoidal categories. Suppose

(F, J) : C → D

is a monoidal functor with the corresponding isomorphism ϕ : 1 →
F (1). Let X be an object in C with a right dual X∗. Prove that
F (X∗) is a right dual of F (X) with the evaluation and coevaluation
given by

evF (X) : F (X∗)⊗ F (X)
JX,X∗

−−−→ F (X∗ ⊗X)
F (evX)
−−−−→ F (1) = 1,

coevF (X) : 1 = F (1)
F (coevX)
−−−−−→ F (X ⊗X∗)

J−1
X,X∗

−−−→ F (X)⊗ F (X∗).

State and prove a similar result for left duals.

Proposition 1.10.7. Let C be a monoidal category.
(i) Let U, V,W be objects in C admitting right (respectively, left)

duals, and let f : V → W , g : U → V be morphisms in C. Then
(f ◦ g)∗ = g∗ ◦ f ∗ (respectively, ∗(f ◦ g) = ∗g ◦ ∗f).

(ii) If U, V have right (respectively, left) duals then the object V ∗⊗U∗

(respectively, ∗V ⊗ ∗U) has a natural structure of a right (respectively,
left) dual to U ⊗ V .

Exercise 1.10.8. Prove Proposition 1.10.7.

Proposition 1.10.9. (i) If an object V has a right dual V ∗ then there
are natural adjunction isomorphisms

Hom(U ⊗ V,W )
∼
−→ Hom(U,W ⊗ V ∗),(1.10.7)

Hom(V ∗ ⊗ U,W )
∼
−→ Hom(U, V ⊗W ).(1.10.8)

Thus, the functor •⊗V ∗ is right adjoint to •⊗V and V ⊗• is right
adjoint to V ∗ ⊗ •.

(ii) If an object V has a left dual ∗V then there are natural adjunction
isomorphisms

Hom(U ⊗ ∗V,W )
∼
−→ Hom(U,W ⊗ V ),(1.10.9)

Hom(V ⊗ U,W )
∼
−→ Hom(U, ∗V ⊗W ).(1.10.10)

Thus, the functor •⊗V is right adjoint to •⊗ ∗V and ∗V ⊗• is right
adjoint to V ⊗ •).



25

Proof. The isomorphism in (1.10.7) is given by

f 7→ (f ⊗ IdV ∗) ◦ (IdU ⊗ coevV )

and has the inverse

g 7→ (IdW ⊗ evV ) ◦ (g ⊗ IdV ).

The other isomorphisms are similar, and are left to the reader as an
exercise. 7

�

Remark 1.10.10. Proposition 1.10.9 provides another proof of Propo-
sition 1.10.4. Namely, setting U = 1 and V = X in (1.10.8), we obtain
a natural isomorphism Hom(X∗, W ) ∼= Hom(1, X ⊗W ) for any right
dual X∗ of X. Hence, if Y1, Y2 are two such duals then there is a
natural isomorphism Hom(Y1, W ) ∼= Hom(Y2, W ), whence there is a
canonical isomorphism Y1

∼= Y2 by Yoneda’s Lemma. The proof for left
duals is similar.

Definition 1.10.11. A monoidal category C is called rigid if every
object X ∈ C has a right dual object and a left dual object.

Example 1.10.12. The category Vec of finite dimensional k-vector
spaces is rigid: the right and left dual to a finite dimensional vector
space V are its dual space V ∗, with the evaluation map evV : V ∗⊗V →
k being the contraction, and the coevaluation map coevV : k → V ⊗V ∗

being the usual embedding. On the other hand, the category Vec of
all k-vector spaces is not rigid, since for infinite dimensional spaces
there is no coevaluation maps (indeed, suppose that c : k → V ⊗ Y
is a coevaluation map, and consider the subspace V ′ of V spanned by
the first component of c(1); this subspace finite dimensional, and yet
the composition V → V ⊗ Y ⊗ V → V , which is supposed to be the
identity map, lands in V ′ - a contradiction).

Example 1.10.13. The category Rep(G) of finite dimensional
k-representations of a group G is rigid: for a finite dimensional rep-
resentation V , the (left or right) dual representation V ∗ is the usual
dual space (with the evaluation and coevaluation maps as in Example
1.10.12), and with the G-action given by ρV ∗(g) = (ρV (g)−1)∗. Simi-
larly, the category Rep(g) of finite dimensional representations of a Lie
algebra g is rigid, with ρV ∗(a) = −ρV (a)∗.

Example 1.10.14. The category VecG is rigid if and only if the monoid
G is a group; namely, δ∗g = ∗δg = δg−1 (with the obvious structure

maps). More generally, for any group G and 3-cocycle ω ∈ Z3(G, k×),

7A convenient way to do computations in this and previous Propositions is using
the graphical calculus (see [K, Chapter XIV]).
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the category Vecω
G is rigid. Namely, assume for simplicity that the

cocycle ω is normalized (as we know, we can do so without loss of
generality). Then we can define duality as above, and normalize the
coevaluation morphisms of δg to be the identities. The evaluation mor-
phisms will then be defined by the formula evδg

= ω(g, g−1, g).

It follows from Proposition 1.10.4 that in a monoidal category C
with right (respectively, left) duals, one can define the (contravariant)
right (respectively, left) duality functor C → C by X 7→ X∗, f 7→ f ∗

(respectively, X 7→ ∗X, f 7→ ∗f) for every object X and morphism f
in C. By Proposition 1.10.7(ii), these functors are anti-monoidal, in
the sense that they map the monoidal structure of C to its opposite;
hence the functors X → X∗∗, X → ∗∗X are monoidal. Also, it follows
from Proposition 1.10.9 that the functors of right and left duality, when
they are defined, are fully faithful (it suffices to use (i) for U = X∗, V =
Y,W = 1).

Moreover, it follows from Remark 1.10.3 that in a rigid monoidal
category, the functors of right and left duality are mutually quasi-
inverse anti-equivalences of categories (i.e. they are equivalences from
C to its opposite category). This implies that the functors X → X∗∗,
X → ∗∗X are mutually quasi-inverse monoidal autoequivalences. We
will see later in Example 1.27.2 that these autoequivalences may be
nontrivial; in particular, it is possible that objects V ∗ and ∗V are not
isomorphic.

Exercise 1.10.15. Show that if C,D are rigid monoidal categories,
F1, F2 : C → D are monoidal functors, and η : F1 → F2 is a morphism
of monoidal functors, then η is an isomorphism.8

Exercise 1.10.16. Let A be an algebra. Show that M ∈ A− bimod
has a left (respectively, right) dual if and only if it is finitely generated
projective when considered as a left (respectively, right) A-module.
Sinilarly, if A is commutative, M ∈ A−mod has a left and right dual
if and only if it is finitely generated projective.

1.11. Invertible objects. Let C be a rigid monoidal category.

Definition 1.11.1. An object X in C is invertible if evX : X∗⊗X → 1
and coevX : 1→ X ⊗X∗ are isomorphisms.

Clearly, this notion categorifies the notion of an invertible element
in a monoid.

Example 1.11.2. The objects δg in Vecω
G are invertible.

8As we have seen in Remark 1.6.6, this is false for non-rigid categories.
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Proposition 1.11.3. Let X be an invertible object in C. Then
(i) ∗X ∼= X∗ and X∗ is invertible;
(ii) if Y is another invertible object then X ⊗ Y is invertible.

Proof. Dualizing coevX and evX we get isomorphisms X ⊗ ∗X ∼= 1
and ∗X ⊗ X ∼= 1. Hence ∗X ∼= ∗X ⊗ X ⊗ X∗ ∼= X∗. In any rigid
category the evaluation and coevaluation morphisms for ∗X can be
defined by ev∗X := ∗coevX and coev∗X := ∗evX , so ∗X is invertible.
The second statement follows from the fact that evX⊗Y can be defined
as a composition of evX and evY and similarly coevX⊗Y can be defined
as a composition of coevY and coevX . �

Proposition 1.11.3 implies that invertible objects of C form a monoidal
subcategory Inv(C) of C.

Example 1.11.4. Gr-categories. Let us classify rigid monoidal cat-
egories C where all objects are invertible and all morphisms are iso-
morphisms. We may assume that C is skeletal, i.e. there is only one
object in each isomorphism class, and objects form a group G. Also,
by Proposition 1.2.7, End(1) is an abelian group; let us denote it by
A. Then for any g ∈ G we can identify End(g) with A, by sending
f ∈ End(g) to f ⊗ Idg−1 ∈ End(1) = A. Then we have an action of G
on A by

a ∈ End(1) 7→ g(a) := Idg ⊗ a ∈ End(g).

Let us now consider the associativity isomorphism. It is defined by a
function ω : G×G×G→ A. The pentagon relation gives
(1.11.1)
ω(g1g2, g3, g4)ω(g1, g2, g3g4) = ω(g1, g2, g3)ω(g1, g2g3, g4)g1(ω(g2, g3, g4)),

for all g1, g2, g3, g4 ∈ G, which means that ω is a 3-cocycle of G with
coefficients in the (generally, nontrivial) G-module A. We see that any
such 3-cocycle defines a rigid monoidal category, which we will call
Cω

G(A). The analysis of monoidal equivalences between such categories
is similar to the case when A is a trivial G-module, and yields that
for a given group G and G-module A, equivalence classes of Cω

G are
parametrized by H3(G,A)/Out(G).

Categories of the form Cω
G(A) are called Gr-categories, and were stud-

ied in [Si].

1.12. Tensor and multitensor categories. Now we will start con-
sidering monoidal structures on abelian categories. For the sake of
brevity, we will not recall the basic theory of abelian categories; let us
just recall the Freyd-Mitchell theorem stating that abelian categories
can be characterized as full subcategories of categories of left modules
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over rings, which are closed under taking direct sums, as well as ker-
nels, cokernels, and images of morphisms. This allows one to visualize
the main concepts of the theory of abelian categories in terms of the
classical theory of modules over rings.

Recall that an abelian category C is said to be k-linear (or defined
over k) if for any X, Y in C, Hom(X, Y ) is a k-vector space, and com-
position of morphisms is bilinear.

Definition 1.12.1. A k-linear abelian category is said to be locally
finite if it is essentially small9, and the following two conditions are
satisfied:

(i) for any two objects X, Y in C, the space Hom(X, Y ) is finite
dimensional;

(ii) every object in C has finite length.

Almost all abelain categories we will consider will be locally finite.

Proposition 1.12.2. In a locally finite abelian category C, Hom(X, Y ) =
0 if X, Y are simple and non-isomorphic, and Hom(X,X) = k for any
simple object X.

Proof. Recall Schur’s lemma: if X, Y are simple objects of an abelian
category, and f ∈ Hom(X, Y ), then f = 0 or f is an isomorphism. This
implies that Hom(X, Y ) = 0 if X, Y are simple and non-isomorphic,
and Hom(X,X) is a division algebra; since k is algebraically closed,
condition (i) implies that Hom(X,X) = k for any simple object X ∈
C. �

Also, the Jordan-Hölder and Krull-Schmidt theorems hold in any
locally finite abelian category C.

Definition 1.12.3. Let C be a locally finite k-linear abelian rigid
monoidal category. We will call C a multitensor category over k if
the bifunctor ⊗ is bilinear on morphisms. If in addition End(1) ∼= k
then we will call C a tensor category.

A multifusion category is a semisimple multitensor category with
finitely many isomorphism simple objects. A fusion category is a semisim-
ple tensor category with finitely many isomorphism simple objects.

Example 1.12.4. The categories Vec of finite dimensional k-vector
spaces, Rep(G) of finite dimensional k-representations of a group G
(or algebraic representations of an affine algebraic group G), Rep(g)
of finite dimensional representations of a Lie algebra g, and Vecω

G of

9Recall that a category is called essentially small if its isomorphism classes of
objects form a set.
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G-graded finite dimensional k-vector spaces with associativity defined
by a 3-cocycle ω are tensor categories. If G is a finite group, Rep(G)
is a fusion category. In particular, Vec is a fusion category.

Example 1.12.5. Let A be a finite dimensional semisimple algebra
over k. LetA−bimod be the category of finite dimensionalA-bimodules
with bimodule tensor product over A, i.e.,

(M,N) 7→M ⊗A N.

Then C is a multitensor category with the unit object 1 = A, the left
dual defined by M 7→ Hom(AM, AA), and the right dual defined by
M 7→ Hom(MA, AA).10 The category C is tensor if and only if A is
simple, in which case it is equivalent to k − Vec. More generally, if
A has n matrix blocks, the category C can be alternatively described
as the category whose objects are n-by-n matrices of vector spaces,
V = (Vij), and the tensor product is matrix multiplication:

(V ⊗W )il = ⊕n
j=1Vij ⊗Wjl.

This category will be denoted by Mn(Vec). It is a multifusion category.
In a similar way, one can define the multitensor category Mn(C) of

n-by-n matrices of objects of a given multitensor category C. If C is a
multifusion category, so is Mn(C).

1.13. Exactness of the tensor product.

Proposition 1.13.1. (see [BaKi, 2.1.8]) Let C be a multitensor cate-
gory. Then the bifunctor ⊗ : C × C → C is exact in both factors (i.e.,
biexact).

Proof. The proposition follows from the fact that by Proposition 1.10.9,
the functors V⊗ and ⊗V have left and right adjoint functors (the
functors of tensoring with the corresponding duals), and any functor
between abelian categories which has a left and a right adjoint functor
is exact. �

Remark 1.13.2. The proof of Proposition 1.13.1 shows that the bi-
additivity of the functor ⊗ holds automatically in any rigid monoidal
abelian category. However, this is not the case for bilinearity of ⊗,
and thus condition of bilinearity of tensor product in the definition of
a multitensor category is not redundant.

This may be illustrated by the following example. Let C be the
category of finite dimensional C-bimodules in which the left and right

10Note that if A is a finite dimensional non-semisimple algebra then the category
of finite dimensional A-bimodules is not rigid, since the duality functors defined as
above do not satisfy rigidity axioms (cf. Exercise 1.10.16).



30

actions of R coincide. This category is C-linear abelian; namely, it is
semisimple with two simple objects C+ = 1 and C−, both equal to
C as a real vector space, with bimodule structures (a, b)z = azb and
(a, b)z = azb, respectively. It is also also rigid monoidal, with ⊗ being
the tensor product of bimodules. But the tensor product functor is not
C-bilinear on morphisms (it is only R-bilinear).

Definition 1.13.3. A multiring category over k is a locally finite k-
linear abelian monoidal category C with biexact tensor product. If in
addition End(1) = k, we will call C a ring category.

Thus, the difference between this definition and the definition of a
(multi)tensor category is that we don’t require the existence of duals,
but instead require the biexactness of the tensor product. Note that
Proposition 1.13.1 implies that any multitensor category is a multiring
category, and any tensor category is a ring category.

Corollary 1.13.4. For any pair of morphisms f1, f2 in a multiring
category C one has Im(f1 ⊗ f2) = Im(f1)⊗ Im(f2).

Proof. Let I1, I2 be the images of f1, f2. Then the morphisms fi : Xi →
Yi, i = 1, 2, have decompositions Xi → Ii → Yi, where the sequences

Xi → Ii → 0, 0→ Ii → Yi

are exact. Tensoring the sequenceX1 → I1 → 0 with I2, by Proposition
1.13.1, we get the exact sequence

X1 ⊗ I2 → I1 ⊗ I2 → 0

Tenosring X1 with the sequence X2 → I2 → 0, we get the exact se-
quence

X1 ⊗X2 → X1 ⊗ I2 → 0.

Combining these, we get an exact sequence

X1 ⊗X2 → I1 ⊗ I2 → 0.

Arguing similarly, we show that the sequence

0→ I1 ⊗ I2 → Y1 ⊗ Y2

is exact. This implies the statement. �

Proposition 1.13.5. If C is a multiring category with right duals, then
the right dualization functor is exact. The same applies to left duals.

Proof. Let 0 → X → Y → Z → 0 be an exact sequence. We need to
show that the sequence 0 → Z∗ → Y ∗ → X∗ → 0 is exact. Let T be
any object of C, and consider the sequence

0→ Hom(T, Z∗)→ Hom(T, Y ∗)→ Hom(T,X∗).
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By Proposition 1.10.9, it can be written as

0→ Hom(T ⊗ Z,1)→ Hom(T ⊗ Y,1)→ Hom(T ⊗X,1),

which is exact, since the sequence

T ⊗X → T ⊗ Y → T ⊗ Z → 0

is exact, by the exactness of the functor T⊗. This implies that the
sequence 0→ Z∗ → Y ∗ → X∗ is exact.

Similarly, consider the sequence

0→ Hom(X∗, T )→ Hom(Y ∗, T )→ Hom(Z∗, T ).

By Proposition 1.10.9, it can be written as

0→ Hom(1, X ⊗ T )→ Hom(1, Y ⊗ T )→ Hom(1, Z ⊗ T ),

which is exact since the sequence

0→ X ⊗ T → Y ⊗ T → Z ⊗ T

is exact, by the exactness of the functor ⊗T . This implies that the
sequence Z∗ → Y ∗ → X∗ → 0 is exact. �

Proposition 1.13.6. Let P be a projective object in a multiring cate-
gory C. If X ∈ C has a right dual, then the object P ⊗X is projective.
Similarly, if X ∈ C has a left dual, then the object X ⊗P is projective.

Proof. In the first case by Proposition 1.10.9 we have Hom(P⊗X, Y ) =
Hom(P, Y ⊗X∗), which is an exact functor of Y , since the functors ⊗X∗

and Hom(P, •) are exact. So P ⊗X is projective. The second case is
similar. �

Corollary 1.13.7. If C multiring category with right duals, then 1 ∈ C
is a projective object if and only if C is semisimple.

Proof. If 1 is projective then for any X ∈ C, X ∼= 1⊗X is projective.
This implies that C is semisimple. The converse is obvious. �

1.14. Quasi-tensor and tensor functors.

Definition 1.14.1. Let C, D be multiring categories over k, and F :
C → D be an exact and faithful functor.

(i) F is said to be a quasi-tensor functor if it is equipped with a
functorial isomorphism J : F (•)⊗ F (•)→ F (• ⊗ •), and F (1) = 1.

(ii) A quasi-tensor functor (F, J) is said to be a tensor functor if J
is a monoidal structure (i.e., satisfies the monoidal structure axiom).

Example 1.14.2. The functors of Examples 1.6.1,1.6.2 and Subsection
1.7 (for the categories Vecω

G) are tensor functors. The identity functor
Vecω1

G → V ecω2
G for non-cohomologous 3-cocycles ω1, ω2 is not a tensor

functor, but it can be made quasi-tensor by any choice of J .
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1.15. Semisimplicity of the unit object.

Theorem 1.15.1. In any multiring category, End(1) is a semisimple
algebra, so it is isomorphic to a direct sum of finitely many copies of
k.

Proof. By Proposition 1.2.7, End(1) is a commutative algebra, so it is
sufficient to show that for any a ∈ End(1) such that a2 = 0 we have
a = 0. Let J = Im(a). Then by Corollary 1.13.4 J ⊗ J = Im(a⊗ a) =
Im(a2 ⊗ 1) = 0.

Now let K = Ker(a). Then by Corollary 1.13.4, K ⊗ J is the image
of 1⊗ a on K ⊗ 1. But since K ⊗ 1 is a subobject of 1⊗ 1, this is the
same as the image of a⊗ 1 on K ⊗ 1, which is zero. So K ⊗ J = 0.

Now tensoring the exact sequence 0 → K → 1 → J → 0 with J ,
and applying Proposition 1.13.1, we get that J = 0, so a = 0. �

Let {pi}i∈I be the primitive idempotents of the algebra End(1). Let
1i be the image of pi. Then we have 1 = ⊕i∈I1i.

Corollary 1.15.2. In any multiring category C the unit object 1 is
isomorphic to a direct sum of pairwise non-isomorphic indecomposable
objects: 1 ∼= ⊕i 1i.

Exercise 1.15.3. One has 1i ⊗ 1j = 0 for i 6= j. There are canonical
isomorphisms 1i ⊗ 1i

∼= 1i, and 1i
∼= 1i

∗.

Let Cij := 1i ⊗ C ⊗ 1j.

