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Correspondence 

Finite Time Analysis of the Pursuit 
Algorithm for Learning Automata 

K. Rajaraman and P. S. Sastry 

Abstract-The problem of analyzing the finite time behavior of learning 
automata is considered. This problem involves the finite time analysis of 
the learning algorithm used by the learning automaton and is important 
in determining the rate of convergence of the automaton. In this paper, a 
general framework for analyzing the finite time behavior of the automaton 
learning algorithms is proposed. Using this framework, the finite time 
analysis of the Pursuit Algorithm is presented. We have considered both 
continuous and discretized forms of the pursuit algorithm. Based on the 
results of the analysis, we compare the rates of convergence of these 
two versions of the pursuit algorithm. At the end of the paper, we also 
compare our framework with that of Probably Approximately Correct 
(PAC) learning. 

I. INTRODUCTION 

Learning Automata are adaptive decision making devices operating 
in unknown random environments and have been used as models of 
learning systems [I], [2]. Learning automata have found applications 
in various fields such as game theory, pattern recognition, routing 
in communication networks, computer vision and concept learning 
[21-161. 

The learning automaton has a finite set of actions and each 
action has a certain probability(unknown to the automaton) of getting 
rewarded by the environment. The aim is to leam to choose the 
optimal action (i.e., the one with the highest probability of being 
rewarded) through repeated interaction with the environment. If the 
learning algorithm is chosen properly, then the iterative process 
(of interacting with the environment) can be made to result in 
the optimal action being selected with arbitrarily high probability. 
Several Learning Algorithms have been proposed in the literature 
and their asymptotic convergence properties established (see 121 for 
a description of many such Learning Algorithms). In addition to 
convergence to the optimal action, an equally important consideration 
is the finite time behavior of the learning algorithms. While the 
asymptotic analysis shows the accuracy of the automaton, the finite 
time analysis enabies one to measure the speed of operation of the 
automaton. Though there are many asymptotic results available for 
the automata learning schemes, the results regarding their finite time 
behavior are very few. The main reason for this situation is the lack o f  
a general framework for tackling the problem of finite time analysis. 
In this paper, we adopt one such framework and using this, present 
analysis of the finite time behavior of a specific learning algorithm 
called the pursuit algorithm 171. The motivation behind our work is 
from the idea of Probably Approximately Correct (PAC) learning, 
as used in the Computational Learnability Theory 181-[ll]. We will 
discuss the similarity between the idea of PAC Learning and our 
analysis of finite time behavior of Learning Automata in Section VI. 
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The main results of the paper are as follows. We have considered 
the case of learning automaton using pursuit algorithm [7], 1121 under 
stationary environments. Both continuous and discretized versions 
of the pursuit algorithm have been considered. Both the algorithms 
are known to be €-optimal [12] (see Section I1 for definition of E- 

optimality). For both versions, we have derived bounds on the number 
of iterations and the parameter of the learning algorithm, for a given 
accuracy of performance of the automaton. Based on these bounds, 
which characterize the finite time behavior of the automaton, we 
compare the two versions of pursuit algorithm. Our method is useful 
for analyzing the finite time behavior of other estimator algorithms 
[7],  [13], [14] as well. 

The rest of the paper is organized as follows. In Section 11, 
we describe our notation and formulate the problem of finite time 
behavior. In Section 111, the continuous pursuit algorithm is explained 
and analysis of its finite time behavior is presented. Section IV 
contains the description of discretized pursuit algorithm and its finite 
time analysis. In Section V, we compare the performance of the two 
versions of the pursuit algorithm based on the complexity bounds 
obtained. Section VI concludes this paper with a discussion on the 
similarity between our formulation of finite time behavior and that 
of the PAC Learning. 

11. PROBLEM FORMULATION 

In this section, we explain the basics of learning automata and 
formulate the problem of finite time behavior of their learning 
algorithms. 

A .  Learning Automata 

A learning automaton is a stochastic automaton in feedback con- 
nection with a random environment [2]. The output of the automaton 
(called the action) is input to the environment and the output of 
the environment (called the reaction) is input to the automaton. 
The automaton is defined by (A. 8, R. T )  and the environment by 
(-4. R. D ) ,  where 

-4 = { (i 1 .  a2. . . . . e,} is the set of all actions o f  the automaton. 
We denote by ~ ( k ) ,  the action of the automaton at instant k 
and a ( k )  t -4 for all k ?  k = 0,1,2, . . . .  a ( k )  denotes the 
output of the automaton at time instant k and this is the input 
to the environment(1t may be noted that the automaton operates 
in discrete time and we use the variable k to denote the time). 
Thus -4 is the set of outputs of the automaton and is also the 
set of inputs to the environment. 
R is the set of reactions from the environment. We denote 
by J ( k )  the reaction received by the automaton at instant k 
(,3(k) t R. V k ) .  Thus, p ( k )  denotes the actual reaction or 
output of the environment at time k and this is input to the 
automaton. Throughout this paper, we assume ,8(k)  to take 
values in a bounded interval, say, 10, MI. Thus, R is the set 
of inputs to the automaton and is also the set of outputs of the 
environment. 
D = { d l ,  dz ,  . . . , d,} is the set of average reward values, where 

d , ( k )  = E [ d ( k )  I a ( k )  = a,] 

