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FINITE-TIME BLOW-UP IN A DEGENERATE

CHEMOTAXIS SYSTEM WITH FLUX LIMITATION

NICOLA BELLOMO AND MICHAEL WINKLER

Abstract. This paper is concerned with radially symmetric solutions of the
parabolic-elliptic version of the Keller-Segel system with flux limitation, as
given by

(�)

⎧⎨
⎩ ut = ∇ ·

( u∇u√
u2 + |∇u|2

)
− χ∇ ·

( u∇v√
1 + |∇v|2

)
,

0 = Δv − μ+ u,

under the initial condition u|t=0 = u0 > 0 and no-flux boundary conditions

in a ball Ω ⊂ R
n, where χ > 0 and μ := 1

|Ω|
∫
Ω u0. A previous result of

the authors [Comm. Partial Differential Equations 42 (2017), 436–473] has
asserted global existence of bounded classical solutions for arbitrary positive
radial initial data u0 ∈ C3(Ω̄) when either n ≥ 2 and χ < 1, or n = 1 and∫
Ω u0 < 1√

(χ2−1)+
.

This present paper shows that these conditions are essentially optimal:
Indeed, it is shown that if the taxis coefficient satisfies χ > 1, then for any
choice of {

m > 1√
χ2−1

if n = 1,

m > 0 is arbitrary if n ≥ 2,

there exist positive initial data u0 ∈ C3(Ω̄) satisfying
∫
Ω u0 = m which

are such that for some T > 0, (�) possesses a uniquely determined clas-
sical solution (u, v) in Ω × (0, T ) blowing up at time T in the sense that
lim supt↗T ‖u(·, t)‖L∞(Ω) = ∞.

This result is derived by means of a comparison argument applied to the
doubly degenerate scalar parabolic equation satisfied by the mass accumulation
function associated with (�).

1. Introduction

Flux-limited Keller-Segel systems. This paper presents a continuation of the
analytical study [8] of a flux-limited chemotaxis model recently derived as a de-
velopment of the classical pattern formation model proposed by Keller and Segel
([30]) to model collective behavior of populations mediated by a chemoattractant.
In a general form, this model describes the spatio-temporal evolution of the cell
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density u = u(x, t) and the chemoattractant concentration v = v(x, t) by means of
the parabolic system

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = ∇ ·
(
Du(u, v)

u∇u√
u2 + |∇u|2

− S(u, v)
u∇v√

1 + |∇v|2

)
+H1(u, v),

vt = DvΔv +H2(u, v),

where Du and Dv denote the respective diffusivity terms, S represents the chemo-
tactic sensitivity, and H1 and H2 account for mechanisms of proliferation, degra-
dation, and possibly also interaction. In comparison to the original Keller-Segel
system, besides including cell diffusivity inhibited at small densities and hence sup-
porting finite propagation speeds, the main innovative aspect in (1.1) apparently
consists in the choice of limited-diffusive and cross-diffusive fluxes in the first equa-
tion by a dynamics which is sensitive to gradients.

The heuristic interpretation of the flux-limited nonlinearity in the diffusion terms
is induced by the ability that living entities, in general self-propelled particles,
show to perceive not only local density, but also gradients. This particular feature
characterizes cells ([41]), but also human crowds ([4],[5]). This special sensitivity
can be introduced in the modeling at the microscopic scale, namely at the scale of
cells, thus leading to the description of multicellular systems by equations obtained
by suitable generalizations of the approach of the mathematical kinetic theory.

The state of the system is, in this approach, defined by a probability one par-
ticle distribution function over the microscopic state, which includes position and
velocity, of the interacting entities, while cell-cell interactions are modeled by the-
oretical tools of stochastic game theory. Interactions are nonlinearly additive, gen-
erally nonlocal, and can include the aforementioned sensitivity ability. Once the
kinetic-type model has been derived, the study developed in [6] has shown that the
particular mathematical structure in (1.1) can be derived by asymptotic limits and
time-space scaling. The development of these asymptotic limits is inspired by the
classical Hilbert method known in the kinetic theory of classical particles ([18]).

The interest in the qualitative analysis of solutions to phenomenologically derived
models for taxis processes ([25]) has generated a variety of interesting analytical
results reviewed in [26] and more recently in [7]. Within this general framework the
role of nonlinear diffusion and, specifically, of flux-limited diffusion, has posed some
challenging problems at various levels. Experimental activity toward a thorough
understanding of this specific type of mechanism is deeply analyzed in [41], while so
far the mathematical literature apparently has concentrated on studying such flux-
limited diffusion processes either without any interaction with further processes, or
with comparatively mild couplings such as to zero-order source terms e.g. of Fisher-
KPP type; corresponding results on existence and on propagation properties can
be found in [1], [2], [3], [14], [15], and [16], for instance (cf. also the survey [13]).

Blow-up in semilinear and quasilinear chemotaxis systems. The goal of
the present work is to clarify to what extent the introduction of such flux limita-
tions may suppress phenomena of blow-up, as known to constitute one of the most
striking characteristic features of the classical Keller-Segel system

(1.2)

{
ut = Δu−∇ · (u∇v),

vt = Δv − v + u,
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and also of several among its derivatives. Indeed, the Neumann initial-boundary
value problem for (1.2) is known to possess solutions blowing up in finite time with
respect to the spatial L∞ norm of u when either the spatial dimension n satisfies
n ≥ 3 ([45]), or when n = 2 and the initially present—and thereafter conserved—
total mass

∫
u(·, 0) of cells is suitably large ([24], [34]). On the other hand, in

the case n = 2 appropriately small values of
∫
u(·, 0) warrant global existence of

bounded solutions [36], whereas if n ≥ 3, then global bounded solutions exist under
alternative smallness conditions involving the norms of (u(·, 0), v(·, 0)) in L

n
2 ×W 1,n

([17], [42]). In the associated spatially one-dimensional problem, global bounded
solutions exist for all reasonably regular initial data, thus reflecting absence of any
blow-up phenomenon in this case ([38]).

The knowledge on corresponding features of quasilinear relatives of (1.2) seems
most developed for models involving density-dependent variants in the diffusivity
and the chemotactic sensitivity. For instance, if Du and S are smooth positive
functions on [0,∞), then the Neumann problem for

(1.3)

{
ut = ∇ · (Du(u)∇u)−∇ · (S(u)∇v),

vt = Δv − v + u,

possesses some unbounded solutions whenever S(u)
Du(u)

≥ Cu
2
n+ε for all u ≥ 1 and

some C > 0 and ε > 0 ([44]). Beyond this, refined studies have given additional
conditions on Du and S under which this singularity formation must occur within
finite time, and have moreover identified some particular cases of essentially alge-
braic behavior of both Du and S in which these explosions must occur in infinite
time only ([20], [21], [22]; see also [19] for a related example on finite-time blow-up).
The optimality of the above growth condition is indicated by a result in [40] and [28]

asserting global existence of bounded solutions in the case when S(u)
Du(u)

≤ Cu
2
n−ε for

u ≥ 1 with some C > 0 and ε > 0, provided that Du decays at most algebraically
as u → ∞ (cf. e.g. [32], [27], [46], and [39] for some among the numerous precedents
in this direction).

Besides this, a considerable literature has identified several additional mecha-
nisms as capable of suppressing explosions in Keller-Segel-type systems. These
may consist of certain saturation effects in the signal production process at large
densities ([33], [11]) or in further dissipation due to superlinear death effects in
frameworks of logistic-type cell proliferation ([37], [43]), for instance. A recent
deep result has revealed that even the mere inclusion of transport effects by appro-
priately constructed incompressible vector fields can prevent blow-up in otherwise
essentially unchanged Keller-Segel systems in spatially two- and three-dimensional
settings ([31]).

As compared to this, the literature on variants of (1.2) involving modifications
of the dependence of fluxes on gradients seems quite thin. Moreover, the few re-
sults available in this direction mainly seem to concentrate on modifications in the
cross-diffusive term, essentially guided by the underlying idea to rule out blow-up
by suitable regularization of the taxis term in (1.2), as apparently justified in ap-
propriate biological contexts (see the discussion in [25] as well as the analytical
findings reported there). In particular, we are not aware of any result detecting an
explosion in any such context; this may reflect the evident challenges connected to
rigorously proving the occurrence of blow-up in such complex chemotaxis systems.
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Main results: Detecting blow-up under optimal conditions. The present
work will reveal that actually also the introduction of flux limitations need not
necessarily suppress phenomena of chemotactic collapse in the sense of blow-up. In
order to make this manifest in a particular setting, let us concentrate on the case
when in (1.1) we have Du ≡ 1 and S ≡ const. as well as H1 ≡ 0, and in order
to simplify our analysis let us moreover pass to a parabolic-elliptic simplification
thereof, thus focusing on a frequently considered limit case of fast signal diffusion
([29]). Here we note that e.g. in the previously discussed situations of (1.2) and
(1.3), up to few exceptions ([10]) such parabolic-elliptic variants are known to es-
sentially share the same properties as the respective fully parabolic model with
regard to the occurrence of blow-up ([35], [9], [12], [23]).

We shall thus subsequently be concerned with the initial-boundary value problem

(1.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = ∇ ·
(

u∇u√
u2+|∇u|2

)
− χ∇ ·

(
u∇v√
1+|∇v|2

)
, x ∈ Ω, t > 0,

0 = Δv − μ+ u, x ∈ Ω, t > 0,(
u∇u√

u2+|∇u|2
− χ u∇v√

1+|∇v|2

)
· ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

in a ball Ω = BR(0) ⊂ R
n, n ≥ 1, where χ > 0 and the initial data are such that

(1.5)
u0 ∈ C3(Ω̄) is radially symmetric and positive in Ω̄ with ∂u0

∂ν = 0 on ∂Ω,

and where

(1.6) μ :=
1

|Ω|

∫
Ω

u0(x)dx

denotes the spatial average of the latter.
In fact, it has been shown in [8] that this problem is well-posed, locally in time,

in the following sense.

Theorem A. Let n ≥ 1, χ > 0, and Ω := BR(0) ⊂ R
n with some R > 0, and sup-

pose that u0 complies with (1.5). Then there exist Tmax ∈ (0,∞] and a uniquely de-
termined pair (u, v) of positive radially symmetric functions u ∈ C2,1(Ω̄× [0, Tmax))
and v ∈ C2,0(Ω̄× [0, Tmax)) which solve (1.4) classically in Ω×(0, Tmax), and which
are such that

(1.7) if Tmax < ∞, then lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞.

Now in order to formulate our results and put them in perspective adequately,
let us moreover recall the following statement on global existence and boundedness
in certain subcritical cases which has been achieved in [8].

Theorem B. Let Ω := BR(0) ⊂ R
n with some R > 0, and assume that u0 satisfies

(1.5), and that either

(1.8) n ≥ 2 and χ < 1,

or

(1.9) n = 1, χ > 0, and

∫
Ω

u0 < mc,
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where in the case n = 1 we have set

(1.10) mc :=

{ 1√
χ2−1

if χ > 1,

+∞ if χ ≤ 1.