Definition 1.15.4. The subcategories Cij will be called the component
subcategories of C.

Proposition 1.15.5. Let C be a multiring category.

(1) C = ⊕i,j∈I Cij. Thus every indecomposable object of C belongs
to some Cij.

(2) The tensor product maps Cij × Ckl to Cil, and it is zero unless
j = k.

(3) The categories Cii are ring categories with unit objects 1i (which
are tensor categories if C is rigid).

(3) The functors of left and right duals, if they are defined, map Cij
to Cji.

Exercise 1.15.6. Prove Proposition 1.15.5.

Proposition 1.15.5 motivates the terms “multiring category” and
“multitensor category”, as such a category gives us multiple ring cate-
gories, respectively tensor categories Cii.
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Remark 1.15.7. Thus, a multiring category may be considered as a
2-category with objects being elements of I, 1-morphisms from j to i
forming the category Cij, and 2-morphisms being 1-morphisms in C.

Theorem 1.15.8. (i) In a ring category with right duals, the unit
object 1 is simple.

(ii) In a multiring category with right duals, the unit object 1 is
semisimple, and is a direct sum of pairwise non-isomorphic simple ob-
jects 1i.

Proof. Clearly, (i) implies (ii) (by applying (i) to the component cate-
gories Cii). So it is enough to prove (i).

Let X be a simple subobject of 1 (it exists, since 1 has finite length).
Let

(1.15.1) 0 −→ X −→ 1 −→ Y −→ 0

be the corresponding exact sequence. By Proposition 1.13.5, the right
dualization functor is exact, so we get an exact sequence

(1.15.2) 0 −→ Y ∗ −→ 1 −→ X∗ −→ 0.

Tensoring this sequence with X on the left, we obtain

(1.15.3) 0 −→ X ⊗ Y ∗ −→ X −→ X ⊗X∗ −→ 0,

Since X is simple and X⊗X∗ 6= 0 (because the coevaluation morphism
is nonzero) we obtain that X ⊗ X∗ ∼= X. So we have a surjective
composition morphism 1→ X ⊗X∗ → X. From this and (1.15.1) we
have a nonzero composition morphism 1 ։ X →֒ 1. Since End(1) = k,
this morphism is a nonzero scalar, whence X = 1. �

Corollary 1.15.9. In a ring category with right duals, the evaluation
morphisms are surjective and the coevaluation morphisms are injective.

Exercise 1.15.10. Let C be a multiring category with right duals. and
X ∈ Cij and Y ∈ Cjk be nonzero.

(a) Show that X ⊗ Y 6= 0.
(b) Deduce that length(X ⊗ Y ) ≥ length(X)length(Y ).
(c) Show that if C is a ring category with right duals then an in-

vertible object in C is simple.
(d) Let X be an object in a multiring category with right duals

such that X ⊗X∗ ∼= 1. Show that X is invertible.

Example 1.15.11. An example of a ring category where the unit ob-
ject is not simple is the category C of finite dimensional representations
of the quiver of type A2. Such representations are triples (V,W,A),
where V,W are finite dimensional vector spaces, and A : V → W is a
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linear operator. The tensor product on such triples is defined by the
formula

(V,W,A)⊗ (V ′,W ′, A′) = (V ⊗ V ′,W ⊗W ′, A⊗ A′),

with obvious associativity isomorphisms, and the unit object (k, k, Id).
Of course, this category has neither right nor left duals.

1.16. Grothendieck rings. Let C be a locally finite abelian category
over k. IfX and Y are objects in C such that Y is simple then we denote
by [X : Y ] the multiplicity of Y in the Jordan-Hölder composition series
of X.

Recall that the Grothendieck group Gr(C) is the free abelian group
generated by isomorphism classes Xi, i ∈ I of simple objects in C,
and that to every object X in C we can canonically associate its class
[X] ∈ Gr(C) given by the formula [X] =

∑
i [X : Xi]Xi. It is obvious

that if

0 −→ X −→ Y −→ Z −→ 0

then [Y ] = [X] + [Z]. When no confusion is possible, we will write X
instead of [X].

Now let C be a multiring category. The tensor product on C induces
a natural multiplication on Gr(C) defined by the formula

XiXj := [Xi ⊗Xj] =
∑

k∈I

[Xi ⊗Xj : Xk]Xk.

Lemma 1.16.1. The above multiplication on Gr(C) is associative.

Proof. Since the tensor product functor is exact,

[(Xi ⊗Xj)⊗Xp : Xl] =
∑

k

[Xi ⊗Xj : Xk][Xk ⊗Xp : Xl].

On the other hand,

[Xi ⊗ (Xj ⊗Xp) : Xl] =
∑

k

[Xj ⊗Xp : Xk][Xi ⊗Xk : Xl].

Thus the associativity of the multiplication follows from the isomor-
phism (Xi ⊗Xj)⊗Xp

∼= Xi ⊗ (Xj ⊗Xp). �

Thus Gr(C) is an associative ring with the unit 1. It is called the
Grothendieck ring of C.

The following proposition is obvious.

Proposition 1.16.2. Let C and D be multiring categories and F : C →
D be a quasi-tensor functor. Then F defines a homomorphism of unital
rings [F ] : Gr(C)→ Gr(D).
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Thus, we see that (multi)ring categories categorify rings (which jus-
tifies the terminology), while quasi-tensor (in particular, tensor) func-
tors between them categorify unital ring homomorphisms. Note that
Proposition 1.15.5 may be regarded as a categorical analog of the Peirce
decomposition in classical algebra.

1.17. Groupoids. The most basic examples of multitensor categories
arise from finite groupoids. Recall that a groupoid is a small category
where all morphisms are isomorphisms. Thus a groupoid G entails a set
X of objects of G and a set G of morphisms of G, the source and target
maps s, t : G→ X, the composition map µ : G×X G→ G (where the
fibered product is defined using s in the first factor and using t in the
second factor), the unit morphism map u : X → G, and the inversion
map i : G → G satisfying certain natural axioms, see e.g. [Ren] for
more details.

Here are some examples of groupoids.

(1) Any group G is a groupoid G with a single object whose set of
morphisms to itself is G.

(2) Let X be a set and let G = X ×X. Then the product groupoid
G(X) := (X,G) is a groupoid in which s is the first projection,
t is the second projection, u is the diagonal map, and i is the
permutation of factors. In this groupoid for any x, y ∈ X there
is a unique morphism from x to y.

(3) A more interesting example is the transformation groupoid T (G,X)
arising from the action of a group G on a set X. The set
of objects of T (G,X) is X, and arrows correspond to triples
(g, x, y) where y = gx with an obvious composition law. In
other words, the set of morphisms is G × X and s(g, x) =
x, t(g, x) = gx, u(x) = (1, x), i(g, x) = (g−1, gx).

Let G = (X,G, µ, s, t, u, i) be a finite groupoid (i.e., G is finite) and let
C(G) be the category of finite dimensional vector spaces graded by the
set G of morphisms of G, i.e., vector spaces of the form V = ⊕g∈G Vg.
Introduce a tensor product on C(G) by the formula

(1.17.1) (V ⊗W )g =
⊕

(g1,g2):g1g2=g

Vg1 ⊗Wg2 .

Then C(G) is a multitensor category. The unit object is 1 = ⊕x∈X 1x,
where 1x is a 1-dimensional vector space which sits in degree idx in G.
The left and right duals are defined by (V ∗)g = (∗V )g = Vg−1 .

We invite the reader to check that the component subcategories
C(G)xy are the categories of vector spaces graded by Mor(y, x).
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We see that C(G) is a tensor category if and only if G is a group,
which is the case of VecG already considered in Example 1.3.6. Note
also that if X = {1, ..., n} then C(G(X)) is naturally equivalent to
Mn(Vec).

Exercise 1.17.1. Let Ci be isomorphism classes of objects in a finite
groupoid G, ni = |Ci|, xi ∈ Ci be representatives of Ci, and Gi =
Aut(xi) be the corresponding automorphism groups. Show that C(G)
is (non-canonically) monoidally equivalent to ⊕iMni

(VecGi
).

Remark 1.17.2. The finite length condition in Definition 1.12.3 is
not superfluous: there exists a rigid monoidal k-linear abelian category
with bilinear tensor product which contains objects of infinite length.
An example of such a category is the category C of Jacobi matrices of
finite dimensional vector spaces. Namely, the objects of C are semi-
infinite matrices V = {Vij}ij∈Z+ of finite dimensional vector spaces Vij

with finitely many non-zero diagonals, and morphisms are matrices of
linear maps. The tensor product in this category is defined by the
formula

(1.17.2) (V ⊗W )il =
∑

j

Vij ⊗Wjl,

and the unit object 1 is defined by the condition 1ij = kδij . The left
and right duality functors coincide and are given by the formula

(1.17.3) (V ∗)ij = (Vji)
∗.

The evaluation map is the direct sum of the canonical maps V ∗
ij⊗Vij →

1jj, and the coevaluation map is a direct sum of the canonical maps
1ii → Vij ⊗ V

∗
ij .

Note that the category C is a subcategory of the category C ′ of G(Z+)-
graded vector spaces with finite dimensional homogeneous components.
Note also that the category C ′ is not closed under the tensor product
defined by (1.17.2) but the category C is.

Exercise 1.17.3. (1) Show that if X is a finite set then the group
of invertible objects of the category C(G(X)) is isomorphic to
Aut(X).

(2) Let C be the category of Jacobi matrices of vector spaces from
Example 1.17.2. Show that the statement Exercise 1.15.10(d)
fails for C. Thus the finite length condition is important in
Exercise 1.15.10.

1.18. Finite abelian categories and exact faithful functors.
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Definition 1.18.1. A k-linear abelian category C is said to be finite if
it is equivalent to the category A−mod of finite dimensional modules
over a finite dimensional k-algebra A.

Of course, the algebra A is not canonically attached to the category
C; rather, C determines the Morita equivalence class of A. For this
reason, it is often better to use the following “intrinsic” definition,
which is well known to be equivalent to Definition 1.18.1:

Definition 1.18.2. A k-linear abelian category C is finite if
(i) C has finite dimensional spaces of morphisms;
(ii) every object of C has finite length;
(iii) every simple object of C has a projective cover; and
(iv) there are finitely many isomorphism classes of simple objects.

Note that the first two conditions are the requirement that C be
locally finite.

Indeed, it is clear that if A is a finite dimensional algebra then A−
mod clearly satisfies (i)-(iv), and conversely, if C satisfies (i)-(iv), then
one can take A = End(P )op, where P is a projective generator of C (e.g.,
P = ⊕n

i=1Pi, where Pi are projective covers of all the simple objects
Xi).

A projective generator P of C represents a functor F = FP : C → Vec
from C to the category of finite dimensional k-vector spaces, given by
the formula F (X) = Hom(P,X). The condition that P is projective
translates into the exactness property of F , and the condition that
P is a generator (i.e., covers any simple object) translates into the
property that F is faithful (does not kill nonzero objects or morphisms).
Moreover, the algebra A = End(P )op can be alternatively defined as
End(F ), the algebra of functorial endomorphisms of F . Conversely,
it is well known (and easy to show) that any exact faithful functor
F : C → Vec is represented by a unique (up to a unique isomorphism)
projective generator P .

Now let C be a finite k-linear abelian category, and F1, F2 : C → Vec
be two exact faithful functors. Define the functor F1⊗F2 : C×C → Vec
by (F1 ⊗ F2)(X, Y ) := F1(X)⊗ F2(Y ).

Proposition 1.18.3. There is a canonical algebra isomorphism αF1,F2 :
End(F1)⊗ End(F2) ∼= End(F1 ⊗ F2) given by

αF1,F2(η1 ⊗ η2)|F1(X)⊗F2(Y ) := η1|F1(X) ⊗ η2|F2(Y ),

where ηi ∈ End(Fi), i = 1, 2.

Exercise 1.18.4. Prove Proposition 1.18.3.



38

1.19. Fiber functors. Let C be a k-linear abelian monoidal category.

Definition 1.19.1. A quasi-fiber functor on C is an exact faithful
functor F : C → Vec from C to the category of finite dimensional
k-vector spaces, such that F (1) = k, equipped with an isomorphism
J : F (•) ⊗ F (•) → F (• ⊗ •). If in addition J is a monoidal structure
(i.e. satisfies the monoidal structure axiom), one says that F is a fiber
functor.

Example 1.19.2. The forgetful functors VecG → Vec, Rep(G)→ Vec
are naturally fiber functors, while the forgetful functor Vecω

G → Vec
is quasi-fiber, for any choice of the isomorphism J (we have seen that
if ω is cohomologically nontrivial, then Vecω

G does not admit a fiber
functor). Also, the functor Loc(X) → Vec on the category of local
systems on a connected topological space X which attaches to a local
system E its fiber Ex at a point x ∈ X is a fiber functor, which justifies
the terminology. (Note that if X is Hausdorff, then this functor can be
identified with the abovementioned forgetful functor Rep(π1(X, x))→
Vec).

Exercise 1.19.3. Show that if an abelian monoidal category C admits
a quasi-fiber functor, then it is a ring category, in which the object 1
is simple. So if in addition C is rigid, then it is a tensor category.

1.20. Coalgebras.

Definition 1.20.1. A coalgebra (with counit) over a field k is a k-vector
space C together with a comultiplicaton (or coproduct) ∆ : C → C⊗C
and counit ε : C → k such that

(i) ∆ is coassociative, i.e.,

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆

as maps C → C⊗3;
(ii) one has

(ε⊗ Id) ◦∆ = (Id⊗ ε) ◦∆ = Id

as maps C → C (the “counit axiom”).

Definition 1.20.2. A left comodule over a coalgebra C is a vector
space M together with a linear map π : M → C ⊗ M (called the
coaction map), such that for any m ∈M , one has

(∆⊗ Id)(π(m)) = (Id⊗ π)(π(m)), (ε⊗ Id)(π(m)) = m.

Similarly, a right comodule over C is a vector space M together with
a linear map π : M →M ⊗ C, such that for any m ∈M , one has

(π ⊗ Id)(π(m)) = (Id⊗∆)(π(m)), (Id⊗ ε)(π(m)) = m.
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For example, C is a left and right comodule with π = ∆, and so is
k, with π = ε.

Exercise 1.20.3. (i) Show that if C is a coalgebra then C∗ is an
algebra, and if A is a finite dimensional algebra then A∗ is a coalgebra.

(ii) Show that for any coalgebra C, any (left or right) C-comodule
M is a (respectively, right or left) C∗-module, and the converse is true
if C is finite dimensional.

Exercise 1.20.4. (i) Show that any coalgebra C is a sum of finite
dimensional subcoalgebras.

Hint. Let c ∈ C, and let

(∆⊗ Id) ◦∆(c) = (Id⊗∆) ◦∆(c) =
∑

i

c1i ⊗ c
2
i ⊗ c

3
i .

Show that span(c2i ) is a subcoalgebra of C containing c.
(ii) Show that any C-comodule is a sum of finite dimensional subco-

modules.

1.21. Bialgebras. Let C be a finite monoidal category, and (F, J) :
C → Vec be a fiber functor. Consider the algebra H := End(F ). This
algebra has two additional structures: the comultiplication ∆ : H →
H ⊗ H and the counit ε : H → k. Namely, the comultiplication is
defined by the formula

∆(a) = α−1
F,F (∆̃(a)),

where ∆̃(a) ∈ End(F ⊗ F ) is given by

∆̃(a)X,Y = J−1
X,Y aX⊗Y JX,Y ,

and the counit is defined by the formula

ε(a) = a1 ∈ k.

Theorem 1.21.1. (i) The algebra H is a coalgebra with comultiplica-
tion ∆ and counit ε.

(ii) The maps ∆ and ε are unital algebra homomorphisms.

Proof. The coassociativity of ∆ follows form axiom (1.4.1) of a monoidal
functor. The counit axiom follows from (1.4.3) and (1.4.4). Finally, ob-
serve that for all η, ν ∈ End(F ) the images under αF,F of both ∆(η)∆(ν)
and ∆(ην) have components J−1

X,Y (ην)X⊗Y JX,Y ; hence, ∆ is an algebra
homomorphism (which is obviously unital). The fact that ε is a unital
algebra homomorphism is clear. �
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Definition 1.21.2. An algebra H equipped with a comultiplication ∆
and a counit ε satisfying properties (i),(ii) of Theorem 1.21.1 is called
a bialgebra.

Thus, Theorem 1.21.1 claims that the algebra H = End(F ) has a
natural structure of a bialgebra.

Now let H be any bialgebra (not necessarily finite dimensional).
Then the category Rep(H) of representations (i.e., left modules) of
H and its subcategory Rep(H) of finite dimensional representations
of H are naturally monoidal categories (and the same applies to right
modules). Indeed, one can define the tensor product of two H-modules
X, Y to be the usual tensor product of vector spaces X ⊗ Y , with the
action of H defined by the formula

ρX⊗Y (a) = (ρX ⊗ ρY )(∆(a)), a ∈ H

(where ρX : H → End(X), ρY : H → End(Y )), the associativity iso-
morphism to be the obvious one, and the unit object to be the 1-
dimensional space k with the action ofH given by the counit, a→ ε(a).
Moreover, the forgetful functor Forget : Rep(H)→ Vec is a fiber func-
tor.

Thus we see that one has the following theorem.

Theorem 1.21.3. The assignments (C, F ) 7→ H = End(F ), H 7→
(Rep(H),Forget) are mutually inverse bijections between

1) finite abelian k-linear monoidal categories C with a fiber functor
F , up to monoidal equivalence and isomorphism of monoidal functors;

2) finite dimensional bialgebras H over k up to isomorphism.

Proof. Straightforward from the above. �

Theorem 1.21.3 is called the reconstruction theorem for finite dimen-
sional bialgebras (as it reconstructs the bialgebra H from the category
of its modules using a fiber functor).

Exercise 1.21.4. Show that the axioms of a bialgebra are self-dual
in the following sense: if H is a finite dimensional bialgebra with
multiplication µ : H ⊗ H → H, unit i : k → H, comultiplication
∆ : H → H ⊗ H and counit ε : H → k, then H∗ is also a bialgebra,
with the multiplication ∆∗, unit ε∗, comultiplication µ∗, and counit i∗.

Exercise 1.21.5. (i) Let G be a finite monoid, and C = VecG. Let
F : C → Vec be the forgetful functor. Show that H = End(F ) is the
bialgebra Fun(G, k) of k-valued functions on G, with comultiplication
∆(f)(x, y) = f(xy) (where we identify H ⊗ H with Fun(G × G, k)),
and counit ε(f) = f(1).
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(ii) Show that Fun(G, k)∗ = k[G], the monoid algebra of G (with
basis x ∈ G and product x ·y = xy), with coproduct ∆(x) = x⊗x, and
counit ε(x) = 1, x ∈ G. Note that the bialgebra k[G] may be defined
for any G (not necessarily finite).

Exercise 1.21.6. Let H be a k-algebra, C = H−mod be the category
of H-modules, and F : C → Vec be the forgetful functor (we don’t
assume finite dimensionality). Assume that C is monoidal, and F is
given a monoidal structure J . Show that this endows H with the
structure of a bialgebra, such that (F, J) defines a monoidal equivalence
C → Rep(H).

Note that not only modules, but also comodules over a bialgebra H
form a monoidal category. Indeed, for a finite dimensional bialgebra,
this is clear, as right (respectively, left) modules over H is the same
thing as left (respectively, right) comodules over H∗. In general, if
X, Y are, say, right H-comodules, then the right comodule X ⊗ Y is
the usual tensor product of X, Y with the coaction map defined as
follows: if x ∈ X, y ∈ Y , π(x) =

∑
xi ⊗ ai, π(y) =

∑
yj ⊗ bj, then

πX⊗Y (x⊗ y) =
∑

xi ⊗ yj ⊗ aibj.

For a bialgebra H, the monoidal category of right H-comodules will
be denoted by H − comod, and the subcategory of finite dimensional
comodules by H − comod.

1.22. Hopf algebras. Let us now consider the additional structure
on the bialgebra H = End(F ) from the previous subsection in the case
when the category C has right duals. In this case, one can define a
linear map S : H → H by the formula

S(a)X = a∗X∗ ,

where we use the natural identification of F (X)∗ with F (X∗).