1083-4419/96$05.00 0 1996 IEEE 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 4, AUGUST 199,s 591 

If the d,’s are independent of k ,  the environment is said to be 
stationary; otherwise, it is called nonstationary. These values 
are unknown to the automaton. 
C) is the state of the automaton defined by 

Q ( k )  = (P(k),  m) 
where 

P(k) = [ P I  ( k ) ? .  . . ,Pr (k) ] ,  0 I P i  I 1 
T 

= y p z ( k )  = l ! V k  
L = l  

is the so-called action probability vector and 

d ( k )  = [ . i , (k , ,  . . . , h ( k ) ]  

is the vector of estimates of the average reward values at the 
k-th instant (cf. Section 111). 
T is the learning algorithm thiat is used by the automaton to 
update its state. We have 

T is also called the reinforcement scheme, 
The automaton functions as follows. At any instant k ,  the automa- 

ton chooses an action o l (k ) ,  from the set of actions A, at random 
depending on its current action probability vector p(k) (That is, a ( k )  
equals at with probability p ,  ( k ) ) .  This action chosen becomes input 
to the environment and the environment responds with a random 
reaction J ( k )  whose expected value is d; if @(IC) = a,. Then the 
automaton computes Q ( k  + 1) using the learning algorithm T .  At 
instant k + 1, the same cycle repeats. 

The aim of the automaton is to leam to choose the optimal 
action, i.e., the action having the maximum average reward value. 
Specifically, if we denote by ‘rrr’ the index of the optimal action, 
then 

d, = rriax { d J } .  (2.1) 
J 

It is desired that the action probabi1ii:y corresponding to ani (i.e., pm) 
tends to one as the time k: goes to infinity. 

Remark 2.1: 
i) Normally, in the literature [2], the state Q is defined to be equal 

to p. Since in this paper our interest is in estimator algorithms 
we have used Q = (p .d)  as the state [13]. 

ii) Traditionally it is required that 3 ( k )  E [U. 11 so that the learning 
algorithm will preserve p ( k )  a s  a probability vector. As will be 
evident by the description of the algorithm later on, in pursuit 
algorithm, ,Y (k )  may belong to any bounded set in the positive 
real line, Rt .  

Remark 2.2: The learning algorithm T has a fixed internal pa- 
rameter denoted by p which decidles the evolution of the state of 
the automaton Q ( k ) .  The parameter 11 determines the step size of 
the increase/decrease in the components of action probability vector 
p ( k )  at each time step through the learning algorithm. Though p(k) 
(and thus Q ( k ) )  depends on the parameter p in this way, we do not 
explicitly show this dependence for the sake of simplicity in notation. 
This is a convention followed widely in the Learning Automata 
literature [2]. 

Many criteria for evaluating the performance of learning automata 
have been proposed in the literature (see [2] for a full account of 
these criteria). A general performance index which is widely used to 
characterize the asymptotic behavior of learning automata is defined 
below. 

Dejinition 2.1: Let m be the index of the optimal action. A 
learning algorithm is said to be €-optimal if 

liminf k-00 p,(k) > 1 - (E a.s 

for any F > 0, by choosing sufficiently small values of the intemal 
parameter p of the leaming algorithm (see Remark 2.2). 

Both the algorithms we analyze in this paper for finite time 
behavior, are known to be c-optimal [12]. 

B. Problem Formulation 
The learning problem 7r is the pair ( L ,  E )  where L = ( A ,  Q ,  R, T )  

is the leaming automaton and E := (-4, R,  D )  is the environment as 
defined in the previous section. We assume E to be stationary. 

Let a ,  be the optimal action as defined by (2.1). We assume am 
to be unique. 

The error at k-th instant, error(k), is defined as the probability of 
not choosing a,, at that instant. That is, 

error(k) = 1 - p,(k). 

We define the size (denoted by 0) of the learning problem to be 
the difference between the two largest average reward values. 

i.e., 8 = d, - max { d 3 } .  (2.2) 
3 f m  

It can be noted that by this definition, problems of smaller size are 
more difficult. 

Let Cl be the set of all learning problems 7r such that the size of 
7r is at least 00,  for some fixed 00 > 0. Let p denote the intemal 
parameter of the leaming algorithm. Now, the problem can be stated 
as follows: 

Given any F , S  E (0,1), determine I r *  = I<*(€, 6)  and p* = 
P * ( E .  6) such that 

Prob{error(k) < e }  > 1 - 6. V k  > A-* and VO < p < p* 

for all problems TT E n. 
i.e., Determine I<* and p* such that 

Prob{p,(k) > 1 - e }  > 1 -- 6. V k  > I<*, VO < p < p* 

and 

VT E n. (2.3) 

Remark 2.3: From Definition 2.1, i1 is easy to see that for any E -  

optimal learning algorithm, the 11 * and p* as needed by (2.3) exist. 
Our interest in this paper is to find explicit expressions for I<*(€, 6) 
and p * ( ~ ,  6) so that we can get bounds 011 the finite time behavior. 

