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Abstract: This study proposes a systematic control design approach to consider jointly the event-triggered communication
mechanism and state-feedback control for switched linear systems. The systems determine the necessary samplings of the
feedback signal by constructing predefined events that can reduce redundant signal transmission and updates. Specifically, the
first main step in the design is to construct sufficient conditions for stability analysis in the form of linear matrix inequalities to
utilise fully the idea of average dwell time. With the proposed event-triggering mechanism, the design renders the resulting
switched closed-loop system finite-time bounded. Subsequently, the authors present the conditions for finding the parameter of
the event-triggered sampling mechanism and the state-feedback sub-controller gains. Then, the results for the full state
feedback control case are further extended to systems incorporating observer-based state-feedback control motivated by
practical applications. For each case, an estimate of the positive lower bound on the inter-execution times is further derived to
avoid Zeno behaviour. A numerical example is presented to illustrate the effectiveness of the proposed methods.

1 Introduction
In recent years, event-triggered control has received increasing
attention in the active development of systems and control theory
[1]. In traditional control systems, the controllers periodically
sample their input signals at a fixed rate and the controllers or
actuators update their readings periodically. Such practices are
usually classified into time-triggered schemes. However, from the
perspective of resource utilisation, the time-triggered scheme may
be unnecessarily consuming energy for communication and
computation, which is especially undesirable for systems under
strict energy constraints or network bandwidth limitations. It is
desirable to find a way to guide the system to sample and transmit
signals according to the current needs of the system's performance.
For this reason, an event-triggered communication scheme has
been proposed for further reducing energy cost and improving the
efficiency of resource allocation [2].

Compared with time-triggered control, the event-triggered
control shows its remarkable advantages. In the early works [3, 4],
the event-triggering scheme is typically implemented in the way
that the controller is invoked when a pre-defined triggering signal
is large enough and exceeds a certain threshold. The event-
triggered communication scheme is applied broadly to various
systems. A more formal stabilising event-triggered control method
is discussed in [5], where a triggering scheme was presented based
on the difference between the plant's current state and its previous
sampled state. A new strategy for event-triggered state-feedback
control is presented when there is disturbance in the control loop
[6]. In [7], the periodic sampling-based event-triggering scheme
was designed and a time-delay model was developed. To further
improve the efficiency of event-triggered control, decentralised
event-triggered control is introduced to update communication
information in wireless actuator systems [8]. Due to the increasing
popularity, recent years have seen a growing interest in event-
triggered control for networked control systems [9–11] and multi-
agent systems [12–14], and the event-triggering scheme has been
developed to be robust against communication delays, packet
losses and out of order packets, to name a few.

As an important class of hybrid systems [15, 16], switched
systems have been a hot topic in the field of control theory and
applications, and a number of important results have been reported,

see a survey [17] and some recent results including stability and
stabilisation issues [18–20], switched non-linear systems [21, 22],
switched time-delay systems [23–25], filter design [26, 27],
iterative learning control [28] and asymptotic stability under
sampled-data and quantisation [29]. However, if an event-
triggering scheme is introduced into switched systems, how to
guarantee the desired performance of the closed-loop systems,
though a fundamentally important problem, has not been fully
addressed yet. The studies in [30, 31] have not looked into the
relationship between the sub-system switching and event-triggered
instants. The results in [32] are established under certain restrictive
conditions and in some cases may fail to exclude the Zeno
sampling behaviour.

Along this line, we study the problem of event-based state-
feedback control for switched linear systems. The design allows us
to take sub-controller gains into consideration together with the
event-triggering rule such that the resulting switched closed-loop
system is finite-time bounded. The finite-time stability or
boundedness has important practical significance, since many
engineering systems have time response constraints [33–35]. More
exactly, the event-triggered sub-controller executes control tasks
when an error norm as a function of the system state reaches the
triggering threshold. By utilising the methods of multiple
Lyapunov functions and average dwell time switching law,
sufficient conditions for the stability analysis are constructed; in
addition, the event-triggered control parameters are designed for
the resulting switched closed-loop system by the linear matrix
inequality (LMI) technique. Moreover, an estimation of the lower
bound on the event-triggered intervals is given to show the
prevention of Zeno behaviour. Since in many control applications,
the full state information is not always available through
measurement, the obtained results of full state feedback control are
further extended to the event-triggered, observer-based, state-
feedback control.

