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This paper concerns the notion of a sharp minimum on a set and its relationship to the proximal point 
algorithm. We give several equivalent definitions of the property and use the notion to prove finite 
termination of the proximal point algorithm. 
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1. Introduction 

In  this p a p e r  we are conce rned  p r inc ipa l ly  with the convex p r o g r a m m i n g  p r o b l e m  

min imize  q~(x) (1) 
x ~ S  

where  q~ is a c losed,  convex  func t ion  def ined  on R n, having values  in ~ and  S is a 

c losed,  convex  set in ~n. We write S for  the  op t ima l  so lu t ion  set o f  (1), S : =  

arg minxes  cb(x) and  assume this set to be non-empty ,  in o rde r  tha t  a p ro jec t ion  

o p e r a t i o n  on to  this set is well  def ined.  In  o rde r  to s impl i fy  our  analysis ,  let  us define 

, b ~ ( x )  :=  ¢~(x )+~, (x lS )  

and  note  tha t  this is a c losed  convex funct ion ,  s ince the ind ica to r  func t ion  of  the  

set S, ~0(. I S) ,  is respect ive ly  c losed  and  convex i f  and  only  i f  S is c losed  and  convex.  

We can now rewri te  p r o b l e m  (1) as 

min imize  Cbs(X). (2) 
X G ~  n 

The fo l lowing  is our  cent ra l  defini t ion.  

Definition 1. Let S be the  non -empty  op t ima l  so lu t ion  set o f  (1). We say tha t  ¢h 

has a sharp minimum on S i f  for  some n o r m  on ~n there  exists an a > 0 such that  

for  all x ~ S, 

¢~ (x)  - ¢~(P(x I ~ ) )  i> ~ IIx - P ( x  [ S)II 

where  P ( x  I S) c arg mins~ s II y - x II. 
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Note that the definition holds independently of any convexity assumptions on S 
and 05, provided that the projection exists. Furthermore, it is clear that for any norm 

05(P(xl S)) is constant for all x c S, so we can replace 05(P(x[ S)) by f in the above 
definition. It has been shown (Ferris, 1988) that the definition is independent of 
the choice of norm on the space N". We note that this is a generalization of the 

concept of a sharp minimum at a point (Polyak, 1987), which is that 05 has a sharp 
minimum at ~ c S, if there exists an a > 0 with 

05(x)-05( ) > llx- ll for all x~S. 

Amongst other things, this implies that )2 is the unique minimum of 05 on S. 
It has been shown (Rockafellar, 1976) that a sharp minimum at ff is a sufficient 

condition for finite termination of the proximal point algorithm. We show that the 
notion of a sharp minimum on S is sufficient for finite termination in the next section. 

A key result relating finite termination of the proximal point algorithm to a sharp 
minimum point is that 05 has a sharp minimum at )~ on S, if and only if0 c in t  005s(~). 
We quote a generalization of this result for a sharp minimum on ~ The proof  of 

this result can be found in Burke and Ferris (1991) and Ferris (1988). We use the 

following notation, 005s(S):= U x ~  O05s(X). 

Theorem 2. 05 has a sharp minimum on S if and only if there exists e > 0 with 

e ( B ~  U N(y,S))c_O05s(S). [] 
yeS 

The notation we use is, for the most part, standard. The following partial list is 
provided for the reader's convenience. Superscripts are used to distinguish between 
vectors, e.g., x l, x 2, etc., and ( . ,  • ) is used to denote the inner product. For C _c ~m, 

bdry C is the boundary of C, ~b(. I C) is the indicator function for C, ~*(" ] C) is 
the support functional for C and cone C is the cone generated by C. If C is, 
moreover, convex then N(x I C) is the normal cone to C at x~  C. 

For f : R  n ~R ,  f convex, Of(x) is the subdifferential o f f  at x, 

Of(x) := {x* If(z) >~ f(x)+ (x*, z -x)}. 

The symbol [l" [[ denotes a given norm, and B denotes the associated closed unit 
ball. Throughout this paper, we assume the given norm to be the Euclidean norm. 
For C _  ~" define dist(x[ C) :=  inf{[I x -y [ [ [y  ~ C} and if C is a closed convex set, 
then given x c~" ,  we write P(x[C) for the projection of x on C, P(x[C):= 
arg min{[[z-xll  Iz c c }  

2. Proximal point and sharp minima 

The notion of a proximal point was introduced by Moreau (1965), and has been 
extensively analysed by various researchers. In the sequel we give a brief description 
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of the algorithm. We proceed to extend some of the results found in the literature 
on the finite termination of the algorithm to the case where (1) has a sharp minimum 
on ~ It is easy to see from the definition of the subdifferential Od~s that ~ is an 
optimal solution of the general convex programming problem (1), if and only if 
0~O49s(~). Therefore, the minimization problem (1) can be solved by finding a 
solution of a generalized equation OEOgas(X). It was shown by Br6zis (1973) that 
provided qSs is a proper closed convex function, then the subdifferential is a maximal 
monotone operator and the resolvent, J~, defined by 

J~ = (I  + AOqSs)-' 

is a contraction and single-valued. Furthermore, 

0 ~ Seas(X) <=> x = J ,x  for some a > 0. 