It may be noted that the functions E L - * ( € ,  6) and p * ( ~ ,  6) will 
depend on the value of BO which is defined as the lower bound on 
the size of problems in R. 

111. PURSUIT ALGORITHM: @OI\ITINUOUS CASE 

In this section, we consider learning automata using continuous 
pursuit algorithm and analyze its finite tiine behavior. 

A. The Pursuit Algorithm 

simple and it converges rapidly in simulations [7], [12], [14]. 

of the pursuit algorithm. 

Pursuit algorithm is a special type of estimator Algorithm [7]. It is 

We first introduce the notation used in the definition and analysis 
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Notation: 
e ,  

I { A }  

r-dimensional vector with i-th component unity and all 
others zero. 
Indicator function of event A. That is, 

1 if the event A occurs { 0 otherwise I { A }  = 

X z ( k ]  Total reward obtained for the i-th action till k-tb instant. 
That is, 

G - 1  

]=I 

Yt(k)  Number of times i-th action is chosen till k-th instant. 
That is, 

k - 1  where 

B. Analysis of Algorithm CPursuit 
In this subsection we analyze the algorithm presented above. As 

discussed in Section 11, our objective is to determine bounds on 
the number of iterations and the learning parameter to satisfy (2.3). 
We shall denote them by l i f ( e ,  6) and p * ( ~ ,  6) respectively for the 
purpose of this subsection. 

We first prove two lemmas that will be useful in proving our main 
result. 

Lemma 3.1: Given any 6 E (0 ,1)  and a positive integer N such 
that 6 5 3- < x, for each action a,, under algorithm CPursuit, 

Prob [ 0% is chosen utmost 
-Y times till the k-th instant 

V k  > I<1(Ar,6) andV0 < p < pl (N,6)  

(Ties to be resolved arbitrarily) 
Thus, based on the estimates of the average reward values d ( k )  at 

time k ,  a n / i ( k )  is the optimal action. 
(Recall from Section 11-A that a ( k )  is the action chosen at time k .  

P ( k )  the reaction of the environment at time k and i L ( k )  the estimate 
of the average reward value corresponding to action n,  at time k.)  

In the following, we define the pursuit algorithm by specifying the 
updating of the state (as defined in Section 11-A) of the automaton 
using the above notation. 

Algorithm CPursuit: 
1. Set ~ ~ ( 0 )  = 1/r for 1 5 i 5 r. 

Initialize d(0)  by picking each action a small number of times 
and setting 2, (0) to the average of the reactions obtained during 
instants when a,  was chosen, 1 I i 5 r .  

2. Set k = 0. 
Repeat 

(a. 

(b. 

At time instant k ,  choose a ( k )  according to the distri- 
bution p ( k ) .  
Let a ( k )  = a;.  Then 

X , ( k  + 1) = X , ( k )  + a ( k )  
y , ( k  + 1) = X ( k )  + 1 

X , ( k +  1)  = X , ( k ) ,  j # 2 

:j # i Y 3 ( k  + 1)  = Y j ( k ) ,  

l I i < r  (3.4) X , ( k  + 1)  
Y , ( k  + 1) ' i,(k + 1)  = 

3. Until convergence. 
In the above, the Repeat. .  . Until loop is executed till one of the 

action probabilities is greater than, say, 0.99. Recall from Section 
11-A that p(k) is the action probability vector of the automaton at 
time k .  As defined in Section 11-B, p is the internal parameter of the 
learning algorithm. 

Since M ( k )  is the index of the maximal reward estimate, it is easy 
to see from (3.5) that the action probability vector is moved in the 
direction of the current estimate of optimal action. In other words, the 
automaton pursues the 'current' optimal action and hence the name 
Pursuit Algorithm. 

a=--- 
2r 

and 

r = number of actions of the automaton. 

Prooj5 By our notation, the random variable Y, ( k )  denotes the 
number of times action a; is chosen up to time k .  Hence, we have 
to show that 

Prob[Y,(k) I NI < 6. (3.6) 

Since the events { Y z ( k )  = j} and { Y i ( k )  = s} are mutually 
exclusive for .i # s, (3.6) is equivalent to 

n' 
Prob[I.',(k) = j ]  < 6 

3=1 

which follows if, for all j ,  1 5 j 5 N ,  
6 
N 

ProblY,(k) = . j ]  < -. 

0 
At any instant k of the algorithm, Prob{a(k) = a,}  I 1. Also, 

under algorithm CPursuit, in any one iteration, the action probability 
can decrease at most by (1 - p) times. Therefore, at any iteration k 
of the algorithm, we have 

Prob[cu(k) # a , ]  I (1 - (1 - P ) ~ P ~ ( O ) ) .  (3.7) 

Using these two bounds, the probability that action a,  is chosen j 
times during k iterations has the following upper bound (by Binomial 
distribution). 

Prob{Y,(k) = j >  < c;(I)~[~ - (1 - p ) k p , ( ~ ) ~ " - 3  

< k3[1 - (1 - p ) k p t ( 0 ) ] k - J .  

