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For a�ne switched systems, the existence of multiple equilibria is related to subsystems owing to the a�ne terms, which makes
asymptotic and �nite-time stability analysis nontrivial. In this paper, the problems of �nite-time boundedness (FTB) analysis and
stabilization are addressed for a�ne switched systems, and several de�nitions and su�cient conditions are proposed to study FTB
and�∞ performance. At �rst, the de�nition of FTB for a�ne switched systems is improved concerning the a�ne terms andmultiple
equilibria. Based on the FTB de�nition, su�cient conditions ensuring �nite-time boundedness for a�ne switched systems under
a prespeci�ed state boundary are given. 
en the results are extended to solve �∞ �nite-time boundedness problem, in which
the�∞ controllers are designed to guarantee the �nite-time boundedness of a�ne switched system with�∞ performance. In our
investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several
numerical examples are given to illustrate the eectiveness of the proposed results.

1. Introduction

Switched systems are distinctive subclass of hybrid sys-
tems. 
ey are composed of a family of continuous-time
or discrete-time subsystems with a criterion that rules the
switching among them. 
is switching rule can be clas-
si�ed as time-dependent, state-dependent, or time-state-
dependent [1]. Since many physical processes possess switch-
ing nature, and many real-world applications resort to
switching strategy to improve the control performance, the
theory and application of switched systems have received a
great attention during the recent decades. For more details
on the recent results about the basic problems in stability
and stabilization for switched systems, readers are referred
to surveys [2–4] and books [1, 5] and the references cited
therein.


e issue of stability analysis and stabilization is an
important topic for switched dynamical systems [6–10]. Find-
ing su�cient conditions ensuring the Lyapunov asymptotic
stability dealing with in�nite time interval has been themajor
concern for switched systems. Numerous published results
discussed the asymptotic stability analysis and stabilization

employing dierent variations of Lyapunov function [7, 11,
12]. Average dwell-time approach [13, 14] and Lie-algebraic
condition technique [15, 16] are eective tools for analysis of
switched systems. On the contrary, the �nite-time behavior
of dynamical systems is also of interest in many practical
applications. It concerns that the states do not exceed a
certain bound during a �xed time interval, e.g., to avoid
saturations or excitation. 
e theory of �nite-time stability
(FTS) and �nite-time boundedness (FTB) focuses on the
transient response of dynamical systems over a �nite-time
interval, while asymptotic behavior is for in�nite time. In the
survey of recent development of this innovative theory, some
necessary and su�cient conditions for �nite-time stability
and stabilization of continuous-time systems or discrete-
time systems have been provided in [17, 18]. Based upon it,
necessary and su�cient conditions for �nite-time stability of
systems with impulsive eects were obtained in [19, 20]. 
e
authors [21, 22] applied FTS/FTB conceptions to switched
systems and compared the conservativeness among dier-
ent conditions. In [23], the mixed �∞/�nite-time stability
control problem was discussed. For quadratic input-output
�nite-time stability with an �∞ bound, [23] provided a
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necessary and su�cient condition. 
en the method was
extended to robust �∞ controller and �lter design for
switched system with exogenous noise [24, 25]. It should
be noted that �nite-time stability and Lyapunov asymptotic
stability are independent concepts: a Lyapunov asymptotic
stable system may not ful�ll FTS/FTB criteria since the
transient response of a system may exceed the bound, and
vice versa [26]. In many practical applications, switching
is likely to occur in some short-time intervals, whereas for
remaining long time no switching occurs. Since Lyapunov
stability concerns with in�nite time, it may not be in�uenced
by such short-time switching. However, the boundedness of
state may be aected by the switching. Hence, FTB criteria
are needed to be considered for designing controller and
switching laws during such applications.

Most of the existing literatures on stability issues of
switched systems are based on the premise that all subsystems
share a common equilibrium (typically the origin). On the
other hand, for a�ne switched system, subsystems have
dierent equilibria, so complex and interesting phenomena
emerge. Almost all the practical hybrid systems can be
modeled as a�ne switched systems.Many results like [27–30]
analyzed interesting behaviors similar to those of asymptot-
ically stable systems near an equilibrium for a�ne switched
systems and depicted their real-world applications. Many
extensions of the conventional stability concepts have been
obtained for a�ne switched systems. S-Procedure method
with the extensional state vector has been proposed in
[31, 32] to analyze the asymptotic stability for continuous
a�ne switched system. 
e relative results were extended to
discrete a�ne switched systems in [33]. In [34], a method
for designing switching rules driving the state of a�ne
switched system to a desired equilibrium was investigated.
Almost all the existing literatures on stability analysis of
a�ne switched systems focused on the asymptotic stability.
However, the boundedness of state for a�ne switched systems
under constrained dwell-time switching is also of signi�cant
interest for a�ne switched systems. In FTB analysis, we also
need to deal with a�ne terms leading to multiple equilibria
for a�ne switched systems, but the investigation of this
problem lacks researchers’ interest previously. Potential of
a�ne switched systems theory and importance of �nite-
time transient behavior from the perspective of real-world
applications are the major motivations for this investigation
presented in this paper.


e main objective in this paper is to �nd su�cient
conditions ensuring the FTB of a�ne switched systems by
switching signal and feedback controllers design and to drive
the state of a�ne switched system to the prescribed neighbor-
hood of a desired equilibrium during a �nite-time interval.
Taking into account the in�uence of a�ne terms on FTB for
a�ne switched system, we propose an innovative FTB con-
cept. Based on this de�nition, su�cient conditions ensuring
the a�ne switched system �nite-time bounded are proposed.
Speci�cally, with the prespeci�ed state boundary, average
dwell time and state-feedback controllers for each subsystem
are determined to guarantee the �nite-time boundedness.

e paper [22] points out that the more information about
switching signal we know, the less conservative results can

be derived. We extend this idea to switched a�ne systems
to further reduce the conservatism. Classifying subsystems
into asymptotically stable and unstable systems, we get the
less conservative results of �nite-time boundedness for a�ne
switched system with the help of additional information of
switching signal. 
en, results are extended to solve the FTB
problem for�∞ controller design.


e rest of this paper is organized as follows. In Section 2,
de�nitions of �nite-time boundedness and �∞ �nite-time
boundedness for a�ne switched system are revisited. Based
on these de�nitions, �nite-time boundedness analysis and
�nite-time stabilization are presented in Section 3. 
en in
presence of exogenous signals, �∞ �nite-time boundedness
and the controllers design are investigated in Section 4. In
Section 5, several numerical examples are presented to vali-
date the proposed results. Conclusions are given in Section 6.

