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Abstract In the present study, the finite-time asynchronous dissipative filter design problem for the Markov

jump systems with conic-type nonlinearity is studied. The hidden Markov model can describe the asyn-

chronism embodied in the system modes and the filter modes reasonably. Moreover, a suitable Lyapunov-

Krasovskii function is utilized and linear matrix inequalities are applied to obtain adequate conditions. These

techniques guarantee the finite-time boundedness and strict dissipativity of the filtering error dynamic sys-

tem. Furthermore, the design problems of the passive filter and the H∞ filter are studied by adjusting

the three parameters U , G and V . Finally, the filter gains and the optimal index α
∗ are obtained and the

correctness and feasibility of the designed approach are verified by a simulation example.
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1 Introduction

In the past few decades, Markov jump systems (MJSs) have attracted attention of many researchers [1–11].
Studies show that as a special stochastic hybrid system with specific forms of modes and states, MJSs can
provide appropriate models for diverse applications. Accordingly, these systems have been widely applied
in many areas, including the intelligent control [12], financial field [13], and flight control systems [14]. In
real applications, the modes of MJSs jump with a transfer probability so that it is an enormous challenge
to guarantee the synchronization between the system and the controller. In order to prevent this problem,
the hidden Markov model (HMM) is normally applied in a nonsynchronous phenomenon with the known
mode-dependent conditional probability different from the transition probability of systems [1, 15, 16].
Researchers [17–19] designed the asynchronous controllers with the HMM with H∞ control, passive
control and robust filtering considerations. The conic-type nonlinearity is a special type of nonlinear
dynamics on a hypersphere, where the center and radius of the hypersphere are described by two linear
systems. In the practical engineering, the conic-type nonlinearity is widely applied in different applications
such as the stability analysis for a class of time-delayed MJSs [20], observer design for hidden MJSs [21],
and sliding mode control problems [22]. It is worth noting that comprehensive investigations have been
conducted so far on the conic-type nonlinear systems [23–25].

Reviewing the literature indicates that scholars have conducted numerous investigations about the
filtering problems. More specifically, Kalman [26] first proposed the famous Kalman filtering theory in
the 1960s. He [27] investigated the finite-time L2-L∞ filtering for T-S fuzzy jumping systems. Moreover,
Yin et al. [28] designed the fuzzy model-based robust filter. Consequently, Hua et al. [29] designed the
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Table 1 Nomenclature table

Notation Description

E{·} The mathematical expectation operator

ǫmax(U) The maximum eigenvalue of U

ǫmin(U) The minimum eigenvalue of U

R
n n-dimensional Euclidean space

R
n×m n × m real matrix

diag{A B} Block-diagonal matrix of A and B

I Unit matrix

A−1 Matrix inverse

AT Matrix transpose

∗ Symmetric matrix

Her(A) The sum of A and transposition of A

H∞ filtering scheme for nonlinear Markovian jump systems. However, it is worth noting that the system
modes and the filter modes are always asynchronous in real applications. Combining the HMM with
the filter, the asynchronous filtering scheme can be used for real problems. For example, Wu et al. [30]
designed an HMM-based L2-L∞ filter. Moreover, Zhang et al. [31] designed the H∞ filter for jumping
neural networks with the HMM.

On the other hand, the dissipativity [32] is a research hot point based on the input-output energy
consideration, which includes many basic theories such as the circle criterion, Kalman-Yakubovich lemma,
and passivity theorem. Studies show that the ability of a dissipative system to absorb the energy from
the external environment is greater than its ability to supply such energy. Hill and Moylan [33] proved
the stability problem for nonlinear dissipative and passive systems. Moreover, Wu et al. [34] and Dong
et al. [35] designed the asynchronous dissipative controller for fuzzy MJSs. Liu et al. [36] achieved
the mean-square asymptotic stability and strict dissipativity of MJSs by designing an asynchronous
output feedback controller. Moreover, Feng and Lam [37] proposed a robust reliable dissipative filter for
discrete delay singular systems. Dai et al. [38] considered the HMM-based dissipative filtering scheme for
discrete-time Markov jumping systems. Studies show that applying the asynchronous dissipative filter
design problem has gained remarkable achievements [39–41]. However, the dissipative filtering for MJSs
with conic-type nonlinearity based on the HMM has not been investigated comprehensively. In order to
resolve this shortcoming, it is intended to study this topic in the present study. To this end, a dissipative
filter is designed for MJSs with conic-type nonlinearity based on the HMM. Moreover, the finite-time
boundedness and strict dissipativity will be investigated by the Lyapunov function approach. The main
contributions of the present study are as follows.