Hence it is sufficient to prove 

6 
k 3 [ 1  - (1 - p ) k p p , ( 0 ) ] k - 3  < V,j, 15 .j 5 N. (3.8) 

We have to show that (3.6) holds for all k > ICI(N> 6) and 
p < p1 ( N .  5)  (where IC1 (Ar. 6) and pl ( N ,  5) are as in statement of 
Lemma 3.1). First we shall show that (3.8) holds for all sufficiently 
large k ,  if p can be made dependent on k as' 

I 
p = 1 - 2 - b .  (3.9) 

'We adopted this idea from [ 121. 
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We then show that this implies (3.8) for all sufficiently small p and 
a sufficiently large k .  After that, we prove that Lemma 3.1 follows 
from this. 

For the first part, under the additional condition (3.9), (3.8) 
simplifies to finding Iil(:Y, 0) such that 

kJeA.-J  < -, ' V.1. 15 .j 5 :V: Vk > l i l ( l \ rT .6 )  (3.10) 
N 

where m = 1 - pt(0) /2  = (2r  - l ) / b  since p , ( O )  = l / r .  

follows if 
Since k / c  2 1 (the time index I; takes values 1 , 2 . .  . .), (3.10) 

(3.11) I ; J \ ' ~ ~ - A \ '  

< %' for k > I<l(lV,6). 

Consider the function @(z) = dvez-"', defined for z > 0 

d'(rj = er-"r"'-'(.r.Ina + A\T). 

Now $ ' ( . I ; )  < 0 for 
4 

.r>- = -To, say. 
111 l /c 

Hence to find s o  such that 

o(.r) < 6. b'.r > 
it is sufficient to find s o  > lVo such that 

o(.ro) <: h. 

We write the needed SO as 

T O  = :\'(Ira5 (I > 0. (3.12) 

Substituting k = A'o ea  in (3.1 1) and taking logarithms on both 
sides of (3.1 l), our problem reduces, to finding 'a '  such that 

That is 

That is, 

That is 

Now, consider f ( . r )  = e " / 2  - U(' 

e" 
f ' ( s )  = - - 1 > 0 

2 
i.e., for r > 1112, since f ( l n 2 )  > 0 

if c > In 2 

r r  
2 

.r > 0 _ -  
e' 
2 i.e., - I' > -. 

By (3.14), (3.13) follows if 

That i s  

If we let a* as the value of n in (3.1:) then we will have (3.11) 
satisfied for all k with Til (N, 6 )  = I\~OOC" . However, (3.12) demands 
a' > 0. Also, since we used (3.14) in deriving a*, we need a* > In 2. 
This is true if 

l" > c 
l n ( l / a )  - 

i.e., if N 2 U 

2cr 
i.e., if N 2 __- 

2r - 1 
2 I'  

since -- < 2. i.e., if Y 2 6 2r. -- 1 - 

Thus, (3.1 1) is satisfied for all Jc > . T i l  l:Y, 6), where 

if N 2 6 (3.15) 

which gives the value of IC1 (I\-. 6)  to satirjfy (3.11) and hence (3.8) 
under the additional condition given by (3.9). However, we have to 
show that (3.8) is satisfied for k :, IC1 (N. 6) and 1-1 < /*I (A-. 6) .  In 
getting (3.1 1 )  we have made p a function of k given by 

p ( k )  = 1 - 2 - t .  (3.16) 

To complete the proof it remains to be shown that (3 8) holds for all 
k > A,( il'. 6)  and p < / * I (  Yr. 6) = 1 -- 2 F m ( c f  Statement of 
Lemma3 1) Fork = I 1 1 ( 4 , 6 )  andp = p 1 ( ~ \ . 6 ) , ( 3  11)issatisfied 
as shown above Hence, for k = (A\, 6) and p < p1(-T. h ) ,  (3 8) 
is satisfied because the LHS of ( 8) decieases monotonically as p 
decreases Now if / I  is fixed, for any k1 > k ~ ,  by definition of l : ( k )  

1 

or 

which implies that Prob[Y,(k.l) 5 N] 5 I'rob[Y,(kz) 5 N]. 
Hence, the LHS of (3.6) is monotonically decreasing as I ;  increases. 

Since (3.8) implies (3.6), we have (3.6) satisfied for all k > IC, (S. 6) 
and hi  < p l ( A r , 6 ) .  

Hence Lemma 3.1 follows. 
Lemma 3.2: For all i .  1 5 i 5 r.. given t. 6 E (0.1) 

(3.14) 
where 

__- 
jL*(E,  6) =z 1 - 2- Ka!' .S) 

I<l (.* .) is as defined in Lemma 3.1 
-bf is the upper bound on possible value? of the 

environmental reaction (recall E [O. AI]) .  
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Proof: Consider the i-th action at .  
By definition, the estimate of d, at k-th instant is given by (see 

(3.411, 

Let in; denote the time instant at which action a, is chosen for 
the 1-th time, 1 5 .i 5 Y , ( k ) .  Therefore 

(3.18) 

It can be observed that, for fixed i ,  the sequence of random 
variables {/3(mj)> .j 2 l} are i.i.d. Since they are also bounded 
by M ,  by applying Hoeffding's inequality [15], we have, for any -1- 

We will now use (3.18), (3.19) and Lemma 3.1 to complete the 

Define the events 
rest of the proof. 

A = { l i t ( k )  - d,I > e} 

B = { y , ( k )  > X } .  