2. Preliminaries and Problem Formulation

For our investigation, we consider continuous-time a�ne
switched system described as

�̇ (�) = � �� (�) + ��	 (�) + 
�, � (0) = �0
� (�) = ��� (�) (1)

where �(�) ∈ R
� is the system state, 	(�) ∈ R

� is the control
input, �(�) ∈ R

� is the measurement output, � �, ��, and ��
are systemmatriceswith appropriate dimensions, constants 
�
are a�ne terms, and �(�) : R+ �→ � = {1, ⋅ ⋅ ⋅ , �} is switching
signal. For notational simplicity, we use � in place of �(�).

Matrix variables � �, ��, and 
� give rise to an equilibrium
(stable or unstable) for each subsystem; assuming all � � to be
nonsingular, we consider a given reference �� as the required
equilibrium for the whole system, referred to as switched
equilibrium. Without loss of generality, it is assumed that
the desirable equilibrium is dierent from all the equilibria
of subsystems. Now although the asymptotic stability of
a�ne switched system may be achieved by other types of
switching strategy such asmin-switching and slidingmethod,
the state will not exactly converge to �� under dwell-time
constrained switching. 
e reason is that there always exist
time interval (dwell time is always greater than zero) in which
state must diverge from ��. In our FTB investigation, we
provide solution for boundedness of error state under dwell-
time switching, which depicts the importance and innovation
of our approach.

Here �rst we will extend the FTS and FTB concepts for
a�ne switched systems keeping in view prescribed equilib-
rium ��. In absence of control input, system (1) can be stated
as

�̇ (�) = � �� (�) + 
�, � (0) = �0 (2)

De�nition 1. Autonomous a�ne switched system (2) is said
to be �nite-time bounded with respect to (��, �	, �, ��, �	, �)
if the following inequalities hold:
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(�0 − ��)
 �� (�0 − ��) ≤ �2�
�

max
�	�max ≤ �2	

� = 0
(� (�) − ��)
 �� (� (�) − ��) ≤ �2 0 < � ≤ �

(3)

where �max = argmax�=1,⋅⋅⋅ ,�{�
� �	��}, �� = � ��� +
�, 0 ≤ �� <�, �	 ≥ 0, �� > 0, �	 > 0, and � ∈ R
+.

Remark 2. Given equilibrium �� and system (2), its tracking
error system can be written as

̇� (�) = � �� (�) + �� (4)

where �(�) = �(�) − ��, �� = 
� + � ���. According to
De�nition 1, we can conclude that a�ne switched system (2)
is �nite-time bounded with respect to (��, �	, �, ��, �	, �) if�(�)
���(�) ≤ �2whenever �
0���0 ≤ �2� and �
max

�	�max ≤ �2	.

e FTB criteria of a�ne switched systems ensure the state
tracking the desired equilibrium �� within the boundary �.
In other words, it guarantees the error state �(�) tracking the
origin in �nite-time interval. 
erefore, our study about FTB
of a�ne switched systems can be turned into analyzing its
corresponding tracking error system. Moreover, it is worth
noting that FTB theory for general switched systems is related
to initial state �0 [35, 36]; whereas for a�ne switched systems,
we are concerned with �0 as well as the desired equilibrium�� and a�ne terms 
�. 
us, in the De�nition 1, the premise
constraint conditions are extended to both initial state �0 and�� to analyze the FTB of a�ne switched systems, where �� is
related to the desired equilibrium �� and a�ne terms 
�.
Remark 3. With the state-feedback controller 	(�) = ���(�),� ∈ �, a�ne switched system (1) can be rewritten into the
following closed-loop system:

̇� (�) = ��� (�) + 
�, � (0) = �0 (5)

where �� = � � + ���� and the FTB analysis method can be
used directly. Similar to the signi�cant impact of switching
laws on asymptotic stability, the switching signals aect the
�nite-time boundedness of a�ne switched systems property
signi�cantly. 
erefore, both switching signals and robust
controllers should be designed during the FTB analysis of
a�ne switched systems.

On the other hand, external disturbances are inevitable to
dynamical systems. We can state a�ne switched system with
time-varying disturbance �(�) as

�̇ (�) = � �� (�) + ��	 (�) +  �� (�) + 
�, � (0) = �0 (6)

�(�) is assumed to be energy-bounded and hence for some

scalar ! > 0 it satis�es the inequality ∫
0 �
(�)�(�)!� ≤ !2.
For simplifying FTB analysis, following De�nition 1 we can
transform a�ne switched system (6) to its error tracking
switched system as

̇� (�) = � �� (�) + ��	 (�) +  �� (�) + �� , � (0) = �0
# (�) = ��� (�) + $1�	 (�) + $2�� (�) (7)

where �(�) = �(�) − ��, �� = � ��� + 
�, �� is the desirable
reference point, #(�) ∈ R

� is the controlled output, and
the switched equilibrium of system is moved to the origin
accordingly. Considering state-feedback controller 	(�) =���(�), we derive the following closed-loop switched system:

̇� (�) = ��� (�) +  �� (�) + ��, � (0) = �0
# (�) = ��� (�) + $2�� (�)

(8)

where �� = � � + ����, �� = �� + $1���. Now we are able to
state the following de�nition.

De�nition 4. For a�ne switched system (7), considering
state-feedback controller 	(�) = ���(�) andH∞ performance
index % > 0, if the following two conditions are satis�ed:

(1) the closed-loop error tracking switched system (8) is
�nite-time bounded;

(2) under zero-initial condition, the controlled output #
satis�es the inequality

∫

0
#
 (�) # (�) !� < %2∫


0
�̃
 (�) �̃ (�) !�

< %2∫

0
(�
 (�) � (�) + �


max
�max) !�

(9)

where �̃(�) = [�
(�) �
� ]
, �max = argmax�=1,⋅⋅⋅ ,�{�
� �	��},
then 	(�) is called ‘�nite-time�∞ controller’.