(1) For MJSs with conic-type nonlinearity, a finite-time dissipative filter is designed, which combines
an HMM and a mode-dependent conditional probability matrix.

(2) Reasonable conditions are obtained through an appropriate Lyapunov function, which can prove
the finite-time boundedness and strict dissipativity of the MJSs with conic-type nonlinearity.

(3) The filter gains and the optimal dissipative index α∗ are obtained by solving a set of linear matrix
inequalities (LMIs).

(4) By adjusting the U , G and V , the passive filtering, H∞ filtering and the relevant optimal index α∗

are obtained, respectively.
Table 1 presents the notations used in this study.

2 Preliminaries

Consider a probability space (Ω,F ,Pr). {rt, t > 0} is a random process, which presents the continuous-
time discrete-state Markov stochastic process. Its value is in a finite range of L = {1, 2, . . . , L} and its
transition rate matrix Π = [λsl] is described as

Pr{r(t+∆t) = l|r(t) = s} =

{

λsl∆t+ o(∆t), s 6= l,

1 + λss∆t+ o(∆), s = l,
(1)

where the time interval ∆t of the infinitesimal transition satisfies lim∆t→0
o(∆t)
∆t

= 0. Moreover, the
jump rate from mode s at time t to mode l at time t + ∆t is presented by λsl, where λsl > 0 and
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λss = −ΣL
s=1,s6=lλsl. Consider the following conic-type nonlinear MJS:















ẋ(t) = f(x(t), ω(t)),

y(t) = Cr(t)x(t) +Dr(t)ω(t),

z(t) = Er(t)x(t),

(2)

where x(t) ∈ R
n, y(t) ∈ R

m and z(t) ∈ R
q denote the state, measured output and the controlled

output, respectively. Moreover, ω(t) ∈ R
k is the external disturbance that belongs to L2[0,+∞) and

satisfies ωT(t)ω(t) 6 ω̃2. It should be indicated that Cr(t), Dr(t), Er(t) are known matrices with suitable
dimensions. For the nonlinear function f(x(t), ω(t)) which depends on (x(t), ω(t)), it can be described
by the following dynamic conic sector description:

‖f(x(t), ω(t))− [Ar(t)x(t) +Br(t)ω(t)]‖ 6 2‖Acr(t)x(t) +Bcr(t)ω(t)‖. (3)

Remark 1. The conic-type nonlinear function f(·), which is defined on an n-dimensional hypersphere,
can be described by inequality (3). Linear systems Ar(t)x(t)+Br(t)ω(t) and Acr(t)x(t)+Bcr(t)ω(t) describe
the center and the radius of the hypersphere, respectively. It is worth noting that as a special type of
nonlinear dynamics, the conic-type nonlinearity can represent many engineering nonlinear dynamics,
including locally sinusoidal nonlinearity, saturation nonlinearity, dead zone nonlinearity and piecewise
linear functions. More specifically, if the disturbance ω(t) does not exist, the Lipschitz nonlinearity can
be obtained by (3).

When r(t) = s, substituting inequality (3) into MJS (2) results in the following expression:














ẋ(t) = Asx(t) +Bsω(t) + gs(x(t), ω(t)),

y(t) = Csx(t) +Dsω(t),

z(t) = Esx(t),

(4)

where gs(x(t), ω(t)) = f(x(t), ω(t))− [Asx(t) +Bsω(t)]. On the other hand, the following expression can
be obtained from inequality (3):

‖gs(x(t), ω(t))‖2 6 2‖Acsx(t) + Bcsω(t)‖2. (5)

