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Abstract. We discuss the existence of the blow-up solution for some
nonlinear parabolic system called attractive drift-diffusion equation in
two space dimensions. We show that if the initial data satisfies a thresh-
old condition, the corresponding solution blows up in a finite time. This
is a system case for the blow-up result of the chemotactic equation proved
by Nagai [28] and Nagai-Senba-Suzuki [30] and gravitational interaction
of particles by Biler-Nadzieja [7], [8].

1. Introduction

As a model of self interacting particles, the drift-diffusion equation with
attractive sign has been considered. In connection with the result of the
Keller-Segel equation appearing in the chemotactic theory, the following
equation is expected to show the instability of a solution, namely a finite
time blow-up of solution:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tn − Δn + ∇(n∇ψ) = 0, t > 0, x ∈ R
n,

∂tp − Δp −∇(p∇ψ) = 0, t > 0, x ∈ R
n,

−Δψ = α(p − n) + g, x ∈ R
n, α = ±1,

n(0, x) = n0(x), p(0, x) = p0(x),

(1.1)

where n(t, x) and p(t, x) denote the particle density of negative and positive
electric charge, g(x) is the background charge density and ψ denotes their
electric potential.
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In our previous work [23], we have shown the local and global well-
posedness for the drift-diffusion equation in Lp when α = 1 with given
functions f and g,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tn − Δn + ∇(n∇ψ) = f, t > 0, x ∈ R
n,

∂tp − Δp −∇(p∇ψ) = f, t > 0, x ∈ R
n,

−Δψ = p − n − g, x ∈ R
n,

n(0, x) = n0(x), p(0, x) = p0(x).

(1.2)

The above equation (α = 1) is the typical and simplest model for the semi-
conductor device simulation ([4] [11], [12], [14], [15], [20], [23], [24], [32]). On
the other hand, when α = −1 and n = 2, the equation is strongly relevant to
the model of self-interacting particles with different mass (see Biler-Nadzieja
[8], see also [3], [6]) and the model of the aggregation of mold. In view of the
recent mathematical results on the Keller-Segel system [22], it is suggested
that the solution that has a proper regularity (and integrability) may have
an instability of the solution, namely under a certain condition on the initial
data, the solution may blow up in a finite time. In the case of a single kind
of self-interacting particles, it is also shown that the solution blows up in a
finite time as one can find in [3], [6]. This property is naturally inherited
to the system (1.1). The argument in the Keller-Segel model (cf. (1.10)
below) systematically used that the solution is in L1(R2) ([25], [27], [28]),
moreover if the solution is non-negative, ‖n(t)‖1 and ‖p(t)‖1 are preserved in
time. To show the blow-up result for (1.1), we should consider the solution
belonging to L1(R2). However, it is not quite obvious to find the solution in
the space L1(R2) since the equation involves the singular integral operator
and unfortunately, our previous result [23] (based on the method in [16] and
[19]) does not cover the existence result in L1(Rn). To avoid this difficulty,
we introduce the weighted L2 space which is defined as follows. For s > 0,

L2
s(R

2) = {f ∈ L1
loc(R

2); 〈x〉sf(x) ∈ L2(R2)},
where 〈·〉 = (1+ | · |2)1/2. Noting that L2

s(R
2) ⊂ L1(R2) if s > 1 (see Lemma

2.1 in Section 2), we first show the existence and uniqueness of the solution
of the two dimensional drift-diffusion type system in a subset of L1(R2).

Theorem 1.1. (Local well-posedness) For any s > 1, let

(n0, p0) ∈ L2
s(R

2) × L2
s(R

2) and ∇(−Δ)−1g ∈ L∞(R2).

Then there exists T = T (‖n0‖L2
s
, ‖p0‖L2

s
) > 0 and a unique solution (n, p)

of (1.1) with the initial data (n0, p0) such that n, p ∈ C([0, T );L2
s(R

2)) ∩
L2(0, T ; Ḣ1(R2)) ∩ C1((0, T );L2(R2)) ∩ C((0, T ); Ḣ2(R2)). Moreover the
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solution is continuously dependent on the initial data. Furthermore, if the
maximum existence time of the solution is finite, i.e., Tm < ∞, then we have

‖n(t)‖L2
s(R2), ‖p(t)‖L2

s(R2) → ∞, as t → Tm. (1.3)

Theorem 1.1 is shown by considering the equation for v(t, x) = n(t, x) +
p(t, x) and w(t, x) = n(t, x) − p(t, x) which is as follows;⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tv − Δv + ∇(w∇ψ) = 0, t > 0, x ∈ R
2,

∂tw − Δw + ∇(v∇ψ) = 0, t > 0, x ∈ R
2,

−Δψ = −αw + g, x ∈ R
2,

v(0, x) = p0(x) + n0(x), w(0, x) = n0(x) − p0(x),

(1.4)

provided (n, p) is the solution to (1.1).
The solution obtained in Theorem 1.1 belongs to L1(R2) and hence it

follows that the solution maintains some conservation laws and meaningful
identities. First of all, if the initial data is non-negative, then the maximum
principle for the parabolic equation assures that a weak solution preserves
non-negative structure. This fact immediately gives the L1(R2) conservation
laws for the weak solution:

Proposition 1.2. (Positivity and L1 preserving) Suppose that the initial
data of (1.1) satisfies n(0, x) ≥ 0, p(0, x) ≥ 0. Then for any solution in
C([0, T );C2(R2)) × C([0, T );C2(R2)), we have

n(t, x) ≥ 0, p(t, x) ≥ 0 (1.5)

and if moreover n0, p0 ∈ L1(R2), we have

‖n(t)‖1 = ‖n0‖1, ‖p(t)‖1 = ‖p0‖1.

Second, we can find the inequality related to the entropy and the energy
as follows:

Proposition 1.3. (A priori estimate) Let (n, p) be a smooth solution to (1.1)
in L2(R2) ∩ L log L(R2). Then

(1) If we set

V (t) ≡
∫

R2

(1 + n(t)) log (1 + n(t)) dx

+
∫

R2

(1 + p(t)) log (1 + p(t)) dx +
α

2
‖∇ψ(t)‖2

2. (1.6)

Then it holds that

V (t) +
∫ t

0

[∫
R2

n(τ)|∇(log(1 + n(τ))) −∇ψ(τ))|2dx
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+
∫

R2

p(τ)|∇(log(1 + p(τ))) + ∇ψ(τ))|2dx
]
dτ ≤ CV (0)et. (1.7)

(2) Similarly, we have

‖n(t)‖2
2 + ‖p(t)‖2

2 + 2
∫ t

0
{‖∇n(τ)‖2

2 + ‖∇p(τ)‖2
2}dτ (1.8)

+ α

∫ t

0

∫
R2

(n(τ) + p(τ))|n(τ) − p(τ)|2dxdτ ≤ (‖n0‖2
2 + ‖p0‖2

2)e
CT .

According to those a priori estimates, we have a global existence result
(cf. [23]) for a positive solution to the system (1.2) with any data if α = 1.

Proposition 1.4. (Global existence) Assume that n0 and p0 are nonnegative
in L2

s(R
2) with s > 1. If α = 1, then the corresponding solution (n, p)

obtained by Theorem 1.1, globally exists.

In view of the results for the Keller-Segel model and self-interacting parti-
cles [7], [8], it is possible to show that when α = −1, for some small constant
C0 > 0 and the initial data satisfies

‖n0‖1 + ‖p0‖1 < C0,

the corresponding solution exists globally in time. We will show this else-
where [29].