Then the problem (1.4) possesses a unique global classical solution (u, v) ∈
C2,1(Ω̄× [0,∞))× C2,0(Ω̄× [0,∞)) which is radially symmetric and such that for
some C > 0 we have

(1.11) ‖u(·, t)‖L∞(Ω) ≤ C and ‖v(·, t)‖L∞(Ω) ≤ C for all t > 0.

It is the purpose of the present work to complement the above result on global
existence by showing that in both cases n ≥ 2 and n = 1, the conditions (1.8) and
(1.9) are by no means artificial and of purely technical nature, but that in fact they
are essentially optimal in the sense that if appropriate reverse inequalities hold,
then finite-time blow-up may occur. To be more precise, the main results of this
paper can be formulated as follows.

Theorem 1.1. Let n ≥ 1 and Ω := BR(0) ⊂ R
n with some R > 0, and suppose

that

(1.12) χ > 1,

and that

(1.13)

{
m > mc if n = 1,

m > 0 is arbitrary if n ≥ 2,

where mc is as in (1.10). Then there exists a nondecreasing function Mm ∈
C0([0, R]) fulfilling supr∈(0,R)

Mm(r)
|Br(0)| < ∞ and Mm(R) ≤ m, which is such that

whenever u0 satisfies (1.5) as well as

(1.14)

∫
Br(0)

u0(x)dx ≥ Mm(r) for all r ∈ [0, R],

the solution (u, v) of (1.4) blows up in finite time in the sense that in Theorem A
we have Tmax < ∞ and

(1.15) lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞.

Indeed the set of all initial data leading to explosions in (1.4) is considerably
large in that it firstly contains an open subset with respect to the norm in L∞(Ω),
and that it secondly possesses some density property within the set of all initial
data admissible in the sense of (1.5).

Proposition 1.2. Let n ≥ 1, R > 0, Ω := BR(0) ⊂ R
n, and χ > 1.

(i) Let m > 0 satisfy (1.13). Then there exists a radially symmetric positive
um ∈ C∞(Ω̄) which is such that ∂um

∂ν = 0 on ∂Ω and
∫
Ω
um = m, and for which it

is possible to choose ε > 0 with the property that whenever u0 satisfies (1.5) as well
as ‖u0−um‖L∞(Ω) ≤ ε, the corresponding solution of (1.4) blows up in finite time.

(ii) Given any u0 fulfilling (1.5), one can find functions u0k, k ∈ N, which satisfy
(1.5) and u0k → u0 in Lp(Ω) as k → ∞ for all p ∈ (0, 1), and which are such that
for all k ∈ N the solution of (1.4) emanating from u0k blows up in finite time.



36 NICOLA BELLOMO AND MICHAEL WINKLER

In comparison to the classical Keller-Segel system (1.2), these results in partic-
ular mean that when n ≥ 2, the possible occurrence of blow-up does not go along
with a critical mass phenomenon, but that there rather exists a critical sensitivity
parameter, namely χ = 1, which distinguishes between existence and nonexistence
of blow-up solutions. On the other hand, if n = 1, then for any χ > 1, beyond this
there exists a critical mass phenomenon, in quite the same flavor as present in (1.2)
when n = 2.

Plan of the paper. Due to the apparent lack of an adequate global dissipative
structure, a blow-up analysis for (1.4) cannot be built on the investigation of any
energy functional, as possible in both the original Keller-Segel system (1.2) and
its quasilinear variant (1.3) ([45], [34], [20]). Apart from this, any reasoning in
this direction needs to adequately cope with the circumstance that as compared
to (1.2), in (1.4) the cross-diffusive flux is considerably inhibited wherever |∇v|
is large, which seems to prevent access to blow-up arguments based on tracking
the evolution of weighted L1 norms of u such as e.g. the moment-like functionals
considered in [35].

That blow-up may occur despite this strong limitation of cross-diffusive flux
will rather be shown by a comparison argument. Indeed, it can readily be veri-
fied (Lemma 2.1) that given a radial solution u of (1.4) in BR × (0, T ), the mass
accumulation function w = w(s, t), as defined in a standard manner by introducing

w(s, t) :=

∫ s
1
n

0

rn−1u(r, t)dr, (s, t) ∈ [0, Rn]× [0, T ),

satisfies a scalar parabolic equation which is doubly degenerate, both in space as
well as with respect to the variable ws, but after all allows for an appropriate
comparison principle for certain generalized sub- and supersolutions (Lemma 5.1).

Accordingly, at the core of our analysis will be the construction of suitable subso-
lutions to the respective problem; in fact, we shall find such subsolutions w which
undergo a finite-time gradient blow-up at the origin in the sense that for some

T > 0 we have sups∈(0,Rn)
w(s,t)

s → ∞ as t ↗ T , implying blow-up of u before

or at time T whenever w(·, 0) lies above w(·, 0). These subsolutions will have a
composite structure to be described in Lemma 3.2, matching a nonlinear and es-
sentially parabola-like behavior in a small ball around the origin to an affine linear
behavior in a corresponding outer annulus, the latter increasing so as to coincide
with the whole domain BR at the blow-up time of w. The technical challenge, to
be addressed in Section 3, will then consist of carefully adjusting the parameters
in the definition of w in such a manner that the resulting function in fact has the
desired blow-up property, where the cases n ≥ 2 and n = 1 will require partially
different arguments (Lemma 3.11 and Lemma 3.12). The statement from Theorem
1.1 will thereafter result in Section 4.

2. A parabolic problem satisfied by the mass accumulation function

Throughout the rest of the paper, we fix R > 0 and consider (1.4) in the spatial
domain Ω := BR(0) ⊂ R

n, n ≥ 1. Then following a standard procedure ([29]),
given a radially symmetric solution (u, v) = (u(r, t), v(r, t)) of (1.4) in Ω× [0, T ) for
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some T > 0, we consider the associated mass accumulation function w given by

(2.1) w(s, t) :=

∫ s
1
n

0

rn−1u(r, t)dr for s ∈ [0, Rn] and t ∈ [0, T ).

In order to describe a basic property of w naturally inherited from (u, v) through
(1.4), let us furthermore introduce the parabolic operator P formally given by

(2.2) (Pw̃)(s, t) := w̃t − n2 · s2−
2
n w̃sw̃ss√

w̃2
s + n2s2−

2
n w̃2

ss

− nχ ·
(w̃ − μ

ns) · w̃s√
1 + s

2
n−2

(
w̃ − μ

ns
)2

.

We note here that for T > 0, the above expression Pw̃ is indeed well-defined for all
t ∈ (0, T ) and a.e. s ∈ (0, Rn) if, for instance, w̃ ∈ C1((0, Rn)× (0, T )) is such that
ws > 0 throughout (0, Rn)× (0, T ) and w̃(·, t) ∈ W 2,∞((0, Rn)) for all t ∈ (0, T ).

Now the function w in (2.1), which clearly complies with these requirements due
to smoothness and positivity of u, in fact solves an appropriate initial-boundary
value problem associated with P:

Lemma 2.1. Let n ≥ 1 and χ > 0, and suppose that (u, v) is a positive radi-
ally symmetric classical solution of (1.4) in Ω × (0, T ) for some T > 0 and some
nonnegative radially symmetric u0 ∈ C0(Ω̄). Then the function w defined in (2.1)
satisfies

(2.3)

⎧⎪⎪⎨
⎪⎪⎩

(Pw)(s, t) = 0, s ∈ (0, Rn), t ∈ (0, T ),

w(0, t) = 0, w(Rn, t) = m
ωn

, t ∈ (0, T ),

w(s, 0) =
∫ s

1
n

0
rn−1u0(r)dr, s ∈ [0, Rn],

where m :=
∫
Ω
u0(x)dx and where ωn denotes the (n − 1)-dimensional measure of

the unit sphere in R
n.

Proof. Omitting the arguments r, t and s := rn in expressions like u(r, t) and w(s, t),
upon an integration in the radial version of the first equation in (1.4) we obtain

wt =

∫ s
1
n

0

rn−1ut(r, t)dr

=

∫ s
1
n

0

{(
rn−1 uur√

u2 + u2
r

)
r
− χ

(
rn−1 uvr√

1 + v2r

)
r

}
dr

=
(
s

1
n

)n−1 · uur√
u2 + u2

r

− χ · u · (rn−1vr)√
1 + v2r

(2.4)

for s ∈ (0, Rn) and t ∈ (0, T ). Here in order to replace vr, we integrate the second
equation in (1.4), that is, the identity (rn−1vr)r = μrn−1 − rn−1u, to see that

rn−1vr =
μ

n
· rn −

∫ r

0

ρn−1u(ρ, t)dρ =
μ

n
· s− w.

Furthermore (2.1) can be used to derive

u = nws and ur = n2s1−
1
nwss,
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to infer from (2.4) that

wt = s1−
1
n · nws · n2s1−

2
nwss√

n2w2
s + n4s2−

2
nw2

ss

− χ ·
nws · (μns− w)√

1 +
(

μ
ns

1
n − s

1
n−1w

)2

= n2 · s2−
2
nwswss√

w2
s + n2s2−

2
nw2

ss

+ nχ ·
(w − μ

ns) · ws√
1 +

(
s

1
n−1w − μ

ns
1
n

)2

for s ∈ (0, Rn) and t ∈ (0, T ). This proves the parabolic equation in (2.3), whereas
the statements therein concerning boundary and initial conditions can easily be
checked using (2.1) and the mass conservation property

∫
Ω
u(x, t)dx =

∫
Ω
u0(x)dx =

m for t ∈ (0, T ). �

3. Construction of subsolutions for (2.3)

The goal of this section is to construct subsolutions w for the parabolic operator
introduced in (2.2) which after some finite time T exhibit a phenomenon of gradient
blow-up in the strong sense that

sup
s∈(0,Rn)

w(s, t)

s
→ +∞ as t ↗ T.

Since by means of a suitable comparison principle (cf. Lemma 5.1 in the appendix)
we will be able to assert that w ≥ w in [0, Rn] × [0, T ), this will entail a similar
conclusion for w and hence prove that u cannot exist as a bounded solution in
Ω̄× [0, T ].

Our comparison functions will be chosen from a family of explicitly given func-
tions w, the general form of which will be described in Section 3.1. These functions
will exhibit a two-component coarse structure, as reflected in substantially differ-
ent definitions in a temporally shrinking inner region near the spatial origin, and a
corresponding outer part. According to a further fine structure in the inner subdo-
main, our verification of the desired subsolution properties will be split into three
parts, to be detailed in Section 3.2, Section 3.3, and Section 3.4, respectively.