In this case, the asynchronous filter for MJS is designed in the form below:
{

ẋf (t) = Afδ(t)xf (t) +Bfδ(t)y(t),

zf (t) = Cfδ(t)xf (t),
(6)

where xf (t) ∈ R
n, zf (t) ∈ R

v and y(t) denote the filtering state, filtering controlled output and the
measured output, respectively. Moreover, Afδ(t), Bfδ(t) and Cfδ(t) are the filtering parameters that
should be designed. In (6), we adopt a variable δ(t) to denote the mode of the asynchronous filtering
system. It shows that the actual system mode r(t) can be observed/detected. Its value is within the
range of O = {1, 2, . . . , O} and its conditional probability matrix Φ = [φsv] is described as follows:

Pr = {δ(t) = v|r(t) = s} = φsv, (7)

where ΣO
v=1φsv = 1. Meanwhile, the filtering system can be rewritten as

{

ẋf (t) = Afvxf (t) +Bfvy(t),

zf (t) = Cfvxf (t).
(8)

The system (8) is substituted into MJS (4), and the state estimate error and the output estimate error

are defined as e(t) = x(t) − xf (t) and z̃(t) = z(t) − zf (t), respectively. By defining x̃(t) = [ x(t)

e(t)
], the

filtering error dynamic MJS can be rewritten as
{

˙̃x(t) = Ãsvx̃(t) + B̃svω(t) + g̃s(x(t), ω(t)),

z̃(t) = C̃sv x̃(t),
(9)
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where Ãsv(t) = [ As 0

As − BfvCs − Afv Afv
], B̃sv(t) = [ Bs

Bs − BfvDs
], C̃sv(t) = [ Es − Cfv Cfv ], g̃s(x(t), ω(t)) =

[ gs(x(t), ω(t))

gs(x(t), ω(t))
].

Remark 2. Studies show that the mode operation of the Markov chain is of significant importance in
real applications of MJSs. However, the mode r(t) is not available for the filter. In other words, the real
system mode is hidden to the filter, which causes some inaccuracies. Accordingly, the filter mode does
not synchronize with the system mode. In the present study, δ(t) is regarded as the filter mode. The
correlation between δ(t) and r(t) is reflected by (7). Therefore, the filtering error dynamic MJS (9) can
be regarded as a double random process. However, in the filter design, Afδ(t), Bfδ(t) and Cfδ(t) only
depend on δ(t), which can reflect the hidden model.

Based on the dissipative theory, the energy supply function for the filtering error dynamic MJS (9)
can be described as

J(z̃(t), ω(t), T ) =

∫ T

0

E{S(z̃(t), ω(t))}dt, (10)

where S(z̃(t), ω(t)) = z̃T(t)U z̃(t) + 2z̃T(t)Gω(t) + ωT(t)Vω(t) is the supply rate. It should be indicated
that real matrices U , G, V are known with V = VT, U = UT < 0, and −U = UTU .
Definition 1. Given a time interval [0, T ], positive scalars a1, a2 with a2 > a1 and a weighting matrix

S > 0, the filtering error dynamic MJS (9) with
∫ T

0
ωT(t)ω(t)dt 6 d (d > 0) is stochastically finite-time

bounded (FTB) respect to (a1, a2, T , S, d) if the following condition is satisfied [20]:

xT(0)Sx(0) 6 a1 ⇒ E{xT(t)Sx(t) < a2}, ∀t ∈ {0, T }. (11)

Remark 3. The FTB concept can be converted to the finite-time stability [42] if the parameter d is
set to zero. It is worth noting that the concepts of FTB and Lyapunov stability are different. In fact,
the Lyapunov stability mainly focuses on the steady state performance, while the FTB mainly analyzes
the boundedness of the transient states. In the present study, it is intended to verify the finite-time
boundedness of the designed filter instead of the Lyapunov stability.

Definition 2. For zero initial condition, the filtering error dynamic MJS (9) is strictly (U , G, V)-α-
dissipative, if the given scalars α > 0 and T > 0 satisfy the following inequality [34]:

J(z̃(t), ω(t), T ) > α

∫ T

0

ωT(t)ω(t)dt. (12)

Lemma 1. Given two real matrices X and Y with suitable dimensions, a constant ǫ > 0, and vectors
x, y ∈ R

n, the following inequality holds [20]:

2xTXY y 6 ǫ−1xTXTXx+ ǫyTY TY y. (13)

3 Results and discussion

In this section, it is intended to prove that the filtering error dynamic MJS (9) is FTB. To this end,
sufficient conditions are given by the following theorems.