On the other hand, when α = −1 and the data is large enough, then the
solution to (1.1) possibly blows up in a finite time. More specifically we have
the following blow-up criterion.

Theorem 1.5. (Finite time blow-up) For s > 1, let n0 and p0 be in L2
s(R

2)
with n0, p0 ≥ 0 everywhere and satisfies(∫

R2(n0 − p0)dx
)2∫

R2(n0 + p0)dx
> 8π. (1.9)

Then the solution to (1.1) with α = −1 and g ≡ 0 blows up in a finite time.

Remark. Theorem 1.5 states that if the difference of the total density of
n0 and p0 is large enough, then the finite time blow-up occurs. Here the
finite time blow-up stands for (1.3) in the local well posedness result. We
expect that if the data satisfies the counter assumption, then the solution
exists globally.

The drift-diffusion system equation has a strong analogy to the model of
chemotactic attraction. The dynamics of the density of mucus is governed
by the following system of parabolic equations called the Keller-Segel system
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(see Keller-Segel [22], Herrero-Velázquez [17],[18], Nagai [25], Nagai-Senba-
Yoshida [31], Nagai-Senba-Suzuki [30] and Senba-Suzuki [37]),⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu − νΔu + χ∇(u∇ψ) = 0, t > 0, x ∈ Ω ⊂ R
2,

μ∂tψ − νΔψ + γψ = αu, t > 0, x ∈ Ω,

u(0, x) = u0(x), ψ(0, x) = ψ0(x),
∂u
∂n = ∂ψ

∂n = 0, x ∈ ∂Ω,

(1.10)

where μ, ν, χ, γ, α are positive constants. When the parameter μ = 0, the sys-
tem is elliptic-parabolic and very close looking to the drift-diffusion model.
It is known that the existence of the blow-up solution corresponding to the
concentration of mucus has been proved (Herrero-Velázquez [17], [18], Nagai
[25]). However the appearance of positive constant γ > 0 makes the L1 local
well-posedness for (1.10) rather easier since it does not involve the singular
integral operator. On the other hand for the global existence, it is observed
that the solution blows up in a finite time in the case μ ≥ 0.

Theorem 1.5 shows that if the difference of the densities of initial data n0

and p0 are sufficiently large compare to the total density, then the solution
cannot exists globally in time. Our result is an extension to the result on the
equation of self-interacting particles. Biler-Nadzieja [7], [8], Biler-Hilhorst-
Nadzieja [6] and Biler [3] showed that the solution of⎧⎪⎨⎪⎩

∂tu − Δu + ∇(u∇ψ) = 0, t > 0, x ∈ Ω,

−Δψ = u, x ∈ Ω,

u(0, x) = u0(x), t = 0, ∂u
∂n = 0 on ∂Ω,

(1.11)

blows up in a finite time provided the initial data satisfies a sufficient con-
dition and Ω is either ball or radially symmetric. If we set either n0 ≡ 0 or
p0 ≡ 0, then the condition (1.9) implies the L1 of either of those initial data
should be larger than 8π. This is also corresponding to the result for the
model of chemotaxis.

To show the blow up of the solution, it is sufficient to derive a contradiction
with all time existence since if the maximal existence time Tm is finite, then
the solution must satisfy

‖n(t)‖∞ → ∞, ‖p(t)‖∞ → ∞ (1.12)

as t → Tm. To show this result, we follow the argument found in Nagai [28]
and Biler-Nadzieja [8] (see also Biler-Hilhorst-Nadzieja [6] and Biler [3]). We
consider the equivalent system; we let v(t) = n(t)+p(t) and w(t) = n(t)−p(t)
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then (v, w) solves⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tv − Δv + ∇(w∇ψ) = 0, t > 0, x ∈ R

2,

∂tw − Δw + ∇(v∇ψ) = 0, t > 0, x ∈ R
2,

−Δψ = w, x ∈ R
2,

v(0, x) = n0(x) + p0(x), v(0, x) = n0(x) − p0(x).

(1.13)

Then we show that the second order localized moment of v, namely∫
R2

Φ(x)v(t, x)dx,

where Φ(x) � |x|2 around |x| � 0 and |Φ(x)| ≤ C satisfies some differential
inequality. This differential inequality shows that the moment reaches zero
in a finite time. This contradicts the fact that the solution preserves the
positivity and hence the moment itself, provided the initial data is nonneg-
ative.

2. Preliminary lemmas

Before proving the existence theorem, we show the auxiliary inequalities
which will be used in the following sections.

Lemma 2.1. For s > 1 and f ∈ L2(R2) ∩ L2
s(R

2), there exists a constant
C = C(s) > 0 such that

‖f‖1 ≤ C‖f‖1−1/s
2 ‖|x|sf‖1/s

2 . (2.1)

Proof. It suffices to show the lemma for f ∈ C∞
0 (R2). For R > 0, we have

by the Hölder inequality that∫
R2

|f(x)|dx =
∫

BR(0)
|f(x)|dx +

∫
Bc

R(0)
|f(x)|dx (2.2)

≤ |BR|
1
2

( ∫
BR(0)

|f(x)|2dx
) 1

2 +
( ∫

Bc
R(0)

|x|−2sdx
) 1

2
( ∫

Bc
R(0)

||x|sf(x)|2dx
) 1

2

≤ π1/2R‖f‖2 +
( 2π

2s − 2
)1/2

R1−s‖|x|2f‖2.

By choosing R = (‖|x|
sf‖2

‖f‖2
)1/s, we conclude that

‖f‖1 ≤ C‖f‖1− 1
s

2 ‖|x|sf‖
1
s
2 . �

The following Sobolev type inequality is a variant of the Brezis-Gallouet
inequality [9].
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Lemma 2.2. For f ∈ H1(R2) ∩ L1(R2), we have

‖∇(−Δ)−1f‖∞ ≤ C‖f‖2

{
log

(
e +

‖∇f‖2 + ‖f‖1

‖f‖2

)}1/2
. (2.3)

Especially,

‖∇(−Δ)−1f‖∞ ≤ C
{

1 + ‖f‖2 (log (‖∇f‖2 + ‖f‖1))
1/2

}
. (2.4)

Remark. If we apply the original Brezis-Gallouet inequality to ∇(−Δ)−1f ∈
H1(R2), we have

‖∇(−Δ)−1f‖∞ ≤ C
(
1 + ‖∇(−Δ)−1f‖2 + ‖f‖2 (log(e + ‖∇f‖2))

1/2
)

.

However, simple use of the Sobolev inequality ‖g‖2 ≤ C‖∇g‖1 does not
imply the inequality (2.3).