By laws of probability, 

P ( A )  = P ( A  1 B)P(B) + P ( A / B ) P ( B )  
< P ( A  I B )  + P(B). (3.20) 

Since i IS arbitrary and 1iZ(E, S),  p* andp,(O) (which equals l / r )  
0 

We now state and prove the main result for algorithm CPursuit. 
Theorem 3.1: Consider a learning automaton using algorithm 

are independent of i ,  the proof of Lemma 3.1 is complete. 

CPursuit. Then, Ve.6  E ( 0 , l )  

P r o b b n l ( k )  > 1 - E ]  > 1 - 6, for k > IC: and 0 < p < p* 
(3.23) 

where 

liI(.. .) is as defined in Lemma 3.1 
I 

p *  = 1 - 2 - 3  

6' = d, - max,+,{d,} is the problem size defined in 

Section 11-B. 

(Recall from Section I1 that m is the index of the optimal action). 
Proof: Define the events 

Let I<' be some constant (whose value will be derived later on). 
Then 

Taking N = r$ln(;)], we get from (3.18) and (3.19) 
First. we will calculate Ti0 such that 

By Lemma 3.1 

P ( B )  = Prob[Y,(k) 5 -VI 
6 1 

2 
< - for k > l<n and / 1  < 1 - 2 - G  (3.22) 

where ICo = I<, (rnax{6, .V}, 5/2) 
Therefore 

P ( A )  = Prob[ld^,(k) - d,I > E] 
6 5  
2 2  < - + - = 5, for k > I < ~ ( E , S )  and 0 < p < ,U* 

by (3.20), (3.21) and (3.22) where 

I i2 (e .  6) = Iil[max{6, -V}. 6/21 

P ( E l ( k  + li') 1 &(I<'))  = 1 if k > I i o .  (3.25) 

Later, combining this with Lemma 3.2 we will complete the proof 

Suppose that for some I<', the event &(Ii') occurs. Then, by the 

J n z  ( k )  > 2, ( k ) ,  V.1 # m and for k > Ii' (3.26) 

of the theorem. 

definition of 6' and the event EZ(Ii') 

where m is the index of the optimal action. 
Now, to find I i o  such that (3.25) holds, we need to find the number 

of iterations required for p ,  ( k  + IC') to be greater than 1 - t almost 
surely. That is, we want 

p m ( k  + I<') > 1 - E 

or 

PJ1 ( I C  + I?) < E. (3.27) 

By algorithm CPursuit, after the instant I<' satisfying (3.26), at each 
instant, for every .jl; j1 # m, p,, ( k )  is decremented by a factor of 
(1 - p )  and p ,  ( k )  incremented by an amount to make the sum of 
the probabilities unity. Hence, we can write (3.27) as c p J l ( I I - ' ) ( l  - / I ) k  < E .  

J l f n L  

(3.28) 
31gm 
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Since the sum of probabilities cannot exceed unity, (3.28) is satisfied 
if 

(1 - , l ) k  < € 

111 + 
i.e., if  I ;  > 

In 4 (3.29) 

= 6-0 by (3.29). (3.30) 

Now, to complete the proof of the theorem, it remains to be shown 
that we can find a constant IC’ such that the event Ez(I i ’ )  occurs with 
probability greater than (1-S)(see (3.24)). But, by Lemma 3.2, this is 
indeed possible by choosing IC’ = I;2(0/2.6) and p *  = 1 -2-’/“‘. 

Since E and b are arbitrary, the theorem follows. 

IV. PURSUIT ALGORITHM: DISCRETE CASE 
In Section 111, we discussed the algorithm CPursuit in which 

the action probabilities evolved in a continuous probability space; 
i.e., the action probabilities were amumed to take arbitrary values 
in [O. 11. In contrast to this, automaton learning algorithms have 
been proposed which discretize the probability space [16], [14]. The 
primary motivation for such discretized learning algorithms is to 
increase the speed of convergence #of the optimal action probability 
to unity. This can be achieved, since, by the discretization process, 
it is possibile for the action probability to converge to unity directly, 
rather than approach the value unity asymptotically. For a discussion 
on discretized learning algorithms see [16], [12], [14]. 

In this section, we shall analyze the finite time behavior of 
discretized version of the pursuit algorithm. The so-called discretized 
pursuit algorithm [12], [14] is identical to its continuous counterpart 
except that the changes in action prosbability are made now in discrete 
steps. Therefore, the action probability p , ( k ) .  1 5 i 5 ‘T ,  can now 
assume only finitely many values. That is 

where T is the so-called step size. 
We define the re~olution parameter 711, as 

3 

(Recall that I ’  is the number of actions of the automaton). 
Remark 4.1: We use the resolution parameter 7 i ~  as the intemal 

parameter of the learning algorithm. The parameter I L L  which will 
play a role similar to the parameter i i  in the continuous case, 
determines the step size of the incre;ise/decrease in the components of 
action probability vector p ( k )  at each time step through the leaming 
algorithm. Though p(k)  (and thus the state of the automaton Q ( k ) )  
depends on the parameter I L L  in this way, we do not explicitly show 
this dependence, as in the continuous case, for the sake of simplicity 
in notation. 