So the contribution of the paper is four-fold. First, general
sufficient conditions are systematically given for finite-time
boundedness of switched linear systems incorporating event-
triggered sampling. Second, Zeno behaviour, one of the most nasty
behaviours due to event triggering, is clearly prevented through the
design process. Third, since the event-triggering signals and
switching signals may interlace with each other, the influence of
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the coupling between the two signals on the analysis of stability
and Zeno behaviour is clarified. Fourth, the event-triggered
observer-based control design strategies are provided, which are
more appealing in practice.

The structure of this paper is as follows. In Section 2, the
problem statement and some preliminaries are described. In
Section 3, the stability analysis and the control design for the
event-triggered full state feedback control are developed. The
results of the event-triggered observer-based state-feedback control
are given in Section 4. To verify the effectiveness of the proposed
event-triggered control methods, a numerical example is presented
in Section 5. Section 6 concludes this paper.

Notation. In this study, the notations used are fairly standard.
We denote by ℝ the set of reals. We let ℕ denote the set of natural
numbers and define ℕ0 := ℕ ∪ {0}. Given a vector v ∈ ℝn, ∥ v ∥ is
its Euclidean norm. Given a matrix M, M

T is its transpose and
∥ M ∥ is its spectral norm. I represents the identity matrix. The
notation P > 0(respectively, ≥ 0) means that P is real symmetric
and positive definite (respectively, semi-positive definite). In
symmetric block matrices, we use ∗ as an ellipsis for the terms that
are introduced by symmetry. In addition, the upper Dini derivative
will be used, which is defined as D

+
f (t) ≜

lim suph → 0+ ( f (t + h) − f (t))/h.

2 Problem statement and some preliminaries
Consider a switched continuous-time system of the form

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t),
y(t) = Cσ(t)x(t),

(1)

where x(t) ∈ ℝn is the state, u(t) ∈ ℝm is the control input,
y(t) ∈ ℝl is the measured output,
σ(t): [0, + ∞) → N ≜ {1, 2, …, N} is the switching signal
generated by a switching logic unit, and σ(t) = i implies that the ith
sub-system is active. Here Ai, Bi and Ci are real constant matrices
of appropriate dimensions, and the pairs (Ai, Bi) and (Ci, Ai) are
controllable and observable, respectively.

As shown in Fig. 1, for event-triggered control we need to
design an event-triggering mechanism for monitoring the triggering
condition and detecting when an event has occurred. Once such an
event occurs, the current state of the system will be transmitted to
the controller for updating the control input signal. 

2.1 Event-triggering communication mechanisms

We will give in sequence two types of event-triggering
mechanisms which are inspired and derived from one typical
event-triggering mechanism in [6].

2.1.1 State-based event-triggering mechanism.: The first
adopted state-based event-triggering mechanism (SEM) is
described by

tk + 1 = inf {t > tk | ∥ eET(t) ∥ ≥ εsem}, (2)

where eET(t) = x(tk) − x(t) is the error between the last transmitted
system state and the current state, and the subscript ET indicates
the first letter of the words ‘event’ and ‘triggering’. εsem > 0 is a
given threshold for event generation, and from (2), it can be
deduced that eET

T (t)eET(t) ≤ ε̄sem = εsem
2 . Intuitively, the parameter

εsem will affect the update frequency of the control signal, and the
smaller εsem is, the higher the update frequency will be.

For system (1), the full state feedback control u(t) = Kσ(t)x(t) is
first considered in this paper. In practice, the controllers are
implemented by sampling the system state x(t) using a sample-and-
hold module at time instants {tk}k ∈ ℕ0 and updating the control
input as u(tk). We assume that the measuring of the state and the
calculating and updating of control signal at each transmission
instant are synchronised.

Then, the event-triggered controllers are given by

u(t) = Kσ(t)x(tk), t ∈ [tk, tk + 1), (3)

which implies that the controllers utilise the sampled x(tk) at the
triggered instant tk and the value of x(tk) will remain the same until
the next instant tk + 1.

Furthermore, it is worth noting that the above event-triggering
mechanism and controllers are based on state-feedback. In a
practical system, since the full system state cannot always be
directly measured and obtained, we will further study the problem
of event-triggered observer-based state-feedback control for the
switched continuous-time system (1).