3.1. Constructing a family of candidates. Our construction will involve several
parameters. The first of these is a number λ ∈ (0, 1) which eventually, as we shall
see later, can be chosen arbitrarily when n ≥ 2 (see Lemma 3.12), but needs to be
fixed appropriately close to 1 in the case n = 1, depending on the size of the mass
m =

∫
Ω
u0 (Lemma 3.11). Leaving this final choice open at this point, given any

λ ∈ (0, 1) we abbreviate

(3.1) aλ :=
(1− λ)2

2λ
and bλ :=

3λ− 1

2λ

and introduce

(3.2) ϕ(ξ) :=

{
λξ2 if ξ ∈ [0, 1],

1− aλ

ξ−bλ
if ξ > 1.
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It can then easily be verified that ϕ belongs to C1([0,∞)) ∩ W 2,∞((0,∞)) ∩
C2([0,∞) \ {1}) with

(3.3) ϕ′(ξ) =

{
2λξ if ξ ∈ [0, 1),

aλ

(ξ−bλ)2
if ξ > 1,

and

(3.4) ϕ′′(ξ) =

{
2λ if ξ ∈ [0, 1),

− 2aλ

(ξ−bλ)3
if ξ > 1,

whence in particular ϕ′(ξ) > 0 for all ξ ≥ 0.
Let us furthermore introduce a collection of time-dependent parameter functions

which play a crucial role throughout the rest of the paper.

Lemma 3.1. Let n ≥ 1, m > 0, λ ∈ (0, 1), K > 1, T > 0, and B ∈ C1([0, T )) be

such that B(t) ∈ (0, 1) and K
√
B(t) < Rn for all t ∈ [0, T ), and that moreover

(3.5) B(t) ≤ K2

4(aλ + bλ)2
for all t ∈ [0, T ),

where aλ and bλ are as in (3.1). Then

(3.6) A(t) :=
m

ωn
· K

2 − 2bλK
√
B(t) + b2λB(t)

N(t)
, t ∈ [0, T ),

as well as

(3.7) D(t) :=
m

ωn
· aλ
N(t)

, t ∈ [0, T ),

and

(3.8) E(t) :=
m

ωn
−RnD(t) ≡ m

ωn
· K

2 − (aλ + bλ)(2K
√
B(t)− bλB(t))

N(t)

for t ∈ [0, T ), with

(3.9) N(t) := K2 + aλR
n − 2(aλ + bλ)(2K

√
B(t)− bλB(t)), t ∈ [0, T ),

are all well-defined, and we have

(3.10) A′(t) =
m

ωn
·

(
K√
B(t)

− bλ

)
·
(
aλK

2 − aλbλR
n
)
·B′(t)

N2(t)

and

(3.11) D′(t) =
m

ωn
·
aλ(aλ + bλ) ·

(
K√
B(t)

− bλ

)
·B′(t)

N2(t)

for all t ∈ (0, T ).

Proof. Firstly, thanks to (3.5) we have

2(aλ + bλ)

K

√
B(t) ≤ 1 for all t ∈ [0, T ),
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which in particular guarantees that the denominators in (3.6), (3.7), and (3.8) are
all positive and hence all these functions are well-defined throughout [0, Rn]×[0, T ).
Moreover, differentiating in (3.6) we can compute

ωn

m
·N2(t)A′(t)

=

{
− bλKB′(t)√

B(t)
+ b2λB

′(t)

}

×
{
K2 + aλR

n − (aλ + bλ)(2K
√
B(t)− bλB(t))

}

−
{
K2 + 2bλK

√
B(t) + b2λB(t)

}

×
{
− (aλ + bλ)KB′(t)√

B(t)
+ (aλ + bλ)bλB

′(t)

}

= B′(t) ·
{

K√
B(t)

− bλ

}

×
{

− bλ ·
{
K2 + aλR

n − d(aλ + bλ)(2K
√
B(t)− bλB(t))

}

+(aλ + bλ) ·
{
K2 − 2bλK

√
B(t) + b2λB(t)

}}

= B′(t) ·
{

K√
B(t)

− bλ

}
·
{
aλK

2 − aλbλR
n

}
for all t ∈ (0, T ),

which establishes (3.10). Similarly, differentiation in (3.7) readily yields (3.11). �

With these definitions, we can now specify the basic structure of our comparison
functions w to be used in the sequel. Here a second parameterK enters, to be chosen
suitably large finally, as well as a parameter function B depending on time. In
combination, these two ingredients determine a line s = K

√
B(t) in the (s, t)-plane

which will separate an inner from an outer region and thereby imply a composite
structure of w as follows.

Lemma 3.2. Let n ≥ 1, m > 0, λ ∈ (0, 1), and K > 1, and suppose that T > 0
and that B ∈ C1([0, T )) is such that (3.5) holds as well as B(t) ∈ (0, 1) and

K
√
B(t) < Rn for all t ∈ [0, T ). Let

(3.12) w(s, t) :=

{
win(s, t) if t ∈ [0, T ) and s ∈ [0,K

√
B(t)],

wout(s, t) if t ∈ [0, T ) and s ∈ (K
√
B(t), Rn],

where

win(s, t) := A(t)ϕ(ξ), ξ = ξ(s, t) :=
s

B(t)
, t ∈ [0, T ), s ∈ [0,K

√
B(t)],

(3.13)
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with ϕ as in (3.2) and A as in (3.6), and where

(3.14) wout(s, t) := D(t)s+ E(t) for t ∈ [0, T ) and s ∈ (K
√
B(t), Rn],

with D and E taken from (3.7) and (3.8).
Then w is well-defined and continuously differentiable in [0, Rn]× [0, T ) and in

addition satisfies w(·, t) ∈ W 2,∞((0, Rn)) ∩ C2([0, Rn] \ {B(t),K
√
B(t)}) for all

t ∈ [0, T ) as well as

(3.15) w(0, t) = 0 and w(Rn, t) =
m

ωn
for all t ∈ (0, T ).

Proof. We first note that for each t ∈ [0, T ), both intervals [0,K
√
B(t)] and

(K
√
B(t), Rn] in (3.12) are not empty due to our assumptions that B(t) > 0

and K
√
B(t) < Rn, and that furthermore both statements in (3.15) are direct

consequences of (3.8) and the fact that ϕ(0) = 0 according to (3.2).
To establish the claimed regularity properties of w, in view of the above obser-

vation that ϕ ∈ C1([0,∞))∩W 2,∞((0,∞))∩C2([0,∞)\{1}) we only need to make

sure that w, ws, and wt are continuous along the line where s = K
√
B(t), which

amounts to showing that

(3.16) A(t) · ϕ
( K√

B(t)

)
= D(t) ·K

√
B(t) + E(t) for all t ∈ [0, T )

and

(3.17)
A(t)

B(t)
· ϕ′

( K√
B(t)

)
= D(t) for all t ∈ [0, T )

as well as

(3.18) A′(t) · ϕ
( K√

B(t)

)
− KA(t)B′(t)√

B(t)
3 · ϕ′

( K√
B(t)

)
= D′(t) ·K

√
B(t) + E′(t)

for all t ∈ [0, T ).
To derive (3.16), we use (3.2) to see that

A(t) · ϕ
( K√

B(t)

)
+
(
Rn −K

√
B(t)

)
·D(t)

=
m

ωn
· (K − bλ

√
B(t))2

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

·
K√
B(t)

− aλ − bλ

K√
B(t)

− bλ

+ (Rn −K
√
B(t)) · m

ωn
· a

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

=
m

ωn
·

K−(aλ+bλ)
√

B(t)

K−bλ
√

B(t)
· (K − bλ

√
B(t))2 + aλ(R

n −K
√
B(t))

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

=
m

ωn
· K

2 − (aλ + bλ)(2K
√
B(t)− bλB(t)) + aλR

n

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

=
m

ωn
for all t ∈ [0, T ),
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which due to (3.8) means that indeed

A(t) · ϕ
( K√

B(t)

)
−D(t) ·K

√
B(t)− E(t)

= A(t) · ϕ
( K√

B(t)

)
+ (Rn −K

√
B(t))D(t)− m

ωn

= 0 for all t ∈ [0, T ).

Next, from (3.7) and (3.6) it immediately follows that

D(t)

A(t)
=

1

K2
· aλ

1− 2bλ
K

√
B(t) +

b2λ
K2B(t)

=
aλ

K2 − 2bλK
√
B(t) + b2λB(t)

=
aλ

B(t)
(

K√
B(t)

− bλ

)2

=
1

B(t)
· ϕ′

( K√
B(t)

)
for all t ∈ [0, T ),

which establishes (3.17).
Finally, in verifying (3.18) we make use of (3.16) and (3.17) as well as (3.6),

(3.7), (3.8), (3.10), and (3.11) to see that

A′(t) · ϕ
( K√

B(t)

)
− KA(t)B′(t)√

B(t)
3 · ϕ′

( K√
B(t)

)
−D′(t) ·K

√
B(t) + E′(t)

= A′(t) ·
m
ωn

−
(
Rn −K

√
B(t)

)
·D(t)

A(t)
− KA(t)B′(t)√

B(t)
3 · B(t)D(t)

A(t)

+
(
Rn −K

√
B(t)

)
·D′(t)

=
m

ωn
·

(
K√
B(t)

− bλ

)
· (aλK2 − aλbλR

n) ·B′(t)

N2(t)

×
{

m

ωn
· K

2 − 2bλK
√
B(t) + b2λB(t)

N(t)

}−1

×
{

m

ωn
−
(
Rn −K

√
B(t)

)
· m

ωn
· aλ
N(t)

}

−KB′(t)√
B(t)

· m

ωn
· aλ
N(t)

+
(
Rn −K

√
B(t)

)
· m

ωn
·
aλ(aλ + bλ)

(
K√
B(t)

− bλ

)
·B′(t)

N2(t)
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=
m

ωn
·

(
K√
B(t)

− bλ

)
· (aλK2 − aλbλR

n) ·B′(t)

N2(t)

×
{

m

ωn
· K

2 − 2bλK
√
B(t) + b2λB(t)

N(t)

}−1

×
{

m

ωn
−
(
Rn −K

√
B(t)

)
· m

ωn
· aλ
N(t)

}

−KB′(t)√
B(t)

· m

ωn
· aλ
N(t)

+
(
Rn −K

√
B(t)

)
· m

ωn
·
aλ(aλ + bλ)

(
K√
B(t)

− bλ

)
·B′(t)

N2(t)

=
m

ωn
· aλB

′(t)√
B(t)N2(t)

·
{(

K − bλ
√
B(t)

)
·
(
K2 − bλR

n
)

(
K − b

√
B(t)

)2

×
[
N(t)−

(
Rn −K

√
B(t)

)
· aλ

]

−KN(t) + (aλ + bλ)
(
Rn −K

√
B(t)

)
·
(
K − bλ

√
B(t)

)}

=
m

ωn
· aλB

′(t)(
K − bλ

√
B(t)

)√
B(t)N2(t)

·
{(

K2 − bλR
n
)

×
[
K2 − (aλ + 2bλ)K

√
B(t) + (aλ + bλ)bλB(t)

]

−K
(
K − b

√
B(t)

)
·
[
K2 + aλR

n − (aλ + bλ)(2K
√
B(t)− bλB(t))

]

+(aλ + bλ)
(
Rn −K

√
B(t)

)
·
(
K − bλ

√
B(t)

)2
}

for all t ∈ (0, T ).
Since it can be checked in a straightforward manner that herein we have

(
K2 − bλR

n
)
·
[
K2 − (aλ + 2bλ)K

√
B(t) + (aλ + bλ)bλB(t)

]
−K

(
K − b

√
B(t)

)
·
[
K2 + aλR

n − (aλ + bλ)(2K
√
B(t)− bλB(t))

]
+(aλ + bλ)

(
Rn −K

√
B(t)

)
·
(
K − bλ

√
B(t)

)2

= 0,

this shows (3.18) and thereby completes the proof. �
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3.2. Subsolution properties: Outer region. Let us first make sure that if the
function B entering the above definition of w is suitably small and satisfies an ap-
propriate differential inequality, then w becomes a subsolution in the corresponding
outer region addressed in (3.12).