In the  following, we give the discretized pursuit algorithm using 
the notation introduced in Section 111. 

Algorithm DPursuit: 
1 .  Set p , ( O )  = 1 / r  for 1 5 i 5 I’ 

Initialize d(0) by picking each action a small number of times 
and setting 8, (0) to the average of the reactions obtained during 
instants when n7 is chosen, 1 < i < I’. 

2. Set k = 0 .  
Repeat 

(a. 

(b. 

Al. time instant A:, choose n ( k )  according to the distri- 
bution p ( k )  . 
Let a ( k )  = a,. Then 

X , ( k  + 1) =: X , ( k )  + d ( k )  
Y i ( k  + 1) =: X ( k )  -t 1 

.Y,(k + 1) =: X , ( k ) ,  
l ’ ] ( k - t  1) =: Y i ( k ) ,  

j # i 

j # i 
(4.32) 

p ( k  + 1) == p ( k )  

3.  Until one of the action probabilitiec assumes the value unity. 

A. Analysis of Algorithm DPursuit 

In this subsection we analyze the algxithm DPursuit presented 
above. Our objective is to derive expressions for the number of 
iterations and the resolution parameter so that we can get bounds 
on the finite time behavior. We shall ‘denote them by I<<?(f.b) and 
iY2 ( e .  6 )  respectively. 

Similar to the case of continuous pursuit algorithm, we start the 
analysis by proving two lemmas. 

Lemma 4.1 Lemma 3. I ) :  Given an,y 6 E (0: 1) and a positive 
integer -V such that G 5 Y < x, for each action oz, under the 
algorithm DPursuit 

] < 5 .  Prob [ cv, IS chosen utmost 

V k  > I i ? ( Y .  0 )  and V n i  > -TL(~\-. 6) 
Y times till the k th instant 

where 

21 - 1 
(J = ~- andl 

21’ 
r = number of actions of the automaton. 

Prooj: By our notation, the random variable Y ,  ( k )  denotes the 
number of times action aZ is chosen up to time k .  Hence, we have 
to show that 

Prol)[Yi(k) 5 L V ]  < 6. (4.33) 

0 
Now, by similarity with Lemma 3.1, the proof of Lemma 4.1 

is same as that of Lemma 3.1 up to the step where the effect 
of underlying algorithm appears. This i5, the step where algorithm 
CPursuit was used to bound Prob{cb(k) :f o,} (see inequality (3.6) 
in the proof of Lemma 3.1). We modify this step now using algorithm 
DPursuit as follows. 
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At each iteration of algorithm DPursuit, the action probability can 
decrease by at most T. Therefore 

Prob[a(k)  # cu,] 5 (1 - ~ ~ ( 0 )  + k ~ )  

Now, using the idea of Lemma 3.1, the probability that the I -  

th action is selected j times during k iterations can be bounded as 
follows 

Prob[Y,(k) = . j ]  < k3 1 - ~ ~ ( 0 )  + . 

So, we have to prove that 

To prove that (4.33) holds for all k > I<?(-\-. 6 )  and n L  > 
.VJ, (-IT, 5 )  (where IC3 ( W ,  6 )  and -VL (IT. 5) are as in statement of 
Lemma 4.1), we shall first show that (4.34) holds for all sufficiently 
large k ,  if n~ can be made dependent on k as 

1 % ~  = 2 k .  (4.35) 

After that, we show that this implies (4.34) for a sufficiently large 
k and for all sufficiently large nL. Then we prove that Lemma 4.1 
follows from this. 

For the first part, under the additional condition (4.35), (4.34) 
simplifies to finding Iin(N> 6 )  such that 

6 
N ’ k3a“-j < - V j ,  1 5 j 5 N. Vk > l i J ( S . 6 )  (4.36) 

where 

k 
a = 1 - p,(0) + -. 

T 7 L L  

Comparing (4.36) with (3.10) in the proof of Lemma 3.1, we get, 

Now we have to show that (4.34) is satisfied for k > T i ? (  .I-. 6) 
and ni, > :VL(N, 6). In getting (4.37) from (4.34) we have made 
n~ a function of k given by (4.35). 

To complete the proof it remains to be shown that (4.34) holds 
for all k > li~(N, b )  and TLL > XL(-\’, E )  = ZIi3(1\-. 6) (cf. 
Statement of Lemma 4.1). For 5 = Iis(N, 5) and 7 2 ~  = SL(Z .  E ) ,  
(4.36) is satisfied as shown above. Hence, for k = Ii3 (:V. 6) and 
‘ r i L  > ~ T ’ T , ( ~ \ ~ .  b ) ,  (4.34) is satisfied because the LHS of (3.8) 
decreases monotonically as nr, increases. Now if 7 % ~  is fixed, for 
any k l  > k z ,  by definition of Y t ( k )  

{I<(k2)  > N} c (Y i ( k1 )  > AT} 

Lemma 4.2: For all i ,  1 5 i 5 T ,  given E ,  6 E (0,1) 

Prob[ld^,(k) - d,I > t] < 6, 
V k  > I i 4 ( t , E )  and n~ > NL(c,S)  (4.38) 

where 

.I-; ( t. 6) = 2 I i 4  (e,  6) 
Ii3( .. .) is as defined in Lemma 4.1 

Prooj? The proof is identical to that of Lemma 3.2 except that 
Lemma 4.1 is used instead of Lemma 3.1 to bound Prob{Y, ( k )  5 N }  
(see (3.22) in the proof of Lemma 3.1). Hence, we omit the proof. 