Proof of Lemma 2.2. Let Ḃ0
p,σ(Rn) be the homogeneous Besov space

defined by the following norm;

‖f‖Ḃ0
p,σ(Rn) ≡

⎧⎪⎪⎨⎪⎪⎩
( ∞∑

j=−∞
2jsσ‖φj ∗ f‖σ

p

)1/σ
, 1 ≤ σ < ∞,

sup
j∈N

2js‖φj ∗ f‖p, σ = ∞,

where {φj}j∈N is the Littlewood-Paley dyadic decomposition of unity such
that φ̂j(ξ) = φ̂(2−j |ξ|) with

φ̂(ξ) =

{
smooth, positive, ξ ∈ B2 \ B̄1/2,

0, ξ ∈ Bc
2 ∪ B̄1/2

and
∑

j∈Z
φ̂j(ξ) ≡ 1 (ξ �= 0) (see for the details, Bergh-Löfström [1] and

Triebel [39]). Let ψ(x) be a smooth function such that

ψ̂(ξ) =

{
1 |ξ| ≤ 1/2
0 |ξ| ≥ 1

and set ψ̂j(ξ) = ψ̂(ξ/2j). Then by the L1-L∞ boundedness of the inverse
Fourier transform, we have

‖ψ−M ∗ ∇(−Δ)−1f‖∞ ≤ C
∥∥∥ψ̂−M

iξf̂

|ξ|2
∥∥∥

1
≤ C

∫
B

2−M

|f̂(ξ)|
|ξ| dξ (2.5)

≤ C‖f̂‖∞
∫

B
2−M

|ξ|−1dξ ≤ C2−M‖f‖1 → 0
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as M → ∞. Hence, for sufficiently large M , we have

‖ψ−M ∗ ∇(−Δ)−1f‖∞ ≤ ‖f‖Ḃ1
2,2

and it suffices to estimate ∑
j≥−M

φj ∗ ∇(−Δ)−1f.

By the inequality shown by Ogawa-Taniuchi [33], we have

‖g‖Ḃ0
∞,1

≤ C‖g‖Ḃ1
2,2

{
log

(
e +

‖g‖Ḃ2
2,2

+ ‖g‖Ḃ0
2,∞

‖g‖Ḃ1
2,2

)}1/2
(2.6)

for g ∈ Ḃ2
2,2 ∩ Ḃ0

2,∞. For the lemma we apply the above inequality to
∇(−Δ)−1f . We have ‖∇(−Δ)−1f‖Ḃ1

2,2
≤ C‖f‖2 and since n = 2 and

‖∇(−Δ)−1f‖Ḃ0
2,∞

≤ ‖∇(−Δ)−1f‖Ḃ1
1,∞

≤ ‖f‖Ḃ0
1,∞

. (2.7)

Note that the above inequality holds for the singular integral operator, since
we employ the homogeneous Besov norm. By (2.7) and Lemma 2.1 and
‖φj ∗ f‖1 ≤ C(φ)‖f‖1,

‖∇(−Δ)−1f‖∞ ≤ ‖ψ−M ∗ ∇(−Δ)−1f‖∞ +
∞∑

j=−M

‖φj ∗ ∇(−Δ)−1f‖∞

≤ C‖f‖2

{
log

(
e +

‖∇f‖2 + ‖∇2(−Δ)−1f‖Ḃ0
1,∞

‖f‖Ḃ0
2,2

)}1/2

≤ C‖f‖2

{
log

(
e +

‖∇f‖2 + ‖f‖Ḃ0
1,∞

‖f‖2

)}1/2

≤ C‖f‖2

{
log

(
e +

‖∇f‖2 + ‖f‖1

‖f‖2

)}1/2
.

The inequality (2.4) can be obtained by a simple modification of (2.3). �

3. Proof of existence

Proof of Theorem 1.1. Let s > 1. For the given initial data (u0, v0) ∈
L2

s ×L2
s, we choose M2 = 4(‖〈x〉su0‖2

2 + ‖〈x〉sv0‖2
2)∨ (‖f‖2

L2(I;L2
s) + G2) and

G = ‖∇(−Δ)−1g‖∞. The solution can be constructed in the complete metric
space

XT =
{

(φ, ψ) ∈
{
C([0, T );L2

s) ∩ L2(0, T ; Ḣ1)
}2; |||φ|||2X + |||ψ|||2X ≤ M2

}
,
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where

|||φ|||X ≡
(

sup
t∈[0,T )

(‖φ(t)‖2
2+‖|x|sφ(t)‖2

2)+
∫ T

0
(‖∇φ(τ)‖2

2+‖|x|s∇φ(τ)‖2
2)dτ

) 1
2
.

For w̃ ∈ XT , define a map Φ : w̃ → v, Ψ : w̃ → w such that (v, w) solve the
following linearized system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tv − Δv + ∇(w∇ψ̄) = 0, t > 0, x ∈ R
2,

∂tw − Δw + ∇(v∇ψ̄) = 0, t > 0, x ∈ R
2,

−Δψ̄ = −αw̃ + g, x ∈ R
2,

v(0, x) = v0(x) ≡ p0(x) + n0(x),
w(0, x) = w0(x) ≡ n0(x) − p0(x).

(3.1)

The following proposition shows that the map (Φ,Ψ) is a contraction in XT .

Proposition 3.1. Under the same condition as Theorem 1.1, there exist a
small constant T > 0 and (u, v) ∈ XT such that

|||Φ(w̃)|||X + |||Ψ(w̃)|||X ≤ M, (3.2)

|||Φ(w̃1) − Φ(w̃2)|||X + |||Ψ(w̃1) − Ψ(w̃2)|||X ≤ 1
2
|||w̃1 − w̃2|||X . (3.3)

Proof of Proposition 3.1. Let w̄ ∈ XT and we construct a solution to the
following linearized parabolic system:⎧⎪⎨⎪⎩

∂tv − Δv + ∇(w∇(−Δ)−1(−αw̃ + g)) = 0, t > 0, x ∈ R
2,

∂tw − Δw + ∇(v∇(−Δ)−1(−αw̄ + g)) = 0, t > 0, x ∈ R
2,

v(0, x) = v0(x), w(0, x) = w0(x).
(3.4)

The existence of a smooth solution of the above system is well known. Now
by multiplying the first equation of (1.4) by v and integrating by parts, we
have
1
2

d

dt
‖v(t)‖2

2+‖∇v(t)‖2
2−

∫
R2

w(t)∇v(t)·∇(−Δ)−1(−αw̃(t)+g)dx = 0. (3.5)

Similarly,

1
2

d

dt
‖w(t)‖2

2 + ‖∇w(t)‖2
2 −

∫
R2

v(t)∇w(t) · ∇(−Δ)−1(−αw̃(t) + g)dx = 0.

(3.6)
Adding (3.5) to (3.6) and integrating it over [0, T ], we have

‖v(t)‖2
2 + ‖w(t)‖2

2 + 2
∫ t

0
{‖∇v(τ)‖2

2 + ‖∇w(τ)‖2
2}dτ (3.7)
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= ‖v0‖2
2 + ‖w0‖2

2 + 2
∫ t

0

∫
R2

∇(v(τ)w(τ))∇(−Δ)−1(αw̃(τ) − g)dxdτ.

By Lemma 2.1 and the Brezis-Gallouet type inequality (2.4) in Lemma 2.2,∣∣∣ ∫
R2

∇(vw) · ∇(−Δ)−1(αw̃ + g)dx
∣∣∣ (3.8)

≤ (‖∇v‖2‖w‖2 + ‖∇w‖2‖v‖2)
(
‖∇(−Δ)−1w̃‖∞ + ‖∇(−Δ)−1g‖∞

)
≤ C(‖∇v‖2‖w‖2 + ‖∇w‖2‖v‖2)

×
(
1 + ‖w̃‖2

√
log(e + ‖∇w̃‖2 + ‖〈x〉sw̃‖2) + G

)
.