Assuming 	(�) = 0, �� = 0 system (7) is expressed as

̇� (�) = � �� (�) +  �� (�) , � (0) = �0
# (�) = ��� (�) + $2�� (�) (10)

Now De�nition 4 can be reduced to the following form.
Switched system (10) is said to beH∞ �nite-time bounded

with performance index %, if
(1) the error tracking switched system (10) is FTB;

(2) under zero-initial condition, the controlled output #
satis�es

∫

0
#
 (�) # (�) !� < %2 ∫


0
�
 (�) � (�) !� (11)

Based upon the above preliminaries we will focus on
how to �nd su�cient conditions to ensure the �nite-time
boundedness of a�ne switched systems and address the�∞ analysis and synthesis of piecewise linear state-feedback
controllers resorting to LMI-based algorithms. 
e main
problems we concern in this paper can be stated as follows.

Problem 5 (�nite-time boundedness for a�ne switched
systems). Given a�ne switched system (2), �nd su�cient
conditions ensuring the �nite-time boundednesswith respect
to (��, �	, �, ��, �	, �).



4 Mathematical Problems in Engineering

Problem 6 (state-feedback stabilization under FTB). Given
a�ne switched system (1), �nd set of static state-feedback
controllers 	(�) = ���(�) to ensure that the closed-
loop system (5) is �nite-time bounded with respect to(��, �	, �, ��, �	, �).
Problem 7 (�∞ performance and controller design). Given
a�ne switched system (8), analyze the �∞ performance
and design set of �∞ controllers de�ned in De�nition 4
to ensure the �nite-time boundedness with respect to(��, �	, �, ��, �	, �) and reduce the eect of the exogenous
signal � and �� on the controlled output # to a prescribed level%.
3. Finite-Time Boundedness and

State-Feedback Stabilization

In this section, Problems 5 and 6 are taken into consideration.
Our main aim is to �nd su�cient conditions and state-
feedback controllers to ensure the �nite-time boundedness
of a�ne switched system in the form of (2). For a �nite-
time interval [0, �], we consider �nite switchings �[0,
]. Each
subsystem has an (stable or unstable) equilibrium point ��� =−�−1� 
�. Regarding reference point �� as an equilibrium point
for the whole system called switched equilibrium and taking
into account average dwell time, we will derive su�cient
conditions ensuring �nite-time boundedness.

�eorem 8. A
ne switched system (2) is �nite-time bounded
with respect to (��, �	, �, ��, �	, �), if there exist positive
de�nite matrices 2�, scalars 3, 4 > 0, 5 ≥ 0, such that

3�� < 2� < 4�� (12a)

[�
� 2� + 2�� � 2�2� 0] < 5 [
�� 0
0 �	] (12b)

�(�/)
+�[0,�]ln(�/) (4�2� + �5�2	) − 3�2 < 0 (12c)

Proof. Consider the error tracking switched system (4), let

R = dig(��, �	), ;� = [�
(�) �
� ]
. We choose piecewise

Lyapunov function ?�(�) = �
(�)2��(�). From condition (12b)
we have

?̇� (�) = ̇�
 (�) 2�� (�) + �
 (�) 2� ̇� (�)
= [� (�)� ]
 [�
� 2� + 2�� � 2�2� 0] [

� (�)
�� ] < 5;



� R;�

(13)

Employing (12a) we derive

?̇� (�) < 53−1 (�
 (�) 2�� (�) + 3�
� �	��)
≤ 53−1?� + 5�2	

(14)

Let ∀� > 0, �0 < �1 < ⋅ ⋅ ⋅ < �� be the switching instant
of switched system. For overall system we can write ?(�) =∑�∈� B�?�(�), B� ∈ {0, 1}. Now from inequality (14),

? (�) < C (�, ��) ? (�+� ) + 5�2	 ∫�
��
C (�, D) !D (15)

where C(�, D) = exp(53−1(� − D)) < exp(53−1�), � denotes the
�nite-time interval. Accordingly, the Lyapunov inequality in
single step satis�es

? (��+1) < C (��+1, ��) ? (�+� )? (�−� )? (�
−
� )

+ 5�2	 ∫��+1
��

C (��+1, D) !D
(16)

Suppose system switches frommode � to E at some instant ��;
then from condition (12a),

? (�+� )? (�−� ) =
?� (��)?� (��) =

�
 (��) 2�� (��)�
 (��) 2�� (��)
< 4�
 (��) ��� (��)3�
 (��) ��� (��) =

43
(17)

It is evident that 4/3 > 1 and following (16) iteratively we can
derive easily that

? (��) < (43)
�[0,�] [C (��, �0) ? (�0)

+ �∑
�=1
(43)
−� 5�2	C (��, ��) ∫����−1 C (��, D) !D]

(18)

Applying (15) and (18) we deduce

?(�) < (43)
�[0,�] [C (�, �0) ? (�0)

+ �∑
�=1
(43)
−� 5�2	C (�, ��) ∫����−1 C (��, D) !D]

+ 5�2	 ∫�
��
C (�, D) !D < (43)

�[0,�] �(�/)
? (�0)
+ �∑
�=1
(43)
�[0,�]−� 5�2	 ∫��

��−1
C (�, D) !D + 5�2	�(�/)
 (�

− ��) < (43)
�[0,�] �(�/)
? (�0)

+ 5�2	�(�/)
 [ �∑
�=1
(43)
�[0,�] (�� − ��−1) + (� − ��)]

< (43)
�[0,�] �(�/)
?(�0) + �(43)

�[0,�] 5�2	�(�/)


(19)

On the other hand, from condition (12a), we have

? (�) = �
 (�) 2�� (�) > 3�
 (�) ��� (�) (20)
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Using the fact that ?(�0) = �
02��0 < 4�
0���0 ≤ 4�2� , in order
to ensure the �nite-time boundedness of switched system

(4), i.e., �
(�)���(�) ≤ �2, the following condition should be
satis�ed:

3�
 (�) ��� (�) < (43)
�[0,�] �(�/)
4�2�

+ �(43)
�[0,�] 5�2	�(�/)
 < 3�2

(21)

which can be rewritten as condition (12c). 
erefore, we get(�(�) − ��)
��(�(�) − ��) ≤ �2 and we conclude that the a�ne
switched system (2) is �nite-time bounded which completes
the proof.