Theorem 1. The filtering error dynamic MJS (9) is stochastically FTB respect to (a1, a2, T , S, d)
under the given scalars γs > 0. In this case, for any s ∈ L and v ∈ O, there are a set of mode-
dependent scalars σs > 0 and positive definite symmetric matrices Ps > 0 satisfying the following matrix
inequalities:

Ψ < 0, (14)

S < Ps < σsS, (15)

eγsT σsa1 +
d

γs
(1− eγsT ) < a2, (16)
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where

Ψ =















Aslv − γsPs Bsv Cs AT
cs

∗ Dslv − γsPs Cs −Fsv 0

∗ ∗ −I BT
cs

∗ ∗ ∗ −1

2
ε−1I















,

Aslv =
∑L

l=1 λslPl + Her(AT
s Ps) + ε−1PsPs, Bsv =

∑O
v=1 φsv(A

T
s Ps + CT

s B
T
fvPs − AT

fvPs), Cs = PsBs,

Dslv =
∑L

l=1 λslPl +ΣO
v=1φsv(Her(A

T
fvPs)) + ε−1PsPs, Fsv =

∑O
v=1 φsv(PsBfvDs).

Proof. A stochastic Lyapunov function candidate is selected as

V (x̃(t)) = x̃T(t)Psx̃(t). (17)

For this candidate, the weak infinitesimal generator of V (x̃(t)) can be described as

ΛV (x̃(t)) = x̃T(t)

(

L
∑

l=1

λslPl

)

x̃(t) + 2

O
∑

v=1

φsv[ ˙̃x
T(t)Psx̃(t)]

= x̃T(t)

(

L
∑

l=1

λslPl

)

x̃(t) + 2
O
∑

v=1

φsv{x̃T(t)ÃT
svPsx̃(t) + ωT(t)B̃T

svPsx̃(t) + g̃Ts Psx̃(t)}. (18)

Considering inequality (5) and Lemma 1, the following inequality can be obtained:

2g̃Ts Psx̃(t) 6 ǫ−1x̃T(t)PsPsx̃(t) + ǫg̃Ts g̃s

6 ǫ−1x̃T(t)PsPsx̃(t) + 2ǫ[Acsx(t) +Bcsω(t)]
T[Acsx(t) +Bcsω(t)]. (19)

For any γs > 0, the following equation is defined:

J1(t) = E{ΛV (x̃(t))− γsV (x̃(t))− ωT(t)ω(t)}. (20)

Considering (18)–(20), the following expressions can be obtained:

J1(t) = E{ΛV (x̃(t))− γsV (x̃(t))− ωT(t)ω(t)}
6 ηT(t)Ψ1η(t) + 2ǫ[Acsx(t) +Bcsω(t)]

T[Acsx(t) +Bcsω(t)], (21)

where ηT(t) = [x̃T(t) ωT(t)], Ψ1 = [ M − γsPs ΣO
v=1φsv [B̃T

svPs]

∗ −I
], M = ΣL

l=1λslPl + ΣO
v=1φsv[Her(Ã

T
svPs)] +

ǫ−1PsPs. By substituting ÃT
sv and B̃T

sv into the filtering error dynamic MJS (9), the following expressions
can be obtained:

J1 6 ξT(t)Ψ2ξ(t) + 2ǫ[Acsx(t) +Bcsω(t)]
T[Acsx(t) +Bcsω(t)],

where ξT(t) = [xT(t) eT(t) ωT(t)],

Ψ2 =









Aslv − γsPs Bsv Cs
∗ Dslv − γsPs Cs −Fsv

∗ ∗ −I









,

Aslv = ΣL
l=1λslPl + Her(AT

s Ps) + ε−1PsPs, Bsv = ΣO
v φsv(A

T
s Ps + CT

s B
T
fvPs − AT

fvPs), Cs = PsBs,

Dslv = ΣL
l=1λslPl + ΣO

v=1φsv(Her(A
T
fvPs)) + ε−1PsPs, Fsv = ΣO

v=1φsv(PsBfvDs). Meanwhile, when the
Schur complement is applied for inequality (14), we have J1 < 0. Then, the following inequality is
mathematically expressed:

E{ΛV (x̃(t))} < γsV (x̃(t)) + ωT(t)ω(t). (22)

By multiplying the abovementioned inequality by e−γst and taking integration from 0 to t, the following
expression is obtained:

e−γstE{V (x̃(t))} −E{V (0)} <

∫ t

0

e−γstωT(t)ω(t)dt. (23)
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Since γs > 0 and t ∈ [0, T ], inequality (23) can be rewritten in the form below:

E{V (x̃(t))} = E{x̃T(t)Psx̃(t)}

< eγstE{V (0)}+ eγstd

∫ t

0

e−γsτdτ

< eγst

[

x̃T(0)Psx̃(0) +
d

γs
(1− e−γst)

]

6 eγsT

[

x̃T(0)Psx̃(0) +
d

γs
(1− e−γsT )

]

. (24)

Then, it is found that the following correlation holds:

E{x̃T(t)Sx̃(t)} <
eγsT ǫmax(S

− 1
2PsS

− 1
2 x̃T(0)Sx̃(0)) + d

γs
(1− e−γsT )

ǫmin(S− 1
2PsS

− 1
2 )

. (25)

Based on inequality (15), it can be proved that ǫmax(S
− 1

2PsS
− 1

2 ) < σs and ǫmin(S
− 1

2PsS
− 1

2 ) > 1.
Accordingly, E{x̃T(t)Sx̃(t) < a2}. Consequently, the proof is completed.

Theorem 2. The filtering error dynamic MJS (9) is stochastically FTB with respect to (a1, a2, T , S, d),
and it is strictly (U , G, V)-dissipative under the given scalars γs > 0, if for any s ∈ L and v ∈ O, there
exist a set of mode-dependent scalars σs > 0 and positive definite symmetric matrices Ps > 0 satisfying
(14)–(16) and the following matrix inequality:

Ξ < 0, (26)

where

Ξ =















Aslv −Hsv Bsv − Isv Cs − Jsv AT
cs

∗ Dslv −Kfv Cs −Fsv − CT
fvG 0

∗ ∗ αI − V BT
cs

∗ ∗ ∗ −1

2
ε−1I















,

Aslv = ΣL
l=1λslPl+Her(AT

s Ps)+ε−1PsPs, Bsv = ΣO
v=1φsv(A

T
s Ps+CT

s B
T
fvPs−AT

fvPs), Cs = PsBs, Dslv =

ΣL
l=1λslPl+ΣO

v=1φsv(Her(A
T
fvPs))+ε−1PsPs, Fsv = ΣO

v=1φsv(PsBfvDs), Hsv = (Es−Cfv)
TU(Es−Cfv),

Isv = (Es − Cfv)
TUCfv, Jsv = (Es − Cfv)

TG, Kfv = CT
fvUCfv.

Proof. In order to prove this theorem, an index function is initially defined as

J2(t) = E{ΛV (x̃(t))} − S(z̃(t), ω(t)) + αωT(t)ω(t). (27)

Based on (18) and (27), the defined function can be rewritten as

J2(t) = E{ΛV (x̃(t))} − S(z̃(t), ω(t)) + αωT(t)ω(t)

6 ηT(t)Ξ1η(t) + 2ǫ[Acsx(t) +Bcsω(t)]
T[Acsx(t) +Bcsω(t)]

− x̃T(t)C̃T
svUC̃sv x̃(t)− 2x̃T(t)C̃T

svGω(t)− ωT(t)Vω(t), (28)

where Ξ1 = [ M ΣO
v=1φsv [B̃T

svPs ]

∗ αI
]. By substituting ÃT

sv, B̃
T
sv and C̃T

sv into the filtering error dynamic MJS (9),

it can be proved that J2 6 ξT(t)Ξ2ξ(t) + 2ǫ[Acsx(t) + Bcsω(t)]
T[Acsx(t) + Bcsω(t)], where ξT(t) =