Lemma 3.3. Let n ≥ 1, χ > 0,m > 0, λ ∈ (0, 1),K > 1, and B0 ∈ (0, 1) be such
that K

√
B0 < Rn and

(3.19) B0 ≤ K2

16(aλ + bλ)2

with aλ and bλ given by (3.1). Then if for some T > 0, B ∈ C1([0, T )) is positive
and nonincreasing and such that

(3.20)

⎧⎨
⎩

B′(t) ≥ − nmχK

2(aλ+bλ)ωnRn

√
1+K

2
n

−2 m2

ω2
n

·B1− 1
2n (t), t ∈ (0, T ),

B(0) ≤ B0,

the function wout defined in (3.14) satisfies

(3.21) (Pwout)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn)

with P given by (2.2).

Proof. Again using that E(t) = m
ωn

−RnD(t) for all t ∈ (0, T ) by (3.8), we have

(3.22) wout(s, t) = D(t)s+ E(t) =
m

ωn
−D(t) · (Rn − s)

for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn). Hence, recalling (3.11) we obtain

(wout)t(s, t) = −D′(t) · (Rn − s)

= − m

ωn
·
aλ(aλ + bλ) ·

{
K√
B(t)

− bλ

}
N2(t)

·B′(t) · (Rn − s)(3.23)

for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn), where N(t) is as in (3.9) for such t. In

order to compensate the positive contribution of this term (wout)t to Pwout by a
suitably negative impact of the rightmost term
(3.24)

I(s, t) := −nχ ·
(wout − μ

ns) · (wout)s√
1 + s

2
n−2(wout − μ

ns)
2

, t ∈ (0, T ), s ∈ (K
√
B(t), Rn),

in (2.2), we use (3.22) and (3.7) to rewrite

wout(s, t)−
μ

n
s =

( m

ωnRn
−D(t)

)
· (Rn − s)

=
m

ωnRn
·
(
1−Rn · ωn

m
·D(t)

)
· (Rn − s)

=
m

ωnRn
·
(
1− aλR

n

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

)
· (Rn − s)

=
m

ωnRn
· K2 − 2(aλ + bλ)K

√
B(t) + (aλ + bλ)bλB(t)

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

· (Rn − s)(3.25)
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for t ∈ (0, T ) and s ∈ (K
√
B(t), Rn). As

(3.26) K2 − 2(aλ + bλ)K
√
B(t) ≥ 1

2
K2 for all t ∈ (0, T )

by (3.19), this in particular implies that

0 < wout(s, t)−
μ

n
s ≤ m

ωnRn
·Rn =

m

ωn

and hence(
wout(s, t)−

μ

n
s
)2

≤ m2

ω2
n

for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn).

Since moreover 1 ≤ B
1
n−1(t) for all t ∈ (0, T ) due to the fact that B0 < 1, we can

thus estimate the denominator in (3.24) in the considered outer region according
to √

1− s
2
n−2

(
wout(s, t)−

μ

n
s
)2

≤

√
B

1
n−1(t) +

(
K
√
B(t)

) 2
n−2

· m
2

ω2
n

=

√
1 +K

2
n−2 · m

2

ω2
n

·B 1
2n− 1

2 (t)(3.27)

for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn).

Using (3.27) and (3.25) and that

(wout)s(s, t) = D(t) =
m

ωn
· aλ

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− (aλ + bλ)bλB(t))

for t ∈ (0, T ) and s ∈ (K
√
B(t), Rn), we thereby find that

−I(s, t) ≥ nχ ·

(
wout(s, t)− μ

ns
)
· (wout)s(s, t)√

1 +K
2
n−2 · m2

ω2
n
·B 1

2n− 1
2 (t)

=
nχ√

1 +K
2
n−2 · m2

ω2
n

·B 1
2−

1
2n (t)

× m

ωnRn
· K2 − (aλ + bλ)(2K

√
B(t)− bλB(t))

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

× m

ωn
· aλ

K2 + aλRn − (aλ + bλ)(2K
√
B(t)− bλB(t))

=
m

ωn
· aλ
N2(t)

· (Rn − s) · c1

×
{
K2 − (aλ + bλ)(2K

√
B(t)− bλB(t))

}
·B 1

2−
1
2n (t)

for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn), with N as defined in (3.9) and

c1 :=
nmχ

ωnRn ·
√
1 +K

2
n−2 · m2

ω2
n

.
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Since evidently (wout)ss ≡ 0, combining this with (3.26) and (3.23) shows that

(Pwout)(s, t) ≤
m

ωn
· aλ
N2(t)

· (Rn − s) ·
{{

− (aλ + bλ)K√
B(t)

+ (aλ + bλ)bλ

}
· B′(t)

− c1 ·
{
K2 − 2(aλ + bλ)K

√
B(t) + (aλ + bλ)bλB(t)

}
·B 1

2−
1
2n (t)

}

≤ m

ωn
· aλ
N2(t)

· (Rn − s) ·
{
− (aλ + bλ)K√

B(t)
·B′(t)− c1

2
K2B

1
2−

1
2n (t)

}(3.28)

for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn), because (aλ + bλ)bλB

′(t) ≤ 0 for all
t ∈ (0, T ). In view of the definition of c1, (3.20) warrants that herein

− (aλ + bλ)K√
B(t)

·B′(t)− c1
2
K2B

1
2−

1
2n (t)

=
(aλ + bλ)K√

B(t)
·
{
−B′(t)− c1K

2(aλ + bλ)
·B1− 1

2n (t)

}

≤ 0 for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn),

so that (3.21) results from (3.28). �

3.3. Subsolution properties: Inner region. We proceed to study under which
assumptions on the parameters the function w defines a subsolution in the corre-
sponding inner domain. To prepare our analysis, let us first compute the action of
the operator P on w in the respective region as follows.

Lemma 3.4. Let n ≥ 1, χ > 0, m > 0, λ ∈ (0, 1),K > 1, and T > 0, and suppose

that B ∈ C1([0, T )) is positive and satisfies (3.5) as well as K
√
B(t) < Rn for all

t ∈ [0, T ). Then the function win defined in (3.13) has the property that

(Pwin)(s, t) = A′(t)ϕ(ξ) +
A(t)ϕ′(ξ)

B(t)
·
{
− ξB′(t) + J1(s, t) + J2(s, t)

}
(3.29)

for all t ∈ (0, T ) and s ∈ (0,K
√
B(t)) \ {B(t)}, where ξ = ξ(s, t) = s

B(t) , P is as

in (2.2), and

(3.30) J1(s, t) := −n2 · ξ2−
2
nϕ′′(ξ)√

B
4
n−2(t)ϕ′2(ξ) + n2B

2
n−2(t)ξ2−

2
nϕ′′2(ξ)

and

(3.31) J2(s, t) := −nχ ·
A(t)ϕ(ξ)− μ

nB(t)ξ√
1 +B

2
n−2(t)ξ

2
n−2 ·

(
A(t)ϕ(ξ)− μ

nB(t)ξ
)2

for t ∈ (0, T ) and s ∈ (0,K
√
B(t)) \ {B(t)}.

Proof. Since ξt = − sB′(t)
B2(t) = − ξB′(t)

B(t) and ξs =
1

B(t) , we can compute

(3.32) (win)t = A′(t)ϕ(ξ)− A(t)ξB′(t)

B(t)
· ϕ′(ξ)
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as well as

(win)s =
A(t)

B(t)
· ϕ′(ξ) and (win)ss =

A(t)

B2(t)
· ϕ′′(ξ)

for all t ∈ (0, T ) and s ∈ (0,K
√
B(t)) \ {B(t)}.

Therefore,

n2 · s2−
2
n (win)s(win)ss√

(win)2s + n2s2−
2
n (win)2ss

= n2 ·
(B(t)ξ)2−

2
n · A(t)

B(t)ϕ
′(ξ) · A(t)

B2(t)ϕ
′′(ξ)√(

A(t)
B(t)ϕ

′(ξ)
)2

+ n2(B(t)ξ)2−
2
n ·

(
A(t)
B2(t)ϕ

′′(ξ)
)2

=
n2A(t)ϕ′(ξ)

B(t)
· ξ2−

2
nϕ′′(ξ)√

B
4
n−2(t)ϕ′2(ξ) + n2B

2
n−2(t)ξ2−

2
nϕ′′2(ξ)

=
A(t)ϕ′(ξ)

B(t)
· J1(s, t)(3.33)

and

nχ ·

(
win − μ

ns
)
(win)s√

1 + s
2
n−2

(
win − μ

ns
)2

= nχ ·

(
A(t)ϕ(ξ)− μ

n ·B(t)ξ
)
· A(t)
B(t)ϕ

′(ξ)√
1 + (B(t)ξ)

2
n−2 ·

(
A(t)ϕ(ξ)− μ

n ·B(t)ξ
)2

=
A(t)ϕ′(ξ)

B(t)
· J2(s, t)(3.34)

for any such t and s.
Finally, by definition (2.2) of P, (3.32)–(3.34) prove (3.29). �

In further examining (3.29), it will be convenient to know that the factor A
appearing in (3.13) is nonincreasing with time, meaning that the first summand on
the right-hand side in (3.29) will be nonpositive. It is the objective of the following
lemma to assert that this can indeed be achieved by choosing the function B to be
nonincreasing and appropriately small throughout [0, T ).

Lemma 3.5. Let n ≥ 1,m > 0, λ ∈ (0, 1), and K > 1 be such that K ≥
√
bλRn,

and suppose that B0 ∈ (0, 1) satisfies

(3.35) B0 ≤ K2

4(aλ + bλ)2
.

Then if T > 0 and B ∈ C1([0, T )) is a positive and nonincreasing function fulfilling
B(0) ≤ B0, for the function A in (3.6) we have

(3.36) A′(t) ≤ 0 for all t ∈ (0, T ).