For some constant C > 0, we note that
√

log(x + e) ≤ C(1+x1/2), we have,

‖v(t)‖2
2 + ‖w(t)‖2

2 + 2
∫ t

0

(
‖∇v(τ)‖2

2 + ‖∇w(τ)‖2
2

)
dτ ≤ ‖v0‖2

2 + ‖w0‖2
2

+ C(1 + G) sup
τ∈[0,T ]

(‖v(τ)‖2 + ‖w(τ)‖2)
∫ t

0

(‖∇v(τ)‖2 + ‖∇w(τ)‖2) dτ

+ C sup
τ∈[0,T ]

(‖v(τ)‖2 + ‖w(τ)‖2) (3.9)

×
∫ t

0

(‖∇v(τ)‖2 + ‖∇w(τ)‖2) ‖w̃‖2

(
‖∇w̃(τ)‖1/2

2 + ‖〈x〉sw̃‖1/2
2

)
dτ

≤‖v0‖2
2 + ‖w0‖2

2

+ C(1 + G) sup
τ∈[0,T ]

(‖v(τ)‖2 + ‖w(τ)‖2)
∫ T

0

(‖∇v(τ)‖2 + ‖∇w(τ)‖2) dτ

+ CM sup
τ∈[0,T ]

(‖v(τ)‖2 + ‖w(τ)‖2)

×
( ∫ T

0

(
‖∇v(τ)‖

4
3
2 + ‖∇w(τ)‖

4
3
2

)
dτ

) 4
3
( ∫ T

0

(
‖∇w̃(τ)‖2

2 + ‖〈x〉sw̃‖2
2

)
dτ

) 1
4

≤‖v0‖2
2 + ‖w0‖2

2

+ εC((1 + G)2 + (1 + T 1/2)M3) sup
τ∈[0,T ]

(‖v(τ)‖2
2 + ‖w(τ)‖2

2)

+ (ε−1T + T 1/3)
∫ T

0

(
‖∇v(τ)‖2

2 + ‖∇w(τ)‖2
2

)
dτ.

Without loosing generality, we may assume that T < 1. Then choose ε > 0
small such that

εC((1 + G)2 + 2M3) <
1
2
, (3.10)

then we take T < 1 small such that

ε−1T + T 1/3 < 1 (3.11)
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if necessary. Then we conclude that

sup
t
{‖v(t)‖2

2 + ‖w(t)‖2
2} +

∫ T

0

(
‖∇v(τ)‖2

2 + ‖∇w(τ)‖2
2

)
dτ

≤ 2(‖v0‖2
2 + ‖w0‖2

2) ≤
1
2
M2. (3.12)

Next we derive the weighted estimates. Multiplying the first equation of (1.4)
by |x|2sv and integrating by parts, we have by setting ψ̃ = (−Δ)−1(−αw̃+g),

1
2

d

dt
‖|x|sv(t)‖2

2 + ‖|x|s∇v(t)‖2
2 + 2s

∫
R2

|x|2s−2x · ∇v(t)v(t)dx (3.13)

−
∫

R2

|x|2sw(t)∇v(t) · ∇ψ̄(t)dx − 2s

∫
R2

|x|2s−2w(t)v(t)x · ∇ψ̄(t)dx = 0.

Similarly,

1
2

d

dt
‖|x|sw(t)‖2

2 + ‖|x|s∇w(t)‖2
2 + 2s

∫
R2

|x|2s−2x · ∇w(t)w(t)dx (3.14)

−
∫

R2

|x|2sv(t)∇w(t) · ∇ψ̄(t)dx − 2s

∫
R2

|x|2s−2w(t)v(t)x · ∇ψ̄(t)dx = 0.

Summing up (3.13) and (3.14)

1
2

d

dt
{‖|x|sv(t)‖2

2 + ‖|x|sw(t)‖2
2} + ‖|x|s∇v(t)‖2

2 + ‖|x|s∇w(t)‖2
2

= −s

∫
R2

|x|2s−2x · ∇(v2(t) + w2(t))dx (3.15)

+
∫

R2

|x|2s∇(vw)(t) · ∇(−Δ)−1(−αw̃(t) + g)dx

+ 4s

∫
R2

|x|2s−2v(t)w(t)x · ∇(−Δ)−1(−αw̃(t) + g)dx ≡ I + II + III.

The first term on the right hand side of (3.15) is bounded as follows:

|I| ≤ C

∫
R2

|x|2s−2(v2(t) + w2(t))dx

≤ C(‖v(t)‖2
2 + ‖w(t)‖2

2) + (‖|x|sv(t)‖2
2 + ‖|x|sw(t)‖2

2).

And also

|II + III| ≤ (‖|x|sv(t)‖2‖|x|s∇w(t)‖2 + ‖|x|sw(t)‖2‖|x|s∇v(t)‖2)

×
(
‖∇(−Δ)−1w̃(t)‖∞ + ‖∇(−Δ)−1g‖∞

)
+ ‖|x|sv(t)‖2‖|x|s−1w(t)‖2

(
‖∇(−Δ)−1w̃(t)‖∞ + ‖∇(−Δ)−1g‖∞

)
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≤
(
‖|x|sv(t)‖2‖|x|s∇w(t)‖2 + ‖|x|sw(t)‖2‖|x|s∇v(t)‖2

+ ‖|x|sv(t)‖2‖|x|s−1w(t)‖2

)
×

(
1 + ‖w̃(t)‖2

√
log(e + ‖∇w̃(t)‖2 + ‖〈x〉sw̃(t)‖2) + G

)
.

Thus, we have

‖|x|sv(t)‖2
2 + ‖|x|sw(t)‖2

2 + 2
∫ t

0
{‖|x|s∇v(τ)‖2

2 + ‖|x|s∇w(τ)‖2
2}dτ (3.16)

≤ ‖|x|sv0‖2
2 + ‖|x|sw0‖2

2 + CT sup
t∈[0,T ]

(M2 + ‖|x|sv(t)‖2
2 + ‖|x|sw(t)‖2

2)

+ 2
∫ t

0

(
‖|x|sv(τ)‖2‖|x|s∇w(τ)‖2 + ‖|x|sw(τ)‖2‖|x|s∇v(τ)‖2

+ ‖|x|sv(τ)‖2‖|x|s−1w(τ)‖2

)
×

(
1 + G + ‖w̃‖2

√
log(e + ‖∇w̃(τ)‖2 + ‖〈x〉sw̃(τ)‖2)

)
dτ.

We continue the estimates as in (3.9), then

‖|x|sv(t)‖2
2 + ‖|x|sw(t)‖2

2 + 2
∫ t

0
{‖|x|s∇v(τ)‖2

2 + ‖|x|s∇w(τ)‖2
2}dτ (3.17)

≤ ‖|x|sv0‖2
2 + ‖|x|sw0‖2

2 + CT (M2 + ‖|x|sv(t)‖2
2 + ‖|x|sw(t)‖2

2)

+ εC((1 + G)2 + 2M3) sup
τ∈[0,T ]

(
‖|x|sv(τ)‖2

2 + ‖|x|sv(τ)‖2
2

)
+

(
ε−1T + T 1/3

)
ε

∫ t

0
(‖|x|s∇v(τ)‖2 + ‖|x|s∇w(τ)‖2) dτ.

Again by choosing ε > 0 and T as in (3.10) and (3.11) with CT (1+M) < 1
2 ,

we have

‖|x|sv(t)‖2
2 + ‖|x|sw(t)‖2

2 + 2
∫ T

0
{‖|x|s∇v(t)‖2

2 + ‖|x|s∇w(t)‖2
2}dt ≤ M2.