[xT(t) eT(t) ωT(t)],

Ξ2 =









Aslv −Hsv Bsv − Isv Cs − Jsv

∗ Dslv −Kfv Cs −Fsv − CT
fvG

∗ ∗ αI − V









,

Aslv = ΣL
l=1λslPl+Her(AT

s Ps)+ε−1PsPs, Bsv = ΣO
v=1φsv(A

T
s Ps+CT

s B
T
fvPs−AT

fvPs), Cs = PsBs, Dslv =

ΣL
l=1λslPl+ΣO

v=1φsv(Her(A
T
fvPs))+ε−1PsPs, Fsv = ΣO

v=1φsv(PsBfvDs), Hsv = (Es−Cfv)
TU(Es−Cfv),
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Isv = (Es−Cfv)
TUCfv, Jsv = (Es−Cfv)

TG, Kfv = CT
fvUCfv. Meanwhile, when the Schur complement

is implemented in inequality (26), it is found that J2 < 0. Then the following inequality is obtained by
integrating J2 < 0 with zero initial conditions:

E

{

V (x̃(t))−
∫ T

0

S(z̃(t), ω(t))dt+

∫ T

0

αωT(t)ω(t)dt

}

< 0. (29)

Since V (x̃(t)) > 0, the following inequality is obtained:

∫ T

0

E{S(z̃(t), ω(t))}dt > α

∫ T

0

ωT(t)ω(t)dt. (30)

Comparing the obtained inequality with expressions (10) and (12), the strict dissipativity of the filtering
error dynamic MJS (9) is obtained. Consequently, the proof is completed.

Remark 4. Generally, there are two special cases of dissipative filtering, called the passive filtering and
H∞ filtering. It is proved that the filtering error dynamic MJS (9) is strictly dissipative in Theorem 2.
Meanwhile, it is proved that the filtering error dynamic MJS (9) is passive or achieves a given H∞

performance by adjusting U , G and V [34, 39].
Then, the following two special cases of dissipative filtering are obtained accordingly.
(1) Passive filtering: If parameters are set to U = 0, G = 1, V = 2α, the filtering error dynamic

MJS (9) is passive.
(2) H∞ filtering: If parameters are set to U = −I, G = 0, V = α + α2, the filtering error dynamic

MJS (9) achieves the given H∞ performance.
The correctness and feasibility of dissipative filtering and the two special cases will be discussed in

Section 4.
In this section, inequalities in Theorems 1 and 2 should be transformed to a solvable form. Meanwhile,

the filter gains and the optimal index α∗ are obtained through the LMI tools. The adequate conditions
are given in Theorem 3.

Theorem 3. The filtering error dynamic MJS (9) is stochastically FTB with respect to (a1, a2, T , S, d)
and it is strictly (U , G, V)-dissipative under the given scalars γs > 0 and matrices U , G, V , if for any
s ∈ L and v ∈ O, there are a set of mode-dependent scalars σs > 0, M , N and positive definite symmetric
matrices Ps > 0 satisfying the following LMIs:

[

Υ1 Υ2

∗ Υ3

]

< 0, (31)

[

Γ1 Γ2

∗ Γ3

]

< 0, (32)

where

Υ1 =













χ1 χ2 PsBs AT
cs

∗ χ3 χ4 0

∗ ∗ −I BT
cs

∗ ∗ ∗ − 1
2ǫ

−1I













, Υ2 =













Ps 0 G1 0

0 Ps 0 G1

0 0 0 0

0 0 0 0













, Υ3 = diag{−ǫI − ǫI G2 G2},

χ1 = (λss−γs)Ps+Her(AT
s Ps), χ2 = ΣO

v=1φsv(A
T
s Ps+CT

s N
T
sv−MT

sv), χ3 = (λss−γs)Ps+ΣO
v=1φsvHer(M

T
sv),

χ4 = PsBs − ΣO
v=1φsvNsvDs,

Γ1 =













θ1 θ2 θ3 AT
cs

∗ θ4 θ5 0

∗ ∗ αI − V BT
cs

∗ ∗ ∗ − 1
2ǫ

−1I













, Γ2 =













Ps 0 G3 G1 0

0 Ps G4 0 G1

0 0 0 0 0

0 0 0 0 0













, Γ3 = diag{−ǫI −ǫI −I G2 G2},
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θ1 = λssPs+Her(AT
s Ps), θ2 = ΣO