48 NICOLA BELLOMO AND MICHAEL WINKLER

In particular,

(3.37) A(t) ≥ AT :=
m

ωn
· 1

1 + aλRn

K2

for all t ∈ (0, T ).

Proof. We recall that by (3.10), with N given by (3.9) we have
(3.38)
ωn

m
·N2(t)A′(t) =

( K√
B(t)

− bλ

)
·
(
aλK

2 − aλbλR
n
)
·B′(t) for all t ∈ (0, T ).

Here since our assumption (3.35) implies that B0 ≤ K2

b2λ
, by monotonicity of B we

obtain that

K√
B(t)

− bλ ≥ K√
B0

− bλ ≥ 0 for all t ∈ (0, T ),

whereas the inequality K ≥
√
bλRn ensures that

aλK
2 − aλbλR

n ≥ 0.

Again using that B′ ≤ 0, from (3.38) we thus conclude that (3.36) holds, whereupon
(3.37) follows upon taking t ↗ T in (3.6). �

3.4. Subsolution properties: Very inner region. Now in the part very near
the origin where s < B(t) and hence ξ = s

B(t) < 1, the expression J2 in (3.29),

originating from the chemotactic term in (1.4), need not be positive due to (3.2) and
the linear growth of the minuend μ

nB(t)ξ in the numerator in (3.31). Fortunately,
it turns out that the respective unfavorable effect of this to Pwin in (3.29) can be
overbalanced by a suitable contribution of J1, which in fact is negative in this region
due to the convexity of ϕ on (0, 1). Under an additional smallness assumption on
B, we can indeed achieve the following.

Lemma 3.6. Let n ≥ 1, χ > 0,m > 0, λ ∈ (0, 1),K > 1, and B0 ∈ (0, 1) be such
that K

√
B0 < Rn and

(3.39) B0 ≤ K2

4(aλ + bλ)2

as well as

(3.40) B0 ≤
( n

4χμ

)n

.

Suppose that T > 0 and that B ∈ C1([0, T )) is a positive and nonincreasing function
satisfying

(3.41)

{
B′(t) ≥ −n

4B
1− 1

n (t), t ∈ (0, T ),

B(0) ≤ B0.

Then the function win defined in (3.13) has the property that

(3.42) (Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (0, B(t)).
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Proof. Writing ξ = s
B(t) for t ∈ (0, T ) and s ∈ (0, B(t)), in (3.29) we can estimate

the taxis term from above according to

J2(s, t) = −nχ ·
A(t)ϕ(ξ)− μ

nB(t)ξ√
1 +B

2
n−2(t)ξ

2
n−2

(
A(t)ϕ(ξ)− μ

nB(t)ξ
)2

≤ nχ ·
μ
nB(t)ξ√

1

= χμB(t)ξ for all t ∈ (0, T ) and s ∈ (0, B(t)).(3.43)

We next recall that since ξ ∈ (0, 1) whenever s ∈ (0, B(t)), and hence ϕ′(ξ) = 2λξ
and ϕ′′(ξ) = 2λ, we have

B
4
n−2(t)ϕ′2(ξ)

B
2
n−2ξ

2
n−2ϕ′′2(ξ)

= B
2
n (t) · ϕ′2(ξ)

ξ
2
n−2ϕ′′2(ξ)

= B
2
n (t) · 4λ2ξ2

ξ
2
n−2 · 4λ2

= B
2
n (t) · ξ4− 2

n

≤ B
2
n (t)

≤ 1 for all t ∈ (0, T ) and s ∈ (0, B(t)),

because B ≤ B0 ≤ 1 throughout (0, T ). Now since
√

ϕ′′2(ξ) = ϕ′′(ξ) thanks to the
convexity of ϕ on (0, 1), in (3.30) we therefore find that

−J1(s, t) = n2 · ξ2−
2
nϕ′′(ξ)√

B
4
n−2(t)ϕ′2(ξ) + n2B

2
n−2(t)ξ

2
n−2ϕ′′2(ξ)

≥ n2 · ξ2−
2
nϕ′′(ξ)√

(1 + n2)B
2
n−2(t)ξ

2
n−2ϕ′′2(ξ)

=
n2

√
1 + n2

·B1− 1
n (t)ξ1−

1
n for all t ∈ (0, T ) and s ∈ (0, B(t)).

As
√
1 + n2 ≤ 2n and hence n2

√
1+n2

≥ n
2 , due to (3.43) we thereby obtain from

(3.29), applying Lemma 3.5 on the basis of (3.39), that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t)− n

2
B1− 1

n (t)ξ1−
1
n + χμB(t)ξ

= −ξ ·
{
−B′(t)− n

2
B1− 1

n (t)ξ−
1
n + χμB(t)

}
(3.44)

for all t ∈ (0, T ) and s ∈ (0, B(t)). Here, using that ξ < 1 implies that ξ−
1
n ≥ 1,

and that the restriction (3.40) on B0 ensures that

χμB(t)
n
4B

1− 1
n (t)

=
4χμ

n
·B 1

n (t) ≤ 1,
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we see that

−B′(t)− n

2
B1− 1

n (t)ξ−
1
n + χμB(t) ≤ −B′(t)− n

2
B1− 1

n (t) +
n

4
B1− 1

n (t)

= −B′(t)− n

4
B1− 1

n (t) for all t ∈ (0, T ) and s ∈ (0, B(t)).

As a consequence of (3.41), the claim therefore results from (3.44). �

3.5. Subsolution properties: Intermediate region. The crucial part of our
analysis will be concerned with the remaining intermediate region, that is, the
outer part of the inner domain where B(t) < s < K

√
B(t). Here the term J1 in

(3.29), reflecting the diffusion mechanism in (1.4) and thus inhibiting the tendency
toward blow-up, can be estimated from above as follows.

Lemma 3.7. Let n ≥ 1,m > 0,K > 1, and T > 0, and suppose that B ∈ C1([0, T )

is positive and such that (3.5) holds as well as K
√
B(t) < Rn for all t ∈ [0, T ).

Then writing ξ = s
B(t) , for the function J1 introduced in (3.30) we have

(3.45) J1(s, t) ≤ nB1− 1
n (t)ξ1−

1
n for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t)).

Proof. Since ξ > 1 and hence ϕ′′(ξ) < 0 by (3.4), we have |ϕ′′(ξ)| = −ϕ′′(ξ), so
that we may use the trivial estimate

B
4
n−2(t)ϕ′2(ξ) + n2B

2
n−2(t)ξ2−

2
nϕ′′2(ξ) ≥ n2B

2
n−2(t)ξ2−

2
nϕ′′2(ξ)

to infer that

J1(s, t) = n2 · ξ2−
2
n |ϕ′′(ξ)|√

B
4
n−2(t)ϕ′2(ξ) + n2B

2
n−2(t)ξ2−

2
nϕ′′2(ξ)

≤ n2 · ξ2−
2
n |ϕ′′(ξ)|√

n2B
2
n−2(t)ξ2−

2
nϕ′′2(ξ)

= nB1− 1
n (t)ξ1−

1
n

holds for any such t and s, as claimed. �

Our goal will accordingly consist of controlling the term J1 in (3.29) from above
by a suitably negative quantity. As a first step toward this, we shall make sure that
in the root appearing in the denominator of (3.31), the second summand essentially
dominates the first upon appropriate choices of the parameters.

Lemma 3.8. Let n ≥ 1,m > 0, λ ∈ (0, 1),K > 1 with K ≥
√
bλRn, and B0 ∈ (0, 1)

be such that K
√
B0 < Rn and

(3.46) B0 ≤ K2

4(aλ + bλ)2
.

Suppose that for some T > 0, B ∈ C1([0, T )) is positive and nonincreasing and
such that B(0) ≤ B0. Then writing ξ = s

B(t) for s ≥ 0 and t ≥ 0, we have

(3.47)
1

A2(t)B
2
n−2(t)ξ

2
n−2ϕ2(ξ)

≤ ω2
n

λ2m2
·
(
1 +

aλR
n

K2

)
·K2− 2

nB
3− 3

n
0 ,

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).
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Proof. Since K ≥
√
bλRn and (3.46) holds, we know from Lemma 3.5 that A(t) ≥

AT for all t ∈ (0, T ) with AT given by (3.37). Moreover, the fact that ϕ is increasing
on [1,∞) allows us to estimate ϕ(ξ) ≥ 1 for all t ∈ (0, T ) and s > B(t), because for
any such t and s we have ξ > 1. Hence,

(3.48)
1

A2(t)B
2
n−2(t)ξ

2
n−2ϕ2(ξ)

≤ 1

λ2A2
T

·B2− 2
n (t)ξ2−

2
n

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

As 2 − 2
n ≥ 0, we may use the restriction ξ < K√

B(t)
implied by the inequality

s < K
√
B(t) to estimate

ξ2−
2
n ≤ K2− 2

nB1− 1
n (t) for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t)).

Therefore, (3.47) is a consequence of (3.48). �

In order to prepare an estimate for the numerator in (3.31) from below, let us
state and prove the following elementary calculus lemma.

Lemma 3.9. For λ ∈ (0, 1), let aλ and bλ be as defined in (3.1), and let

(3.49) ψλ(ξ) :=
ξ(ξ − bλ)

ξ − aλ − bλ
for ξ ≥ 1.

Then if the numbers K > 1 and B ∈ (0, 1) satisfy

(3.50) B ≤ K2

4(aλ + bλ)2
,

we have

(3.51) ψλ(ξ) ≤ max
{ 1

λ
,
2K√
B

}
for all ξ ∈

[
1,

K√
B

]
.

Proof. Differentiation in (3.49) yields

ψ′
λ(ξ) =

(2ξ − bλ)(ξ − aλ − bλ)− (ξ2 − bλξ)

(ξ − aλ − bλ)2

=
ξ2 − 2(aλ + bλ)ξ + (aλ + bλ)bλ

(ξ − aλ − bλ)2
for all ξ > 1,

from which we obtain that

(3.52) ψ′
λ(ξ) < 0 if and only if ξ ∈ (ξ−, ξ+),

where ξ+ and ξ− are given by

ξ± = aλ + bλ ±
√
(aλ + bλ)2 − (aλ + bλ)bλ.
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Here by (3.1), we recall that aλ + bλ = λ+1
2 in computing

ξ± =
λ+ 1

2
±
√(λ+ 1

2

)2

− λ+ 1

2
· 3λ− 1

2λ

=
λ+ 1

2
±
√

(λ+ 1) · [λ(λ+ 1)− (3λ− 1)]

4λ

=
λ+ 1

2
±
√

(λ+ 1)(1− λ)2

4λ

=
1

2
·
{
λ+ 1± (1− λ) ·

√
λ+ 1

λ

}
.