(3.18)
Combining (3.12) and (3.18), we obtain (3.2).

Next for w̃1 and w̃2, we consider the solution of equations with w̃ = w̃i

in (1.4). Let (vi, wi) (i = 1, 2) be the pair of the corresponding solution.
We define the differences V (t) = v1(t) − v2(t), W (t) = w1(t) − w2(t) and
W̃ (t) = w̃1(t) − w̃2(t). Then by a similar argument as in (3.8),

d

dt
{‖V (t)‖2

2 + ‖W (t)‖2
2} + 2‖∇V (t)‖2

2 + ‖∇W (t)‖2
2 (3.19)
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≤
∫

R2

∇(V W )(t) · ∇(−Δ)−1(−αw̃1(t) + g)dx

+
∫

R2

(w2(t)∇V (t) + v2(t)∇W (t)) · ∇(−Δ)−1W̃ (t)dx ≡ I1(t) + I2(t).

The nonlinear term can be dominated in a similar way. Noting that
√

log x ≤
(ε̃−1 + ε̃x) for any small ε̃ > 0 and Lemma 2.2 (2.4), we have for the time
integral of the right hand side in (3.19):∣∣∣ ∫ t

0
I1(τ)dτ

∣∣∣ ≤ ∫ t

0

∣∣∣ ∫
R2

∇(V W )(τ) · ∇(−Δ)−1(−w̃1(τ) − g)dx
∣∣∣dτ

≤
∫ t

0
(‖V (τ)‖2‖∇W (τ)‖2 + ‖W (τ)‖2‖∇V (τ)‖2)

×
(
‖∇(−Δ)−1w̃1(τ)‖∞ + G

)
dτ

≤ C sup
t∈[0,T ]

(‖V (t)‖2 + ‖W (t)‖2)
∫ t

0
(‖∇W (τ)‖2 + ‖∇V (τ)‖2)

×
(
1 + ‖w̃‖2

√
log (e + ‖∇w̃1(τ)‖2 + ‖〈x〉sw̃1(τ)‖2) + G

)
dτ

≤ C sup
t∈[0,T ]

(‖V (t)‖2 + ‖W (t)‖2)

×
{

(1 + ε̃−1M + G)
∫ t

0
(‖∇W (τ)‖2 + ‖∇V (τ)‖2) dt

+ ε̃M

∫ t

0
(‖∇W (τ)‖2 + ‖∇V (τ)‖2) (‖∇w̃1(τ)‖2 + ‖〈x〉sw̃1(τ)‖2)dτ

}
.

By Young’s inequality, it follows for small ε1 > 0,∣∣∣ ∫ t

0
I1(t)dt

∣∣∣ ≤ Cε1 sup
t∈[0,T ]

(
‖V (t)‖2

2 + ‖W (t)‖2
2

)
(3.20)

+ (1 + ε̃−1M + G)ε−1
1 T

∫ t

0

(
‖∇W (τ)‖2

2 + ‖∇V (τ)‖2
2

)
dτ

+ ε−1
1 ε̃(M + TM)

∫ t

0

(
‖∇W (τ)‖2

2 + ‖∇V (τ)‖2
2

)
dτ

and from (2.3), for ε2 > 0,∣∣∣ ∫ t

0
I2(t)dt

∣∣∣ ≤ C

∫ t

0
(‖w2(τ)‖2‖∇V (τ)‖2 + ‖v2(τ)‖2‖∇W (τ)‖2)

× ‖W̃ (τ)‖2

√
log

(
e +

‖∇W̃ (τ)‖2 + ‖〈x〉sW̃ (τ)‖2

‖W̃ (τ)‖2

)
dt
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(by noting log(e + x) ≤ (ε̃−1 + ε̃x)2)

≤ ε̃−1CM

∫ t

0
(‖∇V (τ)‖2 + ‖∇W (τ)‖2) ‖W̃ (τ)‖2dτ

+ ε̃CM

∫ t

0
(‖∇V (τ)‖2 + ‖∇W (τ)‖2)

(
‖∇W̃ (τ)‖2 + ‖〈x〉sW̃ (τ)‖2

)
dτ

≤ ε̃−1CMT 1/2 sup
t∈[0,T ]

‖W̃ (t)‖2

(∫ t

0

(
‖∇V (τ)‖2

2 + ‖∇W (τ)‖2
2

)
dt

)1/2

≤ ε̃−1CM2T 1/2 sup
t∈[0,T ]

‖W̃ (t)‖2
2

+ ε̃CM2

∫ t

0

(
‖∇W̃ (τ)‖2

2 + ‖〈x〉sW̃ (τ)‖2
2

)
dt. (3.21)

Gathering (3.20) and (3.21) we have by integrating (3.19) over [0, T ] that

sup
t∈[0,T ]

(
‖V (t)‖2

2 + ‖W (t)‖2
2

)
+ 2

∫ T

0

(
‖∇V (t)‖2

2 + ‖∇W (t)‖2
2

)
dt

≤ Cε1 sup
t∈[0,T ]

(
‖V (t)‖2

2 + ‖W (t)‖2
2

)
+

(
(1 + ε̃−1M + G)ε−1

1 T + ε̃M(1 + T )ε−1
1

) ∫ T

0

(
‖∇W (t)‖2

2 + ‖∇V (t)‖2
2

)
dt

+ ε̃−1CM2T 1/2 sup
t∈[0,T ]

‖W̃ (t)‖2
2 + ε̃CM2

∫ T

0

(
‖∇W̃ (t)‖2

2 + ‖〈x〉sW̃ (t)‖2
2

)
dt.

Then choosing ε1, ε2 and ε̃ small such that Cε1 < 1
2 , 2ε̃Mε−1

1 < 1
2 , ε̃CM2 <

1
32 , and taking T small enough such that

(1 + ε̃−1M + G)ε−1
1 T <

1
2
, ε̃−1CM2T 1/2 <

1
32

,

we conclude that

sup
t∈[0,T ]

(
‖V (t)‖2

2 + ‖W (t)‖2
2

)
+

∫ T

0

(
‖∇V (t)‖2

2 + ‖∇W (t)‖2
2

)
dt (3.22)

≤ 1
16

(
sup

t∈[0,T ]

(
‖W̃ (t)‖2

2 + ‖〈x〉sW̃ (t)‖2
2

)
+

∫ t

0
‖∇W̃ (t)‖2

2dt
)
.

Similarly, to (3.5) and (3.22), we have

1
2

d

dt
{‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2} + ‖|x|s∇V (t)‖2

2 + ‖|x|s∇W (t)‖2
2
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= 2s2

∫
R2

|x|2s−2(V 2 + W 2)dx

+
∫

R2

|x|2s(W (t)∇V (t) + W (t)∇W (t)) · ∇(−Δ)−1(−αw̃1(t) + g)dx

+ 4s

∫
R2

|x|2s−2W (t)V (t)x · ∇(−Δ)−1(−αw̃1(t) + g)dx

+ α

∫
R2

|x|2s(w2(t)∇V (t) + v2(t)∇W (t)) · ∇(−Δ)−1W̃ (t)dx

+ 2sα

∫
R2

|x|2s−2(w2(t)V (t) + v2(t)W (t))x · ∇(−Δ)−1W̃ (t)dx.