The minimization problem (1) has thus been transformed into the problem of finding 
a fixed point of the resolvent Ja of the subdifferential 0qSs. For any given starting 
point x °, the proximal point method generates the following sequence of iterates 
{x~}, obtained by the relation 

X i+l = JAix' ,  (3) 

where {Ai} is a sequence of positive numbers with Ai ~> A > 0, for all i. In fact, x ~+1 
is the optimal solution of 

minimize qS(x) + 1  x~s 2A~ I I x - x ' l l 2  (4) 

since the minimizer of (4) satisfies 0c Oqbs(x ~+~) + (1/A~)(x i+l - x~) ,  and hence x i+1 
is of the form given by (3). Furthermore, x ~+1 is unique by the strict convexity of 
the objective of (4), and a little algebra shows that x~+~+ A~v ~+1= x ~, where vi+~e 
04)s(Xi+~). We wish to make two remarks. The first is to note the difference between 
(4) and Ekeland's Principle (Ekeland, 1974). Ekeland used a distance function as 
the perturbation, whereas here the square of the distance function is added. In (4) 
the perturbation function is differentiable, whereas this is not the case for the 
perturbation in Ekeland (1974). Second, note the difference between (4) and the 
perturbation results of Mangasarian (1984) for linear programs. In (4) the perturba- 
tion is defined in terms of the iterates of the algorithm, whereas in Mangasarian 
(1984) the perturbation function is fixed, independent of the algorithm and the 
iteration. 

The following properties of the iterates of the algorithm follow easily. 

Lemma 3 (Rockafellar, 1976). 
(a) II v i II is non-increasing for i = 1, 2 , . . . .  
(b) I f S ¢ O ,  then for any z c  S, 

llx '+l - z  112 + A~II v~+~l12<~ IIx ~ - e l i  2. [] 
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The following technical lemma is important  for the proof  of  the ensuing theorem. 

Lemma 4. For any h > 0 ,  let y = h ( z - P ( z ] S ) ) ,  and suppose that ycOq)s(W) for 
some w c S. Then y c O¢~s(P(z] S)). 

Proof. We note that 

ycO4)s(W) ~ Os(X)-4)s(W)>~(y,x-w> V x c ~ "  

and therefore 

w,P(z lg )~g  ~ ¢~s(x)-~s(p(zl~))>-(y,x-w> Vx~R". 

It follows from the definition of P ( .  ],q) that (z - P(z[ S), w - P(z] ~q)) <~ 0 so that 

multiplication by A > 0 gives (y, w -  P(z[ S))~< 0. Hence, for all x ~ R", 

,bs(x) - 4,s ( / ' (z  1~))/> (y, x -  w> + (y, w - P(z  [~)> 

=(y,x-P(zlg)>,  

that is, y~O¢~s(P(z[S)). E] 

Lemma $. Suppose 3e > 0 such that 

e ( B n  U N(y , ' ) )c_O(as( ' ) .  
y~S 

I f  IIw[l<~e and woOd, s(Z), then z c &  

Proof. Let e > 0  be chosen so that e ( B ~ U y ~ e  N(ylS))~Od~s(S). We choose w 

with Ilwll < ~ and w~oC~s(z). 
Let us assume that z ~s P(z[S). We proceed to obtain a contradiction. Define 

Y = e ( z - P ( z l  S))/IIz-P(~I S)I[ 

so that y ~ e(B n U y ~  N(y lS) ) .  It then follows that 3z  y 6 ~q with the property that 

y c Oehs(ZY). The monotonicity of  Od~s gives that 

O<~(z-z y, w - y }  

from whence it follows that 

E 

I I ~ - P ( z l S )  ll < z - ~ ,  ~ - P ( z l S ) }  

=<z- z~, y><~ <z- z ~, w>~ I Iz -z ' l [  IIw[I. 

Hence, 

( z - z  y, z - P ( z l S ) )  

Ilwll ~ ~ I Iz -P(z l  ~)11 IIz-  zYll 

The result now follows using Lemma 4 which enables us to take z y =  P(z t S), and 
hence derive the contradiction I] w]] ~ e. The proof  is now complete, since this gives 

z=P(z[S) .  [~ 
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The following result is the central one of this section. 

363 

Theorem 6. Suppose (1) has a sharp minimum on S. Let {h~} be any positive sequence 
which is bounded below and let x ° E En. Then the proximal point algorithm terminates 
in a finite number of iterations. 

Proof. It follows from Theorem 2 that 3e  > 0 with 

e ( B n y ? .  N(y[S) ) - -~OCs(S) .  