Hence,

2(ξ± − 1) = λ− 1± (1− λ) ·
√

λ+ 1

λ

= (1− λ) ·
(
− 1±

√
λ+ 1

λ

)
,

implying that ξ− < 1 < ξ+. Therefore, (3.52) entails that

(3.53) ψλ(ξ) ≤ max
{
ψλ(1) , ψλ

( K√
B

)}
for all ξ ∈

[
1,

K√
B

]
,

where

ψλ(1) =
1− bλ

1− aλ − bλ
=

1− 3λ−1
2λ

1− λ+1
2

=
1−λ
2λ
1−λ
2

=
1

λ
.

Since (3.50) ensures that aλ + bλ ≤ K
2
√
B

and thus

ψλ

( K√
B

)
=

K2

B − bλ · K√
B

K√
B
− aλ − bλ

≤
K2

B
K√
B
− aλ − bλ

≤
K2

B
K

2
√
B

=
2K√
B
,

the inequality (3.53) thus yields (3.51). �
On the basis of the above lemma, we can indeed achieve that in the numerator

in (3.31) the positive summand prevails.

Lemma 3.10. Let n ≥ 1,m > 0, λ ∈ (0, 1),K > 1, δ ∈ (0, 1), and B0 ∈ (0, 1) such
that K

√
B0 < Rn and

(3.54) B0 ≤ K2

4(aλ + bλ)2

as well as

(3.55)
μ

nAT
·max

{B0

λ
, 2K

√
B0

}
≤ δ
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with μ and AT as in (1.6) and (3.37), respectively. Furthermore, let T > 0 and
B ∈ C1([0, T )) be positive and such that

(3.56) B(t) ≤ B0 for all t ∈ (0, T ).

Then writing ξ = s
B(t) , we have

(3.57)

A(t)ϕ(ξ)−μ

n
B(t)ξ ≥ (1−δ)A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t)).

Proof. With ψλ taken from Lemma 3.9, we first observe that

A(t)ϕ(ξ)− μ

n
B(t)ξ = A(t)ϕ(ξ) ·

{
1− μB(t)ξ

nA(t)
· ξ − bλ
ξ − aλ − bλ

}

= A(t)ϕ(ξ) ·
{
1− μB(t)

nA(t)
· ψλ(ξ)

}
(3.58)

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)). Here thanks to (3.54) and (3.56) we may

apply Lemma 3.9, which combined with (3.37) shows that

μB(t)

nA(t)
· ψλ(ξ) ≤ μB(t)

nAT
·max

{ 1

λ
,

2K√
B(t)

}

≤ μ

nAt
·max

{B0

λ
, 2K

√
B0

}
for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t)).

In light of (3.55), the conclusion (3.57) is therefore a consequence of (3.58). �

With the above preparations at hand, we can proceed to show that under the
assumptions of Theorem 1.1, if B is a suitably small nonincreasing function satis-
fying an appropriate differential inequality, then win indeed becomes a subsolution
of (2.3) in the intermediate region where B(t) < s < K

√
B(t).

We shall first demonstrate this in the spatially one-dimensional case, in which
the role of the number mc in (1.10) will become clear through the following lemma.

Lemma 3.11. Let n = 1, χ > 1, and m > mc = 1√
χ2−1

. Then there exist

λ ∈ (0, 1), K > 1, κ1 > 0, and B01 ∈ (0, 1) such that K
√
B01 < R, and such

that whenever T > 0 and B ∈ C1([0, T )) is a positive and nonincreasing function
fulfilling (3.5) as well as

(3.59)

{
B′(t) ≥ −κ1

√
B(t), t ∈ (0, T ),

B(0) ≤ B01,

then for win as in (3.13) we have

(3.60) (Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

Proof. As m > mc, we have mχ√
1+m2

> 1, whence it is possible to fix λ ∈ (0, 1)

sufficiently close to 1 such that

mχ√
1
λ2 +m2

> 1.
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This in turn allows us to choose some δ ∈ (0, 1) such that

(3.61) c2 :=
(1− δ)mχ√

1+δ
λ2 +m2

− 1

is positive. We thereafter pick K > 1 such that with aλ and bλ as in (3.1) we have

(3.62) K ≥
√
bλR

and

(3.63)
aλR

K2
≤ δ.

Finally, we take B01 ∈ (0, 1) conveniently small fulfilling K
√
B01 < R and

(3.64) B01 ≤ K2

4(aλ + bλ)2

as well as

(3.65)
μ

AT
·max

{B01

λ
, 2K

√
B01

}
≤ δ

with AT as in (3.37), and let

(3.66) κ1 :=
c2
K

.

Then given any T > 0 and a positive nonincreasing B ∈ C1([0, T )) satisfying (3.59),
from Lemma 3.5 in conjunction with (3.62) we know that A′ ≤ 0 on (0, T ), so that
(3.29) yields

(3.67)
B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + J1(s, t) + J2(s, t)

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)), with ξ = s

B(t) and J1 and J2 as given by

(3.30) and (3.31).
Here, Lemma 3.7 says that

(3.68) J1(s, t) ≤ 1 for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)),

and in order to compensate this positive contribution in (3.67) appropriately, we
first invoke Lemma 3.10, which ensures that thanks to (3.64) and (3.65) we have
(3.69)

A(t)− μB(t)ξ ≥ (1− δ)A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

In particular, this implies that the expression on the left-hand side herein is non-
negative, so that we can estimate
(3.70)(
A(t)ϕ(ξ)− μB(t)ξ

)2

≤ A2(t)ϕ2(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

Since (3.62) and (3.64) allow for an application of Lemma 3.8, we moreover know
that

1

A2(t)ϕ2(ξ)
≤ 1

λ2m2
·
(
1 +

aλR

K2

)

≤ 1 + δ

λ2m2
for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t))
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because of (3.63). Combining this with (3.70) shows that in the denominator in the
definition (3.31) of J2 we have√

1 +
(
A(t)ϕ(ξ)− μB(t)ξ

)2

≤
√

1 + δ

λ2m2
·A2(t)ϕ2(ξ) +A2(t)ϕ2(ξ)

=

√
1 + δ

λ2m2
+ 1 ·A(t)ϕ(ξ)

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)). So that by means of (3.69) we can

estimate

−J2(s, t) = χ · A(t)ϕ(ξ)− μB(t)ξ

1 +
(
A(t)ϕ(ξ)− μB(t)ξ

)2

≥ χ · (1− δ)A(t)ϕ(ξ)√
1+δ
λ2m2 + 1 ·A(t)ϕ(ξ)

=
(1− δ)mχ√

1+δ
λ2 +m2

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

Together with (3.66) and (3.68), in view of the definition (3.61) of c2 this implies
that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + 1− (1− δ)mχ√

1+δ
λ2 +m2

= −ξB′(t)− c2

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

Once more using that in the considered region we have ξ ≤ K√
B(t)

, due to our choice

of κ1 we infer that

−ξB′(t) + c2 = ξ ·
{
−B′(t)− c2

ξ

}

≤ ξ ·
{
−B′(t)− c2

√
B(t)

K

}
= ξ ·

{
−B′(t)− κ1

√
B(t)

}
≤ 0 for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t))

because of (3.59), whereby the proof is completed. �

In the case n ≥ 2, we follow the same basic strategy as above, but numerous
adaptations are necessary due to the fact that in this case the more involved, and
more degenerate, structure of J1 and J2 in (3.29) allows for choosing actually any
positive value of the mass m whenever χ > 1.

Lemma 3.12. Let n ≥ 2, χ > 1, and m > 0, and let λ ∈ (0, 1) be arbitrary. Then
there exist K > 1, κn > 0, and B0n ∈ (0, 1) such that K

√
B0n < Rn, and such that

if T > 0 and B ∈ C1([0, T )) is positive and nonincreasing such that

(3.71)

{
B′(t) ≥ −κnB

1− 1
2n (t), t ∈ (0, T ),

B(0) ≤ B0n,
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then the function win defined in (3.14) satisfies

(3.72) (Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).

Proof. We let aλ and bλ as in (3.1), take any K > 1 fulfilling

(3.73) K >
√
bλRn,

and use that χ > 1 to pick δ ∈ (0, 1) suitably small such that

(3.74) c3 := n ·
{
(1− δ)χ√

1 + δ
− 1

}
> 0.

It is the possible to fix B0n ∈ (0, 1) such that K
√
B0n < Rn and

(3.75) B0n ≤ K2

4(aλ + bλ)2
,

such that with AT as in (3.37) we have

(3.76)
μ

nAt
·max

{B0n

λ
, 2K

√
B0n

}
≤ δ,

and such that

(3.77)
ωn

λ2m2
·
(
1 +

aλR
n

K2

)
·K2− 2

nB
3− 3

n
0n ≤ δ,

where we note that in achieving the latter we make use of our assumption that
n ≥ 2. We finally let

(3.78) κn := c3K
− 1

n ,

and suppose that T > 0 and that B ∈ C1([0, T )) is positive and nonincreasing and
such that (3.71) holds.

Then (3.73) and (3.75) warrant that Lemma 3.5 applies so as to yield that A′ ≤ 0
on (0, T ), and that hence by (3.29),

(3.79)
B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + J1(s, t) + J2(s, t)

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)), where again ξ = s

B(t) , and where J1
and J2 are as defined in (3.30) and (3.31), respectively. Now thanks to (3.75) and
(3.76), Lemma 3.10 shows that
(3.80)

A(t)ϕ(ξ)−μ

n
B(t)ξ ≥ (1−δ)A(t)ϕ(ξ) for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t)),

whereas (3.75) allows for invoking Lemma 3.8 to infer from (3.77) that

1

A2(t)B
2
n−2(t)ξ

2
n−2ϕ2(ξ)

≤ ω2
n

λ2m2
·
(
1 +

aλR
n

K2

)
·K2− 2

nB
3− 3

n
0n

≤ δ for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)).(3.81)
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By means of (3.80), (3.81), and the fact that δ < 1, we can thus estimate J2
according to

−J2(s, t) = nχ ·
A(t)ϕ(ξ)− μ

nB(t)ξ√
1 +B

2
n−2(t)ξ

2
n−2

(
A(t)ϕ(ξ)− μ

nB(t)ξ
)2

≥ nχ · (1− δ)A(t)ϕ(ξ)√
1 +B

2
n−2(t)ξ

2
n−2

(
A(t)ϕ(ξ)− μ

nB(t)ξ
)2

≥ nχ · (1− δ)A(t)ϕ(ξ)√
1 +B

2
n−2(t)ξ

2
n−2A2(t)ϕ2(ξ)

≥ nχ · (1− δ)A(t)ϕ(ξ)√
(δ + 1) ·B 2

n−2(t)ξ
2
n−2A2(t)ϕ2(ξ)

=
(1− δ)nχ√

1 + δ
·B1− 1

n (t)ξ1−
1
n

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)). Since on the other hand

J1(s, t) ≤ nB1− 1
n (t)ξ1−

1
n for all t ∈ (0, T ) and s ∈ (B(t),K

√
B(t))

due to Lemma 3.10, we therefore conclude from (3.79) that

B(t)