By a similar argument, we have
d

dt
{‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2} + 2‖|x|s∇V ‖2

2 + ‖|x|s∇W‖2
2 (3.23)

≤ 4s2
(
‖|x|s−1V (t)‖2

2 + ‖|x|s−1W (t)‖2
2

)
+ 2

(
‖|x|sV (t)‖2‖|x|s∇W (t)‖2

+ ‖|x|sW (t)‖2‖|x|s∇V (t)‖2 + 4s

∫
|x|2s−2xV (t)W (t)dx

)
×

(
‖∇(−Δ)−1w̃1(t)‖∞ + G

)
+ 2

( ∫
|x|2s|w2(t)∇V (t) + v2(t)∇W (t)|dx

+ 2s

∫
|x|2s−2|xw2(t)V + xv2(t)W (t)|dx

)
‖∇(−Δ)−1W̃ (t)‖∞

≡ J1(t) + J2(t) + J3(t).

Integrating over [0, T ] we see from (3.23) and (3.22) that for small ε1 > 0,
ε2 > 0 and ε̃ > 0,∫ T

0
J1(t)dt ≤ Cε1 sup

t∈[0,T ]

(
‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2

)
(3.24)

+ ε−1
1

∫ T

0

(
‖V (t)‖2

2 + ‖W (t)‖2
2

)
dt

≤ Cε1 sup
t∈[0,T ]

(
‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2

)
+ ε−1

1 T |||W |||2XT
,

∫ T

0
J2(t)dt ≤

∫ T

0

(
‖|x|sV (t)‖2‖|x|s∇W (t)‖2 + ‖|x|sW (t)‖2‖|x|s∇V (t)‖2

+ 8‖|x|sV (t)‖2‖|x|s−1W (t)‖2

)
(3.25)

×
(
‖w̃1(t)‖2

√
log

(
e +

‖∇w̃1(t)‖2 + ‖〈x〉sw̃1(t)‖2

‖w̃1(t)‖2

)
+ G

)
dt
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≤ Cε2 sup
t∈[0,T ]

(
‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2

)
+ Cε−1

2 ε̃−1M2T

∫ T

0

(
‖|x|s∇W (t)‖2

2 + ‖|x|s∇V (t)‖2
2

)
dt

+ CMε−1
2 ε̃

∫ T

0

(
‖|x|s∇W (t)‖2

2 + ‖|x|s∇V (t)‖2
2

)
dt,

∫ T

0
J3(t)dt ≤ Cε3 sup

t∈[0,T ]

(
‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2

)
(3.26)

+ Cε3ε̃
−1M

∫ T

0

(
‖|x|s∇W (t)‖2

2 + ‖|x|s∇V (t)‖2
2

)
dt

+ ε−1
3 T sup

t∈[0,T ]

(
‖W̃ (t)‖2

2 + ‖|x|sW̃ (t)‖2
2

)
+ ε̃

∫ T

0
‖∇W̃ (t)‖2

2dt.

Now choosing ε1, ε2, ε3, ε̃ and T properly small, it follows from (3.23), (3.24)
and (3.26) that

sup
t∈[0,T ]

(
‖|x|sV (t)‖2

2 + ‖|x|sW (t)‖2
2

)
+

∫ T

0

(
‖|x|s∇V (t)‖2

2 + ‖|x|s∇W (t)‖2
2

)
dt

≤ 1
16

(
sup

t∈[0,T ]

(
‖W̃ (t)‖2

2 + ‖|x|sW̃ (t)‖2
2

)
+

∫ t

0
‖∇W̃ (t)‖2

2dt
)
. (3.27)

Thus, combining (3.22) and (3.27), we proved the second desired estimate
(3.3). �
Proof of Theorem 1.1, concluded. By Proposition 3.1, it follows that
the solution map Φ × Ψ; w̃ �−→ (v, w) is a contraction mapping from XT to
XT . Therefore, the Banach fixed point theorem yields that there exists a
unique solution of (v, w) = (Φ(w),Ψ(w)). From the formulation (3.1), this
is a unique weak solution to (1.4). Standard parabolic regularity argument
gives that the solution becomes regular after t > 0. The continuous depen-
dence on the initial data and blowing up of solution as t → Tm if Tm < ∞
naturally follows the properties of the map (Φ,Ψ). This completes the proof
of Theorem 1.1. �

Here we give the proof of the a priori estimates.
Proof of Proposition 1.3. (1) Multiplying the equations in (1.13) by
log(1 + n(t)) and log(1 + p(t)) respectively, integrating by parts, we have

d

dt

∫
R2

(1 + n(t)) log (1 + n(t)) dx +
∫

R2

1
1 + n

|∇(n(t) + 1)|2dx
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−
∫

R2

∇ψ(t) · ∇n(t)dx +
∫

R2

∇ψ · ∇ log(1 + n)dx = 0, (3.28)

d

dt

∫
R2

(1 + p(t)) log (1 + p(t)) dx +
∫

R2

1
1 + p(t)

|∇(p(t) + 1)|2dx

+
∫

R2

∇ψ(t) · ∇p(t)dx −
∫

R2

∇ψ(t) · ∇ log(1 + p(t))dx = 0

and
d

dt

(α

2
‖∇ψ(t)‖2

2

)
−

∫
R2

∇n(t) · ∇ψ(t)dx +
∫

R2

∇p(t) · ∇ψ(t)dx (3.29)

+
∫

R2

n(t)|∇ψ(t)|2dx +
∫

R2

p(t)|∇ψ(t)|2dx = 0.

Gathering (3.28) and (3.29),

d

dt

{∫
R2

(1 + n(t)) log (1 + n(t)) dx +
∫

R2

(1 + p(t)) log (1 + p(t)) dx

+
α

2
‖∇ψ(t)‖2

2

}
+

∫
R2

(n(t) + 1)|∇(log(1 + n(t))) −∇ψ(t))|2dx

+
∫

R2

(p(t) + 1)|∇(log(1 + p(t))) + ∇ψ(t))|2dx

− 2
∫

R2

|∇ψ(t)|2dx +
∫

R2

∇ψ(t) · (∇ log(1 + n(t)) − log(1 + p(t))) = 0.

Thus, we have shown that the smooth L1 solution (n, p) satisfies

V (t) ≡
∫

R2

(1 + n(t)) log (1 + n(t)) dx +
∫

R2

(1 + p(t)) log(1 + p(t))dx

+
α

2
‖∇ψ(t)‖2

2,

d

dt
V (t) +

∫
R2

n(t)|∇(log(1 + n(t))) −∇ψ(t))|2dx

+
∫

R2

p(t)|∇(log(1 + p(t))) + ∇ψ(t))|2dx ≤ V (t) (3.30)

and hence

V (t) +
∫ t

0

[∫
R2

n(τ)|∇(log(1 + n(τ))) −∇ψ(τ))|2dx (3.31)

+
∫

R2

p(τ)|∇(log(1 + p(τ))) + ∇ψ(τ))|2dx
]
dτ ≤ CV (0)et.
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(2) The energy estimate follows from the standard argument by integra-
tion by parts. �
Proof of Proposition 1.4. By the weak maximum principle, the local
solution obtained in Theorem 1.1 is positive for all times, i.e., n(t, x) ≥ 0
and p(t, x) ≥ 0.

The case α = 1. By the a priori estimate, we have

‖n(t)‖2
2 + ‖p(t)‖2

2 + 2
∫ t

0
{‖∇n(t)‖2

2 + ‖∇p(t)‖2
2}dτ ≤ (‖n0‖2

2 + ‖p0‖2
2)e

CT .