2.1.2 Observed SEM.: For system (1), the state observers are
given by

x^̇(t) = Aσ(t)x
^(t) + Bσ(t)u(t) + Lσ(t)[y(t) − Cσ(t)x

^(t)], (4)

where x^(t) ∈ ℝn is the observer state and Li ∈ ℝn × l is the observer
gain to be designed.

Correspondingly, the observed SEM (OSEM) is described by

tk + 1 = inf {t > tk | ∥ e^ET(t) ∥ ≥ εosem}, (5)

where e^ET(t) = x^(tk) − x^(t), εosem > 0 is a given threshold and
e^ET

T (t)e^ET(t) ≤ ε̄osem = εosem
2 . Moreover, from the mechanism (5),

the event-triggered observer-based controllers are given as (3) with
the sampled estimated state x^(tk) replacing x(tk).

2.2 Problem statement

The following assumption, lemmas and definitions will be used in
the rest of the paper.
 
Assumption 1: The matrices Cσ(t) have a full row rank, i.e. rank
(Cσ(t)) = l.

The singular value decomposition of the matrix Ci is
Ci = Ui[Σi 0]Vi, where Σi ∈ ℝl × l is a diagonal matrix with positive
diagonal elements in decreasing order, Ui ∈ ℝl × l and Vi ∈ ℝn × n

are unitary matrices.
 
Lemma 1 [36]: For a given matrix Ci with a full row rank rank
(Ci) = l, suppose that M ∈ ℝn × n is a symmetric matrix, then there
exists a matrix M

^
∈ ℝl × l such that CiM = M

^
Ci, if and only if M

has the following structure

M = Vi

M11, i 0

∗ M22, i

Vi
T,

where M11, i ∈ ℝl × l and M22, i ∈ ℝ(n − l) × (n − l).
 
Lemma 2 [37]: Let L, E be real matrices of appropriate dimensions,
then, for any scalar η > 0,

Fig. 1  Event-triggered control framework of switched systems
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Lemma 3 [38]: Assume A ∈ ℝn × n is Hurwitz, then there exists a
positive scalar c > 0 such that

∥ eAt ∥ ≤ c e
((λmax(A))/2)t,

where λmax(A) = maxi {Re(λi(A))}.
 
Definition 1 [39]: For a switching signal σ(t) and any t2 ≥ t1 ≥ 0,
let Nσ(t1, t2) be the number of switches of σ(t) over the time interval
(t1, t2). If Nσ(t1, t2) ≤ N0 + (t2 − t1)/τa holds for N0 ≥ 0, τa > 0, then
τa is called the average dwell time and N0 the chatter bound.

For SEM (2), from (1) and (3), the event-based switched
closed-loop system between two consecutive instants tk and tk + 1

can be written as

ẋ(t) = Āσ(t)x(t) + B̄σ(t)eET(t), (6)

where Āσ(t) = Aσ(t) + Bσ(t)Kσ(t) and B̄σ(t) = Bσ(t)Kσ(t).
Without loss of generality, taking the state feedback case as an

example, the boundedness definition is as follows.
 
Definition 2 [33]: System (6) is said to be finite-time bounded with
respect to (c1, c2, ε̄sem, Tf, R, σ(t)) under switching signal σ(t), if

xT(0)Rx(0) ≤ c1 ⇒ xT(t)Rx(t) ≤ c2

∀t ∈ [0, Tf], ∀eET(t):eET
T (t)eET(t) ≤ ε̄sem,

where 0 < c1 < c2, R > 0.
We are interested in providing an event-based control method

for switched linear systems, which consists of two problems:

i. Consider each type of the event-triggering mechanism, design
the sub-controllers' gains and event generation threshold such
that the resulting switched closed-loop system under an
average dwell time (ADT) switching signal σ(t) is finite-time
bounded.

ii. In the resulting closed-loop system under each type of the
event-triggering mechanism, provide a positive lower bound
estimation on inter-execution times to exclude the Zeno
behaviour.

3 Event-triggered full state feedback control
For problem (i), based on the multiple Lyapunov functions method
and average dwell time technique, the following theorem shows
that sufficient conditions can be established to guarantee finite-time
boundedness of the switched closed-loop system (6) under SEM
(2).
 