We now state and prove the main result for algorithm DPursuit. 
Theorem 4. I :  Consider a leaming automaton using algorithm 

DPursuit. Then, VJF. 6 E (0.1) 

Prob[pm(k) > 1 - t] > 1 - 5, 
for k > I<: and ILL > Ni. (4.39) 

I<,[ . ) is as defined in Lemma 4 1 
-12 = 2 I i ’  

8 = d,, - max,+m{d3}, is the problem size defined in 
Section 11-B 

Proof By similarity with Theorem 3 1, we need to find only 
the constant 110 such that 

p m ( k  + lit) > 1 - F for k > IC0 (4 40) 

is true, given the event (denoted by &(I<’) in Theorem 3 1) 

occurs. The rest of the proof follows by using Lemma 4.2 instead of 
Lemma 3.2 in Theorem 3.1. 

Let the event Ea (I<’) occur. To find IC0 to satisfy (4.40), we need 
to find k such that 

p m ( k +  A-’) > 1 - t 

or 

P I 1 ( k  + IC’) < f. (4.41) 
3 1 f ”  

After the instant IC’, by algorithm DPursuit, all action probabilities 
p,,  ( k ) ,  . j l  # m, are decremented by a factor of T or set to zero if the 
decremented value becomes negative. Hence, we can write (4.41) as 

or 

(X(k.1) 5 N }  c { Y , ( k Z )  5 N }  

which implies that Prob[Y,(kl) 5 N ]  5 Prob[X(kz) 5 AT]. 
Hence, the LHS of (4.33) is monotonically decreasing as k 

increases. Now, by observing that (4.34) implies (4.33), Lemma 3.2 
follows. 

Since only one probability may actually be decremented, (4.42) is 
satisfied if 
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Therefore, 

p,(li) > I - F w.p. 1 for li > I<' + rrnL(1  - F)]  

Now, to complete the proof of the theorem, it remains to be shown 
that we can find a constant Ii' such that the event Ea(li') occurs 
with probability greater than (1 - 6). But, by Lemma 4.2, this is 
indeed possible by choosing li' = I i4(8/2,6)  and Ar; = 21i'. 

Hence, the proof of the theorem is complete. 

V. DISCIJSSION 
In Sections 111 and IV, we obtained explicit bounds on the finite 

time behavior of a learning automaton operating in a stationary 
environment using pursuit algorithm. In this section, the continuous 
and diiscretized versions of the pursuit algorithm are compared based 
on these bounds. 

The finite time behavior is obtained in Sections I11 and IV in terms 
of the bounds I<,*. p* (for algoritlhm CPursuit), IC; and NE (for 
algorithm DPursuit) such that 

Proh[l?m(k) > I - E] > 1 - #5, 

V k  > Iic* and V p  < p * ,  under algorithm CPursuit. 

(5.43) 

Prob[p,,,(k) > 1 - t] > 1 - #6; 
b'k > Ii: and b ' 7 i ~  > A:;. under algorithm DPursuit. 

(5.44) 

The bounds depend on F ;  6, and the parameter of the learning problem 
given by M (the upper bound on the value of environmental reaction), 
I' (the number of available actions) and 8 (the difference between the 
two largest reward probabilities). 0 is a measure of the complexity 
of the learning problem that is being solved by the automaton and is 
termed the size of the problem. 

For the purpose of comparing the two pursuit algorithms, the values 
of above-mentioned bounds are computed numerically by considering 
the following three cases 

I )  Fixing the problem size ( e ) ,  the allowed error in selecting the 
optimal action ( F )  and varying the error probability (6). 

2) Fixing the allowed error ( E ) ,  the error probability (6) and 
varying the problem size ( 0 ) .  

3) Fixing the problem size ( O ) ,  the error probability (6) and 
varying the allowed error ( E ) .  

The numerical results are tabulated in Tables 1-111. 
It is noted from the tables that the number of iterations needed for 

convergence are within an order of magnitude of the actual number 
of iterations observed in practice through simulations [7 ] ,  [13], [12]. 
It may be mentioned that the reason why the theoretically computed 
value for the number of iterations lis higher, is that the theoretically 
allowed value of p* (N ; )  is lowex (higher) than what is used in 
practice. However, the bounds give a reasonable idea of the rate of 
convergence of the learning algorithm. 

Numerical Results: Let 0 E [O, 11 and the number of actions be 2. 
Therefore, ,VI = 1 and (r = 0.X.  
Let 

(see statements of Lemmas 3.1 and 4.11) 

Case (i) 0 == 0.5; E = 0.1. 

TABLE I 

x 10-4 

597 

Case (ii) E = 0.1; 6 = 0.1. 

TABLE I][ 

x K + Ii', K + Kd 

Case (iii) 8 = 0.5; s = 0.1 

_N = 29 

I< = ICl ( N ,  

p* = 6.58 >( 

=: 1053 

NZ = 2106. 