(3.32)
Also similar to the estimate (3.15), we have

1
2

d

dt
{‖|x|sv(t)‖2

2 + ‖|x|sw(t)‖2
2} + ‖|x|s∇v(t)‖2

2 + ‖|x|s∇w(t)‖2
2

= 2s

∫
R2

|x|2s−2x(v2(t) + w2(t))dx (3.33)

− α

∫
R2

|x|2sv(t)w2(t)dx +
∫

R2

|x|2sv(t)w(t)gdx

≤ ‖|x|sv‖2
2 + ‖|x|sw‖2

2 + ‖g‖∞‖|x|sv‖2‖|x|sw(t)‖2.

Combining (3.32) and (3.33), we have the a priori estimate and the solution
cannot blow up in a finite time. This concludes the theorem. �
Remark. When α = −1, by the same argument found in the literature, it is
possible to show that the solution can be continued globally in time. In fact,
we expect the counter assumption of the blow-up holds, then the solution
can be continued globally. We refer to same analogous result for the slightly
different system in [26], [27] and [8].

4. Estimate for the local moment

We define the localized weight function. Let φ(r) be a smooth function
such that

φ(r) =

⎧⎪⎨⎪⎩
r2, if 0 ≤ r ≤ 1,

2 − (r − 2)2, if 1 ≤ r ≤ 2,

2, if 2 ≤ r.

(4.1)

Setting Φ(x) = φ(|x|), we see that |∇Φ| ≤ 2(Φ(x))1/2, ΔΦ ≤ 4 and support
of ∇Φ and ΔΦ are in B2. Here and hereafter, Br denotes the open disk
centered at the origin with radius r > 0. The following lemma is used in [34]
and [28].
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Lemma 4.1. We have for (x, y) ∈ B1 × B1,

(∇Φ(x) −∇Φ(y)) · ∇G(x − y) = − 1
π

, (4.2)

and for (x, y) ∈ (B1 × B1)c,

(∇Φ(x) −∇Φ(y)) · ∇G(x − y) ≤ 1
π

. (4.3)

Proof of Lemma 4.1. We follow the argument of [28]. It is easy to see
that (4.2) holds, since ∇Φ(x) = 2x on B1 and

∇G(x − y) = − 1
2π

x − y

|x − y|2 .

To obtain (4.3), it suffices to show that for (x, y) ∈ (B1 × B1)c,

(∇Φ(x) −∇Φ(y)) · (y − x) ≤ 2|x − y|2. (4.4)

For (x, y) ∈ B1 × (B2 \ B1), using (4.4) and{
2x · (y − x) = (|y|2 − |x|2) − |x − y|2,
2y · (y − x) = (|y|2 − |x|2) − |x + y|2 (4.5)

and noting |y| − 1 ≤ |y| − |x| ≤ |y − x|, we have

{∇Φ(x) −∇Φ(y)}) · (y − x) = {2x − 2(2 − |y|) y

|y|} · (y − x)

≤ 2(|y| + |x|)
|y| (|y| − |x|)2 −

{
2(|y| + |x|)

|y| − 2
}
|y − x|2 ≤ 2|y − x|2.

For (x, y) ∈ (R2 \ B2) × B1, noting |x − y| ≥ 1, we have

{∇Φ(x) −∇Φ(y)} · (y − x) = 2x · (y − x) ≤ 2|x||x − y|

≤ 2|x|
|x − y| |y − x|2 ≤ 2|y − x|2.

For (x, y) ∈ (B2 \ B1) × (B2 \ B1), by (4.1) and (4.5), we have

{∇Φ(x) −∇Φ(y)} · (y − x) =
{2 − |x|

|x| 2x · (y − x) − 2 − |y|
|y| 2y · (y − x)

}
≤

{2(|y| + |x|)
|x||y| |y − x|2 −

(2(|x| + |y|)
|x||y| − 2

)
|x − y|2

}
= 2|x − y|2.

For (x, y) ∈ (B2 \ B1) × (R2 \ B2), since |y| ≥ 2, we have

{∇Φ(x) −∇Φ(y)}) · (y − x) = 2(2 − |x|) x

|x| · (y − x)

≤ 2(|y| − |x|)|y − x| ≤ 2|y − x|2.
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For (x, y) ∈ (R2 \B2)× (R2 \B2), since ∇Φ(x) = ∇Φ(y) = 0, we have (4.4).
Other cases are reduced to the cases above, since

{∇Φ(x) −∇Φ(y)} · (y − x) = {∇Φ(y) −∇Φ(x)} · (x − y).

Hence, we have completed the proof of Lemma 2.1. �
The following lemma is a key tool which is essentially due to Nagai [28]

(see also Nagai-Senba-Suzuki [30]).

Lemma 4.2. Let (v, w) be a smooth nonnegative L1 solution to (1.13). Then
the inequality

d

dt

∫
R2

Φ(x)v(t, x)dx ≤ 4
∫

R2

v(t, x)dx − 1
2π

( ∫
R2

w(t, x)dx
)2

(4.6)

+ C1(‖v‖1)
∫

R2

Φ(x)v(t, x)dx + C2(‖v‖1)
( ∫

R2

Φ(x)v(t, x)dx
)1/2

holds for some positive constants C1 and C2 depending only on ‖v0‖1.

Proof of Lemma 4.2. Without loosing the generality, we may assume that
(v, w) is a smooth solution of (1.13) belonging to L1(R2). The general case
can be shown by the approximation argument and the well-posedness of the
solution in Theorem 1.1. Multiply the first equation of (1.13) by Φ(x)v(x)
and integrate by parts, we have

d

dt

∫
R2

Φ(x)v(t, x)dx =
∫

R2

v(t, x)ΔΦ(x)dx +
∫

R2

w(t, x)∇ψ(t, x) · ∇Φ(x)dx.

(4.7)
Since ΔΦ(x) ≤ 4, the first term of the right hand side is bounded by
4

∫
R2 v(t, x)dx. Let G(x−y) be the fundamental solution of −Δ in R

2. Then
ψ can be expressed as

ψ(x) =
∫

R2

G(x − y)w(t, y)dy.

Then noting that the support of ∇Φ is restricted in B̄2 \ B1 and η ≡ 1 on
this support, the second term in (4.7),∫

B2

w(t, x)∇ψ(t, x) · ∇Φ(x)dx

=
∫

B2

w(t, x)∇x

( ∫
B3

G(x − y)w(t, y)dy
)
· ∇Φ(x)dx (4.8)

+
∫

B2

w(t, x)∇x

( ∫
Bc

3

G(x − y)w(t, y)dy
)
· ∇Φ(x)dx ≡ I + II.
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By

I = − 1
2π

∫∫
B2×B3

x − y

|x − y|2 · ∇Φ(x)w(t, x)w(t, y)dxdy

(since ∇Φ(x) = 0 on B3 \ B2 ) (4.9)

= − 1
2π

∫∫
B3×B3

x − y

|x − y|2 · ∇Φ(x)w(t, x)w(t, y)dxdy

(here the each integration region is corresponding to the order of integration
variable dxdy).

Observing the symmetry properties of the integral kernel and the inte-
grant, the first term I can be expressed as

I = − 1
4π

∫∫
B3×B3

x − y

|x − y|2 · (∇Φ(x) −∇Φ(y))w(t, x)w(t, y)dxdy

= − 1
2π

∫∫
B1×B1

w(t, x)w(t, y)dxdy (4.10)

− 1
4π

∫∫
(B3\B2)2

x − y

|x − y|2 · (∇Φ(x) −∇Φ(y))w(t, x)w(t, y)dxdy.