Proposition 1.22.1. (“the antipode axiom”) Let µ : H ⊗H → H and
i : k → H be the multiplication and the unit maps of H. Then

µ ◦ (Id⊗ S) ◦∆ = i ◦ ε = µ ◦ (S ⊗ Id) ◦∆

as maps H → H.

Proof. For any b ∈ End(F⊗F ) the linear map µ◦(Id⊗S)(α−1
F,F (b))X , X ∈

C is given by
(1.22.1)

F (X)
coevF (X)
−−−−−→ F (X)⊗F (X)∗⊗F (X)

bX,X∗

−−−→ F (X)⊗F (X)∗⊗F (X)
evF (X)
−−−−→ F (X),
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where we suppress the identity isomorphisms, the associativity con-
straint, and the isomorphism F (X)∗ ∼= F (X∗). Indeed, it suffices to
check (1.22.1) for b = η ⊗ ν, where η, ν ∈ H, which is straightforward.

Now the first equality of the proposition follows from the commuta-
tivity of the diagram

(1.22.2) F (X)
coevF (X)//

Id
��

F (X)⊗ F (X)∗ ⊗ F (X)

JX,X∗

��
F (X)

F (coevX)
//

η1

��

F (X ⊗X∗)⊗ F (X)

ηX⊗X∗

��
F (X)

F (coevX)
//

Id
��

F (X ⊗X∗)⊗ F (X)

J−1
X,X∗

��
F (X) F (X)⊗ F (X)∗ ⊗ F (X),

evF (X)oo

for any η ∈ End(F ).
Namely, the commutativity of the upper and the lower square fol-

lows from the fact that upon identification of F (X)∗ with F (X∗), the
morphisms evF (X) and coevF (X) are given by the diagrams of Exer-
cise 1.10.6. The middle square commutes by the naturality of η. The
composition of left vertical arrows gives ε(η)IdF (X), while the compo-
sition of the top, right, and bottom arrows gives µ ◦ (Id⊗ S) ◦∆(η).

The second equality is proved similarly. �

Definition 1.22.2. An antipode on a bialgebra H is a linear map
S : H → H which satisfies the equalities of Proposition 1.22.1.

Exercise 1.22.3. Show that the antipode axiom is self-dual in the
following sense: if H is a finite dimensional bialgebra with antipode
SH , then the bialgebra H∗ also admits an antipode SH∗ = S∗

H .

The following is a “linear algebra” analog of the fact that the right
dual, when it exists, is unique up to a unique isomorphism.

Proposition 1.22.4. An antipode on a bialgebra H is unique if exists.

Proof. The proof essentially repeats the proof of uniqueness of right
dual. Let S, S ′ be two antipodes for H. Then using the antipode
properties of S, S ′, associativity of µ, and coassociativity of ∆, we get

S = µ ◦ (S ⊗ [µ ◦ (Id⊗ S ′) ◦∆]) ◦∆ =

µ ◦ (Id⊗ µ) ◦ (S ⊗ Id⊗ S ′) ◦ (Id⊗∆) ◦∆ =

µ ◦ (µ⊗ Id) ◦ (S ⊗ Id⊗ S ′) ◦ (∆⊗ Id) ◦∆ =
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µ ◦ ([µ ◦ (S ⊗ Id) ◦∆]⊗ S ′) ◦∆ = S ′.

�

Proposition 1.22.5. If S is an antipode on a bialgebra H then S is an
antihomomorphism of algebras with unit and of coalgebras with counit.

Proof. Let

(∆⊗ Id) ◦∆(a) = (Id⊗∆) ◦∆(a) =
∑

i

a1
i ⊗ a

2
i ⊗ a

3
i ,

(∆⊗ Id) ◦∆(b) = (Id⊗∆) ◦∆(b) =
∑

j

b1j ⊗ b
2
j ⊗ b

3
j .

Then using the definition of the antipode, we have

S(ab) =
∑

i

S(a1
i b)a

2
iS(a3

i ) =
∑

i,j

S(a1
i b

1
j)a

2
i b

2
jS(b3j)S(a3

i ) = S(b)S(a).

Thus S is an antihomomorphism of algebras (which is obviously unital).
The fact that it is an antihomomorphism of coalgebras then follows
using the self-duality of the axioms (see Exercises 1.21.4,1.22.3), or can
be shown independently by a similar argument. �

Corollary 1.22.6. (i) If H is a bialgebra with an antipode S, then
the abelian monoidal category C = Rep(H) has right duals. Namely,
for any object X, the right dual X∗ is the usual dual space of X, with
action of H given by

ρX∗(a) = ρX(S(a))∗,

and the usual evaluation and coevaluation morphisms of the category
Vec.

(ii) If in addition S is invertible, then C also admits left duals, i.e.
is rigid (in other words, C is tensor category). Namely, for any object
X, the left dual ∗X is the usual dual space of X, with action of H given
by

ρ∗X(a) = ρX(S−1(a))∗,

and the usual evaluation and coevaluation morphisms of the category
Vec.

Proof. Part (i) follows from the antipode axiom and Proposition 1.22.5.
Part (ii) follows from part (i) and the fact that the operation of taking
the left dual is inverse to the operation of taking the right dual. �

Remark 1.22.7. A similar statement holds for finite dimensional co-
modules. Namely, if X is a finite dimensional right comodule over a



44

bialgebra H with an antipode, then the right dual is the usual dual X∗

with
(πX∗(f), x⊗ φ) := ((Id⊗ S)(πX(x)), f ⊗ φ),

x ∈ X, f ∈ X∗, φ ∈ H∗. If S is invertible, then the left dual ∗X is
defined by the same formula with S replaced by S−1.

Remark 1.22.8. The fact that S is an antihomomorphism of coalge-
bras is the “linear algebra” version of the categorical fact that dualiza-
tion changes the order of tensor product (Proposition 1.10.7(ii)).

Definition 1.22.9. A bialgebra equipped with an invertible antipode
S is called a Hopf algebra.

Remark 1.22.10. We note that many authors use the term “Hopf
algebra” for any bialgebra with an antipode.

Thus, Corollary 1.22.6 states that ifH is a Hopf algebra then Rep(H)
is a tensor category. So, we get the following reconstruction theorem
for finite dimensional Hopf algebras.

Theorem 1.22.11. The assignments (C, F ) 7→ H = End(F ), H 7→
(Rep(H),Forget) are mutually inverse bijections between

1) finite tensor categories C with a fiber functor F , up to monoidal
equivalence and isomorphism of monoidal functors;

2) finite dimensional Hopf algebras over k up to isomorphism.

Proof. Straightforward from the above. �

Exercise 1.22.12. The algebra of functions Fun(G, k) on a finite
monoid G is a Hopf algebra if and only if G is a group. In this case,
the antipode is given by the formula S(f)(x) = f(x−1), x ∈ G.

More generally, if G is an affine algebraic group over k, then the
algebra O(G) of regular functions on G is a Hopf algebra, with the
comultiplication, counit, and antipode defined as in the finite case.

Similarly, k[G] is a Hopf algebra if and only if G is a group, with
S(x) = x−1, x ∈ G.

Exercises 1.21.5 and 1.22.12 motivate the following definition:

Definition 1.22.13. In any coalgebra C, a nonzero element g ∈ C
such that ∆(g) = g ⊗ g is called a grouplike element.

Exercise 1.22.14. Show that if g is a grouplike of a Hopf algebra H,
then g is invertible, with g−1 = S(g). Also, show that the product of
two grouplike elements is grouplike. In particular, grouplike elements
of any Hopf algebra H form a group, denoted G(H). Show that this
group can also be defined as the group of isomorphism classes of 1-
dimensional H-comodules under tensor multiplication.
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Proposition 1.22.15. If H is a finite dimensional bialgebra with an
antipode S, then S is invertible, so H is a Hopf algebra.

Proof. Let Hn be the image of Sn. Since S is an antihomomorphism
of algebras and coalgebras, Hn is a Hopf subalgebra of H. Let m be
the smallest n such that Hn = Hn+1 (it exists because H is finite
dimensional). We need to show that m = 0. If not, we can assume
that m = 1 by replacing H with Hm−1.

We have a map S ′ : H1 → H1 inverse to S. For a ∈ H, let the triple
coproduct of a be ∑

i

a1
i ⊗ a

2
i ⊗ a

3
i .

Consider the element

b =
∑

i

S ′(S(a1
i ))S(a2

i )a
3
i .

On the one hand, collapsing the last two factors using the antipode
axiom, we have b = S ′(S(a)). On the other hand, writing b as

b =
∑

i

S ′(S(a1
i ))S(S ′(S(a2

i )))a
3
i

and collapsing the first two factors using the antipode axiom, we get b =
a. Thus a = S ′(S(a)) and thus a ∈ H1, soH = H1, a contradiction. �

Exercise 1.22.16. Let µop and ∆op be obtained from µ,∆ by permu-
tation of components.

(i) Show that if (H,µ, i,∆, ε, S) is a Hopf algebra, then Hop :=
(H,µop, i,∆, ε, S−1),Hcop := (H,µ, i,∆op, ε, S−1),Hcop

op := (H,µop, i,∆op, ε, S)
are Hopf algebras. Show that H is isomorphic to Hcop

op , and Hop to Hcop.
(ii) Suppose that a bialgebra H is a commutative (µ = µop) or co-

commutative (∆ = ∆op). Let S be an antipode on H. Show that
S2 = 1.

(iii) Assume that bialgebras H and Hcop have antipodes S and S ′.
Show that S ′ = S−1, so H is a Hopf algebra.

Exercise 1.22.17. Show that if A,B are bialgebras, bialgebras with
antipode, or Hopf algebras, then so is the tensor product A⊗B.

Exercise 1.22.18. A finite dimensional module or comodule over a
Hopf algebra is invertible if and only if it is 1-dimensional.

1.23. Reconstruction theory in the infinite setting. In this sub-
section we would like to generalize the reconstruction theory to the
situation when the category C is not assumed to be finite.
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Let C be any essentially small k-linear abelian category, and F : C →
Vec an exact, faithful functor. In this case one can define the space
Coend(F ) as follows:

Coend(F ) := (⊕X∈CF (X)∗ ⊗ F (X))/E

where E is spanned by elements of the form y∗⊗F (f)x−F (f)∗y∗⊗x,
x ∈ F (X), y∗ ∈ F (Y )∗, f ∈ Hom(X, Y ); in other words, Coend(F ) =
lim−→End(F (X))∗. Thus we have End(F ) = lim←−End(F (X)) = Coend(F )∗,

which yields a coalgebra structure on Coend(F ). So the algebra End(F )
(which may be infinite dimensional) carries the inverse limit topology,
in which a basis of neighborhoods of zero is formed by the kernels KX

of the maps End(F )→ End(F (X)), X ∈ C, and Coend(F ) = End(F )∨,
the space of continuous linear functionals on End(F ).

The following theorem is standard (see [Ta2]).

Theorem 1.23.1. Let C be a k-linear abelian category with an ex-
act faithful functor F : C → Vec. Then F defines an equivalence
between C and the category of finite dimensional right comodules over
C := Coend(F ) (or, equivalently, with the category of continuous finite
dimensional left End(F )-modules).

Proof. (sketch) Consider the ind-object Q := ⊕X∈CF (X)∗ ⊗ X. For
X, Y ∈ C and f ∈ Hom(X, Y ), let

jf : F (Y )∗ ⊗X → F (X)∗ ⊗X ⊕ F (Y )∗ ⊗ Y ⊂ Q

be the morphism defined by the formula

jf = Id⊗ f − F (f)∗ ⊗ Id.

Let I be the quotient of Q by the image of the direct sum of all jf . In
other words, I = lim−→(F (X)∗ ⊗X).

The following statements are easy to verify:
(i) I represents the functor F (•)∗, i.e. Hom(X, I) is naturally iso-

morphic to F (X)∗; in particular, I is injective.
(ii) F (I) = C, and I is naturally a left C-comodule (the comod-

ule structure is induced by the coevaluation morphism F (X)∗ ⊗X →
F (X)∗ ⊗ F (X)⊗ F (X)∗ ⊗X).

(iii) Let us regard F as a functor C → C − comod. For M ∈ C −
comod, let θM : M⊗I →M⊗C⊗I be the morphism πM⊗Id−Id⊗πI ,
and let KM be the kernel of θM . Then the functor G : C − comod→ C
given by the formula G(M) = KerθM , is a quasi-inverse to F .

This completes the proof. �

Now assume that the abelian category C is also monoidal. Then the
coalgebra Coend(F ) also carries a multiplication and unit, dual to the
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comultiplication and counit of End(F ). More precisely, since End(F )
may now be infinite dimensional, the algebra End(F ⊗ F ) is in general
isomorphic not to the usual tensor product End(F )⊗End(F ), but rather
to its completion End(F )⊗̂End(F ) with respect to the inverse limit
topology. Thus the comultiplication of End(F ) is a continuous linear
map ∆ : End(F )→ End(F )⊗̂End(F ). The dual ∆∗ of this map defines
a multiplication on Coend(F ).

If C has right duals, the bialgebra Coend(F ) acquires an antipode,
defined in the same way as in the finite dimensional case. This antipode
is invertible if there are also left duals (i.e. if C is rigid). Thus Theorem
1.23.1 implies the following “infinite” extensions of the reconstruction
theorems.

Theorem 1.23.2. The assignments (C, F ) 7→ H = Coend(F ), H 7→
(H − Comod,Forget) are mutually inverse bijections between

1) k-linear abelian monoidal categories C with a fiber functor F , up
to monoidal equivalence and isomorphism of monoidal functors, and
bialgebras over k, up to isomorphism;

2) k-linear abelian monoidal categories C with right duals with a fiber
functor F , up to monoidal equivalence and isomorphism of monoidal
functors, and bialgebras over k with an antipode, up to isomorphism;

3) tensor categories C over k with a fiber functor F , up to monoidal
equivalence and isomorphism of monoidal functors, and Hopf algebras
over k, up to isomorphism.

Remark 1.23.3. This theorem allows one to give a categorical proof
of Proposition 1.22.4, deducing it from the fact that the right dual,
when it exists, is unique up to a unique isomorphism.

Remark 1.23.4. Corollary 1.22.15 is not true, in general, in the infi-
nite dimensional case: there exist bialgebras H with a non-invertible
antipode S, see [Ta1]. Therefore, there exist ring categories with sim-
ple object 1 and right duals that do not have left duals, i.e., are not
tensor categories (namely, H − comod).

In the next few subsections, we will review some of the most im-
portant basic results about Hopf algebras. For a much more detailed
treatment, see the book [Mo].

1.24. More examples of Hopf algebras. Let us give a few more
examples of Hopf algebras. As we have seen, to define a Hopf algebra, it
suffices to give an associative unital algebra H, and define a coproduct
on generators of H (this determines a Hopf algebra structure on H
uniquely if it exists). This is what we’ll do in the examples below.
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Example 1.24.1. (Enveloping algebras) Let g be a Lie algebra, and
let H = U(g) be the universal enveloping algebra of g. Define the
coproduct on H by setting ∆(x) = x⊗1+1⊗x for all x ∈ g. It is easy
to show that this extends to the whole H, and that H equipped with
this ∆ is a Hopf algebra. Moreover, it is easy to see that the tensor
category Rep(H) is equivalent to the tensor category Rep(g).

This example motivates the following definition.

Definition 1.24.2. An element x of a bialgebra H is called primitive
if ∆(x) = x⊗1+1⊗x. The space of primitive elements of H is denoted
Prim(H).

Exercise 1.24.3. (i) Show that Prim(H) is a Lie algebra under the
commutator.

(ii) Show that if x is a primitive element then ε(x) = 0, and in
presence of an antipode S(x) = −x.

Exercise 1.24.4. (i) Let V be a vector space, and SV be the symmet-
ric algebra V . Then SV is a Hopf algebra (namely, it is the universal
enveloping algebra of the abelian Lie algebra V ). Show that if k has
characteristic zero, then Prim(SV ) = V .

(ii) What happens in characteristic p?
Hint. One can restrict to a situation when V is finite dimensional.

In this case, regarding elements f ∈ SV as polynomials on V ∗, one can
show that f is primitive if and only if it is additive, i.e., f(x + y) =
f(x) + f(y).

(iii) Let g be a Lie algebra over a field of characteristic zero. Show
that Prim(U(g)) = g.

Hint. Identify U(g) with Sg as coalgebras by using the symmetriza-
tion map.

Example 1.24.5. (Taft algebras) Let q be a primitive n-th root of
unity. Let H be the algebra (of dimension n2) generated over k by g
and x satisfying the following relations: gn = 1, xn = 0 and gxg−1 = qx.
Define the coproduct on H by ∆(g) = g⊗g, ∆(x) = x⊗g+1⊗x. It is
easy to show that this extends to a Hopf algebra structure on H. This
Hopf algebra H is called the Taft algebra. For n = 2, one obtains the
Sweedler Hopf algebra of dimension 4. Note that H is not commutative
or cocommutative, and S2 6= 1 on H (as S2(x) = qx).

This example motivates the following generalization of Definition
1.24.2.
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Definition 1.24.6. Let g, h be grouplike elements of a coalgebra H.
A skew-primitive element of type (h, g) is an element x ∈ H such that
∆(x) = h⊗ x+ x⊗ g.

Remark 1.24.7. A multiple of h−g is always a skew-primitive element
of type (h, g). Such a skew-primitive element is called trivial. Note that
the element x in Example 1.24.5 is nontrivial.

Exercise 1.24.8. Let x be a skew-primitive element of type h, g in a
Hopf algebra H.

(i) Show that ε(x) = 0, S(x) = −h−1xg−1.
(ii) Show that if a, b ∈ H are grouplike elements, then axb is a skew-

primitive element of type (ahb, agb).

Example 1.24.9. (Nichols Hopf algebras) LetH = C[Z/2Z]⋉∧(x1, ..., xn),
where the generator g of Z/2Z acts on xi by gxig

−1 = −xi. De-
fine the coproduct on H by making g grouplike, and setting ∆(xi) :=
xi ⊗ g + 1⊗ xi (so xi are skew-primitive elements). Then H is a Hopf
algebra of dimension 2n+1. For n = 1, H is the Sweedler Hopf algebra
from the previous example.

Exercise 1.24.10. Show that the Hopf algebras of Examples 1.24.1,1.24.5,1.24.9
are well defined.

Exercise 1.24.11. (Semidirect product Hopf algebras) Let H be a
Hopf algebra, and G a group of automorphisms of H. Let A be the
semidirect product k[G] ⋉H. Show that A admits a unique structure
of a Hopf algebra in which k[G] and H are Hopf subalgebras.

1.25. The Quantum Group Uq(sl2). Let us consider the Lie algebra
sl2. Recall that there is a basis h, e, f ∈ sl2 such that [h, e] = 2e, [h, f] =
−2f, [e, f] = h. This motivates the following definition.

Definition 1.25.1. Let q ∈ k, q 6= ±1. The quantum group Uq(sl2) is
generated by elements E,F and an invertible element K with defining
relations

KEK−1 = q2E, KFK−1 = q−2F, [E,F] =
K −K−1

q − q−1
.

Theorem 1.25.2. There exists a unique Hopf algebra structure on
Uq(sl2), given by

• ∆(K) = K ⊗K (thus K is a grouplike element);
• ∆(E) = E⊗K + 1⊗ E;
• ∆(F) = F ⊗ 1 + K−1 ⊗ F (thus E,F are skew-primitive ele-

ments).
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Exercise 1.25.3. Prove Theorem 1.25.2.

Remark 1.25.4. Heuristically, K = qh, and thus

lim
q→1

K −K−1

q − q−1
= h.

So in the limit q → 1, the relations of Uq(sl2) degenerate into the
relations of U(sl2), and thus Uq(sl2) should be viewed as a Hopf algebra
deformation of the enveloping algebra U(sl2). In fact, one can make
this heuristic idea into a precise statement, see e.g. [K].

If q is a root of unity, one can also define a finite dimensional version
of Uq(sl2). Namely, assume that the order of q is an odd number ℓ. Let
uq(sl2) be the quotient of Uq(sl2) by the additional relations

Eℓ = Fℓ = Kℓ − 1 = 0.