Let h~/> h > 0 for the given sequence. Then, for any z c S we have from Lemma 3 

that the sequence (l lx '-zll} is bounded and hence converges. If  we invoke the 
lemma again for i = 0 , . . . ,  N and sum, the following inequality results: 

N 

IIx N+l-zll  2+ E A~II~'+1112~ LIx°-zll 2 
i = 0  

Using the above observations, it is clear that 

N 

E a~llv'+'II~< M 
i = 0  

so that 

h2llv N+'I[2(N + 1) ~< M 

by the non-increasing property of I]vill given in Lemma 3. Hence, there exists a 
sufficiently large but finite N such that 

M 
]lvu+l]J2 ~< h 2 ( N +  1) < e2" 

It then follows from Lemma 5 that x N+I is in the solution set. [] 

The following relationship between the solution of the proximal point method 
and the previous iterate is an aid to understanding the algorithm. It states that, in 
fact, the proximal point algorithm terminates with the closest point in the solution 
set to the last non-optimal iterate. This result should add some clarification to the 
naming of the proximal point algorithm, since it attempts to find the minimizer of 
q5 on S which is proximal to x i. 

Theorem 7. Let {x k} be generated by the proximal point algorithm and let 

& := {x • Sl ¢(x) <~ ~(x~)}. 

Then 

x k : P ( x  k l [&) .  

In particular, if the proximal point algorithm terminates in a finite number of  iterations, 
k say, then x k-- P(x  k 1 Is).  
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Proof.  Note  from the definition of  the proximal  point  algori thm that, for  all x e ~n, 

C s ( x )  - C s ( x  k ) /> (v  k, x - xk).  

Substituting p(xk-~[gk)  for  x, we get 

O~(V k, P(xk- l[Sk)- -xk>,  

and since Ak-1 > 0 we see that  

O ~ ( x k-t - x k, p (  xk - '  [ Sk ) - xk). 

The definition of  P ( .  I~qk) gives 

O>~(x k ' - -p (xk- - ' [gk) ,xk - -p(xk- -~ lSk) ) ,  

SO by adding the above inequalities we get 

O>~(xk-x k ' , x k - - p ( x k - ~ f S k ) ) + ( x ~ - ' - - p ( x k  ~[N~),xk--p(xk-~[Nk) ) 

= I l x k - p ( x  k llSk)]]2 

and hence x k = P ( x  k l iSk). [] 

The final theorem shows that  a sharp min imum is sufficient for  one step terminat ion 
o f  the proximal  point  algorithm. 

Theorem 8. Suppose (1) has a sharp minimum on ~ Then for any given x °, the 
proximal point algorithm terminates in one iteration for a sufficiently large choice of  X. 

Proof.  It follows f rom Theorem 2 that there exists e > 0  with e(Bc~ 
{---lyre N ( y [  S)) c Oq~s(S). We assume that  x 1 • P ( x  °] ~q). Define 

y = e ( x '  - P ( x °  [ $ ) ) / I I x '  - P ( x ° l  ~)I[ 

so that y c e (B  c~ Uy~s  N ( y [ S ) ) ,  and hence that for  some z y c S, y ~ a~bs(zY). The 

monotonic i ty  o f  Ocks gives 

0~<(x l - z  y, v l - y ) ,  

f rom whence  it follows that  

( x l - z "  y)<~(x t - z  y, v~)<~ I]xl-zY][ Ilvll]. 

Hence  

( X  1 - - 2  ")', X 1 - p(x°]  S)) 

Ilv~[I/> e ilx~ - p(xO I s)ll ]l x ~ -  zYll = e, (5) 

the last equali ty by taking z Y = P ( x ° [ S )  which is possible f rom Lemma 4. Now 
choose A ~> dist(x °] S) /e .  By Lemma 3 we see that 

][x' - P(x°l  ~)1[2 + 3.211 v' 112 ~< Ilx ° - P(x°l  ,~)]l 2, 

so that  

l] x l - -  P(x° l  $)II 2 < [dist( x° ] ~)]2 _ a 211 v~ll 2 <~ A %2_  A 211 vii[ 2 ~< 0. 

The last inequali ty follows from (5). But this is a contradict ion,  and so x ~= 
P(x° IS ) .  [] 
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Theorems 6 and 8 are generalizations of the corresponding results first obtained 

for linear programs by Polyak and Tretiyakov (1972). 
A practical computational method for updating the sequence {A,-} of Theorem 6 

is the one used by De Leone and Mangasarian (1988), and is given as follows: 

A, ifllxi+'-xill<~llx~-xi-lll, 0 < ~ < 1 ,  
Ai+l= z,A~ otherwise, v> 1. 

This scheme is often used for updating the penalty parameter in an augmented 
Lagrangian algorithm. Furthermore, computational results with this method and 
extended parallel versions of the method are given by Polyak and Tretiyakov (1972). 
More problems having the property of a sharp minimum (which include amongst 
others non-degenerate monotone linear complementarity problems) are being 
investigated (Burke and Ferris, 1991; Mangasarian, 1990) to exploit the results of 
this paper fully. 
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