Theorem 1: For given positive constants c1, c2, η, α, ε̄sem, Tf, and a
constant symmetric matrix R, if there exist symmetric and positive
definite matrices Pi with appropriate dimensions, rendering
P̄i = R

−(1/2)
PiR

−(1/2), i ∈ N, such that

ĀiP̄i + P̄iĀi
T + η

−1
B̄iB̄i

T − αP̄i < 0 (7)

c1

β1
+ ε

~

α
(1 − e

−αTf) < β2
−1

μ
−N0c2 e

−αTf, (8)

where ε
~ = ηε̄sem, then under SEM (2) the switched closed-loop

system (6) is finite-time bounded with respect to
(c1, c2, ε̄sem, Tf, R, σ(t)) for any ADT switching signal satisfying

τa ≥ τa
∗ =

Tfln μ

ln[(β2
−1

μ
−N0c2)/((c1/β1) + (ε~/α)(1 − e

−αTf))] − αTf
, (9)

where μ = (β2/β1), β1 = min∀i ∈ N {λmin(Pi)} and
β2 = max∀i ∈ N {λmax(Pi)}.

Before proving Theorem 1, we will show that the Zeno
behaviour can be prevented, i.e. the following theorem will give a
positive lower bound estimation on the inter-execution intervals
under SEM (2).
 
Theorem 2: With any state-feedback gains Kσ(t) and SEM (2), the
inter-execution time tk + 1 − tk is lower bounded by a positive
constant T̄  satisfying

T̄ =
εsem

ϕ1 ∥ x(tk) ∥ + (ϕ1 + ϕ2)εsem
, (10)

where ϕ1 = max∀i ∈ N { ∥ Āi ∥ } and ϕ2 = max∀i ∈ N { ∥ B̄i ∥ }.
 
Proof: Due to the introduction of the event-triggering scheme (2) in
the switched system (1), the relationship between the sub-system's
working interval [lq, lq + 1) of the switched system and the inter-
execution interval [tk, tk + 1) of the event-triggering mechanism
needs to be treated. Assume that the switched system is switched
from sub-system i to j (∀i, j ∈ N) at the switching instant lq, and
[lq, lq + 1) is the sustained working interval of sub-system j. To
simplify notations, let | . | represent ∥ . ∥ and e(t) ≜ eET(t).
Moreover, in the following, the upper Dini derivative will be used.
Case 1: within any inter-execution interval [tk, tk + 1) ⊂ [0, Tf],
k ∈ ℕ0, there is no switching. From system (6) and the definition of
eET(t) in SEM (2), the following inequality is derived on
[tk, tk + 1), k ∈ ℕ0, i.e.

D
+ |e(t)| = lim sup

h → 0+

|e(t + h) | − |e(t)|
h

≤ lim sup
h → 0+

|e(t + h) − e(t)|
h

= lim
h → 0+

|e(t + h) − e(t)|
h

= |ė(t)|
= |ẋ(t)|
≤ |Āσ(tk) | | x(t) | + | B̄σ(tk) | |e(t)|

≤ |Āσ(tk) | | x(tk) | + ( | Āσ(tk) | + | B̄σ(tk) | ) |e(t)|

≤ |Āσ(tk) | | x(tk) | + ( | Āσ(tk) | + | B̄σ(tk) | )εsem

(11)

Letting ψσ(t) = | Āσ(t) | | x(tk) | + ( | Āσ(t) | + | B̄σ(t) | ) εsem, one has

∫
tk

t

D
+ |e(s)|ds ≤ ∫

tk

t

ψσ(tk)ds

≤ ∫
tk

t

[ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem]ds

Case 2: within any inter-execution interval [tk, tk + 1), there are
switchings, and we assume that tk ≤ lq < lq + 1 < lq + 2 < ⋯ < lq + n1

≤ t < lq + n1 + 1 < ⋯ < lq + n1 + n2 ≤ tk + 1,∀q + n1 + n2 ∈ N, n1, n2 ∈ ℕ.
Then, one has
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∫
tk

t

D
+ |e(s)|ds

≤ ∫
tk

lq

D
+ |e(s)|ds + ∑

i = 1

n1

∫
lq + i − 1

lq + i

D
+ |e(s)|ds

+∫
lq + n1

t

D
+ |e(s)|ds

≤ ∫
tk

lq

ψσ(tk)ds + ∑
i = 1

n1

∫
lq + i − 1

lq + i

ψσ(lq + i − 1)ds

+∫
lq + n1

t

ψσ(lq + n1)ds

≤ ∫
tk

lq

[ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem]ds

+ ∑
i = 1

n1

∫
lq + i − 1

lq + i

[ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem]ds

+∫
lq + n1

t

[ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem]ds

≤ ∫
tk

t

[ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem]ds

which is consistent with that of Case 1.
Moreover, noticing the fact that e(tk) = 0, one obtains

|e(t) | ≤ [ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem](t − tk)