TABLE 111 

0.1 
0.01 

0.001 
0.0001 

0 .0000 I ___ 

____ 
I(: = li t Ii< 

:345n 4551 
6996 8049 t 10494 11547 

13992 I5045 
18544 

__ 
l i d  

3'791 
4170 
4207 
421 I 
4'212 

I{; = Ii + l i d  

4854 
5223 
5260 
5264 
5265 

In Cases (i) and (ii), both the algorithms performed similarly when 
the error probability/problem size is varied. 

In Case (iii), the CPursuit showed a llogarithmic increase in the 
number of iterations required for convergence (i.e., I<:) as the 
allowed error is decreased. But, for the same decrease in the allowed 
error, the number of iterations needed in the case of DPursuit 
(IC:) showed a saturating behavior. This is not surprising since, 
in DPursuit, it is possible for the actiion probability to converge to 
unity in finite number of iterations as the probablity space has been 
discretized. However, in CPursuit, the action probability can converge 
to unity only asymptotically as the number of iterations tends to 00 

and so Iif does not saturate. 

VI. CONCLLISICIN 

We considered the problem of estimating the finite time behavior of 
learning automata. This problem is important in determining the rate 
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of convergence of the automaton. A general framework for analyzing 
the finite time behavior of the automaton learning algorithms was 
proposed. Using this framework, the finite time analysis of a specific 
algorithm, called the pursuit algorithm, was presented. For our 
analysis, we considered both continuous and discretized forms of 
the pursuit algorithm. Based on the results of the analysis, the rates 
of convergence of these two versions of the pursuit algorithm were 
compared. 

The motivation behind the framework in which the analysis is 
carried out in this paper, is the concept of Probably Approximately 
Correct (PAC) Learning. Here we compare our framework with that 
of PAC Learning. 

The concept of PAC learning can be described informally as 
follows. The learner wishes to learn an unknown concept. The 
teacher provides the learner with random pre-classified examples 
drawn independently from some (unknown) probability distribution. 
After observing finite number of examples, the learner outputs a 
hypothesis which is his current estimate of the concept. The error of 
the hypothesis is taken as the probability that it incorrectly classifies 
a random example. In this framework a concept class C is said to be 
PAC-learnable if the following two conditions are satisfied uniformly 
for all concepts in C: 

With high probability, the learner outputs a hypothesis that has 
arbitrarily small error after finite number of examples. 
the number of examples required is bounded independent of the 
distribution with which the examples are drawn. 

The minimum number of examples required for the concept class 
C to be PAC-learnable to a given accuracy, is called the sample 
complexity of C. An important aspect of this formulation is the 
notion of a measure of difficulty for the concept class C (the so-called 
VC-dimension [9]) that determines the sample complexity of C. 

For a precise formulation of this framework, the reader is referred 
to [9]. 

We can establish the following analogy between the PAC-learning 
framework and the automata learning framework. In the latter, the 
learner is represented by the automaton and the teacher by the 
environment. The learner here wishes to leam the identity of the 
optimal action (the unknown concept) under a fixed set of reward 
probabilities. At every iteration of the learning process, the teacher 
provides the learner with a reward for the action chosen (the example) .  
Using this, the learner outputs a hypothesis which is the action chosen 
by the automaton. 

We defined the error (see Section 11) of the hypothesis at the k-th 
iteration as the probability of not choosing the optimal action at that 
iteration. This is also seen to be analogous to that in PAC setup since 
this gives the probability of committing a mistake at the next instant. 

By denoting R to be a class of automaton learning problems, we 
can now say R is learnable if 

the probability of the automaton not choosing the optimal action 
can be made arbitrarily small with arbitrarily high probability af- 
ter finite number of iterations using a suitable intemal parameter 
of the automaton for each problem T ,  T E R. 
the number of iterations and the internal parameter required can 
be bounded uniformly for all problems in R. 

The learning complexity of R is measured by the bounds on the 
number of iterations and the internal parameter that satisfy the above 
criteria. We have used this learning complexity measure to describe 
quantitatively the speed of convergence of the learning automaton. 

Remark  6.1: Despite the above analogy, there is a notable dif- 
ference between the two frameworks with respect to the leaming 
methodology used. Learning in PAC-learning framework is supervi- 
sory whereas in automata models it is by reinforcement. Further, as 

the reinforcement signal is probabilistic, the automaton learns through 
noisy examples. 

In analogy with PAC-learning we have characterized the difficulty 
of a class of Automaton Learning Problems R by the size parameter 
8. Suppose R to be the collection of leaming problems involving 
all possible environments (i.e., there is no restriction on the set of 
reward probabilities). We can see that R is not leamable because 
we can choose a set of sufficiently close reward probabilities such 
that any finite bound on the learning complexity of R is exceeded. 
Therefore, to get a meaningful theoretical bound on the learning 
complexity, we must restrict the class R. We did this by associating 
a size parameter with R. Analyzing complexity by such a restriction 
of learning problems amounts to finding rate of convergence of the 
automaton for problems of same difficulty. 

As an extension of the work outlined in this paper, we are currently 
working on the finite time analysis of the LR-I algorithm [2]. 
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