Remark 9. When other parameters are �xed, condition (12c)
can be described by average dwell time as [37]

D� ≥ D∗� = � ln
43 (ln 3�24�2� + �5�2	 −

53�)
−1

(22)

where D∗� = �/�[0,
]. In other words, the average dwell timeD� should be chosen large enough to ensure that inequality
(22) is satis�ed, which is necessary to guarantee the �nite-
time boundedness of a�ne switched system (2). Moreover,
assuming �� = �, from (12a) and (19) we deduce

√3 ‖� (�)‖ < √�
 (�) 2�� (�)
< √(43)

�[0,�] �(�/)
4 PPPP� (�0)PPPP
+ √�(43)

�[0,�] 5�2	�(�/)

(23)

When � �→ ∞, � �→ ∞ and the term√�(4/3)�[0,�]5�2	�(�/)
 on the right side of (23) will become

in�nite, which explains that the a�ne switched system (2) is
not ultimately bounded, which illustrates FTB and ultimately
boundedness are independent concepts.

Remark 10. Once the state bound � is not ascertained, the
minimum value �min is of interest, which can be found

through optimization problem min(4/3)�[0,�]�(�/)
(4�2� +�5�2	)3−1 subject to (12a) and (12b). If we �x the parameter5 and let 3 = 1, 4 = B3, the optimization problem becomes

min
�≥1

B
Q.�. �� < 2� < B��

[�
� 2� + 2�� � 2�2� 0] < 5 [
�� 0
0 �	]

(24)


en �min = √B�[0,�]��
(B�2� + �5�2	) can be derived with the

optimized value B.
It is evident that smaller value of � gives rise to less

conservative FTB conditions. In eorem 8, the parameter 5
indicates the asymptotic stability property of each subsystem.
It is well known that when 5 = 0 in condition (12b), this
condition can be regarded as Lyapunov function condition
which ensures each subsystem to be asymptotic stable;
whereas when 5 > 0, the condition that ?̇(�)must be negative
is relaxed in FTB sense, and ?̇(�) just should be no greater

than ?̇�(�) < 53−1?� + 5�2	 to guarantee the boundedness
of state in �nite-time interval [0, �]. 
e parameter 5 ≥ 0
in condition (12b) covers both the asymptotic stable and
unstable subsystems. Now let subsystems �1, ⋅ ⋅ ⋅ , �� be
asymptotic stable and ��+1, ⋅ ⋅ ⋅ , �� are unstable, and �−,�+ denote the total activation time for stable and unstable
subsystems during [0, �]. 
en the less conservative results
about FTB of a�ne switched system can be obtained in the
following corollary.

Corollary 11. Switched system (2) is �nite-time bounded
(FTB) with respect to (��, �	, �, ��, �	, �), if there exist a set of
positive de�nite symmetric matrices 2�, � ∈ �, scalars 3 > 0,4 > 0, and 5+ ≥ 0 such that the following conditions are
satis�ed:

3�� < 2� < 4�� (25a)

[�
� 2� + 2�� � 2�2� 0] ≤
{{{{{{{{{

0 � ≤ W
5+ [
[
�� 0
0 �	]]

� > W (25b)

�(�+/)
++�[0,�] ln(�/) (4�2� + �+5+�2	) − 3�2 < 0 (25c)

Proof. Consider the error tracking switched system (4), let

R = dig(��, �	), ;� = [�
(�) �
� ]
, � ∈ �; we choose

piecewise Lyapunov function ?�(�) = �
(�)2��(�).
From condition (25b), we get

?̇� (�) = ̇�
 (�) 2�� (�) + �
 (�) 2� ̇� (�)
= [� (�)�� ]


 [�
� 2� + 2�� � 2�2� 0] [
� (�)
�� ]

< {{{
0 � ≤ W
5+;
� R;� � > W ⇒̂

?̇� (�) < {{{{{
0 � ≤ W
5+3 ?� + 5+�2	 � > W

(26)
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Let ∀� > 0, �0 < ⋅ ⋅ ⋅ < �� be the switching instant of switched
system, and ?(�) = ∑�∈� B�?�(�), B� ∈ {0, 1}. From inequalities
(25a) and (26), we have

? (�)

< {{{{{
43−1? (�−� ) � (�+� ) ≤ W
43−1C (�, ��) ? (�−� ) + 5+�2	 ∫��� C (�, D) !D � (�+� ) > W

(27)

where C(�, D) = exp(5+3−1(�−D)) < exp(5+3−1�+). Following
(27) iteratively

? (�) < (43)
�[0,�] �(�+/)
+? (�0)

+ �+ (43)
�[0,�] 5+�2	�(�+/)
+

(28)

By the same proof line in 
eorem 8, we know that in order
to ensure the �nite-time boundedness of switched system

(4), i.e., �
(�)���(�) ≤ �2, the following condition should be
satis�ed:

3�
 (�) ��� (�) < ? (�)
< (43)

�[0,�] �(�+/)
+? (�0)
+ �+ (43)

�[0,�] 5+�2	�(�+/)
+ < 3�2
(29)

Since ?(�0) = �
02��0 < 4�
0���0 ≤ 4�2� , we have
(43)
�[0,�] �(�+/)
+4�2� + �+ (43)

�[0,�] 5+�2	�(�+/)
+
< 3�2

(30)

which can be rewritten as (25c). Hence, (�(�) − ��)
��(�(�) −��) ≤ �2 and proof is complete.

Remark 12. Similar to the optimization problem of state
bound �described inRemark 10, the optimal value �min can be

found according to min(4/3)�[0,�]��+−1
+ (4�2� + �+5+�2	)3−1
subject to (25a) and (25b). We �x the parameter 5+ and let3 = 1, 4 = B3, the optimization problem becomes

min
�≥1

B
Q.�. �� < 2� < B��

[�
� 2� + 2�� � 2�2� 0] < 5+ [
�� 0
0 �	]

(31)


en the minimum �min = √B�[0,�]��+
+(B�2� + �+5+�2	) can
be derived with the optimized value B. Since �+ ≤ �,
comparing the value of the optimal state bound �min in

eorem 8 and Corollary 11, we know that, by classifying
subsystems into asymptotically stable and unstable, the FTB
conditions derived in Corollary 11 are less conservative than
that ineorem 8.

Constituting state-feedback controller of the form 	(�) =���(�), a�ne switched system (1) can be transformed into the
closed-loop form of (5) and De�nition 1 of FTB can be used
directly. Nowwewill consider problem-2 to provide su�cient
conditions for �nite-time state-feedback stabilization.