From this and SEM (2), letting

[ϕ1 | x(tk) | + (ϕ1 + ϕ2)εsem](t − tk) = εsem

hold for any tk ≤ t ≤ tk + 1, then by denoting T̄ = t − tk, a lower
bound on the inter-execution interval can be obtained as (10). It can
be shown from (10) that T̄ > 0 for any given event-triggered
instant tk. □
 
Remark 1: It is known that if the value of the triggering threshold
εsem is chosen to be larger, it will take a longer time to reach the
defined triggering condition. Also, if the threshold εsem is set to a
small value, the triggering bound will become tighter, which will in
turn induce more triggering. This fact can be verified by the
estimation equation (10), from which it can be concluded that a
larger event-triggering threshold εsem results in a larger inter-
execution interval T̄ . In addition, it can also be verified that when
the system state x(tk) converges to a small value, the triggering
frequency will decrease and the inter-execution interval will
become larger.
 
Proof of Theorem 1: Choose the Lyapunov function candidate as

V(x(t)) = Vσ(t)(x(t)) = xT(t)P̄σ(t)
−1

x(t)

Case 1: for any t ∈ [lq, lq + 1), if it falls within the triggered inter-
execution interval, i.e. tk ≤ lq and tk + 1 ≥ lq + 1. Then, from Lemma 2
and conditions (2) and (7), the time derivative of V(x(t)) for
t ∈ [lq, lq + 1) along the trajectory of system (6) yields

V̇(x(t)) = ẋ
T(t)P̄σ(lq)

−1
x(t) + xT(t)P̄σ(lq)

−1
ẋ(t)

≤ xT(t)[Āσ(lq)
T

P̄σ(lq)
−1 + P̄σ(lq)

−1
Āσ(lq)

+η
−1

P̄σ(lq)
−1

B̄σ(lq)B̄σ(lq)
T

P̄σ(lq)
−1 ]x(t)

+ηeET
T (t)eET(t)

≤ αVσ(lq)(x(t)) + ε
~

(12)

Integrating both sides of (12) from lq to t gives

V(x(t)) ≤ e
α(t − lq)

Vσ(lq)(x(lq)) + ε
~∫

lq

t

eα(t − s)ds (13)

Case 2: for any t ∈ [lq, lq + 1), if the triggered inter-execution
interval falls within the working interval of the sub-system, one has
that during a switching sub-system's working period, the event-
triggering mechanism is triggered and the control signal is updated
(possibly for multiple times), e.g.
tk < lq ≤ tk + 1 ≤ tk + 2 ≤ ⋯tk + m < lq + 1, ∀m ∈ ℕ. Also, in each
subinterval, one can obtain the same result with that in (12).
Moreover, integrating both sides of (12) over each subinterval
leads to

V(x(t)) ≤

e
α(t − lq)

Vσ(lq)(x(lq))

+ε
~∫

lq

t

eα(t − s)ds, t ∈ [lq, tk + 1)

e
α(t − tk + 1)

Vσ(tk + 1)(x(tk + 1))

+ε
~∫

tk + 1

t

eα(t − s)ds, t ∈ [tk + 1, tk + 2)

⋮

e
α(t − tk + m)

Vσ(tk + m)(x(tk + m))

+ε
~∫

tk + m

t

eα(t − s)ds, t ∈ [tk + m, lq + 1)

(14)

Note that the function eET(t) is piecewise continuous on an interval
[lq, lq + 1), and it has been shown in Theorem 2 that there exists a
positive lower bound on the inter-execution intervals, i.e. eET(t) is
continuous except for possibly finite jump discontinuities on the
interval [lq, lq + 1). Moreover, according to the definition of the error
function eET(t) in (2), it is bounded on [lq, lq + 1). Then from (6) and
the definition of V(x(t)), both x(t) and V(x(t)) are continuous
functions in the variable t on the time interval [lq, lq + 1) [40]. From
this together with the fact σ(lq) = σ(tk + 1) = ⋯ = σ(tk + m), one can
obtain the same result from (14) as in (13) for Case 1.
Moreover, from the definitions of β1 and β2, for ∀x(t) ∈ ℝn and
∀i, j ∈ N, one has

xT(t)Pi
−1

x(t) ≤ λmax(Pi
−1)xT(t)x(t) ≤ β1

−1
xT(t)x(t)

xT(t)Pj
−1

x(t) ≥ λmin(Pj
−1)xT(t)x(t) ≥ β2

−1
xT(t)x(t)