Then it is easy to show that uq(sl2) is a Hopf algebra (with the co-
product inherited from Uq(sl2)). This Hopf algebra is called the small
quantum group attached to sl2.

1.26. The quantum group Uq(g). The example of the previous sub-
section can be generalized to the case of any simple Lie algebra. Namely,
let g be a simple Lie algebra of rank r, and let A = (aij) be its Cartan
matrix. Recall that there exist unique relatively prime positive integers
di, i = 1, . . . r such that diaij = djaji. Let q ∈ k, q 6= ±1.

Definition 1.26.1. • The q-analog of n is

[n]q =
qn − q−n

q − q−1
.

• The q-analog of the factorial is

[n]q ! =
n∏

l=1

[l]q =
(q − q−1) · · · (qn − q−n)

(q − q−1)n
.

Definition 1.26.2. The quantum group Uq(g) is generated by elements
Ei,Fi and invertible elements Ki, with defining relations

KiKj = KjKi, KiEjK
−1
i = qaijEj, KiFjK

−1
i = q−aijFj,

[Ei,Fj] = δij
Kdi

i −K
−di

i

qdi − q−di
, and the q-Serre relations:

(1.26.1)

1−aij∑

l=0

(−1)l

[l]qi
![1− aij − l]qi

!
E

1−aij−l
i EjE

l
i = 0, i 6= j
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and

(1.26.2)

1−aij∑

l=0

(−1)l

[l]qi
![1− aij − l]qi

!
F

1−aij−l
i FjF

l
i = 0, i 6= j.

More generally, the same definition can be made for any symmetriz-
able Kac-Moody algebra g.

Theorem 1.26.3. (see e.g. [CP]) There exists a unique Hopf algebra
structure on Uq(g), given by

• ∆(Ki) = Ki ⊗Ki;
• ∆(Ei) = Ei ⊗Ki + 1⊗ Ei;
• ∆(Fi) = Fi ⊗ 1 +K−1

i ⊗ Fi.

Remark 1.26.4. Similarly to the case of sl2, in the limit q → 1, these
relations degenerate into the relations for U(g), so Uq(g) should be
viewed as a Hopf algebra deformation of the enveloping algebra U(g).

1.27. Categorical meaning of skew-primitive elements. We have
seen that many interesting Hopf algebras contain nontrivial skew-primitive
elements. In fact, the notion of a skew-primitive element has a cate-
gorical meaning. Namely, we have the following proposition.

Proposition 1.27.1. Let g, h be grouplike elements of a coalgebra
C, and Primh,g(C) be the space of skew-primitive elements of type
h, g. Then the space Primh,g(H)/k(h − g) is naturally isomorphic to
Ext1(g, h), where g, h are regarded as 1-dimensional right C-comodules.

Proof. Let V be a 2-dimensional H-comodule, such that we have an
exact sequence

0→ h→ V → g → 0.

Then V has a basis v0, v1 such that

π(v0) = v0 ⊗ h, π(v1) = v1 ⊗ x+ v0 ⊗ g.

The condition that this is a comodule yields that x is a skew-primitive
element of type (h, g). So any extension defines a skew-primitive el-
ement and vice versa. Also, we can change the basis by v0 → v0,
v1 → v1 + λv0, which modifies x by adding a trivial skew-primitive
element. This implies the result. �

Example 1.27.2. The category C of finite dimensional comodules over
uq(sl2) is an example of a finite tensor category in which there are
objects V such that V ∗∗ is not isomorphic to V . Namely, in this
category, the functor V 7→ V ∗∗ is defined by the squared antipode
S2, which is conjugation by K: S2(x) = KxK−1. Now, we have



52

Ext1(K, 1) = Y = 〈E,FK〉, a 2-dimensional space. The set of iso-
morphism classes of nontrivial extensions of K by 1 is therefore the
projective line PY . The operator of conjugation by K acts on Y with
eigenvalues q2, q−2, hence nontrivially on PY . Thus for a generic ex-
tension V , the object V ∗∗ is not isomorphic to V .

However, note that some power of the functor ∗∗ on C is isomorphic
(in fact, monoidally) to the identity functor (namely, this power is the
order of q). We will later show that this property holds in any finite
tensor category.

Note also that in the category C, V ∗∗ ∼= V if V is simple. This clearly
has to be the case in any tensor category where all simple objects
are invertible. We will also show (see Proposition 1.41.1 below) that
this is the case in any semisimple tensor category. An example of a
tensor category in which V ∗∗ is not always isomorphic to V even for
simple V is the category of finite dimensional representations of the
the Yangian H = Y (g) of a simple complex Lie algebra g, see [CP,
12.1]. Namely, for any finite dimensional representation V of H and
any complex number z one can define the shifted representation V (z)
(such that V (0) = V ). Then V ∗∗ ∼= V (2h∨), where h∨ is the dual
Coxeter number of g, see [CP, p.384]. If V is a non-trivial irreducible
finite dimensional representation then V (z) 6∼= V for z 6= 0. Thus,
V ∗∗ 6∼= V . Moreover, we see that the functor ∗∗ has infinite order even
when restricted to simple objects of C.

However, the representation category of the Yangian is infinite, and
the answer to the following question is unknown to us.

Question 1.27.3. Does there exist a finite tensor category, in which
there is a simple object V such that V ∗∗ is not isomorphic to V ? (The
answer is unknown to the authors).

Theorem 1.27.4. Assume that k has characteristic 0. Let C be a finite
ring category over k with simple object 1. Then Ext1(1,1) = 0.

Proof. Assume the contrary, and suppose that V is a nontrivial exten-
sion of 1 by itself. Let P be the projective cover of 1. Then Hom(P, V )
is a 2-dimensional space, with a filtration induced by the filtration on
V , and both quotients naturally isomorphic to E := Hom(P,1). Let
v0, v1 be a basis of Hom(P, V ) compatible to the filtration, i.e. v0 spans
the 1-dimensional subspace defined by the filtration. Let A = End(P )
(this is a finite dimensional algebra). Let ε : A → k be the character
defined by the (right) action of A on E. Then the matrix of a ∈ A in
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the basis v0, v1 has the form

(1.27.1) [a]1 =

(
ε(a) χ1(a)
0 ε(a)

)

where χ1 ∈ A
∗ is nonzero. Since a → [a]1 is a homomorphism, χ1 is a

derivation: χ1(xy) = χ1(x)ε(y) + ε(x)χ1(y).
Now consider the representation V ⊗ V . Using the exactness of

tensor products, we see that the space Hom(P, V ⊗V ) is 4-dimensional,
and has a 3-step filtration, with successive quotients E,E ⊕E,E, and
basis v00; v01, v10; v11, consistent with this filtration. The matrix of
a ∈ End(P ) in this basis is

(1.27.2) [a]2 =




ε(a) χ1(a) χ1(a) χ2(a)
0 ε(a) 0 χ1(a)
0 0 ε(a) χ1(a)
0 0 0 ε(a)




Since a→ [a]2 is a homomorphism, we find

χ2(ab) = ε(a)χ2(b) + χ2(a)ε(b) + 2χ1(a)χ1(b).

We can now proceed further (i.e. consider V ⊗V ⊗V etc.) and define for
every positive n, a linear function χn ∈ A

∗ which satisfies the equation

χn(ab) =
n∑

j=0

(
n
j

)
χj(a)χn−j(b),

where χ0 = ε. Thus for any s ∈ k, we can define φs : A → k((t))
by φs(a) =

∑
m≥0 χm(a)smtm/m!, and we find that φs is a family of

pairwise distinct homomorphisms. This is a contradiction, as A is a
finite dimensional algebra. We are done. �

Corollary 1.27.5. If a finite ring category C over a field of charac-
teristic zero has a unique simple object 1, then C is equivalent to the
category Vec.

Corollary 1.27.6. A finite dimensional bialgebra H over a field of
characteristic zero cannot contain nonzero primitive elements.

Proof. Apply Theorem 1.27.4 to the category H − comod and use
Proposition 1.27.1. �

Remark 1.27.7. Here is a “linear algebra” proof of this corollary. Let
x be a nonzero primitive element of H. Then we have a family of
grouplike elements estx ∈ H((t)), s ∈ k, i.e., an infinite collection of
characters of H∗((t)), which is impossible, as H is finite dimensional.
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Corollary 1.27.8. If H is a finite dimensional commutative Hopf
algebra over an algebraically closed field k of characteristic 0, then
H = Fun(G, k) for a unique finite group G.

Proof. Let G = Spec(H) (a finite group scheme), and x ∈ T1G =
(m/m2)∗ where m is the kernel of the counit. Then x is a linear function
on m. Extend it to H by setting x(1) = 0. Then x s a derivation:

x(fg) = x(f)g(1) + f(1)x(g).

This implies that x is a primitive element in H∗. So by Corollary
1.27.6, x = 0. this implies that G is reduced at the point 1. By using
translations, we see that G is reduced at all other points. So G is a
finite group, and we are done. �

Remark 1.27.9. Theorem 1.27.4 and all its corollaries fail in char-
acteristic p > 0. A counterexample is provided by the Hopf algebra
k[x]/(xp), where x is a primitive element.

1.28. Pointed tensor categories and pointed Hopf algebras.

Definition 1.28.1. A coalgebra C is pointed if its category of right co-
modules is pointed, i.e., if any simple right C-comodule is 1-dimensional.

Remark 1.28.2. A finite dimensional coalgebra C is pointed if and
only if the algebra C∗ is basic, i.e., the quotient C∗/Rad(C∗) of C∗ by
its radical is commutative. In this case, simple C-comodules are points
of Specm(H∗/Rad(H∗)), which justifies the term “pointed”.

Definition 1.28.3. A tensor category C is pointed if every simple
object of C is invertible.

Thus, the category of right comodules over a Hopf algebra H is
pointed if and only if H is pointed.

Example 1.28.4. The category Vecω
G is a pointed category. If G is

a p-group and k has characteristic p, then Repk(G) is pointed. Any
cocommutative Hopf algebra, the Taft and Nichols Hopf algebras, as
well as the quantum groups Uq(g) are pointed Hopf algebras.

1.29. The coradical filtration. Let C be a locally finite abelian cat-
egory.

Any object X ∈ C has a canonical filtration

(1.29.1) 0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X

such that Xi+1/Xi is the socle (i.e., the maximal semisimple subobject)
of X/Xi (in other words, Xi+1/Xi is the sum of all simple subobjects
of X/Xi). This filtration is called the socle filtration, or the coradical
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filtration of X. It is easy to show by induction that the coradical
filtration is a filtration of X of the smallest possible length, such that
the successive quotients are semisimple. The length of the coradical
filtration of X is called the Loewy length of X, and denoted Lw(X).
Then we have a filtration of the category C by Loewy length of objects:
C0 ⊂ C1 ⊂ ..., where Ci denotes the full subcategory of objects of C of
Loewy length ≤ i+1. Clearly, the Loewy length of any subquotient of
an object X does not exceed the Loewy length of X, so the categories
Ci are closed under taking subquotients.

Definition 1.29.1. The filtration of C by Ci is called the coradical
filtration of C.

If C is endowed with an exact faithful functor F : C → Vec then we
can define the coalgebra C = Coend(F ) and its subcoalgebras Ci =
Coend(F |Ci

), and we have Ci ⊂ Ci+1 and C = ∪iCi (alternatively, we
can say that Ci is spanned by matrix elements of C-comodules F (X),
X ∈ Ci). Thus we have defined an increasing filtration by subcoalgebras
of any coalgebra C. This filtration is called the coradical filtration, and
the term C0 is called the coradical of C.

The “linear algebra” definition of the coradical filtration is as fol-
lows. One says that a coalgebra is simple if it does not have nontrivial
subcoalgebras, i.e. if it is finite dimensional, and its dual is a simple
(i.e., matrix) algebra. Then C0 is the sum of all simple subcoalgebras
of C. The coalgebras Cn+1 for n ≥ 1 are then defined inductively to
be the spaces of those x ∈ C for which

∆(x) ∈ Cn ⊗ C + C ⊗ C0.

Exercise 1.29.2. (i) Suppose that C is a finite dimensional coalgebra,
and I is the Jacobson radical of C∗. Show that C⊥

n = In+1. This
justifies the term “coradical filtration”.

(ii) Show that the coproduct respects the coradical filtration, i.e.
∆(Cn) ⊂

∑n
i=0Ci ⊗ Cn−i.

(iii) Show that C0 is the direct sum of simple subcoalgebras of C.
In particular, grouplike elements of any coalgebra C are linearly inde-
pendent.

Hint. Simple subcoalgebras of C correspond to finite dimensional
irrreducible representations of C∗.

Denote by gr(C) the associated graded coalgebra of a coalgebra C
with respect to the coradical filtration. Then gr(C) is a Z+-graded
coalgebra. It is easy to see from Exercise 1.29.2(i) that the coradical
filtration of gr(C) is induced by its grading. A graded coalgebra C̄
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with this property is said to be coradically graded, and a coalgebra C
such that gr(C) = C̄ is called a lifting of C.

Definition 1.29.3. A coalgebra C is said to be cosemisimple if C is a
direct sum of simple subcoalgebras.

Clearly, C is cosemisimple if and only if C − comod is a semisimple
category.

Proposition 1.29.4. (i) A category C is semisimple if and only if
C0 = C1.

(ii) A coalgebra C is cosemisimple if and only if C0 = C1.

Proof. (ii) is a special case of (i), and (i) is clear, since the condition
means that Ext1(X, Y ) = 0 for any simple X, Y , which implies (by
the long exact sequence of cohomology) that Ext1(X, Y ) = 0 for all
X, Y ∈ C. �

Corollary 1.29.5. (The Taft-Wilson theorem) If C is a pointed coal-
gebra, then C0 is spanned by (linearly independent) grouplike elements
g, and C1/C0 = ⊕h,gPrimh,g(C)/k(h − g). In particular, any non-
cosemisimple pointed coalgebra contains nontrivial skew-primitive ele-
ments.

Proof. The first statement is clear (the linear independence follows from
Exercise 1.29.2(iii). Also, it is clear that any skew-primitive element
is contained in C1. Now, if x ∈ C1, then x is a matrix element of a
C-comodule of Loewy length ≤ 2, so it is a sum of matrix elements 2-
dimensional comodules, i.e. of grouplike and skew-primitive elements.

It remains to show that the sum
∑

h,g Primh,g(C)/k(h− g) ⊂ C/C0

is direct. For this, it suffices to consider the case when C is finite
dimensional. Passing to the dual algebra A = C∗, we see that the
statement is equivalent to the claim that I/I2 (where I is the radical
of A) is isomorphic (in a natural way) to ⊕g,hExt1(g, h)∗.

Let pg be a complete system of orthogonal idempotents in A/I2, such
that h(pg) = δhg. Define a pairing I/I2 × Ext1(g, h) → k which sends
a ⊗ α to the upper right entry of the 2-by-2 matrix by which a acts
in the extension of g by h defined by α. It is easy to see that this
pairing descends to a pairing B : ph(I/I

2)pg × Ext1(g, h) → k. If the
extension α is nontrivial, the upper right entry cannot be zero, so B is
right-nondegenerate. Similarly, if a belongs to the left kernel of B, then
a acts by zero in any A-module of Loewy length 2, so a = 0. Thus, B
is left-nondegenerate. This implies the required isomorphism. �

Proposition 1.29.6. If C,D are coalgebras, and f : C → D is a
coalgebra homomorphism such that f |C1 is injective, then f is injective.
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Proof. One may assume that C and D are finite dimensional. Then
the statement can be translated into the following statement about
finite dimensional algebras: if A,B are finite dimensional algebras and
f : A→ B is an algebra homomorphism which descends to a surjective
homomorphism A→ B/Rad(B)2, then f is surjective.

To prove this statement, let b ∈ B. Let I = Rad(B). We prove by
induction in n that there exists a ∈ A such that b − f(a) ∈ In. The
base of induction is clear, so we only need to do the step of induction.
So assume b ∈ In. We may assume that b = b1...bn, bi ∈ I, and let
ai ∈ A be such that f(ai) = bi modulo I2. Let a = a1...an. Then
b− f(a) ∈ In+1, as desired. �

Corollary 1.29.7. If H is a Hopf algebra over a field of characteristic
zero, then the natural map ξ : U(Prim(H))→ H is injective.

Proof. By Proposition 1.29.6, it suffices to check the injectivity of ξ in
degree 1 of the coradical filtration. Thus, it is enough to check that
ξ is injective on primitive elements of U(Prim(H)). But by Exercise
1.24.4, all of them lie in Prim(H), as desired. �

1.30. Chevalley’s theorem.

Theorem 1.30.1. (Chevalley) Let k be a field of characteristic zero.
Then the tensor product of two simple finite dimensional representa-
tions of any group or Lie algebra over k is semisimple.

Proof. Let V be a finite dimensional vector space over a field k (of any
characteristic), and G ⊂ GL(V ) be a Zariski closed subgroup.

Lemma 1.30.2. If V is a completely reducible representation of G,
then G is reductive.

Proof. Let V be a nonzero rational representation of an affine algebraic
groupG. Let U be the unipotent radical ofG. Let V U ⊂ V be the space
of invariants. Since U is unipotent, V U 6= 0. So if V is irreducible, then
V U = V , i.e., U acts trivially. Thus, U acts trivially on any completely
reducible representation of G. So if V is completely reducible and
G ⊂ GL(V ), then G is reductive. �

Now let G be any group, and V,W be two finite dimensional irre-
ducible representations of G. Let GV , GW be the Zariski closures of
the images of G in GL(V ) and GL(W ), respectively. Then by Lemma
1.30.2 GV , GW are reductive. Let GV W be the Zariski closure of the
image of G in GV ×GW . Let U be the unipotent radical of GV W . Let
pV : GV W → GV , pW : GV W → GW be the projections. Since pV is
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surjective, pV (U) is a normal unipotent subgroup of GV , so pV (U) = 1.
Similarly, pW (U) = 1. So U = 1, and GV W is reductive.

Let G′
V W be the closure of the image of G in GL(V ⊗ W ). Then

G′
V W is a quotient of GV W , so it is also reductive. Since chark = 0,

this implies that the representation V ⊗W is completely reducible as
a representation of G′

V W , hence of G.
This proves Chevalley’s theorem for groups. The proof for Lie alge-

bras is similar. �

1.31. Chevalley property.

Definition 1.31.1. A tensor category C is said to have Chevalley prop-
erty if the category C0 of semisimple objects of C is a tensor subcategory.

Thus, Chevalley theorem says that the category of finite dimensional
representations of any group or Lie algebra over a field of characteristic
zero has Chevalley property.

Proposition 1.31.2. A pointed tensor category has Chevalley prop-
erty.

Proof. Obvious. �

Proposition 1.31.3. In a tensor category with Chevalley property,

(1.31.1) Lw(X ⊗ Y ) ≤ Lw(X) + Lw(Y )− 1.

Thus Ci ⊗ Cj ⊂ Ci+j.

Proof. Let X(i), 0 ≤ i ≤ m, Y (j), 0 ≤ j ≤ n, be the successive
quotients of the coradical filtrations of X, Y . Then Z := X ⊗ Y has
a filtration with successive quotients Z(r) = ⊕i+j=rX(i) ⊗ Y (j), 0 ≤
r ≤ m + n. Because of the Chevalley property, these quotients are
semisimple. This implies the statement. �

Remark 1.31.4. It is clear that the converse to Proposition 1.31.3
holds as well: equation (1.31.3) (for simple X and Y ) implies the
Chevalley property.

Corollary 1.31.5. In a pointed Hopf algebra H, the coradical filtration
is a Hopf algebra filtration, i.e. HiHj ⊂ Hi+j and S(Hi) = Hi, so gr(H)
is a Hopf algebra.

In this situation, the Hopf algebra H is said to be a lifting of the
coradically graded Hopf algebra gr(H).

Example 1.31.6. The Taft algebra and the Nichols algebras are corad-
ically graded. The associated graded Hopf algebra of Uq(g) is the Hopf
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algebra defined by the same relations as Uq(g), except that the commu-
tation relation between Ei and Fj is replaced with the condition that Ei

and Fj commute (for all i, j). The same applies to the small quantum
group uq(sl2).