�eorem 13. For a
ne switched system (1) holding De�ni-
tion 1 , if there exist state-feedback controllers 	(�) = ���(�),
positive de�nite matrices `�, matrices a�, and scalars B ≥ 1,5 ≥ 0 such that

[−`� `�
∗ −�−1� ] < 0,

[−B�� �
∗ −`�] < 0

(32a)

[� �`� + `��
� + ��a� + a
� �
� − 5`� �
� −5�	] < 0 (32b)

��
+�[0,�] ln � (B�2� + �5�2	) − �2 < 0 (32c)

then closed-loop system (5) is FTB with respect to (��, �	, �, ��,�	, �) with�� = a�`−1� .
Proof. Assume �� is the switched equilibrium point of a�ne
switched system (1). Applying coordinate transformation we
can get its corresponding error tracking switched system as

̇� (�) = � �� (�) + ��	 (�) + �� (33)

where �� = � ��� + 
� and �(�) = �(�) − ��. 
en under the
state-feedback controllers 	(�) = ���(�), and the closed-loop
error system can be written as

̇� (�) = ��� (�) + �� (34)

where �� = � � + ����. From Remark 2, we know that FTB
analysis and �nite-time control can be realized employing
tracking error system. Hence, we consider the closed-loop
error system (34) here to design the controllers stabilizing the
system (1) in �nite-time interval.

Let R = dig(��, �	), ;� = [�
(�) �
� ]
, we choose

piecewise Lyapunov function ?�(�) = �
(�)2��(�) for each
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subsystem; then the derivative of ?� along the solution of
system (34) is described as

?̇� (�) = ̇�
 (�) 2�� (�) + �
 (�) 2� ̇� (�) = [� (�)�� ]



⋅ [�
� 2� + 2��� 2�2� 0][
� (�)
�� ] = [

� (�)
�� ]



⋅ [�
� 2� + �
� �
� 2� + 2�� � + 2����� 2�2� 0] [
� (�)
�� ]

(35)

Letting `� = 2−1� , pre- and postmultiplying (32b) by
diag(2�, �) we get
[2�� � + �
� 2� + 2����� + �
� �
� 2� − 52� 2�2� −5�	] < 0 (36)

Due to condition (32a) and Schur’s complement formula [38],
we deduce

[−`� `�
∗ −�−1� ] < 0 ⇒̂

�� < 2�,
[−B�� �
∗ −`�] < 0 ⇒̂

2� < B��

(37)

Now using (36), from (35) we can derive

?̇� (�) < ;
� [52� 0
0 5�	] ;� = 5�


 (�) 2�� (�) + 5�
� �	��
< 5?� + 5�2	

(38)

By the same proof guidelines of 
eorem 8, FTB condi-
tions (32a) and (32c) of closed-loop error system (34) can be

derived. Accordingly we get (�(�) − ��)
��(�(�) − ��) ≤ �2,
which proves that the a�ne switched system (1) is �nite-time
bounded under state-feedback controllers 	(�) = ���(�).
4. �∞ Performance Analysis and Controller

Design of Affine Switched Systems

Based upon FTB investigation of previous section, our main
aim now is to design a set of�∞ controllers to solve Problem
7. As stated in Remark 2, �nite-time �∞ control can be
realized through tracking error system, and this will be the
main focus in this section. For the sake of simplicity, we �rstly
consider the autonomous error switched system in the form
of (10) assuming that �� = 0, 	(t) = 0 and the corresponding
theorem is stated as follows; then wewill show how to remove
the assumption and extend the results to the general a�ne
switched system with exogenous signal input.

�eorem 14. Given autonomous robust switched system (10),
if there exist positive de�nite matrices 2�, scalars 3 > 0, 4 > 0,
and 5 ≥ 0 such that

3�� < 2� < 4�� (39a)

[�
� 2� + 2�� � + �
� �� 2� � + �
� $2�∗ −%2� + $
2�$2�]

< 5 [�� 0
∗ �	]

(39b)

�(�/)
+�[0,�]ln(�/) (4�2� + �5�2	 + %2!2) − 3�2 < 0 (39c)

then this system is �nite-time bounded with H∞ performance% with respect to (��, �	, �, ��, �	, �).
Proof. LetR = dig(��, �	), ;� = [�
(�) �
(�)]
, and we opt

Lyapunov function ?�(�) = �
(�)2��(�) and
?̇� (�) = ̇�
 (�) 2�e (�) + �
 (�) 2� ̇� (�)

= [� (�)� (�)]

 [�
� 2� + 2�� � 2� �∗ 0 ] [� (�)� (�)]

(40)

Since [ ��� �� ��� �2�∗ ��2��2�
] = [ �����2� ] [�� $2�] ≥ 0, condition (39b)

implies that

[�
� 2� + 2�� � 2� �∗ −%2�] < 5 [
�� 0
∗ �	] (41)

From (40) and (41), ?̇�(�) < 5�
(�)���(�) + 5�2	 + %2�
(�)�(�)
and together with condition (39a), we get

?̇� (�) < 53�
 (�) 2�� (�) + 5�2	 + %2�
 (�) � (�)
= 53?� + 5�2	 + %2�
 (�) � (�)

(42)

Let ∀� > 0, �0 < ⋅ ⋅ ⋅ < �� be the switching instants, and ?(�) =∑�∈� B�?�(�), B� ∈ {0, 1}, where B� is the indication function for
activated subsystem. From inequality (42), we have

? (�) < C (�, ��) ? (�+� )
+ ∫�
��
C (�, D) [5�2	 + %2�
 (D) � (D)] !D (43)

whereC(�, D) = exp((5/3)(�−D)) < exp((%/3)�). Accordingly,
the Lyapunov inequality in single step satis�es

? (��+1)
< C (��+1, ��) ? (�+� )? (�−� )? (�

−
�)

+ ∫��+1
��

C (��+1, D) [5�2	 + %2�
 (D) � (D)] !D
(44)
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Let system switch from mode � to E at instant ��(0 < �� < �);
then condition (39a) implies that

?(�+� )? (�−� ) =
?� (��)?� (��) =

�
 (��) 2�� (��)�
 (��) 2�� (��)
< 4�
 (��) ��� (��)3�
 (��) ��� (��) =

43
(45)

Noting that 4/3 > 1, following relation (44) iteratively, we
can derive

? (��) < (43)
�[0,�] {C (��, �0) ? (�0)