It follows from the above conditions that
xT(t)Pi

−1
x(t) ≤ μxT(t)Pj

−1
x(t). This further yields

xT(t)P̄i
−1

x(t) ≤ μxT(t)P̄ j
−1

x(t) which is the relationship of the
Lyapunov function between any adjacent switching sub-systems.
Moreover, note that lq and lq− are the moments that before and after
a switch. Then, one can have

Vσ(lq)(x(lq)) ≤ μVσ(lq
−

)(x(lq
−)) (15)

For any t ∈ [0, Tf], let 0 = t0 < l1 < l2 < ⋯ < lq = lNσ(0, t) < t denote
the switching instants of σ(t) on the interval [0, t], which also
implies that Nσ(0, t) ≤ Nσ(0, Tf). It then follows from (13) and (15)
that
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V(x(t)) ≤ μe
α(t − lq)

Vσ(lq
−

)(x(lq
−)) + ε

~∫
lq

t

eα(t − s)ds

≤ μe
α(t − lq)[eα(lq − lq − 1)

Vσ(lq − 1)(x(lq − 1))

+ε
~∫

lq − 1

lq

e
α(lq − s)ds] + ε

~∫
lq

t

eα(t − s)ds

≤ μ
2
e

α(t − lq − 2)
Vσ(lq − 2)(x(lq − 2))

+μ
2
ε
~∫

lq − 2

lq − 1

eα(t − s)ds + με
~∫

lq − 1

lq

eα(t − s)ds

+ε
~∫

lq

t

eα(t − s)ds

⋯

≤ μqe
α(t − t0)

Vσ(t0)(x(t0)) + μqε
~∫

t0

l1

eα(t − s)ds

+⋯ + με
~∫

lq − 1

lq

eα(t − s)ds + ε
~∫

lq

t

eα(t − s)ds

≤ μ
Nσ(0, Tf)

e
αTfVσ(0)(x(0))

+μ
Nσ(0, Tf)

ε
~∫

0

Tf

e
α(Tf − s)ds

Furthermore,

V(x(t)) ≤ μ
Nσ(0, Tf)

e
αTf Vσ(0)(x(0)) + ε

~

α
(1 − e

−αTf)

≤ μ
N0 + (Tf /τa)

e
αTf Vσ(0)(x(0)) + ε

~

α
(1 − e

−αTf)
(16)

On the other hand, for any i ∈ N, one has

V(x(t)) = xT(t)P̄i
−1

x(t) = xT(t)R1/2
Pi

−1
R

1/2
x(t)

≥ β2
−1

xT(t)Rx(t)
(17)

and

V(x(0)) = xT(0)P̄i
−1

x(0) = xT(0)R1/2
Pi

−1
R

1/2
x(0)

≤ β1
−1

xT(0)Rx(0)
(18)

Thus, using conditions (16)–(18) together with xT(0)Rx(0) ≤ c1

gives

xT(t)Rx(t) ≤ β2e
αTfμ

N0 + (Tf /τa) c1

β1
+ ε

~

α
(1 − e

−αTf) (19)

Then, when μ = 1, the finite-time boundedness of switched closed-
loop system (6), i.e. xT(t)Rx(t) ≤ c2, can be directly ensured by
condition (8). When μ > 1, it first follows from (8) that

ln[
β2

−1
μ

−N0c2

(c1/β1) + (ε~/α)(1 − e
−αTf)

] − αTf > 0. Hence, using the average dwell

time condition (9) can lead to xT(t)Rx(t) ≤ c2 from (19). Finally,
one can conclude that the switched closed-loop system (6) is finite-
time bounded from Definition 2. □

Then, in the following theorem we give the sufficient design
conditions under SEM (2).
 