Exercise 1.31.7. Let k be a field of characteristic p, and G a finite
group. Show that the category Repk(G) has Chevalley property if and
only if G has a normal p-Sylow subgroup.

1.32. The Andruskiewitsch-Schneider conjecture. It is easy to
see that any Hopf algebra generated by grouplike and skew-primitive
elements is automatically pointed.

On the other hand, there exist pointed Hopf algebras which are not
generated by grouplike and skew-primitive elements. Perhaps the sim-
plest example of such a Hopf algebra is the algebra of regular functions
on the Heisenberg group (i.e. the group of upper triangular 3 by 3
matrices with ones on the diagonal). It is easy to see that the commu-
tative Hopf algebra H is the polynomial algebra in generators x, y, z
(entries of the matrix), so that x, y are primitive, and

∆(z) = z ⊗ 1 + 1⊗ z + x⊗ y.

Since the only grouplike element in H is 1, and the only skew-primitive
elements are x, y, H is not generated by grouplike and skew-primitive
elements.

However, one has the following conjecture, due to Andruskiewitsch
and Schneider.

Conjecture 1.32.1. Any finite dimensional pointed Hopf algebra over
a field of characteristic zero is generated in degree 1 of its coradical
filtration, i.e., by grouplike and skew-primitive elements.

It is easy to see that it is enough to prove this conjecture for corad-
ically graded Hopf algebras; this has been done in many special cases
(see [AS]).

The reason we discuss this conjecture here is that it is essentially a
categorical statement. Let us make the following definition.

Definition 1.32.2. We say that a tensor category C is tensor-generated
by a collection of objects Xα if every object of C is a subquotient of a
finite direct sum of tensor products of Xα.

Proposition 1.32.3. A pointed Hopf algebra H is generated by grou-
plike and skew-primitive elements if and only if the tensor category
H − comod is tensor-generated by objects of length 2.
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Proof. This follows from the fact that matrix elements of the tensor
product of comodules V,W for H are products of matrix elements of
V,W . �

Thus, one may generalize Conjecture 1.32.1 to the following conjec-
ture about tensor categories.

Conjecture 1.32.4. Any finite pointed tensor category over a field of
characteristic zero is tensor generated by objects of length 2.

As we have seen, this property fails for infinite categories, e.g., for
the category of rational representations of the Heisenberg group. In
fact, this is very easy to see categorically: the center of the Heisenberg
group acts trivially on 2-dimensional representations, but it is not true
for a general rational representation.

1.33. The Cartier-Kostant theorem.

Theorem 1.33.1. Any cocommutative Hopf algebra H over an alge-
braically closed field of characteristic zero is of the form k[G] ⋉ U(g),
where g is a Lie algebra, and G is a group acting on g.

Proof. Let G be the group of grouplike elements of H. Since H is
cocommutative, it is pointed, and Ext1(g, h) = 0 if g, h ∈ G, g 6= h.
Hence the category C = H−comod splits into a direct sum of blocks C =
⊕g∈GCg, where Cg is the category of objects of C which have a filtration
with successive quotients isomorphic to g. So H = ⊕g∈GHg, where
Cg = Hg−comod, and Hg = gH1. Moreover, A = H1 is a Hopf algebra,
and we have an action of G on A by Hopf algebra automorphisms.

Now let g = Prim(A) = Prim(H). This is a Lie algebra, and the
group G acts on it (by conjugation) by Lie algebra automorphisms. So
we need just to show that the natural homomorphism ψ : U(g)→ A is
actually an isomorphism.

It is clear that any morphism of coalgebras preserves the coradical
filtration, so we can pass to the associated graded morphism ψ0 : Sg→
A0, where A0 = gr(A). It is enough to check that ψ0 is an isomorphism.

The morphism ψ0 is an isomorphism in degrees 0 and 1, and by
Corollary 1.29.7, it is injective. So we only need to show surjectivity.

We prove the surjectivity in each degree n by induction. To simplify
notation, let us identify Sg with its image under ψ0. Suppose that the
surjectivity is known in all degrees below n. Let z be a homogeneous
element in A0 of degree n. Then it is easy to see from the counit axiom
that

(1.33.1) ∆(z)− z ⊗ 1− 1⊗ z = u
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where u ∈ Sg⊗ Sg is a symmetric element (as ∆ is cocommutative).
Equation 1.33.1 implies that the element u satisfies the equation

(1.33.2) (∆⊗ Id)(u) + u⊗ 1 = (Id⊗∆)(u) + 1⊗ u.

Lemma 1.33.2. Let V be a vector space over a field k of characteristic
zero. Let u ∈ SV ⊗ SV be a symmetric element satisfying equation
(1.33.2). Then u = ∆(w)− w ⊗ 1− 1⊗ w for some w ∈ SV .

Proof. Clearly, we may assume that V is finite dimensional. Regard u
as a polynomial function on V ∗ × V ∗; our job is to show that

u(x, y) = w(x+ y)− w(x)− w(y)

for some polynomial w.
If we regard u as a polynomial, equation (1.33.2) takes the form of

the 2-cocycle condition

u(x+ y, t) + u(x, y) = u(x, y + t) + u(y, t).

Thus u defines a group law on U := V ∗ ⊕ k, given by

(x, a) + (y, b) = (x+ y, a+ b+ u(x, y)).

Clearly, we may assume that u is homogeneous, of some degree d 6= 1.
Since u is symmetric, the group U is abelian. So in U we have

((x, 0) + (x, 0)) + ((y, 0) + (y, 0)) = ((x, 0) + (y, 0)) + ((x, 0) + (y, 0))

Computing the second component of both sides, we get

u(x, x) + u(y, y) + 2du(x, y) = 2u(x, y) + u(x+ y, x+ y).

So one can take w(x) = (2d − 2)−1u(x, x), as desired. �

Now, applying Lemma 1.33.2, we get that there exists w ∈ A0 such
that z − w is a primitive element, which implies that z − w ∈ A0, so
z ∈ A0. �

Remark 1.33.3. The Cartier-Kostant theorem implies that any co-
commutative Hopf algebra over an algebraically closed field of char-
acteristic zero in which the only grouplike element is 1 is of the form
U(g), where g is a Lie algebra (a version of the Milnor-Moore theorem),
in particular is generated by primitive elements. The latter statement
is false in positive charactersitic. Namely, consider the commutative
Hopf algebra Q[x, z] where x, z are primitive, and set y = z + xp/p,
where p is a prime. Then

(1.33.3) ∆(y) = y ⊗ 1 + 1⊗ y +

p−1∑

i=1

1

p

(
p

i

)
xi ⊗ xp−i.
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Since the numbers 1
p

(
p
i

)
are integers, this formula (together with ∆(x) =

x⊗ 1 + 1⊗x, S(x) = −x, S(y) = −y) defines a Hopf algebra structure
on H = k[x, y] for any field k, in particular, one of characteristic p. But
if k has characteristic p, then it is easy to see that H is not generated
by primitive elements (namely, the element y is not in the subalgebra
generated by them).

The Cartier-Kostant theorem implies that any affine pro-algebraic
group scheme over a field of characteristic zero is in fact a pro-algebraic
group. Namely, we have

Corollary 1.33.4. Let H be a commutative Hopf algebra over a field
k of characteristic zero. Then H has no nonzero nilpotent elements.

Proof. It is clear that H is a union of finitely generated Hopf subalge-
bras (generated by finite dimensional subcoalgebras of H), so we may
assume that H is finitely generated. Let m be the kernel of the counit
of H, and B = ∪∞n=1(H/m

n)∗ (i.e., B is the continuous dual of the
formal completion of H near the ideal m). It is easy to see that B is
a cocommutative Hopf algebra, and its only grouplike element is 1. So
by the Cartier-Kostant theorem B = U(g), where g = (m/m2)∗. This
implies that G = Spec(H) is smooth at 1 ∈ G, i.e. it is an algebraic
group, as desired. �

Remark 1.33.5. Note that Corollary 1.33.4 is a generalization of
Corollary 1.27.6.

1.34. Quasi-bialgebras. Let us now discuss reconstruction theory for
quasi-fiber functors. This leads to the notion of quasi-bialgebras and
quasi-Hopf algebras, which were introduced by Drinfeld in [Dr1] as
linear algebraic counterparts of abelian monoidal categories with quasi-
fiber functors.

Definition 1.34.1. Let C be an abelian monoidal category over k,
and (F, J) : C → Vec be a quasi-fiber functor. (F, J) is said to be
normalized if J1X = JX1 = IdF (X) for all X ∈ C.

Definition 1.34.2. Two quasi-fiber functors (F, J1) and (F, J2) are
said to be twist equivalent (by the twist J−1

1 J2).

Since for a quasi-fiber functor (unlike a fiber functor), the isomor-
phism J is not required to satisfy any equations, it typically does not
carry any valuable structural information, and thus it is more reason-
able to classify quasi-fiber functors not up to isomorphism, but rather
up to twist equivalence combined with isomorphism.
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Remark 1.34.3. It is easy to show that any quasi-fiber functor is
equivalent to a normalized one.

Now let C be a finite abelian monoidal category over k, and let
(F, J) be a normalized quasi-fiber functor. Let H = EndF be the
corresponding finite dimensional algebra. Then H has a coproduct ∆
and a counit ε defined exactly as in the case of a fiber functor, which
are algebra homomorphisms. The only difference is that, in general,
∆ is not coassociative, since J does not satisfy the monoidal structure
axiom. Rather, there is an invertible element Φ ∈ H⊗3, defined by the
commutative diagram
(1.34.1)

(F (X)⊗ F (Y ))⊗ F (Z)
Φ

F (X),F (Y ),F (Z)
−−−−−−−−−→ F (X)⊗ (F (Y )⊗ F (Z))

JX,Y ⊗IdF (Z)

y IdF (X)⊗JY,Z

y

F (X ⊗ Y )⊗ F (Z) F (X)⊗ F (Y ⊗ Z)

JX⊗Y,Z

y JX,Y ⊗Z

y

F ((X ⊗ Y )⊗ Z)
F (a

X,Y,Z
)

−−−−−−→ F (X ⊗ (Y ⊗ Z))

for all X, Y, Z ∈ C, and we have the following proposition.

Proposition 1.34.4. The following identities hold:

(1.34.2) (Id⊗∆)(∆(h)) = Φ(∆⊗ Id)(∆(h))Φ−1, h ∈ H,

(1.34.3)
(Id⊗ Id⊗∆)(Φ)(∆⊗ Id⊗ Id)(Φ) = (1⊗ Φ)(Id⊗∆⊗ Id)(Φ)(Φ⊗ 1),

(1.34.4) (ε⊗ Id)(∆(h)) = h = (Id⊗ ε)(∆(h)),

(1.34.5) (Id⊗ ε⊗ Id)(Φ) = 1⊗ 1.

Proof. The first identity follows from the definition of Φ, the second
one from the pentagon axiom for C, the third one from the condition
that (F, J) is normalized, and the fourth one from the triangle axiom
and the condition that (F, J) is normalized. �

Definition 1.34.5. An associative unital k-algebra H equipped with
unital algebra homomorphisms ∆ : H → H ⊗H (the coproduct) and
ε : H → k (the counit) and an invertible element Φ ∈ H⊗3 satisfying
the identities of Proposition 1.34.4 is called a quasi-bialgebra. The
element Φ is called the associator of H.
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Thus, the notion of a quasi-bialgebra is a generalization of the notion
of a bialgebra; namely, a bialgebra is a quasi-bialgebra with Φ = 1.11

For a quasi-bialgebra H, the tensor product of (left) H-modules V
and W is an H-module via ∆, i.e., in the same way as for bialgebras.
Also, it follows from (1.34.2) that for any H-modules U, V,W the map-
ping

(1.34.6) aU,V,W : (U⊗V )⊗W ∼= U⊗(V ⊗W ) : u⊗v⊗w 7→ Φ(u⊗v⊗w)

is an H-module isomorphism. The axiom (1.34.4) implies that the

natural maps lV = Id : 1⊗ V
∼
−→ V and rV = Id : V ⊗ 1

∼
−→ V are also

H-module isomorphisms. Finally, equations (1.34.3) and (1.34.5) say,
respectively, that the pentagon axiom (1.1.2) and the triangle axiom
(1.2.1) are satisfied for Rep(H). In other words, Rep(H) is a monoidal
category.

Definition 1.34.6. A twist for a quasi-bialgebra H is an invertible
element J ∈ H ⊗H such that (ε⊗ Id)(J) = (Id⊗ ε)(J) = 1. Given a
twist, we can define a new quasi-bialgebra HJ which is H as an algebra,
with the same counit, the coproduct given by

∆J(x) = J−1∆(x)J,

and the associator given by

ΦJ = (Id⊗ J)−1(Id⊗∆)(J)−1Φ(∆⊗ Id)(J)(J ⊗ Id)

The algebra HJ is called twist equivalent to H, by the twist J .

It is easy to see that twist equivalent quasi-fiber functors produce
twist-equivalent quasi-bialgebras, and vice versa. Also, we have the
following proposition.

Proposition 1.34.7. If a finite k-linear abelian monoidal category C
admits a quasi-fiber functor, then this functor is unique up to twisting.

Proof. Let Xi, i = 1, ..., n be the simple objects of C. The functor
F is exact, so it is determined up to isomorphism by the numbers
di = dimF (Xi). So our job is to show that these numbers are uniquely
determined by C.

Let Ni = (Nk
ij) be the matrix of left multiplication by Xi in the

Grothendieck ring of C in the basis {Xj}, i.e.

XiXj =
∑

Nk
ijXk

(so, k labels the rows and j labels the columns of Ni).

11However, note that ∆ can be coassociative even if Φ 6= 1.
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We claim that di is the spectral radius of Ni. Indeed, on the one
hand, we have ∑

Nm
ij dm = didj,

so di is an eigenvalue of NT
i , hence of Ni. On the other hand, if ej is the

standard basis of Zn then for any r ≥ 0 the sum of the coordinates of
the vector N r

i ej is the length of the object X⊗r
i ⊗Xj, so it is dominated

by dr
idj. This implies that the spectral radius of Ni is at most di. This

means that the spectral radius is exactly di, as desired. �

Therefore, we have the following reconstruction theorem.

Theorem 1.34.8. The assignments (C, F ) 7→ H = End(F ), H 7→
(Rep(H),Forget) are mutually inverse bijections between

1) finite k-linear abelian monoidal categories C admitting a quasi-
fiber functor, up to monoidal equivalence of categories.

2) finite dimensional quasi-bialgebras H over k up to twist equiva-
lence and isomorphism.

Proof. Straightforward from the above. �

Exercise 1.34.9. Suppose that in the situation of Exercise 1.21.6, the
functor F is equipped with a quasi-monoidal structure J , i.e. an iso-
morphism J : F (•)⊗F (•)→ F (•⊗•), such that J1X = JX1 = IdF (X).
Show that this endows H with the structure of a quasi-bialgebra, such
that (F, J) defines a monoidal equivalence C → Rep(H).

Remark 1.34.10. Proposition 1.34.7 is false for infinite categories.
For example, it is known that if C = Rep(SL2(C)), and V ∈ C is a 2-
dimensional repesentation, then there exists a for any positive integer
n ≥ 2 there exists a fiber functor on C with dimF (V ) = n (see [Bi]).

1.35. Quasi-bialgebras with an antipode and quasi-Hopf alge-
bras. Now consider the situation of the previous subsection, and as-
sume that the category C has right duals. In this case, by Proposition
1.13.5, the right dualization functor is exact; it is also faithful by Propo-
sition 1.10.9. Therefore, the functor F (V ∗)∗ is another quasi-fiber func-
tor on C. So by Proposition 1.34.7, this functor is isomorphic to F . Let
us fix such an isomorphism ξ = (ξV ), ξV : F (V ) → F (V ∗)∗. Then we
have natural linear maps k → F (V )⊗F (V ∗), F (V ∗)⊗F (V )→ k con-
structed as in Exercise 1.10.6, which can be regarded as linear maps
α̂ : F (V ) → F (V ∗)∗ and β̂ : F (V ∗)∗ → F (V ). Thus, the quasi-
bialgebra H = End(F ) has the following additional structures.

1. The elements α, β ∈ H such that for any V ∈ C, αV = ξ−1
V ◦ α̂V ,

βV = β̂V ◦ ξV . Note that α and β are not necessarily invertible.
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2. The antipode S : H → H, which is a unital algebra antihomo-
morphism such that if ∆(a) =

∑
i a

1
i ⊗ a

2
i , a ∈ H, then

(1.35.1)
∑

i

S(a1
i )αa

2
i = ε(a)α,

∑

i

a1
iβS(a2

i ) = ε(a)β.

Namely, for a ∈ H S(a) acts on F (V ) by ξ−1 ◦ a∗F (V ∗) ◦ ξ.

Let us write the associator as Φ =
∑

i Φ
1
i ⊗ Φ2

i ⊗ Φ3
i and its inverse

as
∑

Φ̄1
i ⊗ Φ̄2

i ⊗ Φ̄3
i .

Proposition 1.35.1. One has

(1.35.2)
∑

Φ1
iβS(Φ2

i )αΦ3
i = 1,

∑
S(Φ̄1

i )αΦ̄2
iβS(Φ̄3

i ) = 1.

Proof. This follows directly from the duality axioms. �

Definition 1.35.2. An antipode on a quasi-bialgebra H is a triple
(S, α, β), where S : H → H is a unital antihomomorphism and α, β ∈
H, satisfying identities (1.35.1) and (1.35.2).

A quasi-Hopf algebra is a quasi-bialgebra (H,∆, ε,Φ) for which there
exists an antipode (S, α, β) such that S is bijective.

Thus, the notion of a quasi-Hopf algebra is a generalization of the
notion of a Hopf algebra; namely, a Hopf algebra is a quasi-Hopf algebra
with Φ = 1, α = β = 1.

We see that if in the above setting C has right duals, then H =
End(F ) is a finite dimensional bialgebra admitting antipode, and if C
is rigid (i.e., a tensor category), then H is a quasi-Hopf algebra.

Conversely, if H is a quasi-bialgebra with an antipode, then the
category C = Rep(H) admits right duals. Indeed, the right dual module
of an H-module V is defined as in the Hopf algebra case: it is the dual
vector space V ∗ with the action of H given by

〈hφ, v 〉 = 〈φ, S(h)v 〉, v ∈ V, φ ∈ V ∗, h ∈ H.

Let
∑
vi ⊗ fi be the image of IdV under the canonical isomorphism

End(V )
∼
−→ V ⊗ V ∗. Then the evaluation and coevaluation maps are

defined using the elements α and β:

evV (f ⊗ v) = f(αv), coevV (1) =
∑

βvi ⊗ fi.

Axiom (1.35.1) is then equivalent to evV and coevV being H-module
maps. Equations (1.35.2) are equivalent, respectively, to axioms (1.10.1)
and (1.10.2) of a right dual.

If S is invertible, then the right dualization functor is an equivalence
of categories, so the representation category Rep(H) of a quasi-Hopf
algebra H is rigid, i.e., a tensor category.
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Exercise 1.35.3. Let H := (H,∆, ε,Φ, S, α, β) be a quasi-bialgebra
with an antipode, and u ∈ H be an invertible element.

(i) Show that if one sets

(1.35.3) S(h) = uS(h)u−1, α = uα, and β = βu−1

then the triple (S, α, β) is an antipode.
(ii) Conversely, show that any S, α, and β satisfying conditions

(1.35.1) and (1.35.2) are given by formulas (1.35.3) for a uniquely de-
fined u.

Hint. If H is finite dimensional, (ii) can be formally deduced from
the uniqueness of the right dual in a tensor category up to a unique
isomorphism. Use this approach to obtain the unique possible formula
for u, and check that it does the job for any H.

Remark 1.35.4. The non-uniqueness of S, α, and β observed in Ex-
ercise 1.35.3 reflects the freedom in choosing the isomorphism ξ.