+ �∑
�=1
(43)
−� C (��, ��)

⋅ ∫��
��−1
C (��, D) [5�2	 + %2�
 (D) � (D)] !D}

(46)

Applying (43) and (46), the following inequality is obtained:

? (�) < (43)
�[0,�] {C (�, �0) ? (�0)

+ �∑
�=1
(43)
−� C (�, ��)

⋅ ∫��
��−1
C (��, D) [5�2	 + %2�
 (D) � (D)] !D}

+ ∫�
��
C (�, D) [5�2	 + %2�
 (D) � (D)] !D

< (43)
�[0,�] �(�/)
? (�0) + �∑

�=1
(43)
�[0,�]−�

⋅ ∫��
��−1
C (�, D) [5�2	 + %2�
 (D) � (D)] !D

+ �(�/)
∫�
��
5�2	 + %2�
 (D) � (D) !D < (43)

�[0,�]

⋅ �(�/)
? (�0) + (43)
�[0,�] �(�/)
5�2	� + (43)

�[0,�]

⋅ �(�/)
 [%2 ∫�
�0
�
 (D) � (D) !D]

(47)

Using the fact ∫
0 �
(D)�(D)!D ≤ !2, (47) can be rewritten as

? (�) < (43)
�[0,�] �(�/)
? (�0)

+ �(43)
�[0,�] 5�2	�(�/)


+ (43)
�[0,�] %2!2�(�/)


(48)

On the other hand, from condition (39a), we have

? (�) = �
 (�) 2�� (�) > 3�
 (�) ��� (�) (49)

Since ?(�0) = �
(�0)2��(�0) < 4�
(�0)���(�0) ≤ 4�2� we
conclude that in order to ensure FTB for system (10) such that�
(�)���(�) ≤ �2, the following condition should be satis�ed:

3�
 (�) ��� (�) < (43)
�[0,�] �(�/)
4�2�

+ �(43)
�[0,�] 5�2	�(�/)


+ (43)
�[0,�] %2!2�(�/)
 < 3�2

(50)

which can be rewritten as condition (39c). Hence, FTB
analysis for system (10) is completed.

Considering #
(�)#(�) − %2�
(�)�(�) + ?̇(�), from (39a)
and (39b) we deduce

#
 (�) # (�) − %2�
 (�) � (�) + ?̇ (�) = [� (�)� (�)]



⋅ [�
� 2� + 2�� � + �
� �� 2� � + �
� $2�∗ $
2�$2� − %2�][
� (�)
� (�)]

< 5 [� (�)� (�)]

 [�� 0
∗ �	][

� (�)
� (�)] <

53? (�) + 5�2	 ⇒̂
?̇ (�) < 53−1?(�) + 5�2	 − #
 (�) # (�) + %2�
 (�) � (�)

(51)

Integrating both sides of (51) and through iterations, we can
deduce

? (��) < (43)
�[0,�] [C (��, �0) ? (�0) + �∑

�=1
(43)
−�

⋅ C (��, ��)
⋅ ∫��
��−1
[5�2	 + %2�
 (D) � (D) − #
 (D) # (D)]

⋅ C (��, D) !D]

(52)
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where C(�, D) = exp(53−1(� − D)) < exp(53−1�). 
en
following the proof line of 
eorem 8, we get

0 ≤ ? (�) < (43)
�[0,�] �(�/)
? (�0) + �(43)

�[0,�]

⋅ 5�2	�(�/)
 + (43)
�[0,�]

⋅ �(�/)
∫�
�0
%2�
 (D) � (D) − #
 (D) # (D) !D

(53)

Since the zero-initial condition, we have ?(0) = 0; thus,
(43)
�[0,�] �(�/)
∫�

�0
%2�
 (D) � (D) − #
 (D) # (D) !D

> 0
(54)

Setting � = �, �0 = 0, the H∞ performance condition (11) is
satis�ed which completes the proof.

Remark 15. 
e parameter % is �∞ performance index and
its minimum value %min is o�en of interest from practical
viewpoint; hence, we can state the optimization problem as

min %2
Q.�. (39a) , (39b) , (39c) (55)

Similarly, ful�lling FTB criteria, minimum value of state
bound �min is also desired, which can be found as the

optimization problem: min(4/3)�[0,�]�(�/)
(4�2� + �5�2	 +%2!2)3−1 subject to (39a) and (39b). If we �x the parameter 5
and let 3 = 1,4 = B3, then we can state optimization problem
as

min
�≥1

B
Q.�. �� < 2� < B��

[�
� 2� + 2�� � + �
� �� 2� � + �
� $2�∗ −%2� + $
2�$2�]
< 5 [�� 0

∗ �	]

(56)

and �min = √B�[0,�]��
(B�2� + �5�2	 + %2!2) is derived with the

optimized value of B. We can adopt a convex combination of

%min and �min as m(n) = n%2min
+ (1 − n)�2

min
, 0 ≤ n ≤ 1 and a

more general convex optimization problem can be stated as

min m (n)
Q.�. �� < 2� < B��

[�
� 2� + 2�� � + �
� �� 2� � + �
� $2�∗ −%2� + $
2�$2�]
< 5 [�� 0

∗ �	]
�(�/)
+�[0,�]ln(�/) (4�2� + �5�2	 + %2!2) − 3�2
< 0

(57)

Now we will extend the results to design the �∞ con-
trollers, ensuring FTB of the closed-loop a�ne switched
system (8). Dierent equilibria for subsystems exist because
of the a�ne terms ��, and hence stability analysis and�∞ control are not trivial. To solve this problem, a few
results are available proposing extended state space method
in [12, 31]. However, this approach seems conservative for
system synthesis because the eigenvalues of the extended state

matrices ���� related to the a�ne terms are not exactly the

same as for the original state matrices��. For state-dependent
a�ne switched system, S-procedure method can be used to
reduce the conservatism. However, for time-dependent a�ne
switched systems, there are only few eective results. In our
investigation, we rede�ne exogenous signal �(�) as

�̃ (�) = [� (�)�� ] (58)

Hence, the closed-loop switched system (8) can be rewrit-
ten as

̇� (�) = ��� (�) +  ̃��̃ (�) , � (0) = �0
# (�) = ��� (�) + $̃2��̃ (�) , �̃ (0) = �̃0 (59)

where  ̃� = [ �, �], $̃2� = [$2�, 0]. Since in the�∞ framework

∫
0 �
(�)�(�)!� ≤ !2 holds, the proposed extension of

the disturbance input is reasonable and we can design the�∞ controllers of the equivalent closed-loop error switched
system (59) to ensure the �nite-time �∞ boundedness for
original a�ne switched system (8).