Then it follows

I ≤ − 1
2π

( ∫
B1

w(t, x)dx
)2

+
1
2π

∫∫
(B3\B1)2

|w(t, x)||w(t, y)|dxdy (4.11)

≤ − 1
2π

( ∫
R2

w(t, x)dx
)2

+
1
π

( ∫
B1

w(t, x)dx
)( ∫

Bc
1

w(t, x)dx
)

+
1
2π

( ∫
B3\B1

|w(t, x)|dx
)( ∫

B3\B1

Φ(x)|w(t, x)|dx
)

≤ − 1
2π

( ∫
R2

w(t, x)dx
)2

+
1
π

( ∫
B1

|w(t, x)|dx
)( ∫

R2

Φ(x)|w(t, x)|dx
)

+
1
2π

( ∫
B3\B1

|w(t, x)|dx
)( ∫

B3\B1

Φ(x)|w(t, x)|dx
)

≤ − 1
2π

( ∫
R2

w(t, x)dx
)2

+
1
π

( ∫
B3

|w(t, x)|dx
)( ∫

R2

Φ(x)|w(t, x)|dx
)
.

The second term in (4.8) is estimated using η(x) ≤ 1, |∇Φ| ≤ 2Φ1/2, |x−y| ≥
1, then

II ≤ 1
2π

∫∫
B2×K\B3

1
|x − y| |∇Φ(x)||w(t, x)||w(t, y)|dxdy
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≤ 1
π

( ∫
B2

Φ(x)1/2|w(t, x)|dx
)( ∫

Bc
3

|w(t, y)|dy
)

(4.12)

(by using Hölder’s inequality)

≤ 1
π

( ∫
B2

Φ(x)|w(t, x)|dx
)1/2( ∫

B2

|w(t, y)|dy
)1/2( ∫

Bc
3

|w(t, y)|dy
)
.

Hence, we obtain

I + II ≤ − 1
2π

( ∫
R2

w(t, x)dx
)2

+
1
π

( ∫
B3

|w(t, x)|dx
)( ∫

R2

Φ(x)|w(t, x)|dx
)

(4.13)

+
1
π

( ∫
B3

|w(t, y)|dy
)3/2( ∫

B2

Φ(x)|w(t, x)|dx
)1/2

.

Now we note that |w(t, x)| ≤ |n(t, x)|+|p(t, x)| = v(t, x) by the the positivity
of n(x) and p(x). Therefore, we obtain the desired estimate;

d

dt

∫
R2

Φ(x)v(t, x)dx ≤ 4
∫

R2

v(t, x)dx − 1
2π

( ∫
R2

w(t, x)dx
)2

+ C1

( ∫
B3

v(t, x)dx
)( ∫

R2

Φ(x)v(t, x)dx
)

(4.14)

+ C2

( ∫
B3

v(t, x)dx
)3/2( ∫

B2

Φ(x)v(t, x)dx
)1/2

.

5. Proof of blow-up

In this section, we give a proof of the blow-up. We first show that some
restricted initial data develops finite time blow-up.

Proposition 5.1. Let the initial data v0 = n0 + p0 and w0 = n0 − p0 in
L1(R2) ∩ L2(R2) and n0, p0 ≥ 0 everywhere and satisfy

η ≡ 1
2π

(( ∫
R2

w0dx
)2

− 8π

∫
R2

v0dx
)

> 0. (5.1)

Define an auxiliary function H(f) = −η + C1f + C2f
1/2, where C1, C2 > 0

are the constants in Lemma 4.2. Then if we assume that
∫
Br1

Φ(x)(n0(x) +
p0(x))dx is small enough so that

H
( ∫

R2

Φ(x)v0(x)dx
)

< 0, (5.2)

then the corresponding solution of (1.13) blows up in a finite time.
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Proof of Proposition 5.1. Assuming the corresponding solution(v, w) to
(1.13) exists globally, we derive a contradiction. By the local existence result,
we may assume that the solution is smooth and everywhere positive.

By the assumption on the initial data, we see that for η > 0,

H
( ∫

R2

Φ(x)v0(x)dx
)

< 0.

Let

Tb = sup
{

t : for all s ∈ (0, t),
∫

R2

Φ(x)v(s, x)dx ≤
∫

R2

Φ(x)v0(x)dx
}

.

We have Tb > 0. If Tb < ∞, then we have∫
R2

Φ(x)v(Tb, x)dx =
∫

R2

Φ(x)v0(x)dx

by the definition of Tb. From Lemma 4.2,
d

dt

∫
R2

Φ(x)v(t, x)dx
∣∣∣
t=Tb

≤ H
( ∫

R2

Φ(x)v(Tb, x)dx
)

= H
( ∫

R2

Φ(x)v0(x)dx
)

< 0.

Hence, it follows that there exists T ′ > Tb such that for all s ∈ [Tb, T
′),∫

R2

Φ(x)v(s, x)dx ≤
∫

R2

Φ(x)v0(x)dx. (5.3)

This contradicts the definition of Tb and hence Tb = ∞. Since H(f) is strictly
increasing function of f and H(0) < 0, there exists a unique zero point, α > 0
and H(f) < 0 for 0 < f < α. Now by assumption again, we may assume
that ∫

R2

Φ(x)v0(x)dx ≤ 1
2
α.

Then by (5.3), we have for all existence time t ∈ (0,∞),
d

dt

∫
R2

Φ(x)v(t, x)dx ≤ H
( ∫

R2

Φ(x)v(t, x)dx
)
≤ H(

α

2
) < 0. (5.4)

Which conclude that∫
R2

Φ(x)v(t, x)dx ≤ H(α/2)t +
∫

R2

Φ(x)v0(x)dx

and the left hand side meets zero in a finite time which contradicts the left
hand side is nonnegative definite. Therefore, in view of Theorem 1.1, the
solution blows up in a finite time. �

Now we are ready for proving Theorem 1.5.
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Proof of Theorem 1.5. It is clear that the following scaling leaves the
system invariant; for λ > 0,

nλ(t, x) = λ2n(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx). (5.5)

This scaling also preserves the L1(R2) norm.
Let v(x) = v(0, x) = n0(x) + p(x) ∈ L1 and ε > 0 be arbitrary fixed

constant. Then one can choose R > 0 sufficiently large such that∫
|x|>R

v(x)dx <
ε

4
.

Then we see that for large λ > R and vλ(x) = λ2v(λx),∫
R2

Φ(x)vλ(x)dx ≤
∫

Bλ−1R(0)
|x|2vλ(x)dx +

∫
Bλ−1R(0)c

Φ(x)vλ(x)dx

= λ−2

∫
BR(0)

|x|2v(x)dx +
∫

BR(0)c

Φ(x)v(x)dx (5.6)

≤ λ−2

∫
BR(0)

|x|2v(x)dx + 2
∫

BR(0)c

v(x)dx

≤ λ−2R2

∫
BR(0)

v(x)dx +
ε

2
.

Thus, by choosing λ > 0 sufficiently large, we have∫
R2

Φ(x)vλ(x)dx < ε.

We choose ε sufficiently small such that vλ(x) satisfies the condition (5.2)
and for fixed λ. Noting that the scaling conserves the L1 norm, the condition
(5.1) still holds for the scaled solutions.

Then by Proposition 5.1, the solution does not exist for all time. This
completes the proof of theorem. �
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