A(t)ϕ′(ξ)
· (Pwin)(s, t) ≤ −ξB′(t) + nB1− 1

n (t)ξ1−
1
n − (1− δ)nχ√

1 + δ
·B1− 1

n (t)ξ1−
1
n

= −ξB′(t)− c3B
1− 1

n (t)ξ1−
1
n

(3.82)

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)). We finally observe that ξ < K√

B(t)

whenever s < K
√
B(t), and that hence by (3.78),

−ξB′(t)− c3B
1− 1

n (t)ξ1−
1
n = ξ ·

{
− B′(t)− c3B

1− 1
n (t)ξ−

1
n

}
≤ ξ ·

{
− B′(t)− c3B

1− 1
n (t) ·K− 1

nB
1
2n (t)

}
= ξ ·

{
− B′(t)− κnB

1− 1
2n (t)

}

for all t ∈ (0, T ) and s ∈ (B(t),K
√
B(t)), so that (3.71) and (3.82) guarantee that

indeed the claimed inequality (3.72) holds. �

4. Blow-up. Proof of Theorem 1.1

Now our main result on blow-up of solutions to the original problem can be
derived by a combination of Lemma 3.3 with Lemma 3.6 as well Lemma 3.11 and
Lemma 3.12 in the cases n = 1 and n ≥ 2, respectively, along with a straightforward
comparison argument.
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Proof of Theorem 1.1. Thanks to our assumptions (1.12) and (1.13), depending on
whether n = 1 or n ≥ 2 we may invoke either Lemma 3.11 or Lemma 3.12 to obtain
λ ∈ (0, 1),K > 0, κn > 0, and B0n ∈ (0, 1) with the respective properties listed
there. We then fix B0 ∈ (0, B0n] such that (3.19), (3.39), and (3.40) hold, and
thereafter we take some κ ∈ (0, κn] satisfying

(4.1) κ ≤ nmχK

2(aλ + bλ)ωnRn
√
1 +K

2
n−2m2

ω2
n

as well as

(4.2) κ ≤ n

4
.

In view of Lemma 3.3, Lemma 3.6, Lemma 3.11, and Lemma 3.12, these choices
ensure that if we let B denote the solution of

(4.3)

{
B′(t) = −κB1− 1

2n (t), t ∈ (0, T ),

B(0) = B0,

extended up to its extinction time T ∈ (0,∞), that is, if we define

(4.4) B(t) :=
{
B

1
2n
0 − κ

2n
t
}2n

, t ∈ [0, T ),

with

(4.5) T :=
2n

κ
·B

1
2n
0 ,

then the functions wout and win given by (3.14) and (3.13) are well-defined and
satisfy

(4.6) (Pwout)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (K
√
B(t), Rn)

as well as

(4.7) (Pwin)(s, t) ≤ 0 for all t ∈ (0, T ) and s ∈ (0, B(t)) ∪ (B(t),K
√
B(t)).

Here in employing Lemma 3.3 we make use of (4.1), whereas in applying Lemma

3.6 we note that −κB1− 1
2n (t) ≥ −n

4B
1− 1

n (t) for all t ∈ (0, T ) due to (4.2) and the
fact that B(t) ≤ B0 < 1 for all t ∈ (0, T ). According to (4.6) and (4.7), Lemma 3.2
asserts that

w(s, t) :=

{
win(s, t) if t ∈ [0, T ) and s ∈ [0,K

√
B(t)],

wout(s, t) if t ∈ [0, T ) and s ∈ (K
√
B(t), Rn],

defines a function w ∈ C1([0, Rn]× [0, T )) which satisfies

w(·, t) ∈ C2([0, Rn] \ {B(t),K
√
B(t)}) for all t ∈ [0, T )

as well as

(Pw)(s, t) ≤ 0 for all t ∈ [0, T ) and s ∈ (0, Rn) \ {B(t),K
√
B(t)}.

Therefore, if u0 satisfies (1.5) and is such that∫
Br(0)

u0(x)dx ≥ Mm(r) := ωnw(r
n, 0) for all r ∈ [0, R],

then the solution w of (2.3) defined through (2.1) satisfies

(4.8) w(s, 0) ≥ w(s, 0) for all s ∈ (0, Rn),
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and furthermore it is clear that
(4.9)

w(0, t) = w(0, t) = 0 and w(Rn, t) = w(Rn, t) =
m

ωn
for all t ∈ (0, T̃ ),

where T̃ := min{Tmax, T}. In order to assert applicability of the comparison prin-
ciple from Lemma 5.1 below, we abbreviate α := 2− 2

n ≥ 0 and let

φ(s, t, y0, y1, y2) := n2 · sαy1y2√
y21 + n2sαy22

+ nχ ·
(y0 − μ

ns)y1√
1 + s−α(y0 − μ

ns)
2

for (s, t, y0, y1, y2) ∈ G := (0, Rn) × (0,∞) × R × (0,∞) × R, so that φ ∈ C1(G)
with

∂φ

∂y2
(s, t, y0, y1, y2) = n2 · sαy31√

y21 + n2sαy22

≥ 0 for all (s, t, y0, y1, y2) ∈ G(4.10)

and

∂φ

∂y1
(s, t, y0, y1, y2) = n4 · s2αy32√

y21 + n2sαy22
+ nχ ·

y0 − μ
ns√

1 + s−α(y0 − μ
ns)

2

for all (s, t, y0, y1, y2) ∈ G, as well as

∂φ

∂y0
(s, t, y0, y1, y2) = nχ · y1√

1 + s−α(y0 − μ
ns)

2

for all (s, t, y0, y1, y2) ∈ G.
Therefore, we can estimate

∣∣∣ ∂φ
∂y1

(s, t, y0, y1, y2)
∣∣∣ ≤ ns

α
2 ·

√
n2sαy22

3

√
y21 + n2sαy22

3 + nχs
α
2 ·

√
s−α(y0 − μ

ns)
2√

1 + s−α(y0 − μ
ns)

2

≤ nR
2α
n + nχR

2α
n for all (s, t, y0, y1, y2) ∈ G(4.11)

and

(4.12)
∣∣∣ ∂φ
∂y0

(s, t, y0, y1, y2)
∣∣∣ ≤ nχ|y1| for all (s, t, y0, y1, y2) ∈ G.

Since the inequalities (4.10), (4.11), and (4.12) warrant the validity of the hypothe-
ses (5.1), (5.3), and (5.2) of Lemma 5.1, as a consequence of the latter we obtain
that

w(s, t) ≥ w(s, t) for all s ∈ [0, Rn] and t ∈ [0, T̃ ).

As w(0, t) = w(0, t) = 0 for all t ∈ (0, T̃ ), by the mean value theorem this implies

that for each t ∈ (0, T̃ ) we can find some θ(t) ∈ (0, Rn) with the property that

ws(θ(t), t) =
w(B(t), t)

B(t)
≥ w(B(t), t)

B(t)
=

A(t)ϕ(1)

B(t)
= λ · A(t)

B(t)
for all t ∈ (0, T̃ ).

Recalling that u(r, t) = ws(r
1
n , t) for all r ∈ (0, R) and t ∈ (0, Tmax), we thereby

infer that

sup
r∈(0,R)

u(r, t) ≥ ws(θ(t), t) = λ · A(t)

B(t)
for all t ∈ (0, T̃ ).
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In view of the fact that B(t) → 0 as t ↗ T , and that hence A(t) → m
ωn

as t ↗ T

according to (3.6), this entails that we necessarily must have Tmax ≤ T < ∞, so
that (1.15) becomes a consequence of the extensibility criterion (1.7). �

Proof of Proposition 1.2. As a preparation for both parts of the proof, let us fix
a nonincreasing ζ ∈ C∞([0,∞)) such that ζ ≡ 0 in [1,∞), ζ > 0 in [0, 1

2 ], and∫ 1

0
σn−1ζ(σ)dσ = 1, and note that then ζ ≥ c4 := ζ( 12 ) throughout [0,

1
2 ].

(i) In order to construct um for m > 0 fulfilling (1.13), given any such m we
pick numbers m0 and m1 such that 0 < m0 < m1 < m and such that if n = 1
we moreover have m0 > mc, and thereafter we choose r0 ∈ (0, R) small enough
satisfying

(4.13)
c4m1

2nnωnrn0
≥ 1 + sup

r∈(0,R)

Mm0
(r)

|Br(0)|
,

where we rely on Theorem 1.1 in observing that the expression on the right-hand
side herein indeed is finite. Then with δ := m−m1

|Ω| and θ := m1

ωnrn0
,

um(r) := δ + θ · ζ
( r

r0

)
, r ∈ [0, R],

evidently defines a positive radial function um ∈ C∞(Ω̄) satisfying ∂um

∂ν = 0 on ∂Ω,
and moreover our selection of ζ warrants that∫

Ω

um = δ|Ω|+ ωnθr
n
0

∫ R
r0

0

σn−1ζ(σ)dσ = δ|Ω|+m1 = m,

because R
r0

> 1. Apart from that, since δ ≥ 0 we similarly see that

−
∫
Br(0)

um ≥ m1

ωnrn

∫ r
r0

0

σn−1ζ(σ)dσ for all r ∈ (0, R),

so that in the case r ≤ r0
2 we can use our definition of c4 to estimate

−
∫
Br(0)

um ≥ m1

ωnrn
· c4

∫ r
r0

0

σn−1dσ =
c4m1

nωnrn0
,

whereas if r0
2 < r < r0, then

−
∫
Br(0)

um ≥ m1

ωnrn

∫ 1
2

0

σn−1ζ(σ)dσ ≥ c4m1

ωnrn

∫ 1
2

0

σn−1dσ =
c4m1

2nnωnrn
≥ c4m1

2nnωnrn0
.

In view of (4.13), we thus conclude that

(4.14) −
∫
Br(0)

um ≥ 1 +
Mm0

(r)

|Br(0)|
for all r ∈ (0, r0),

while evidently

(4.15)

∫
Br(0)

um = δ|Br(0)|+m1 ≥ m1 for all r ∈ [r0, R].