�eorem 16. e closed-loop switched system (59) is FTB
with H∞ performance % regarding (��, �	, �, ��, �	, �), if there
exist constant state-feedback controller 	(�) = ���(�), positive
de�nite matrices `�, matricesp�, scalars B ≥ 1, 5 ≥ 0 such that

[−`� `�
∗ −�−1� ] < 0,

[−B�� �
∗ −`�] < 0

(60a)
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[[[
[

� �`� + `��
� + ��p� +p
� �
� − 5`�  ̃� `��
� +p
� $
1�
 ̃
� −%2� − 5�	 $̃
2�

��`� + $1�p� $̃2� −�
]]]
]
< 0 (60b)

��
+�[0,�]ln� (B�2� + �5�2	 + %2!2) − �2 < 0 (60c)

where �� = p�`−1� .
Proof. Let R = dig(��, �	) and ;� = [�
(�) �̃
(�)]
, � ∈ �.
De�ning ?�(�) = �
(�)2��(�) as before, for system (59) we can
state that

?̇� (�) = ̇�
 (�) 2�� (�) + �
 (�) 2� ̇� (�)
= [� (�)�̃ (�)]


 [�
� 2� + 2��� 2� ̃�∗ 0 ][� (�)�̃ (�)]
(61)

Assuming `� = 2−1� , pre- and postmultiplying (60b) by
diag(2�, �, �),

[[[
[

��
2� + 2��� − 52� 2� ̃� �
�
 ̃
� 2� −%2� − 5�	 $̃
2�
�� $̃2� −�

]]]
]
< 0 (62)

Using Schur lemma, (62) can be rewritten as

[
[
��
2� + 2��� − 52� + �
� �� 2� ̃� + �
� $̃2�

∗ −%2� − 5�	 + $̃
2�$̃2�
]
]

< 0
(63)

Since [ ��� �� ��� �̃2�
∗ �̃�2��̃2�

] = [ ���
�̃�2�
] [�� $̃2�] ≥ 0, we can get

[
[
��
2� + 2��� 2� ̃�

∗ −%2�]]
< 5 [2� 0

∗ �	] (64)

which implies that

?̇� (�) < 5�
 (�) 2�� (�) + 5�
� �	�� + %2�̃
 (�) �̃ (�)
= 5?� + 5�2	 + %2�̃
 (�) �̃ (�) (65)

Employing (60a) and using Schur complement formula,

[−`� `�
∗ −�−1� ] < 0 ⇒̂

�� < 2�,
[−B�� �
∗ −`�] < 0 ⇒̂

2� < B��

(66)

Following the proof guidelines of 
eorem 14, condition
(60c) which guarantees the FTB of robust a�ne switched
system can be obtained.

Now we need to prove condition (9) for�∞ performance
under zero-initial conditions. From (60b),

#
 (�) # (�) − %2�̃
 (�) �̃ (�) + ?̇ (�) < 5? (�) + 5�2	 (67)

Applying integration and iterations, and setting ?(�0) = 0
under zero-initial conditions, we get

0 ≤ ? (�)
< �B�[0,�]5�2	��

+ B�[0,�]��
 ∫�

�0
%2�̃
 (D) �̃ (D) − #
 (D) # (D) !D

(68)


en setting � = �, �0 = 0, we obtain that

∫

0
%2�̃
 (D) �̃ (D) − #
 (D) # (D) !D
= ∫

0
%2 (�
 (D) � (D) + �


max
�max) − #
 (D) # (D) !D

> 0
(69)

which illustrates that condition (9) is satis�ed. We conclude
that the a�ne switched system (59), and hence closed-loop
a�ne switched system (8), is FTB with H∞ performance %.
Remark 17. Unlike the normal switched system, the existence
of multiple equilibria for a�ne switched systems is related
to subsystems owing to the a�ne terms ��, which makes
asymptotic and �nite-time stability analysis nontrivial. As
for the �nite-time �∞ controller design, concerning with
both the external disturbance �(�) and the a�ne terms ��,
we rede�ned the conception of �∞ controller for a�ne
switched system in De�nition 4, based on which the results
in this section are obtained. It is worth noting that the �∞
performance of a�ne switched system reduces to normal�∞
performance when assuming �� = 0.
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5. Numerical Examples

Example 1. Consider the a�ne switched system (2) with two
modes of operation:

�1 = [0.01 −2
1 0.02] ,

�2 = [−0.1 −1
3 −0.1] ;


1 = [−3.98−1.16] ,


2 = [−1.8−6.4]

(70)

�1 is unstable, �2 is Hurwitz stable, and eigenvalues z(�1) ={0.015 ± 1.4142�}, z(�2) = {−0.1 ± 1.732�}. Assuming desired

reference �� = [2, −2]
, error tracking switched system will
be

�1 = [0.01 −2
1 0.02] ,

�2 = [−0.1 −1
3 −0.1] ;

�1 = [ 00.8] ,

�2 = [ 0
−0.2]

(71)

Evidently �max = [ 00.8 ]. Let �� = 1, �	 = 0.8, � = 5.885,�� = �	 = �, 5 = 0.3, and � = 5Q. From the FTB
condition (24), we get the average dwell time D∗� = 1.5Q to
ensure the �nite-time boundedness with respect to �, so that
the switching signal � can be chosen as a periodical signal
with �� = 1.5Q, which implies that �[0,
] = 3 and �+ = 2Q,�− = 3Q during the �nite-time interval [0, 5]. Given the initial
error state �(0) = [0.5, 0.8]
, the conditions �
0���0 ≤ �2�
and �


max
�	�max ≤ �2	 are separately satis�ed, then the error

state trajectory of error a�ne switched system and the value

of �
��� under the switching signal � are shown in Figure 1.
It is easy to see in Figure 1 that subject system is FTB

with conditions (12a), (12b), and (12c) satis�ed. Moreover,
assuming 5+ = 5 = 1 and using optimization process (24)
and (31), the optimal value Bmin = 1.0058, 21 = [ 0.8425 0.12870.1287 1.2053 ],22 = [ 1.3718 −0.0977−0.0977 1.0416 ] can be obtained. 
en substituting Bmin

into (12c) and (25c) separately, we get

�1min = 3.014,
�2min = 1.923 (72)

where �1min, �2min denote the minimum bound of state
derived by 
eorem 8 and Corollary 11. It is obvious that
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Figure 1: 
e state trajectories and the value of �
(�)���(�) under
switching signal �.