Example 1.35.5. (cf. Example 1.10.14) Let G be a finite group and
let ω ∈ Z3(G, k×) be a normalized 3-cocycle, see (1.3.1). Consider
the algebra H = Fun(G, k) of k-valued functions on G with the usual
coproduct and counit. Set

Φ =
∑

ω(f, g, h)pf ⊗ pg ⊗ ph, α =
∑

ω(g, g−1, g)pg, β = 1,

where pg is the primitive idempotent of H corresponding to g ∈ G.
It is straightforward to check that these data define a commutative
quasi-Hopf algebra, which we denote Fun(G, k)ω. The tensor category
Rep(Fun(G, k)ω) is obviously equivalent to Vecω

G.

It is easy to show that a twist of a quasi-bialgebraH with an antipode
is again a quasi-bialgebra with an antipode (this reflects the fact that
in the finite dimensional case, the existence of an antipode for H is the
property of the category of finite dimensional representations of H).
Indeed, if the twist J and its inverse have the form

J =
∑

i

ai ⊗ bi, J
−1 =

∑

i

a′i ⊗ b
′
i

thenHJ has an antipode (SJ , αJ , βJ) with SJ = S and αJ =
∑

i S(ai)αbi,
βJ =

∑
i a

′
iβS(b′i). Thus, we have the following reconstruction theorem.

Theorem 1.35.6. The assignments (C, F ) 7→ H = End(F ), H 7→
(Rep(H),Forget) are mutually inverse bijections between

(i) finite abelian k-linear monoidal categories C with right duals ad-
mitting a quasi-fiber functor, up to monoidal equivalence of categories,
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and finite dimensional quasi-bialgebras H over k with an antipode, up
to twist equivalence and isomorphism;

(ii) finite tensor categories C admitting a quasi-fiber functor, up to
monoidal equivalence of categories, and finite dimensional quasi-Hopf
algebras H over k, up to twist equivalence and isomorphism.

Remark 1.35.7. One can define the dual notions of a coquasi-bialgebra
and coquasi-Hopf algebra, and prove the corresponding reconstruction
theorems for tensor categories which are not necessarily finite. This is
straightforward, but fairly tedious, and we will not do it here.

1.36. Twists for bialgebras and Hopf algebras. Let H be a bial-
gebra. We can regard it as a quasi-bialgebra with Φ = 1. Let J be a
twist for H.

Definition 1.36.1. J is called a bialgebra twist if HJ is a bialgebra,
i.e. ΦJ = 1.

Thus, a bialgebra twist forH is an invertible element J ∈ H⊗H such
that (ε⊗ Id)(J) = (Id⊗ ε)(J) = 1, and J satisfies the twist equation

(1.36.1) (Id⊗∆)(J)(Id⊗ J) = (∆⊗ Id)(J)(J ⊗ Id).

Exercise 1.36.2. Show that if a bialgebra H has an antipode S, and J
is a bialgebra twist for H, then the bialgebra HJ also has an antipode.
Namely, let J =

∑
ai ⊗ bi, J

−1 =
∑
a′i ⊗ b

′
i, and set QJ =

∑
i S(ai)bi.

Then QJ is invertible with Q−1
J =

∑
i a

′
iS(b′i), and the antipode of HJ

is defined by SJ(x) = Q−1
J S(x)QJ . In particular, a bialgebra twist of

a Hopf algebra is again a Hopf algebra.

Remark 1.36.3. Twisting does not change the category of H-modules
as a monoidal category, and the existence of an antipode (for finite
dimensional H) is a categorical property (existence of right duals).
This yields the above formulas, and then one easily checks that they
work for any H.

Any twist on a bialgebra H defines a fiber functor (Id, J) on the
category Rep(H). However, two different twists J1, J2 may define iso-
morphic fiber functors. It is easy to see that this happens if there is an
invertible element v ∈ H such that

J2 = ∆(v)J1(v
−1 ⊗ v−1).

In this case the twists J1 and J2 are called gauge equivalent by the
gauge transformation v, and the bialgebras HJ1 , HJ2 are isomorphic
(by conjugation by v). So, we have the following result.
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Proposition 1.36.4. Let H be a finite dimensional bialgebra. Then
J 7→ (Id, J) is a bijection between:

1) gauge equivalence classes of bialgebra twists for H, and
2) fiber functors on C = Rep(H), up to isomorphism.

Proof. By Proposition 1.34.7, any fiber functor on C is isomorphic to
the forgetful functor F as an additive functor. So any fiber functor, up
to an isomorphism, has the form (F, J), where J is a bialgebra twist.
Now it remains to determine when (F, J1) and (F, J2) are isomorphic.
Let v : (F, J1) → (F, J2) be an isomorphism. Then v ∈ H is an
invertible element, and it defines a gauge transformation mapping J1

to J2. �

Proposition 1.36.5. Let G be a group. Then fiber functors on VecG

up to an isomorphism bijectively correspond to H2(G, k×).

Proof. A monoidal structure on the forgetful functor F is given by a
function J(g, h) : δg ⊗ δh → δg ⊗ δh, J(g, h) ∈ k×. It is easy to see that
the monoidal structure condition is the condition that J is a 2-cocycle,
and two 2-cocycles define isomorphic monoidal structures if and only
if they differ by a coboundary. Thus, equivalence classes of monoidal
structures on F are parametrized by H2(G, k×), as desired. �

Remark 1.36.6. Proposition 1.36.5 shows that there may exist non-
isomorphic fiber functors on a given finite tensor category C defining
isomorphic Hopf algebras. Indeed, all fiber functors on VecG yield the
same Hopf algebra Fun(G, k). These fiber functors are, however, all
equivalent to each other by monoidal autoequivalences of C.

Remark 1.36.7. Since Vecω
G does not admit fiber functors for cohomo-

logically nontrivial ω, Proposition 1.36.5 in fact classifies fiber functors
on all categories Vecω

G.

1.37. Quantum traces. Let C be a rigid monoidal category, V be an
object in C, and a ∈ Hom(V, V ∗∗). Define the left quantum trace

(1.37.1) TrL
V (a) := evV ∗ ◦ (a⊗ IdV ∗) ◦ coevV ∈ End(1).

Similarly, if a ∈ Hom(V, ∗∗V ) then we can define the right quantum
trace

(1.37.2) TrR
V (a) := ev∗∗V ◦ (Id∗V ⊗ a) ◦ coev∗V ∈ End(1).

In a tensor category over k, TrL(a) and TrR(a) can be regarded as
elements of k.

When no confusion is possible, we will denote TrL
V by TrV .

The following proposition shows that usual linear algebra formulas
hold for the quantum trace.
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Proposition 1.37.1. If a ∈ Hom(V, V ∗∗), b ∈ Hom(W, W ∗∗) then

(1) TrL
V (a) = TrR

V ∗(a∗);
(2) TrL

V ⊕W (a⊕ b) = TrL
V (a) + TrL

W (b) (in additive categories);

(3) TrL
V ⊗W (a⊗ b) = TrL

V (a)TrL
W (b);

(4) If c ∈ Hom(V, V ) then TrL
V (ac) = TrL

V (c∗∗a), TrR
V (ac) = TrR

V (∗∗ca).

Similar equalities to (2),(3) also hold for right quantum traces.

Exercise 1.37.2. Prove Proposition 1.37.1.

If C is a multitensor category, it is useful to generalize Proposi-
tion 1.37.1(2) as follows.

Proposition 1.37.3. If a ∈ Hom(V, V ∗∗) and W ⊂ V such that
a(W ) ⊂ W ∗∗ then TrL

V (a) = TrL
W (a) + TrL

V/W (a). That is, Tr is addi-
tive on exact sequences. The same statement holds for right quantum
traces.

Exercise 1.37.4. Prove Proposition 1.37.3.

1.38. Pivotal categories and dimensions.

Definition 1.38.1. Let C be a rigid monoidal category. A pivotal
structure on C is an isomorphism of monoidal functors a : Id

∼
−→?∗∗.

That is, a pivotal structure is a collection of morphisms aX : X
∼
−→

X∗∗ natural in X and satisfying aX⊗Y = aX ⊗ aY for all objects X, Y
in C.

Definition 1.38.2. A rigid monoidal category C equipped with a piv-
otal structure is said to be pivotal.

Exercise 1.38.3. (1) If a is a pivotal structure then aV ∗ = (aV )∗−1.
Hence, aV ∗∗ = a∗∗V .

(2) Let C = Rep(H), where H is a finite dimensional Hopf alge-
bra. Show that pivotal structures on C bijectively correspond
to group-like elements of H such that gxg−1 = S2(x) for all
x ∈ H.

Let a be a pivotal structure on a rigid monoidal category C.

Definition 1.38.4. The dimension of an object X with respect to a
is dima(X) := Tr(aX) ∈ End(1).

Thus, in a tensor category over k, dimensions are elements of k. Also,
it follows from Exercise 1.38.3 that dima(V ) = dima(V

∗∗).

Proposition 1.38.5. If C is a tensor category, then the function X 7→
dima(X) is a character of the Grothendieck ring Gr(C).
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Proof. Proposition 1.37.3 implies that dima is additive on exact se-
quences, which means that it gives rise to a well-defined linear map
from Gr(C) to k. The fact that this map is a character follows from the
obvious fact that dima(1) = 1 and Proposition 1.37.1(3). �

Corollary 1.38.6. Dimensions of objects in a pivotal finite tensor cat-
egory are algebraic integers in k. 12

Proof. This follows from the fact that a character of any ring that is
finitely generated as a Z-module takes values in algebraic integers. �

1.39. Spherical categories.

Definition 1.39.1. A pivotal structure a on a tensor category C is
spherical if dima(V ) = dima(V

∗) for any object V in C. A tensor
category is spherical if it is equipped with a spherical structure.

Since dima is additive on exact sequences, it suffices to require the
property dima(V ) = dima(V

∗) only for simple objects V .

Theorem 1.39.2. Let C be a spherical category and V be an object of
C. Then for any x ∈ Hom(V, V ) one has TrL

V (aV x) = TrR
V (xa−1

V ).

Proof. We first note that TrR
X(a−1

X ) = dima(X
∗) for any object X by

Proposition 1.37.1(1) and Exercise 1.38.3(1). Now let us prove the
proposition in the special case when V is semisimple. Thus V = ⊕i Yi⊗
Vi, where Vi are vector spaces and Yi are simple objects. Then x =
⊕i xi⊗IdVi

with xi ∈ Endk(Yi) and a = ⊕ IdYi
⊗aVi

(by the functoriality
of a). Hence

TrL
V (ax) =

∑
Tr(xi) dim(Vi),

TrR
V (xa−1) =

∑
Tr(xi) dim(V ∗

i ).

This implies the result for a semisimple V .
Consider now the general case. Then V has the coradical filtration

(1.39.1) 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = V

(such that Vi+1/Vi is a maximal semisimple subobject in V/Vi). This
filtration is preserved by x and by a (i.e., a : Vi → V ∗∗

i ). Since traces
are additive on exact sequences by Proposition 1.37.3, this implies that
the general case of the required statement follows from the semisimple
case. �

12If k has positive characteristic, by an algebraic integer in k we mean an element
of a finite subfield of k.
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Exercise 1.39.3. (i) Let Aut⊗(IdC) be the group of isomorphism classes
of monoidal automorphisms of a monoidal category C. Show that the
set of isomorphism classes of pivotal structures on C is a torsor over
Aut⊗(IdC), and the set of isomorphism classes of spherical structures
on C is a torsor over the subgroup Aut⊗(IdC)2 in Aut⊗(IdC) of elements
which act by ±1 on simple objects.

1.40. Semisimple multitensor categories. In this section we will
more closely consider semisimple multitensor categories which have
some important additional properties compared to the general case.

1.41. Isomorphism between V ∗∗ and V .

Proposition 1.41.1. Let C be a semisimple multitensor category and
let V be an object in C. Then ∗V ∼= V ∗. Hence, V ∼= V ∗∗.

Proof. We may assume that V is simple.
We claim that the unique simple objectX such that Hom(1, V⊗X) 6=

0 is V ∗. Indeed, Hom(1, V ⊗ X) ∼= Hom(∗X,V ) which is non-zero if
and only if ∗X ∼= V , i.e., X ∼= V ∗. Similarly, the unique simple object
X such that Hom(V ⊗ X, 1) 6= 0 is ∗V . But since C is semisimple,
dimk Hom(1, V ⊗X) = dimk Hom(V ⊗X, 1), which implies the result.

�

Remark 1.41.2. As noted in Remark 1.27.2, the result of Proposi-
tion 1.41.1 is false for non-semisimple categories.

Remark 1.41.3. Proposition 1.41.1 gives rise to the following ques-
tion.

Question 1.41.4. Does any semisimple tensor category admit a piv-
otal structure? A spherical structure?

This is the case for all known examples. The general answer is un-
known to us at the moment of writing (even for ground fields of char-
acteristic zero).

Proposition 1.41.5. If C is a semisimple tensor category and a : V
∼
−→

V ∗∗ for a simple object V then Tr(a) 6= 0.

Proof. Tr(a) is the composition morphism of the diagram 1 → V ⊗
V ∗ → 1 where both morphisms are non-zero. If the composition mor-
phism is zero then there is a non-zero morphism (V ⊗V ∗)/1→ 1 which
means that the [V ⊗ V ∗ : 1] ≥ 2. Since C is semisimple, this implies
that dimk Hom(1, V ⊗ V ∗) is at least 2. Hence, dimk Hom(V, V ) ≥ 2
which contradicts the simplicity of V . �
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Remark 1.41.6. The above result is false for non-semisimple cate-
gories. For example, let C = Repk(GLp(Fp)), the representation cat-
egory of the group GLp(Fp) over a field k of characteristic p. Let
V be the p dimensional vector representation of GLp(Fp) (which is
clearly irreducible). Let a : V → V ∗∗ be the identity map. Then
Tr(a) = dimk(V ) = p = 0 in k.

1.42. Grothendieck rings of semisimple tensor categories.

Definition 1.42.1. (i) A Z+−basis of an algebra free as a module over
Z is a basis B = {bi} such that bibj =

∑
k c

k
ijbk, c

k
ij ∈ Z+.

(ii) A Z+−ring is an algebra over Z with unit equipped with a fixed
Z+−basis.

Definition 1.42.2. (1) A Z+−ring A with basis {bi}i∈I is called a
based ring if the following conditions hold

[a] There exists a subset I0 ⊂ I such that 1 =
∑

i∈I0
bi.

[b] Let τ : A→ Z be the group homomorphism defined by

(1.42.1) τ(bi) =

{
1 if i ∈ I0
0 if i 6∈ I0

There exists an involution i 7→ i∗ of I such that induced map
a =

∑
i∈I aibi 7→ a∗ =

∑
i∈I aibi∗ , ai ∈ Z is an anti-involution

of ring A and such that

(1.42.2) τ(bibj) =

{
1 if i = j∗

0 if i 6= j∗.

(2) A unital Z+-ring is a Z+-ring A such that 1 belongs to the basis.
(3) A multifusion ring is a based ring of finite rank. A fusion ring

is a unital based ring of finite rank.

Remark 1.42.3. (1) It follows easily from definition that i, j ∈
I0, i 6= j implies that b2i = bi, bibj = 0, i∗ = i.

(2) It is easy to see that for a given Z+−ring A, being a (unital)
based ring is a property, not an additional structure.

(3) Note that any Z+-ring is assumed to have a unit, and is not
necessarily a unital Z+-ring.

Proposition 1.42.4. If C is a semisimple multitensor category then
Gr(C) is a based ring. If C is semisimple tensor category then Gr(C) is
a unital based ring. If Gr(C) is a (multi)fusion category, then GrC is a
(multi)fusion ring.

Proof. The Z+-basis in Gr(C) consists of isomorphism classes of simple
objects of C. The set I0 consists of the classes of simple subobjects of
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1. The involution ∗ is the duality map (by Proposition 1.41.1 it does
not matter whether to use left or right duality). This implies the first
two statements. The last statement is clear. �

Example 1.42.5. Let C be the category of finite dimensional repre-
sentations of the Lie algebra sl2(C). Then the simple objects of this
category are irreducible representations Vm of dimension m + 1 for
m = 0, 1, 2, . . . ; V0 = 1. The Grothendieck ring of C is determined by
the well-known Clebsch-Gordon rule

(1.42.3) Vi ⊗ Vj =

i+j⊕

l=|i−j|,i+j−l∈2Z

Vl.

The duality map on this ring is the identity. The same is true if C =
Rep(Uq(sl2)) when q is not a root of unity, see [K].

Let C be a semisimple multitensor category with simple objects
{Xi}i∈I . Let I0 be the subset of I such that 1 = ⊕i∈I0 Xi. Let
H l

ij := Hom(Xl, Xi ⊗ Xj) (if Xp ∈ Cij with p ∈ I and i, j ∈ I0, we
will identify spaces Hp

pi and Hp
ip with k using the left and right unit

morphisms).
We have Xi ⊗Xj =

⊕
l H

l
ij ⊗Xl. Hence,

(Xi1 ⊗Xi2)⊗Xi3
∼=

⊕

i4

⊕

j

Hj
i1i2
⊗H i4

ji3
⊗Xi4

Xi1 ⊗ (Xi2 ⊗Xi3)
∼=

⊕

i4

⊕

l

H i4
i1l ⊗H

l
i2i3
⊗Xi4 .

Thus the associativity constraint reduces to a collection of linear iso-
morphisms

(1.42.4) Φi4
i1i2i3

:
⊕

j

Hj
i1i2
⊗H i4

ji3
∼=

⊕

l

H i4
i1l ⊗H

l
i2i3
.

The matrix blocks of these isomorphisms,

(1.42.5) (Φi4
i1i2i3

)jl : Hj
i1i2
⊗H i4

ji3
→ H i4

i1l ⊗H
l
i2i3

are called 6j-symbols because they depend on six indices.

Example 1.42.6. Let C be the category of finite dimensional repre-
sentations of the Lie algebra sl2(C). Then the spaces H l

ij are 0- or
1-dimensional. In fact, it is obvious from the Clebsch-Gordan rule that
the map (Φi4

i1i2i3
)jl is a map between nonzero (i.e., 1-dimensional) spaces

if and only if the numbers i1, i2, i3, i4, j, l are edge lengths of a tetrahe-
dron with faces corresponding to the four H-spaces (i1i2j, ji3i4,i1li4,
i2i3l, such that the perimeter of every face is even (this tetrahedron
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is allowed to be in the Euclidean 3-space, Euclidean plane, or hyper-
bolic 3-space, so the only conditions are the triangle inequalities on
the faces). In this case, the 6j-symbol can be regarded as a number,
provided we choose a basis vector in every non-zero H l

ij. Under an ap-
propriate normalization of basis vectors these numbers are the Racah
coefficients or classical 6j-symbols. More generally, if C = Uq(sl2),
where q is not a root of unity, then the numbers (Φi4

i1i2i3
)jl are called

q-Racah coefficients or quantum 6j-symbols [CFS].

Further, the evaluation and coevaluation maps define elements

(1.42.6) αij ∈ (Hj
ii∗)

∗ and βij ∈ H
j
ii∗ , j ∈ I0.

Now the axioms of a rigid monoidal category, i.e., the triangle and
pentagon identities and the rigidity axioms translate into non-linear al-
gebraic equations with respect to the 6j-symbols (Φi4

i1i2i3
)jl and vectors

αij, βij.

Exercise 1.42.7. Write down explicitly the relation on 6j symbols
coming from the pentagon identity. If C = Rep(sl2(C)) this relation is
called the Elliott-Biedenharn relation ([CFS]).

Proposition 1.42.4 gives rise to the following general problem of cat-
egorification of based rings which is one of the main problems in the
structure theory of tensor categories.

Problem 1.42.8. Given a based ring R, describe (up to equivalence)
all multitensor categories over k whose Grothendieck ring is isomorphic
to R.

It is clear from the above explanations that this problem is equiva-
lent to finding all solutions of the system of algebraic equations coming
from the axioms of the rigid monoidal category modulo the group of au-
tomorphisms of the spaces Hk

ij (“gauge transformations”). In general,
this problem is very difficult because the system of equations involved
is nonlinear, contains many unknowns and is usually over-determined.
In particular, it is not clear a priori whether for a given R this sys-
tem has at least one solution, and if it does, whether the set of these
solutions is finite. It is therefore amazing that the theory of tensor
categories allows one to solve the categorification problem in a number
of nontrivial cases. This will be done in later parts of these notes; now
we will only mention the simplest result in this direction, which follows
from the results of Subsection 1.7.