Theorem 3: For given positive constants c1, c2, η, α, Tf, and a
constant matrix R, if there exist a positive constant ε̄sem, matrices Yi

and symmetric and positive definite matrices Pi with appropriate
dimensions, rendering P̄i = R

−(1/2)
PiR

−(1/2), i ∈ N, such that (8)

Ξ1 BiYi

∗ −ηP̄i

< 0 (20)

I − P̄i ≤ 0, (21)

where Ξ1 = AiP̄i + P̄iAi
T + BiYi + Yi

T
Bi

T − αP̄i, then, there exists a
set of state-feedback controller gains Ki = YiP̄i

−1 and event-
triggering threshold εsem = | ε̄sem| such that the switched closed-
loop system (6) is finite-time bounded with respect to
(c1, c2, ε̄sem, Tf, R, σ(t)), under SEM (2) and any ADT switching
signal σ(t) satisfying (9).
 
Proof: It follows from (7) of Theorem 1 that

(Ai + BiKi)P̄i + P̄i(Ai + BiKi)
T + η

−1
BiKiKi

T
Bi

T

− αP̄i < 0

With the change of variable Yi = KiP̄i and condition (21), the above
condition is reduced to

AiP̄i + P̄iAi
T + BiYi + Yi

T
Bi

T + η
−1

BiYiP̄i
−1

Yi
T
Bi

T

− αP̄i < 0
(22)

Then, using Schur complement formula, condition (22) is
equivalent to (20). □
 
Remark 2: From Theorem 3, one can have a set of feasible
solutions of ε̄sem, Yi and Pi by solving the conditions (8), (20) and
(21), and then obtain the event-triggering thresholds by
εsem = | ε̄sem|. Moreover, the proposed sufficient conditions also
allow one to give the event-triggering threshold εsem (or ε̄sem)
beforehand instead of as a variable, according to the users' design
requirements.
 
Remark 3: When using the theorem conditions, the initial and final
bounded range parameters c1, c2, the parameter R and the finite time
interval Tf are selected first, depending on the desired requirement.
Afterwards, choose other appropriate parameter values η and α,
and then try to solve the LMI conditions.
 
Remark 4: Theorems 1 and 3 give a state-based design results
based on the SEM (2). However, if we re-formulate the mechanism
(2) as tk + 1 = inf {t > tk | ∥ Kσ(t)eET(t) ∥ ≥ εsem}, i.e. using an
event-triggering with respect to the control signal, not the state, it
would allow to eliminate the term KK

T in B̄iB̄i
T of (7) and, thus, get

rid of condition (21).
 
Remark 5: Note that the lower bound estimation given by (10)
depends on the sampled state value |x(tk)| for each inter-execution
interval tk + 1 − tk. Now, we give another method for computing a
unified lower bound on the inter-execution intervals.
From (11), one has

D
+ |e(t)| ≤ |Āσ(tk) | | x(t) | + | B̄σ(tk) | |e(t)|

≤ |Āσ(tk) | | x(t) | + | B̄σ(tk) |εsem

Moreover, from Theorems 1 or 3 the following facts hold, i.e.

λmin(R)xT(t)x(t) ≤ xT(t)Rx(t) ≤ c2

Then one can have

|x(t) | ≤ c̄ =
c2

λmin(R)
(23)

It follows from (23) that

D
+ |e(t)| ≤ | Āσ(tk) | c̄ + | B̄σ(tk) |εsem (24)

Thus, another positive lower bounded on the inter-execution
intervals can be obtained as
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T̄ =
εsem

ϕ1c̄ + ϕ2εsem
(25)

4 Event-triggered observer-based state-feedback
control
In this section, we extend the results of the previous section to the
observer-based state-feedback case.

The dynamic equation of the error state x
~(t) = x(t) − x^(t)

between the actual system (1) and the observers (4) is constructed
as

x
~̇(t) = [Aσ(t) − Lσ(t)Cσ(t)]x

~(t) (26)

Applying the OSEM (5) into the state observers (4) gives

x^̇(t) = [Aσ(t) + Bσ(t)Kσ(t)]x^(t) + Lσ(t)Cσ(t)x
~(t)

+Bσ(t)Kσ(t)e
^
ET(t)

(27)

for the time period t ∈ [tk, tk + 1). Then, the augmented switched
closed-loop system by combining (26) with (27) is obtained as

ξ̇(t) = A
^

σ(t)ξ(t) + B
^
σ(t)e

^
ET(t), (28)

where ξ(t) = [x^T(t) x
~T(t)]T is the augmented state and the

parameter matrices are

A
^

σ(t) =
Aσ(t) + Bσ(t)Kσ(t) Lσ(t)Cσ(t)

0 Aσ(t) − Lσ(t)Cσ(t)

B
^
σ(t) =

Bσ(t)Kσ(t)

0

In parallel with the state-feedback case, sufficient conditions of
the finite-time boundedness for switched linear systems under
OSEM (5) can be derived similarly, which is omitted here. In the
following, a positive lower bound estimation on the inter-execution
intervals is first presented.
 