v=1φsv(A
T
s Ps+CT

s N
T
sv −MT

sv), θ3 = PsBs− (Es−Cfv)
TG, θ4 = λssPs+

ΣO
v=1φsvHer(M

T
sv), θ5 = PsBs−ΣO

v=1φsvNsvDs−CT
fvG, G1 = [

√
λs1I, . . . ,

√

λss−1I,
√

λss+1I, . . . ,
√
λslI],

G2 = −diag{P1, . . . , Ps−1, Ps+1, . . . , Pl}, G3 = (Es − Cfv)
TUT, G4 = CT

fvUT. Moreover, the filter

parameters can be expressed as Afv = P−1
s Msv, Bfv = P−1

s Nsv.
Proof. Since inequalities (14) and (26) cannot be solved directly, we let Msv = PsAfv and Nsv = PsBfv.

Then, the Schur complement is applied to get inequalities (31) and (32) by U = UT < 0 and −U = UTU .
Consequently, the proof is completed.

4 Simulation

In order to evaluate the correctness and feasibility of the designed approach, a two-jumping-mode MJS
with the parameter listed below is studied in this section:

A1 =

[

−6.5 −0.2

3 −0.8

]

, A2 =

[

1.4 −1.1

0.8 −0.9

]

, B1 =

[

0.1 0.1

−0.1 0.1

]

, B2 =

[

0.1 0

−0.2 −0.1

]

,

C1 =

[

0.2 0.5

−0.2 1

]

, C2 =

[

0.2 −0.5

−0.2 1

]

, D1 =

[

2 0.3

−1 0.1

]

, D2 =

[

2 −0.1

−1 0.1

]

,

E1 =

[

0.1 0.1

−0.1 0.1

]

, E2 =

[

0.5 −0.1

−0.1 0.1

]

, Ac1 =

[

0.2 0

0 0

]

, Ac2 =

[

0.2 0

0 0

]

,

Bc1 =

[

0.1 0

0 0

]

, Bc2 =

[

0.1 0

0 0

]

, ω(t) =

[

e−2.12t × sin(0.05t)

e−2.12t × sin(0.05t)

]

.

In this case, the conic-type nonlinearity can be expressed as

gs(x(t), ω(t)) =

[

0.01× (|x1 + 0.1|+ |x1 − 0.1|)
0.01× (|x1 + 0.1|+ |x1 − 0.1|)

]

.

The transition rate Πsl and HMM conditional probability Φ are defined as Πsl = [ −4 4

5 −5
], Φ = [ 0.9 0.1

0.9 0.1
].

Moreover, the corresponding dissipative parameters are U = [ −1 0

0 −1
], G = 0.4, V = 1.4. By solving LMIs

(15)-(16) and (31)-(32), the optimal dissipative index α∗ = 0.1205 and the filter gains can be obtained in
the form below:

Af1 =

[

−3.4661 0.7684

0.9328 −1.3705

]

, Af2 =

[

0.0011 −0.0003

−0.0008 −0.0018

]

, Bf1 =

[

0.1265 0.1484

0.1584 0.4189

]

,

Bf2 =

[

0.0006 0.0011

0.0010 0.0022

]

, Cf1 =

[

0.1870 −0.0302

−0.0302 0.0887

]

, Cf2 =

[

0.1651 −0.0188

−0.0188 0.0327

]

.

Figure 1 illustrates the simulation results of the system and the filter modes. Figures 2 and 3 show
the trajectories of state errors and output errors, respectively.

Then, the influence is analyzed with different Φ values. Table 2 indicates that three cases are considered.
More specifically, Cases I–III represent the synchronous case, the partially asynchronous case, and the
asynchronous case, respectively.