Corollary 11 is less conservative than
eorem 8 since �2min >�1min.

Example 2. Keeping in view autonomous error switched
system (10), we consider this system:

�1 = [0.01 −2
1 0.02] ,

�1 = [ 00.8] ,

 1 = [0.250.01] ,
�1 = [0.10 0.33] ,
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$21 = 0.05
�2 = [−0.1 −1

3 −0.1] ,

�2 = [ 0
−0.2] ,

 2 = [0.50.2] ,
�2 = [0.3 0.01] ,
$22 = 0.028

(73)

with disturbance signal:

� (�) = {{{
8 0 ≤ � ≤ 5
0 ��Q� (74)

which satis�es(∫
0 �
(�)�(�)!�)1/2 = (∫50 �
(�)�(�)!�)1/2 =8√5. Let �� = 1, �	 = 0.8, � = 21.758, % = 0.2, and5 = 0.3. From FTB condition (39c), we get the average dwell
time D∗� = 1.5Q to ensure FTB with respect to �. 
en for the
�nite-time�∞ performance, we should have

(∫

0
#
 (�) # (�) !�)1/2 < %(∫


0
�
 (�) � (�) !�)1/2

≈ 3.57
(75)


e simulation resultswith initial error state �(0) = [0.5, 0.8]

are shown in Figure 2.

We observe in Figure 2 that the system is FTB, and the�∞ performance satis�es

(∫

0
#
 (�) # (�) !�)1/2 ≈ 2.18 < 3.57 (76)


us, according to De�nition 4, the autonomous robust
error switched system can be regarded as �nite-time �∞
bounded. Moreover, using optimization procedure (56) we
get Bmin = 1.932, 21,1 = [ 1.0165 0.00160.0016 1.9154 ], 22,1 = [ 2.2218 −0.2047−0.2047 1.0425 ].
Putting in (39c), we get �min = 6.314.
Example 3. Consider the a�ne error switched system (7)
with two modes of operation:

�1 = [0.01 −2
1 0.02] ,

�1 = [ 00.8] ,

B1 = [0.1−1] ,
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Figure 2:
e state responds of �(t) and #(t) under switching signal�.

 1 = [0.250.01] ,
�1 = [0.10 0.33] ,
D11 = 0.13,
$21 = 0.05
�2 = [−0.1 −1

3 −0.1] ,

�2 = [ 0
−0.2] ,

B2 = [−10.5] ,

 2 = [0.50.2] ,
�2 = [0.3 0.01] ,
D12 = 0.2,
$22 = 0.028
� (�) = {{{

8 0 ≤ � ≤ 5
0 ��Q�

(77)
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which implies that (∫
0 �
(�)�(�)!�)1/2 =
(∫50 �
(�)�(�)!�)1/2 = 8√5 and �max = [ 00.8 ].


e objective in this example is to design a set of
robust �∞ controllers ensuring �nite-time �∞ bounded-
ness of closed-loop error switched system with respect to(��, �	, �, ��, �	, �), where �� = 1, �	 = 0.8, % = 0.2,� = 4.536, �� = �	 = �, 5 = 0.3, and � = 5Q. Setting
switching signal � as a periodical signal with �� = 1.5Q, based
on
eorem 16, we calculate

`1 = [1.4665 0.0957
0.0957 1.3408] ,

p1 = [−1.2110 0.4831]
`2 = [ 1.1617 −0.2958

−0.2958 1.7466 ] ,
p2 = [3.0403 0.9730]

(78)


en we can get the set of �∞ controllers for each
subsystem as

�1 = p1`−11 = [−0.8533, 0.4212] ,
�2 = p2`−12 = [2.8834, 1.0454] (79)

Substitute controller gains into system (8), the closed-loop
error switched system can be written as

�1 = [−0.0753 −1.9579
1.8533 −0.4012] ,

�1 = [ 00.8] ,

 1 = [0.250.01] ,
�1 = [−0.0109 0.3848] ,
$21 = 0.05
�2 = [−2.9834 −2.0454

4.4417 0.4227 ] ,

�2 = [ 0
−0.2] ,

 2 = [0.50.2] ,
�2 = [0.8767 0.2191] ,
$22 = 0.028

(80)
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Figure 3: 
e state responds of �(t) and #(t) under switching signal�.

State responses under state-feedback controllers and switch-
ing signal � are shown in Figure 3. We can observe that the
closed-loop system is FTB, and the�∞ performance satis�es

(∫

0
#
 (�) # (�) !�)1/2 ≈ 0.9366

< % (∫

0
�
 (�) � (�) + �


max
�max!�)

1/2 ≈ 3.596
(81)


us, according to De�nition 4, the given a�ne switched
system can be regarded as �nite-time �∞ bounded under
designed�∞ controller gains.

6. Conclusion

In this paper, the problem of �nite-time boundedness and
�nite-time �∞ control for a�ne switched systems has been
investigated. Several de�nitions and su�cient conditions for
FTB and �∞ performance are proposed. Based on the aver-
age dwell-timemethod, the FTB conditions of a�ne switched
linear system with known state boundary are derived �rst in
this investigation. To reduce the conservatism of FTB con-
ditions, by classifying subsystems into asymptotically stable
and unstable systems, we get the improved FTB conditions
for a�ne switched system presented in Corollary 11.
e con-
servatism of conditions under the two situations is compared.

en applying the �nite-time boundedness analysis results,
�nite-time �∞ performance is discussed. Finite-time �∞
controllers are designed to ensure the corresponding closed-
loop switched system FTB with�∞ performance. Numerical
examples are �nally provided to validate our theoretical
results. Many real-world systems concern with �nite-time
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and transient behavior; meanwhile, many engineering appli-
cations can bemodeled as a�ne switched systems. 
erefore,
our theoretical results about �nite-time boundedness of a�ne
switched systems are supposed to have great potential in
the application of practical switched systems. Furthermore,
the proposed results in this paper can be extended to the
nonlinear a�ne switched systems which will be considered
in future work.
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