Let Z[G] be the group ring of a group G, with basis {g ∈ G} and
involution g∗ = g−1. Clearly, Z[G] is a unital based ring.
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Proposition 1.42.9. The categorifications of Z[G] are Vecω
G, and they

are parametrized by H3(G, k×)/Out(G).

Remark 1.42.10. It is tempting to say that any Z+-ring R has a
canonical categorification over any field k: one can take the skeletal
semisimple category C = CR over k whose Grothendieck group is R,
define the tensor product functor on C according to the multiplication
in R, and then “define” the associativity isomorphism to be the identity
(which appears to make sense because the category is skeletal, and
therefore by the associativity of R one has (X⊗Y )⊗Z = X⊗(Y ⊗Z)).
However, a more careful consideration shows that this approach does
not actually work. Namely, such “associativity isomorphism” fails to
be functorial with respect to morphisms; in other words, if g : Y → Y is
a morphism, then (IdX⊗g)⊗IdZ is not always equal to IdX⊗(g⊗IdZ).

To demonstrate this explicitly, denote the simple objects of the cat-
egory C by Xi, i = 1, ..., r, and let Xi ⊗Xj = ⊕kN

l
ijXl. Take X = Xi,

Y = mXj, and Z = Xl; then g is an m by m matrix over k. The alge-
bra End((X ⊗ Y )⊗ Z) = End(X ⊗ (Y ⊗ Z)) is equal to ⊕sMatmns

(k),
where

ns =
∑

p

Np
ijN

s
pl =

∑

q

N s
iqN

q
jl,

and in this algebra we have

(IdX ⊗ g)⊗ IdZ = ⊕r
p=1IdNp

ij
⊗ g ⊗ IdNs

pl
,

IdX ⊗ (g ⊗ IdZ) = ⊕r
q=1IdNs

iq
⊗ g ⊗ IdNq

jl
,

We see that these two matrices are, in general, different, which shows
that the identity “associativity isomorphism” is not functorial.

1.43. Semisimplicity of multifusion rings.

Definition 1.43.1. A ∗-algebra is an associative algebra B over C

with an antilinear anti-involution ∗ : B → B and a linear functional
τ : B → C such that τ(ab) = τ(ba), and the Hermitian form τ(ab∗) is
positive definite.

Obviously, any semisimple algebra B = ⊕r
i=1Mati(C) is a ∗-algebra.

Namely, if pi > 0 are any positive numbers for i = 1, ..., r then one
can define ∗ to be the usual hermitian adjoint of matrices, and set
τ(a1, ..., ar) =

∑
i piTr(ai). Conversely, it is easy to see that any 8-

algebra structure on a finite dimensional semisimple algebra has this
form up to an isomorphism (and the numbers pi are uniquely deter-
mined, as traces of central idempotents of B).

It turns out that this is the most general example of a finite dimen-
sional ∗-algebra. Namely, we have
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Proposition 1.43.2. Any finite dimensional ∗-algebra B is semisim-
ple.

Proof. If M ⊂ B is a subbimodule, and M⊥ is the orthogonal comple-
ment of M under the form τ(ab∗), then M⊥ is a subbimodule of B,
and M ∩M⊥ = 0 because of the positivity of the form. So we have
B = M ⊕M⊥. Thus B is a semisimple B-bimodule, which implies the
proposition. �

Corollary 1.43.3. If e is a nonzero idempotent in a finite dimensional
∗-algebra B then τ(e) > 0.

The following proposition is obvious.

Proposition 1.43.4. Let A be a based ring. Then the algebra A⊗Z C

is canonically a ∗-algebra.

Corollary 1.43.5. Let A be a multifusion ring. Then the algebra
A⊗Z C is semsimiple.

Corollary 1.43.6. Let X be a basis element of a fusion ring A. Then
there exists n > 0 such that τ(Xn) > 0.

Proof. Since τ(Xn(X∗)n) > 0 for all n > 0, X is not nilpotent. Let

q(x) :=
r∏

i=0

(x− ai)
mi

be the minimal polynomial of X (ai are distinct). Assume that a0 6= 0
(we can do so since X is not nilpotent). Let

g(t) =
r∏

i=1

(x− ai)
mixh(x),

where h is a polynomial chosen in such a way that g(a0) = 1, g(j)(a0) =
0 for j = 1, ...,m0 − 1 (this is clearly possible). Then g(X) is an
idempotent, so by Corollary 1.43.3, τ(g(X)) > 0. Hence there exists
n > 0 such that τ(Xn) 6= 0, as desired. �

1.44. The Frobenius-Perron theorem. The following classical the-
orem from linear algebra [Ga, XIII.2] plays a crucial role in the theory
of tensor categories.

Theorem 1.44.1. Let B be a square matrix with nonnegative entries.

(1) B has a nonnegative real eigenvalue. The largest nonnegative
real eigenvalue λ(B) of B dominates the absolute values of all
other eigenvalues µ of B: |µ| ≤ λ(B) (in other words, the spec-
tral radius of B is an eigenvalue). Moreover, there is an eigen-
vector of B with nonnegative entries and eigenvalue λ(B).
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(2) If B has strictly positive entries then λ(B) is a simple positive
eigenvalue, and the corresponding eigenvector can be normalized
to have strictly positive entries. Moreover, |µ| < λ(B) for any
other eigenvalue µ of B.

(3) If B has an eigenvector v with strictly positive entries, then the
corresponding eigenvalue is λ(B).

Proof. Let B be an n by n matrix with nonnegative entries. Let us first
show that B has a nonnegative eigenvalue. If B has an eigenvector v
with nonnegative entries and eigenvalue 0, then there is nothing to
prove. Otherwise, let Σ be the set of column vectors x ∈ Rn with
with nonnegative entries xi and s(x) :=

∑
xi equal to 1 (this is a

simplex). Define a continuous map fB : Σ → Σ by fB(x) = Bx

s(Bx)
. By

the Brouwer fixed point theorem, this map has a fixed point f . Then
Bf = λf , where λ > 0. Thus the eigenvalue λ(B) is well defined, and
B always has a nonnegative eigenvector f with eigenvalue λ = λ(B).

Now assume that B has strictly positive entries. Then f must have
strictly positive entries fi. If d is another real eigenvector of B with
eigenvalue λ, let z be the smallest of the numbers of di/fi. Then the
vector v = d− zf satisfies Bv = λv, has nonnegative entries and has
one entry equal to zero. Hence v = 0 and λ is a simple eigenvalue.

Now let y = (y1, ..., yn) ∈ Cn be a row vector. Define the norm
|y| :=

∑
|yj|fj. Then

|yB| =
∑

j

|
∑

i

yibij|fj ≤
∑

i,j

|yi|bijfj = λ|y|,

and the equality holds if and only if all the complex numbers
∑
yibij

which are nonzero have the same argument. So if yB = µy, then
|µ| ≤ λ, and if |µ| = λ then all yi which are nonzero have the same
argument, so we can renormalize y to have nonnegative entries. This
implies that µ = λ. Thus, (ii) is proved.

Now consider the general case (B has nonnegative entries). Assume
that B has a row eigenevector y with strictly positive entries and eigen-
value µ. Then

µyf = yBf = λyf ,

which implies µ = λ, as yf 6= 0. This implies (iii).
It remains to finish the proof of (i) (i.e. to prove that λ(B) dominates

all other eigenvalues of B). Let ΓB be the oriented graph whose vertices
are labeled by 1, ..., n, and there is an edge from j to i if and only if
bij > 0. Let us say that i is accessible from j if there is a path in ΓB

leading from j to i. Let us call B irreducible if any vertex is accessible
from any other. By conjugatingB by a permutation matrix if necessary,
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we can get to a situation when i ≥ j implies that i is accessible from j.
This means that B is a block upper triangular matrix, whose diagonal
blocks are irreducible. So it suffices to prove the statement in question
for irreducible B.

But if B is irreducible, then either B is the zero 1-by-1 matrix, or
some power of B has strictly positive entries. So the result follows from
(ii). �

1.45. Tensor categories with finitely many simple objects. Frobenius-
Perron dimensions. Let A be a Z+-ring with Z+-basis I.

Definition 1.45.1. We will say that A is transitive if for any X,Z ∈ I
there exist Y1, Y2 ∈ I such that XY1 and Y2X involve Z with a nonzero
coefficient.

Proposition 1.45.2. If C is a ring category with right duals then Gr(C)
is a transitive unital Z+-ring.

Proof. Recall from Theorem 1.15.8 that the unit object 1 in C is simple.
So Gr(C) is unital. This implies that for any simple objects X,Z of C,
the object X ⊗X∗⊗Z contains Z as a composition factor (as X ⊗X∗

contains 1 as a composition factor), so one can find a simple object
Y1 occurring in X∗ ⊗ Z such that Z occurs in X ⊗ Y1. Similarly, the
object Z ⊗X∗⊗X contains Z as a composition factor, so one can find
a simple object Y2 occurring in Z ⊗X∗ such that Z occurs in Y2 ⊗X.
Thus Gr(C) is transitive. �

Let A be a transitive unital Z+-ring of finite rank. Define the group
homomorphism FPdim : A→ C as follows. ForX ∈ I, let FPdim(X) be
the maximal nonnegative eigenvalue of the matrix of left multiplication
by X. It exists by the Frobenius-Perron theorem, since this matrix has
nonnegative entries. Let us extend FPdim from the basis I to A by
additivity.

Definition 1.45.3. The function FPdim is called the Frobenius-Perron
dimension.

In particular, if C is a ring category with right duals and finitely many
simple objects, then we can talk about Frobenius-Perron dimensions of
objects of C.

Proposition 1.45.4. Let X ∈ I.

(1) The number α = FPdim(X) is an algebraic integer, and for any
algebraic conjugate α′ of α we have α ≥ |α′|.

(2) FPdim(X) ≥ 1.
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Proof. (1) Note that α is an eigenvalue of the integer matrix NX of left
multiplication by X, hence α is an algebraic integer. The number α′ is
a root of the characteristic polynomial of NX , so it is also an eigenvalue
of NX . Thus by the Frobenius-Perron theorem α ≥ |α′|.

(2) Let r be the number of algebraic conjugates of α. Then αr ≥
N(α) where N(α) is the norm of α. This implies the statement since
N(α) ≥ 1. �

Proposition 1.45.5. (1) The function FPdim : A → C is a ring
homomorphism.

(2) There exists a unique, up to scaling, element R ∈ AC := A⊗Z C

such that XR = FPdim(X)R, for all X ∈ A. After an appro-
priate normalization this element has positive coefficients, and
satisfies FPdim(R) > 0 and RY = FPdim(Y )R, Y ∈ A.

(3) FPdim is a unique nonzero character of A which takes non-
negative values on I.

(4) If X ∈ A has nonnegative coefficients with respect to the basis of
A, then FPdim(X) is the largest nonnegative eigenvalue λ(NX)
of the matrix NX of multiplication by X.

Proof. Consider the matrix M of right multiplication by
∑

X∈I X in A
in the basis I. By transitivity, this matrix has strictly positive entries,
so by the Frobenius-Perron theorem, part (2), it has a unique, up to
scaling, eigenvector R ∈ AC with eigenvalue λ(M) (the maximal posi-
tive eigenvalue of M). Furthermore, this eigenvector can be normalized
to have strictly positive entries.

Since R is unique, it satisfies the equation XR = d(X)R for some
function d : A → C. Indeed, XR is also an eigenvector of M with
eigenvalue λ(M), so it must be proportional to R. Furthermore, it
is clear that d is a character of A. Since R has positive entries,
d(X) = FPdim(X) for X ∈ I. This implies (1). We also see that
FPdim(X) > 0 for X ∈ I (as R has strictly positive coefficients), and
hence FPdim(R) > 0.

Now, by transitivity, R is the unique, up to scaling, solution of the
system of linear equations XR = FPdim(X)R (as the matrix N of left
multiplication by

∑
X∈I X also has positive entries). Hence, RY =

d′(Y )R for some character d′. Applying FPdim to both sides and using
that FPdim(R) > 0, we find d′ = FPdim, proving (2).

If χ is another character of A taking positive values on I, then the
vector with entries χ(Y ), Y ∈ I is an eigenvector of the matrix N of the
left multiplication by the element

∑
X∈I X. Because of transitivity of

A the matrix N has positive entries. By the Frobenius-Perron theorem
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there exists a positive number λ such that χ(Y ) = λ FPdim(Y ). Since
χ is a character, λ = 1, which completes the proof.

Finally, part (4) follows from part (2) and the Frobenius-Perron the-
orem (part (3)). �

Example 1.45.6. Let C be the category of finite dimensional repre-
sentations of a quasi-Hopf algebra H, and A be its Grothendieck ring.
Then by Proposition 1.10.9, for any X, Y ∈ C

dim Hom(X ⊗H,Y ) = dim Hom(H, ∗X ⊗ Y ) = dim(X) dim(Y ),

where H is the regular representation of H. Thus X ⊗H = dim(X)H,
so FPdim(X) = dim(X) for all X, and R = H up to scaling.

This example motivates the following definition.

Definition 1.45.7. The element R will be called a regular element of
A.

Proposition 1.45.8. Let A be as above and ∗ : I → I be a bijection
which extends to an anti-automorphism of A. Then FPdim is invariant
under ∗.

Proof. Let X ∈ I. Then the matrix of right multiplication by X∗ is
the transpose of the matrix of left multiplication by X modified by
the permutation ∗. Thus the required statement follows from Proposi-
tion 1.45.5(2). �

Corollary 1.45.9. Let C be a ring category with right duals and finitely
many simple objects, and let X be an object in C. If FPdim(X) = 1
then X is invertible.

Proof. By Exercise 1.15.10(d) it is sufficient to show that X ⊗ X∗ =
1. This follows from the facts that 1 is contained in X ⊗ X∗ and
FPdim(X ⊗X∗) = FPdim(X) FPdim(X∗) = 1. �

Proposition 1.45.10. Let f : A1 → A2 be a unital homomorphism of
transitive unital Z+-rings of finite rank, whose matrix in their Z+-bases
has non-negative entries. Then

(1) f preserves Frobenius-Perron dimensions.
(2) Let I1, I2 be the Z+-bases of A1, A2, and suppose that for any

Y in I2 there exists X ∈ I1 such that the coefficient of Y in
f(X) is non-zero. If R is a regular element of A1 then f(R) is
a regular element of A2.

Proof. (1) The function X 7→ FPdim(f(X)) is a nonzero character of
A1 with nonnegative values on the basis. By Proposition 1.45.5(3),
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FPdim(f(X)) = FPdim(X) for all X in I. (2) By part (1) we have

(1.45.1) f(
∑

X∈I1

X)f(R1) = FPdim(f(
∑

X∈I1

X))f(R1).

But f(
∑

X∈I1
X) has strictly positive coefficients in I2, hence f(R1) =

βR2 for some β > 0. Applying FPdim to both sides, we get the result.
�

Corollary 1.45.11. Let C and D be tensor categories with finitely
many classes of simple objects. If F : C → D be a quasi-tensor functor,
then FPdimD(F (X)) = FPdimC(X) for any X in C.

Example 1.45.12. (Tambara-Yamagami fusion rings) Let G be a fi-
nite group, and TYG be an extension of the unital based ring Z[G]:

TYG := Z[G]⊕ ZX,

where X is a new basis vector with gX = Xg = X, X2 =
∑

g∈G g. This

is a fusion ring, with X∗ = X. It is easy to see that FPdim(g) = 1,
FPdim(X) = |G|1/2. We will see later that these rings are categorifiable
if and only if G is abelian.

Example 1.45.13. (Verlinde rings for sl2). Let k be a nonnegative
integer. Define a unital Z+-ring Verk = Verk(sl2) with basis Vi, i =
0, ..., k (V0 = 1), with duality given by V ∗

i = Vi and multiplication
given by the truncated Clebsch-Gordan rule:

(1.45.2) Vi ⊗ Vj =

min(i+j,2k−(i+j))⊕

l=|i−j|,i+j−l∈2Z

Vl.

It other words, one computes the product by the usual Clebsch-Gordan
rule, and then deletes the terms that are not defined (Vi with i > k) and
also their mirror images with respect to point k+1. We will show later
that this ring admits categorifications coming from quantum groups at
roots of unity.

Note that Ver0 = Z, Ver1 = Z[Z2], Ver2 = TYZ2 . The latter is
called the Ising fusion ring, as it arises in the Ising model of statistical
mechanics.

Exercise 1.45.14. Show that FPdim(Vj) = [j+1]q := qj+1−q−j−1

q−q−1 , where

q = e
πi

k+2 .

Note that the Verlinde ring has a subring Ver0
k spanned by Vj with

even j. If k = 3, this ring has basis 1, X = V2 with X2 = X + 1, X∗ =
X. This ring is called the Yang-Lee fusion ring. In the Yang-Lee ring,

FPdim(X) is the golden ratio 1+
√

5
2

.
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Note that one can define the generalized Yang-Lee fusion rings Y Ln

n ∈ Z+, with basis 1, X, multiplication X2 = 1+nX and duality X∗ =
X. It is, however, shown in [O2] that these rings are not categorifiable
when n > 1.

Proposition 1.45.15. (Kronecker) Let B be a matrix with nonnegative
integer entries, such that λ(BBT ) = λ(B)2. If λ(B) < 2 then λ(B) =
2 cos(π/n) for some integer n ≥ 2.

Proof. Let λ(B) = q + q−1. Then q is an algebraic integer, and |q| =
1. Moreover, all conjugates of λ(B)2 are nonnegative (since they are
eigenvalues of the matrix BBT , which is symmetric and nonnegative
definite), so all conjugates of λ(B) are real. Thus, if q∗ is a conjugate of
q then q∗+q

−1
∗ is real with absolute value < 2 (by the Frobenius-Perron

theorem), so |q∗| = 1. By a well known result in elementary algebraic
number theory, this implies that q is a root of unity: q = e2πik/m, where
k and m are coprime. By the Frobenius-Perron theorem, so k = ±1,
and m is even (indeed, if m = 2p+1 is odd then |qp + q−p| > |q+ q−1|).
So q = eπi/n for some integer n ≥ 2, and we are done. �

Corollary 1.45.16. Let A be a fusion ring, and X ∈ A a basis ele-
ment. Then if FPdim(X) < 2 then FPdim(X) = 2cos(π/n), for some
integer n ≥ 3.

Proof. This follows from Proposition 1.45.15, since FPdim(XX∗) =
FPdim(X)2. �

1.46. Deligne’s tensor product of finite abelian categories. Let
C,D be two finite abelian categories over a field k.

Definition 1.46.1. Deligne’s tensor product C ⊠ D is an abelian cat-
egory which is universal for the functor assigning to every k-linear
abelian category A the category of right exact in both variables bilin-
ear bifunctors C × D → A. That is, there is a bifunctor ⊠ : C × D →
C ⊠D : (X, Y ) 7→ X ⊠ Y which is right exact in both variables and is
such that for any right exact in both variables bifunctor F : C×D → A
there exists a unique right exact functor F̄ : C ⊠ D → A satisfying
F̄ ◦⊠ = F .

Proposition 1.46.2. (cf. [D, Proposition 5.13]) (i) The tensor product
C ⊠D exists and is a finite abelian category.

(ii) It is unique up to a unique equivalence.
(iii) Let C, D be finite dimensional algebras and let C = C − mod

and D = D −mod. Then C ⊠D = C ⊗D −mod.
(iv) The bifunctor ⊠ is exact in both variables and satisfies

HomC(X1, Y1)⊗ HomD(X2, Y2) ∼= HomC⊠D(X1 ⊠X2, Y1 ⊠ Y2).
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(v) any bilinear bifunctor F : C × D → A exact in each variable
defines an exact functor F̄ : C ⊠D → A.

Proof. (sketch). (ii) follows from the universal property in the usual
way.

(i) As we know, a finite abelian category is equivalent to the category
of finite dimensional modules over an algebra. So there exist finite
dimensional algebras C,D such that C = C − mod, D = D − mod.
Then one can define C⊠D = C⊗D−mod, and it is easy to show that
it satisfies the required conditions. This together with (ii) also implies
(iii).