In Case I, the optimal synchronous dissipative performance index is obtained as α∗ = 0.1581. Moreover,
the optimal partially asynchronous dissipative performance index in Case II is obtained as α∗ = 0.1206.
It is found that the optimal asynchronous dissipative performance index in Case III is α∗ = 0.1205.
It is observed that the optimal dissipative performance index α∗ decreases as the asynchronous degree
increases.

The abovementioned analysis indicates that the dissipative filtering includes the passive filtering and
the H∞ filtering if three parameters U , G and V are adjusted as the following.
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Figure 1 (Color online) (a) The system mode; (b) the filter mode.
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Figure 2 (Color online) Trajectories of state errors in the

dissipative filtering case.

Figure 3 (Color online) Trajectories of output errors in the

dissipative filtering case.

Table 2 Φ values for three various cases

Case I: synchronous Case II: partially asynchronous Case III: asynchronous





1 0

0 1









1 0

0.25 0.75









0.9 0.1

0.9 0.1





(1) For the passive filtering, parameters are set to U = 0, G = 1, V = 2α. Under these circumstances,
the filtering error dynamic MJS (9) is passive. By solving LMIs (31)-(32), the optimal passive index
α∗ = 0.6961 and the passive filter gains are obtained as

Af1 =

[

−3.4400 0.7805

0.9507 −1.3433

]

, Af2 =

[

−0.0021 0.0012

0.0024 0.0059

]

, Bf1 =

[

0.1163 0.1334

0.1462 0.3925

]

,

Bf2 =

[

−0.0012 −0.0028

−0.0028 −0.0056

]

, Cf1 =

[

0.1093 0.0277

0.0277 0.0011

]

, Cf2 =

[

0.1078 0.0292

0.0292 −0.0082

]

.

Figures 4 and 5 show the trajectories of state errors and output errors obtained in the passive filtering
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Figure 4 (Color online) Trajectories of state errors in the

passive filtering case.

Figure 5 (Color online) Trajectories of output errors in the

passive filtering case.
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Figure 6 (Color online) Trajectories of state errors in the H∞

filtering case.

Figure 7 (Color online) Trajectories of output errors in the

H∞ filtering case.

case, respectively. It is observed that the trajectories of state errors and output errors tend to zero.
(2) The filtering error dynamic MJS (9) achieves the given H∞ performance by letting U = −I, G = 0,

V = α+ α2. By solving LMIs (31)-(32), the optimal H∞ index α∗ = 1.6778 and the H∞ filter gains are
obtained as

Af1 =

[

−3.0837 0.9477

1.0343 −0.7542

]

, Af2 =

[

0.00019 0.00006

−0.00005 −0.00007

]

, Bf1 =

[

0.0452 −0.0027

0.0132 0.1163

]

,

Bf2 =

[

−0.00016 −0.00004

−0.00003 −0.00003

]

, Cf1 =

[

0.2716 −0.0557

−0.0557 0.0595

]

, Cf2 =

[

0.2716 −0.0557

−0.0557 0.0595

]

.

Figures 6 and 7 illustrate the trajectories of state errors and output errors in the H∞ filtering case,
respectively. It is observed that the trajectories of state errors and output errors incline to zero. The
simulation results in Figures 2–7 demonstrate that the designed filters, including the dissipative filter,
the passive filter, and the H∞ filter are feasible and applicable.

Remark 5. More recently, the HMM-based H∞ filter for MJSs was designed [43–46]. Scholars [39–41]
investigated the asynchronous dissipative filter of fuzzy MJSs. Comparing the obtained results with
those reported for the H∞ filter proves that the designed asynchronous dissipative filter can be effectively
applied for nonlinear MJSs with finite-time boundedness, i.e., the conic-type nonlinear MJSs.

5 Conclusion

In the present study, the asynchronous dissipative filtering of MJSs with conic-type nonlinearity is de-
signed. Moreover, an HMM is introduced to illustrate the nonsynchronous embodied in the system modes
and the filter modes. Meanwhile, the stochastic finite-time boundedness and the strict dissipativity of the
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filter for the MJSs with conic-type nonlinearity have been verified by the proposed adequate conditions.
The filter gains and the optimal index α∗ are obtained by solving a set of LMIs. Finally, the correctness
and feasibility of the designed approach are demonstrated by a given simulation example.
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