We now let ε := min{1, m1−m0

|Ω| } and suppose that u0 satisfies (1.5) and is such that

‖u0 − um‖L∞(Ω) ≤ ε. Then from (4.14) we infer that since ε ≤ 1,

−
∫
Br(0)

u0 ≥ −
∫
Br(0)

um − ε ≥ 1 +
Mm0

(r)

|Br(0)|
− ε ≥ Mm0

(r)

|Br(0)|
for all r ∈ (0, r0),
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and (4.15) guarantees that∫
Br(0)

u0 ≥
∫
Br(0)

um − ε|Br(0)| ≥ m1 − ε|Ω| ≥ m0 ≥ Mm0
(r) for all r ∈ [r0, R],

since ε ≤ m1−m0

|Ω| and since Mm0
is nondecreasing with Mm0

(R) ≤ m0 by Theorem

1.1.
Therefore,

∫
Br(0)

u0 ≥ Mm0
(r) for all r ∈ [0, R], so that Theorem 1.1 asserts that

indeed for any such u0 the corresponding solution of (1.4) must blow up.
(ii) To verify the claimed density property, we fix an arbitrary m > 0 fulfilling

(1.13), and choose any (rk)k∈N ⊂ (0, R) such that rk → 0 as k → ∞. Then taking
ζ as above, for each k ∈ N the function u0k defined by

u0k(r) := u0(r) + θk · ζ
( r

rk

)
, r ∈ [0, R],

with θk := m
ωnrnk

, evidently satisfies (1.5), and for all p ∈ (0, 1) we have

‖u0k − u0‖pLp(Ω) = ωnθ
p
kr

n
k

∫ 1

0

σn−1ζp(σ)dσ → 0 as k → ∞,

because θpkr
n
k → 0 as k → ∞ for any such p. In view of Theorem 1.1, for completing

the proof it is thus sufficient to make sure that if we fix k0 ∈ N large enough fulfilling

(4.16)
c4m

2nnωnrnk
≥ sup

r∈(0,R)

Mm(r)

|Br(0)|
for all k ≥ k0,

then

(4.17)

∫
Br(0)

u0k ≥ Mm(r) for all r ∈ [0, R] and any k ≥ k0.

In fact, for any such k we may use that u0 ≥ 0 and proceed in a way quite similar
to that in part (i) to estimate

−
∫
Br(0)

u0k ≥ m

ωnrn

∫ r
rk

0

σn−1ζ(σ)dσ for all r ∈ (0, R),

whence by (4.16),

−
∫
Br(0)

u0k ≥ c4m

ωnrn

∫ r
rk

0

σn−1dσ =
c4m

nωnrnk
≥ Mm(r)

|Br(0)|
for all r ∈

(
0,

rk
2

]
and

−
∫
Br(0)

u0k ≥ m

ωnrn

∫ 1
2

0

σn−1ζ(σ)dσ ≥ c4m

2nnωnrn
≥ c4m

2nnωnrnk
≥ Mm(r)

|Br(0)|

for all r ∈
(

rk
2 , rk

)
. As moreover∫

Br(0)

u0k ≥ m ≥ Mm(r) for all r ∈ [rk, R]

due to the monotonicity of Mm and the fact that
∫ t

0
σn−1ζ(σ)dσ = 1, we thus infer

that (4.17) indeed holds. �
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5. Appendix: A comparison lemma

An ingredient essential to our argument is the following variant of the parabolic
comparison principle. Since we could not find an appropriate reference precisely
covering the present situation, especially involving the present particular type of
degenerate diffusion and nonsmooth comparison functions, we include a proof for
completeness.

Lemma 5.1. Let L > 0, T > 0, G := (0, L)×(0, T )×R×(0,∞)×R, and φ ∈ C1(G)
be such that

(5.1)
∂φ

∂y2
(s, t, y0, y1, y2) ≥ 0 for all (s, t, y0, y1, y2) ∈ G,

that for all T0 ∈ (0, T ) and Λ > 0 there exists C(T0,Λ) > 0 fulfilling

(5.2)
∣∣∣ ∂φ
∂y0

(s, t, y0, y1, y2)
∣∣∣ ≤ C(T0,Λ) for all (s, t, y0, y1, y2) ∈ G,

with t ∈ (0, T0) and y1 ∈ (0,Λ), and such that for any t0 ∈ (0, T ) we have

(5.3)
∂φ

∂y1
(·, t, ·, ·, ·) ∈ L∞

loc((0, L)× R× (0,∞)× R).

Suppose that w and w are two functions which belong to C1([0, L] × [0, T )) and
satisfy

(5.4) ws(s, t) > 0 and w(s, t) > 0 for all s ∈ (0, L) and t ∈ (0, T )

as well as

(5.5) w(·, t) ∈ W 2,∞
loc ((0, L)) and w(·, t) ∈ W 2,∞

loc ((0, L)) for all t ∈ (0, T ).

If moreover

(5.6) wt ≤ φ(s, t, w, ws, wss) and wt ≥ φ(s, t, w, ws, wss)

for all t ∈ (0, T ) and a.e. s ∈ (0, L), further

(5.7) w(s, 0) ≤ w(s, 0) for all s ∈ (0, L),

as well as

(5.8) w(0, t) ≤ w(0, t) and w(L, t) ≤ w(L, t) for all t ∈ (0, T ),

then

(5.9) w(s, t) ≤ w(s, t) for all s ∈ [0, L] and t ∈ [0, T ).

Proof. We fix an arbitrary T0 ∈ (0, T ) and then obtain from (5.4) and the assumed
regularity properties of w and w that there exists Λ = Λ(T0) > 0 such that
(5.10)

0 < ws(s, t) < Λ and 0 < ws(s, t) < Λ for all s ∈ (0, L) and t ∈ (0, T0).

For ε > 0, we then let c5 := C(T0,Λ) with C(T0,Λ) > 0 as in (5.2), define

(5.11) z(s, t) := w(s, t)− w(s, t)− ε e2c5t for s ∈ [0, L] and t ∈ [0, T0],

and claim that

(5.12) z(s, t) < 0 for all s ∈ [0, L] and t ∈ [0, T0).
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To verify this, supposing for contradiction that (5.12) is false, from (5.7) and
(5.8) we would infer the existence of s0 ∈ (0, L) and t0 ∈ (0, T0) such that

(5.13) max
(s,t)∈[0,L]×[0,t0]

z(s, t) = z(s0, t0) = 0,

in particular implying that

zt(s0, t0) ≥ 0(5.14)

and

(5.15) zs(s0, t0) = 0.

Moreover, using (5.15) we obtain that z(·, t0) ∈ W 2,∞
loc ((0, L)), so that we can find

a null set N ⊂ (0, L) such that zss(s, t0) exists for all s ∈ (0, L) \N and

(5.16) zs(s, t0) =

∫ s

s0

zss(σ, t0)dσ for all s ∈ [0, L]

according to (5.15), where for later use we note that enlarging N if necessary we
can furthermore achieve that both inequalities in (5.6) are valid at (s, t0) for all
s ∈ (0, L) \N . As z(·, t0) attains its maximum at s0 by (5.13), the identity (5.16)
necessarily requires that there exists (sj)j∈N ⊂ (s0, L) \ N such that sj ↘ s0 as
j → ∞ and

(5.17) zss(sj , t0) ≤ 0 for all j ∈ N,

for otherwise (5.16) would imply that zs(s, t0) > 0 for all s ∈ (s0, s�) with some
s� ∈ (s0, L), which would clearly contradict (5.13).

Now differentiating (5.11), in view of (5.6) and our choice of N we see that

zt = wt − wt − 2c5εe
2c5t0

≤ φ(s, t0, w, ws, wss)− φ(s, t0, w, ws, wss)− 2c5εe
2c5t0 for all s ∈ N,

so that from (5.17) we infer that

zt(sj , t0) ≤ φ
(
sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)

)
− φ

(
sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)

)
− 2c5εe

2c5εt0 for all j ∈ N.(5.18)

Here by the mean value theorem we have

φ
(
sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)

)
−φ

(
sj , t0, w(sj , t0), ws(sj , t0), wss(sj , t0)

)
= ξj ·

(
w(sj , t0)− w(sj , t0)

)
+ λj ·

(
ws(sj , t0)− ws(sj , t0)

)
(5.19)

with

ξj :=

∫ 1

0

∂φ

∂y0

(
sj , t0, w(sj , t0) + σ(w(sj , t0)− w(sj , t0)), ws(sj , t0)

+σ(ws(sj , t0)− ws(sj , t0)), wss(sj , t0)
)
dσ



64 NICOLA BELLOMO AND MICHAEL WINKLER

and

λj :=

∫ 1

0

∂φ

∂y1

(
sj , t0, w(sj , t0) + σ(w(sj , t0)− w(sj , t0)), ws(sj , t0)

+σ(ws(sj , t0)− ws(sj , t0)), wss(sj , t0)
)
dσ

for j ∈ N. Since sj → s0 as j → ∞, by continuity of w(·, t0) and w(·, t0) in
(0, L), by continuity and positivity of ws(·, t0) and ws(·, t0) in (0, L), and by local
boundedness of wss(·, t0) in (0, L)\N asserted by (5.5), we can find δ > 0 such that

sj ∈ [δ, L− δ], w(sj , t0) ∈
[
− 1

δ
,
1

δ

]
, w(sj , t0) ∈

[
− 1

δ
,
1

δ

]
,

ws(sj , t0) ∈
[
δ,
1

δ

]
, ws(sj , t0) ∈

[
δ,
1

δ

]
, and wss(sj , t0) ∈

[
− 1

δ
,
1

δ

]
for all j ∈ N.

As a consequence of this and (5.3), there exists c6 > 0 fulfilling

(5.20) |ηj | ≤ c6 for all j ∈ N.

Moreover, combining (5.10) with (5.2), by definition of c5 we obtain that

(5.21) |ξj | ≤ c5 for all j ∈ N.

Collecting (5.19), (5.20), and (5.21) in (5.18) we can further estimate

zt(sj , t0) ≤ c5 · |w(sj , t0)− w(sj , t0)|+ c6 · |ws(sj , t0)− ws(sj , t0)| − 2c5εe
2c5t0

for all j ∈ N.
Thanks to the fact that both w and w belong to C1((0, L) × (0, T0)), we may

take j → ∞ here to see that

zt(s0, t0) ≤ c5 · |w(s0, t0)− w(s0, t0)|+ c6 · |ws(s0, t0)− ws(s0, t0)| − 2c5εe
2c5t0 .

Now observing that w(s0, t0)− w(s0, t0) = εe2c5t0 by (5.13), and that ws(s0, t0)−
ws(s0, t0) = 0 by (5.15), as a consequence of (5.14) we infer that

0 ≤ zt(s0, t0) ≤ c5εe
2c5t0 − 2c5εe

2c5t0 < 0.

This absurd conclusion shows that actually (5.12) indeed holds, so that on letting
ε ↘ 0 and then T0 ↗ T we end up with (5.9). �
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[2] Fuensanta Andreu, Vicent Caselles, José M. Mazón, and Salvador Moll, Finite propagation
speed for limited flux diffusion equations, Arch. Ration. Mech. Anal. 182 (2006), no. 2, 269–
297, DOI 10.1007/s00205-006-0428-3. MR2259334
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[14] Juan Calvo, Juan Campos, Vicent Caselles, Óscar Sánchez, and Juan Soler, Pattern formation
in a flux limited reaction–diffusion equation of porous media type, Invent. Math. 206 (2016),
no. 1, 57–108, DOI 10.1007/s00222-016-0649-5. MR3556525

[15] Juan Calvo, Juan Campos, Vicent Caselles, Óscar Sánchez, and Juan Soler, Qualitative be-
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