(iv),(v) are routine. �

A similar result is valid for locally finite categories.
Deligne’s tensor product can also be applied to functors. Namely, if

F : C → C′ and G : D → D′ are additive right exact functors between
finite abelian categories then one can define the functor F⊠G : C⊠D →
C ′ ⊠D′.

1.47. Finite (multi)tensor categories. In this subsection we will
study general properties of finite multitensor and tensor categories.

Recall that in a finite abelian category, every simple object X has a
projective cover P (X). The object P (X) is unique up to a non-unique
isomorphism. For any Y in C one has

(1.47.1) dim Hom(P (X), Y ) = [Y : X].

Let K0(C) denote the free abelian group generated by isomorphism
classes of indecomposable projective objects of a finite abelian category
C. Elements of K0(C)⊗Z C will be called virtual projective objects. We
have an obvious homomorphism γ : K0(C) → Gr(C). Although groups
K0(C) and Gr(C) have the same rank, in general γ is neither surjective
nor injective even after tensoring with C. The matrix C of γ in the
natural basis is called the Cartan matrix of C; its entries are [P (X) : Y ],
where X, Y are simple objects of C.

Now let C be a finite multitensor category, let I be the set of isomor-
phism classes of simple objects of C, and let i∗, ∗i denote the right and
left duals to i, respectively. Let Gr(C) be the Grothendieck ring of C,
spanned by isomorphism classes of the simple objects Xi, i ∈ I. In this
ring, we have XiXj =

∑
k N

k
ijXk, where Nk

ij are nonnegative integers.
Also, let Pi denote the projective covers of Xi.

Proposition 1.47.1. Let C be a finite multitensor category. Then
K0(C) is a Gr(C)-bimodule.
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Proof. This follows from the fact that the tensor product of a projective
object with any object is projective, Proposition 1.13.6. �

Let us describe this bimodule explicitly.

Proposition 1.47.2. For any object Z of C,

Pi ⊗ Z ∼= ⊕j,kN
i
kj∗ [Z : Xj]Pk, Z ⊗ Pi

∼= ⊕j,kN
i
∗jk[Z : Xj]Pk.

Proof. Hom(Pi ⊗ Z,Xk) = Hom(Pi, Xk ⊗ Z∗), and the first formula
follows from Proposition 1.13.6. The second formula is analogous. �

Proposition 1.47.3. Let P be a projective object in a multitensor
category C. Then P ∗ is also projective. Hence, any projective object in
a multitensor category is also injective.

Proof. We need to show that the functor Hom(P ∗, •) is exact. This
functor is isomorphic to Hom(1, P ⊗ •). The functor P ⊗ • is exact
and moreover, by Proposition 1.13.6, any exact sequence splits after
tensoring with P , as an exact sequence consisting of projective objects.
The Proposition is proved. �

Proposition 1.47.3 implies that an indecomposable projective object
P has a unique simple subobject, i.e. that the socle of P is simple.

For any finite tensor category C define an element RC ∈ K0(C)⊗Z C

by

(1.47.2) RC =
∑

i∈I

FPdim(Xi)Pi.

Definition 1.47.4. The virtual projective object RC is called the reg-
ular object of C.

Definition 1.47.5. Let C be a finite tensor category. Then the Frobenius-
Perron dimension of C is defined by

(1.47.3) FPdim(C) := FPdim(RC) =
∑

i∈I

FPdim(Xi) FPdim(Pi).

Example 1.47.6. Let H be a finite dimensional quasi-Hopf algebra.
Then FPdim(Rep(H)) = dim(H).

Proposition 1.47.7. (1) Z ⊗RC = RC ⊗Z = FPdim(Z)RC for all
Z ∈ Gr(C).

(2) The image of RC in Gr(C)⊗Z C is a regular element.
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Proof. We have
∑

i FPdim(Xi) dim Hom(Pi, Z) = FPdim(Z) for any ob-
ject Z of C. Hence,
∑

i

FPdim(Xi) dim Hom(Pi ⊗ Z, Y ) =
∑

i

FPdim(Xi) dim Hom(Pi, Y ⊗ Z
∗)

= FPdim(Y ⊗ Z∗)

= FPdim(Y ) FPdim(Z∗)

= FPdim(Y ) FPdim(Z)

= FPdim(Z)
∑

i

FPdim(Xi) dim Hom(Pi, Y ).

Now, P (X)⊗Z are projective objects by Proposition 1.13.6. Hence, the
formal sums

∑
i FPdim(Xi)Pi⊗Z = RC⊗Z and FPdim(Z)

∑
i FPdim(Xi)Pi =

FPdim(Z)RC are linear combinations of Pj, j ∈ I with the same coeffi-
cients. �

Remark 1.47.8. We note the following useful inequality:

(1.47.4) FPdim(C) ≥ N FPdim(P ),

where N is the number of simple objects in C, and P is the projective
cover of the neutral object 1. Indeed, for any simple object V the
projective object P (V )⊗ ∗V has a nontrivial homomorphism to 1, and
hence contains P . So FPdim(P (V )) FPdim(V ) ≥ FPdim(P ). Adding
these inequalities over all simple V , we get the result.

1.48. Integral tensor categories.

Definition 1.48.1. A transitive unital Z+-ring A of finite rank is said
to be integral if FPdim : A→ Z (i.e. the Frobenius-Perron dimnensions
of elements of C are integers). A tensor category C is integral if Gr(C)
is integral.

Proposition 1.48.2. A finite tensor category C is integral if and only
if C is equivalent to the representation category of a finite dimensional
quasi-Hopf algebra.

Proof. The “if” part is clear from Example 1.45.6. To prove the “only
if” part, it is enough to construct a quasi-fiber functor on C. Define
P = ⊕i FPdim(Xi)Pi, where Xi are the simple objects of C, and Pi

are their projective covers. Define F = Hom(P, •). Obviously, F is
exact and faithful, F (1) ∼= 1, and dimF (X) = FPdim(X) for all X ∈
C. Using Proposition 1.46.2, we continue the functors F (• ⊗ •) and
F (•) ⊗ F (•) to the functors C ⊠ C → Vec. Both of these functors are
exact and take the same values on the simple objects of C ⊠ C. Thus
these functors are isomorphic and we are done. �
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Corollary 1.48.3. The assignment H 7→ Rep(H) defines a bijection
between integral finite tensor categories C over k up to monoidal equiva-
lence, and finite dimensional quasi-Hopf algebras H over k, up to twist
equivalence and isomorphism.

1.49. Surjective quasi-tensor functors. Let C, D be abelian cate-
gories. Let F : C → D be an additive functor.

Definition 1.49.1. We will say that F is surjective if any object of D
is a subquotient in F (X) for some X ∈ C. 13

Exercise 1.49.2. Let A,B be coalgebras, and f : A→ B a homomor-
phism. Let F = f ∗ : A − comod → B − comod be the corresponding
pushforward functor. Then F is surjective if and only if f is surjective.

Now let C, D be finite tensor categories.

Theorem 1.49.3. ([EO]) Let F : C → D be a surjective quasi-tensor
functor. Then F maps projective objects to projective ones.

Proof. Let C be a finite tensor category, and X ∈ C. Let us write
X as a direct sum of indecomposable objects (such a representation
is unique). Define the projectivity defect p(X) of X to be the sum
of Frobenius-Perron dimensions of all the non-projective summands in
this sum (this is well defined by the Krull-Schmidt theorem). It is clear
that p(X ⊕Y ) = p(X)+ p(Y ). Also, it follows from Proposition 1.13.6
that p(X ⊗ Y ) ≤ p(X)p(Y ).

Let Pi be the indecomposable projective objects in C. Let Pi⊗Pj
∼=

⊕kB
k
ijPk, and let Bi be the matrix with entries Bk

ij. Also, let B =
∑
Bi.

Obviously, B has strictly positive entries, and the Frobenius-Perron
eigenvalue of B is

∑
i FPdim(Pi).

On the other hand, let F : C → D be a surjective quasi-tensor functor
between finite tensor categories. Let pj = p(F (Pj)), and p be the vector
with entries pj. Then we get pipj ≥

∑
k B

k
ijpk, so (

∑
i pi)p ≥ Bp.

So, either pi are all zero, or they are all positive, and the norm of
B with respect to the norm |x| =

∑
pi|xi| is at most

∑
pi. Since

pi ≤ FPdim(Pi), this implies pi = FPdim(Pi) for all i (as the largest
eigenvalue of B is

∑
i FPdim(Pi)).

Assume the second option is the case. Then F (Pi) do not contain
nonzero projective objects as direct summands, and hence for any pro-
jective P ∈ C, F (P ) cannot contain a nonzero projective object as a
direct summand. However, let Q be a projective object of D. Then,

13This definition does not coincide with a usual categorical definition of surjec-
tivity of functors which requires that every object of D be isomorphic to some F (X)
for an object X in C.
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since F is surjective, there exists an object X ∈ C such that Q is a
subquotient of F (X). Since any X is a quotient of a projective object,
and F is exact, we may assume that X = P is projective. So Q occurs
as a subquotient in F (P ). As Q is both projective and injective, it is
actually a direct summand in F (P ). Contradiction.

Thus, pi = 0 and F (Pi) are projective. The theorem is proved. �

1.50. Categorical freeness. Let C,D be finite tensor categories, and
F : C → D be a quasi-tensor functor.

Theorem 1.50.1. One has

(1.50.1) F (RC) =
FPdim(C)

FPdim(D)
RD.

Proof. By Theorem 1.49.3, F (RC) is a virtually projective object. Thus,
F (RC) must be proportional to RD, since both (when written in the ba-
sis Pi) are eigenvectors of a matrix with strictly positive entries with its
Frobenius-Perron eigenvalue. (For this matrix we may take the matrix
of multiplication by F (X), where X is such that F (X) contains as com-
position factors all simple objects of D; such exists by the surjectivity
of F ). The coefficient is obtained by computing the Frobenius-Perron
dimensions of both sides. �

Corollary 1.50.2. In the above situation, one has FPdim(C) ≥ FPdim(D),
and FPdim(D) divides FPdim(C) in the ring of algebraic integers. In
fact,

(1.50.2)
FPdim(C)

FPdim(D)
=

∑
FPdim(Xi) dim Hom(F (Pi),1D),

where Xi runs over simple objects of C.

Proof. The statement is obtained by computing the dimension of Hom(•,1D)
for both sides of (1.50.1). �

Suppose now that C is integral, i.e., by Proposition 1.48.2, it is the
representation category of a quasi-Hopf algebra H. In this case, RC
is an honest (not only virtual) projective object of C, namely the free
rank 1 module over H. Theorefore, multiples of RC are free H-modules
of finite rank, and vice versa.

Then Theorem 1.49.3 and the fact that F (RC) is proportional to RD
implies the following categorical freeness result.

Corollary 1.50.3. If C is integral, and F : C → D is a surjective
quasi-tensor functor then D is also integral, and the object F (RC) is
free of rank FPdim(C)/FPdim(D) (which is an integer).
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Proof. The Frobenius-Perron dimensions of simple objects of D are
coordinates of the unique eigenvector of the positive integer matrix of
multiplication by F (RC) with integer eigenvalue FPdim(C), normalized
so that the component of 1 is 1. Thus, all coordinates of this vector are
rational numbers, hence integers (because they are algebraic integers).
This implies that the category D is integral. The second statement is
clear from the above. �

Corollary 1.50.4. ([Scha]; for the semisimple case see [ENO1]) A
finite dimensional quasi-Hopf algebra is a free module over its quasi-
Hopf subalgebra.

Remark 1.50.5. In the Hopf case Corollary 1.50.3 is well known and
much used; it is due to Nichols and Zoeller [NZ].

1.51. The distinguished invertible object. Let C be a finite tensor
category with classes of simple objects labeled by a set I. Since duals
to projective objects are projective, we can define a map D : I → I
such that P ∗

i = PD(i). It is clear that D2(i) = i∗∗.
Let 0 be the label for the unit object. Let ρ = D(0). (In other words,

∗Lρ is the socle of P0 = P (1)). We have

Hom(P ∗
i , Lj) = Hom(1, Pi ⊗ Lj) = Hom(1,⊕kN

i
kj∗Pk).

This space has dimension N i
ρj∗ . Thus we get

N i
ρj∗ = δD(i),j.

Let now Lρ be the corresponding simple object. By Proposition 1.47.2,
we have

L∗
ρ ⊗ Pm

∼= ⊕kN
k
ρmPk

∼= PD(m)∗ .

Lemma 1.51.1. Lρ is an invertible object.

Proof. The last equation implies that the matrix of action of Lρ∗ on
projectives is a permutation matrix. Hence, the Frobenius-Perron di-
mension of Lρ∗ is 1, and we are done. �

Lemma 1.51.2. One has: PD(i) = P∗i ⊗ Lρ; LD(i) = L∗i ⊗ Lρ.

Proof. It suffices to prove the first statement. Therefore, our job is to
show that dim Hom(P ∗

i , Lj) = dim Hom(P∗i, Lj ⊗ Lρ∗). The left hand
side was computed before, it is N i

ρj∗ . On the other hand, the right hand

side is N
∗i
j,ρ∗ (we use that ρ∗ = ∗ρ for an invertible object ρ). These

numbers are equal by the properies of duality, so we are done. �

Corollary 1.51.3. One has: Pi∗∗ = L∗
ρ⊗P∗∗i⊗Lρ; Li∗∗ = L∗

ρ⊗L∗∗i⊗Lρ.
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Proof. Again, it suffices to prove the first statement. We have

Pi∗∗ = P ∗∗
i = (P∗i ⊗ Lρ)

∗ = L∗
ρ ⊗ P

∗
∗i = L∗

ρ ⊗ P∗∗i ⊗ Lρ

�

Definition 1.51.4. Lρ is called the distinguished invertible object of C.

We see that for any i, the socle of Pi is L̂i := L∗
ρ ⊗

∗∗ Li = L∗∗
i ⊗ L

∗
ρ.

This implies the following result.

Corollary 1.51.5. Any finite dimensional quasi-Hopf algebra H is a
Frobenius algebra, i.e. H is isomorphic to H∗ as a left H-module.

Proof. It is easy to see that that a Frobenius algebra is a quasi-Frobenius
algebra (i.e. a finite dimensionbal algebra for which projective and in-
jective modules coincide), in which the socle of every indecomposable
projective module has the same dimension as its cosocle (i.e., the simple
quotient). As follows from the above, these conditions are satisfied for
finite dimensional quasi-Hopf algebras (namely, the second condition
forllows from the fact that Lρ is 1-dimensional). �

1.52. Integrals in quasi-Hopf algebras.

Definition 1.52.1. A left integral in an algebra H with a counit ε :
H → k is an element I ∈ H such that xI = ε(x)I for all x ∈ H.
Similarly, a right integral inH is an element I ∈ H such that Ix = ε(x)I
for all x ∈ H.

Remark 1.52.2. Let H be the convolution algebra of distributions
on a compact Lie group G. This algebra has a counit ε defined by
ε(ξ) = ξ(1). Let dg be a left-invariant Haar measure on G. Then
the distribution I(f) =

∫
G
f(g)dg is a left integral in H (unique up to

scaling). This motivates the terminology.
Note that this example makes sense for a finite group G over any

field k. In this case, H = k[G], and I =
∑

g∈G g is both a left and a
right integral.

Proposition 1.52.3. Any finite dimensional quasi-Hopf algebra ad-
mits a unique nonzero left integral up to scaling and a unique nonzero
right integral up to scaling.

Proof. It suffices to prove the statement for left integrals (for right
integrals the statement is obtained by applying the antipode). A left
integral is the same thing as a homomorphism of left modules k → H.
Since H is Frobenius, this is the same as a homomorphism k → H∗, i.e.
a homomorphism H → k. But such homomorphisms are just multiples
of the counit. �



91

Note that the space of left integrals of an algebra H with a counit
is a right H-module (indeed, if I is a left integral, then so is Iy for all
y ∈ H). Thus, for finite dimensional quasi-Hopf algebras, we obtain
a character χ : H → k, such that Ix = χ(x)I for all x ∈ H. This
character is called the distinguished character of H (if H is a Hopf
algebra, it is commonly called the distinguished grouplike element of
H∗, see [Mo]).

Proposition 1.52.4. Let H be a finite dimensional quasi-Hopf algebra,
and C = Rep(H). Then Lρ coincides with the distinguished character
χ.

Proof. Let I be a nonzero left integral in H. We have xI = ε(x)I and
Ix = χ(x)I. This means that for any V ∈ C, I defines a morphism
from V ⊗ χ−1 to V .

The element I belongs to the submodule Pi of H, whose socle is
the trivial H-module. Thus, P ∗

i = P (1), and hence by Lemma 1.51.2,
i = ρ. Thus, I defines a nonzero (but rank 1) morphism Pρ⊗χ

−1 → Pρ.
The image of this morphism, because of rank 1, must be L0 = 1, so
1 is a quotient of Pρ ⊗ χ−1, and hence χ is a quotient of Pρ. Thus,
χ = Lρ, and we are done. �

Proposition 1.52.5. The following conditions on a finite dimensional
quasi-Hopf algebra H are equivalent:

(i) H is semisimple;
(ii) ε(I) 6= 0 (where I is a left integral in H);
(iii) I2 6= 0;
(iv) I can be normalized to be an idempotent.

Proof. (ii) implies (i): If ε(I) 6= 0 then k = 1 is a direct summand in
H as a left H-module. This implies that 1 is projective, hence Rep(H)
is semisimple (Corollary 1.13.7).

(i) implies (iv): If H is semisimple, the integral is a multiple of the
projector to the trivial representation, so the statement is obvious.

(iv) implies (iii): obvious.
(iii) implies (ii): clear, since I2 = ε(I)I. �

Definition 1.52.6. A finite tensor category C is unimodular if Lρ = 1.
A finite dimensional quasi-Hopf algebra H is unimodular if Rep(H) is
a unimodular category, i.e. if left and right integrals in H coincide.

Remark 1.52.7. This terminology is motivated by the notion of a
unimodular Lie group, which is a Lie group on which a left invariant
Haar measure is also right invariant, and vice versa.
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Remark 1.52.8. Obviously, every semisimple category is automati-
cally unimodular.

Exercise 1.52.9. (i) Let H be the Nichols Hopf algebra of dimension
2n+1 (Example 1.24.9). Find the projective covers of simple objects,
the distinguished invertible object, and show that H is not unimod-
ular. In particular, Sweedler’s finite dimensional Hopf algebra is not
unimodular.

(ii) Do the same if H is the Taft Hopf algebra (Example 1.24.5).
(iii) Let H = uq(sl2) be the small quantum group at a root of unity q

of odd order (see Subsection 1.25). Show that H is unimodular, but H∗

is not. Find the distinguished character of H∗ (i.e., the distinguished
grouplike element of H). What happens for the corresponding graded
Hopf algebra gr(H)?

1.53. Dimensions of projective objects and degeneracy of the
Cartan matrix. The following result in the Hopf algebra case was
proved by M.Lorenz [L]; our proof in the categorical setting is analogous
to his.

Let Cij = [Pi : Lj] be the entries of the Cartan matrix of a finite
tensor category C.

Theorem 1.53.1. Suppose that C is not semisimple, and admits an
isomorphism of additive functors u : Id→ ∗∗. Then the Cartan matrix
C is degenerate over the ground field k.

Proof. Let dim(V ) = Tr|V (u) be the dimension function defined by
the (left) categorical trace of u. This function is additive on exact
sequences, so it is a linear functional on Gr(C).

On the other hand, the dimension of every projective object P with
respect to this function is zero. Indeed, the dimension of P is the
composition of maps 1 → P ⊗ P ∗ → P ∗∗ ⊗ P ∗ → 1, where the maps
are the coevaluation, u⊗ Id, and the evaluation. If this map is nonzero
then 1 is a direct summand in P ⊗ P ∗, which is projective. Thus 1 is
projective, So C is semisimple by Corollary 1.13.7. Contradiction.

Since the dimension of the unit object 1 is not zero, 1 is not a linear
combination of projective objects in the Grothendieck group tensored
with k. We are done. �
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