Corollary 1: With any state-feedback gains Kσ(t), observer gains
Lσ(t) and OSEM (5), the inter-execution time tk + 1 − tk is lower
bounded by a positive constant T̄  satisfying

T̄ =
εosem

(ϕ2 + ϕ3) ∥ x^(tk) ∥ + ϕ3εosem + Ξ1
, (29)

where ϕ2 = max∀i ∈ N { ∥ B̄i ∥ }, ϕ3 = max∀i ∈ N { ∥ Ai ∥ },
ϕ4 = max∀i ∈ N { ∥ LiCi ∥ }, ϕ5 = max∀i ∈ N {λmax(Ai − LiCi)}/2 and
Ξ1 = ce

ϕ5tkϕ4 ∥ x
~(0) ∥.

 
Proof: By using similar arguments as in the proof of Theorem 2,
the proof can be completed. To simplify notations, let | . | represent
∥ . ∥ and e^(t) ≜ e^ET(t). The following derivation is partially
inspired by Zhang and Feng [41]. As Case 1, for instance, from
system (27) and the definition of e^ET(t) in OSEM (5), the following
inequality is derived.

D
+ |e^(t)|

≤ |x^̇(t)|
≤ |Aσ(tk)x

^(t) + Bσ(tk)Kσ(tk)x
^(tk)

+Lσ(tk)Cσ(tk)x
~(t)|

≤ |Aσ(tk) | | x^(t) | + |Bσ(tk)Kσ(tk) | | x^(tk)|

+ |Lσ(tk)Cσ(tk) | |e[Aσ(t) − Lσ(t)Cσ(t)]tx
~(0)|

≤ |Aσ(tk) | ( | x^(tk) | + εosem) + |Bσ(tk)Kσ(tk) | | x^(tk)|

+ |Lσ(tk)Cσ(tk) | |e[Aσ(t) − Lσ(t)Cσ(t)]t | | x~(0)|,

(30)

where x
~(t) = e

[Aσ(t) − Lσ(t)Cσ(t)]tx
~(0) is obtained from (26), x

~(0) is the
initial estimate error, and it is natural to assume that |x~(0)| is
bounded.
Moreover, from Lemma 3 and the fact that Aσ(t) − Lσ(t)Cσ(t) is
Hurwitz, one can obtain

D
+ |e^(t)|

≤ |Aσ(tk) | ( | x^(tk) | + εosem) + |Bσ(tk)Kσ(tk) | | x^(tk)|

+ce
((λmax(Aσ(t) − Lσ(t)Cσ(t)))/2)tk |Lσ(tk)Cσ(tk) | | x~(0)|

Then, similarly, by denoting T̄ = t − tk, a strictly positive lower
bound on the inter-execution intervals can be obtained as (29), for
any given event-triggered instant tk.□
 
Corollary 2: For given positive constants co1, co2, η, α, Tf, and a
constant matrix R, if there exist a positive constant ε̄osem, matrices
Y1i and Y2i, and symmetric and positive definite matrices Pi with
appropriate dimensions, rendering P̄i = R

−(1/2)
PiR

−(1/2), i ∈ N, such
that (8)

Ξ5 Y2iCi BiY1i

∗ Ξ6 0

∗ ∗ −ηP̄1i

< 0 (31)

I − P̄1i ≤ 0, (32)

where

Ξ5 = AiP̄1i + P̄1iAi
T + BiY1i + Y1i

T
Bi

T − αP̄1i

Ξ6 = AiP̄2i + P̄2iAi
T − Y2iCi − Ci

T
Y2i

T − αP̄2i

P̄i =
P̄1i 0

∗ P̄2i

P̄2i = Vi

P̄11, i 0

∗ P̄22, i

Vi
T

ε
~ = ηε̄osem

then, the augmented switched closed-loop system (28) is finite-
time bounded with respect to (co1, co2, ε̄osem, Tf, R, σ(t)), under
OSEM (5) and any ADT switching signal σ(t) satisfying (9).
Furthermore, the state feedback controller gains are Ki = Y1iP̄1i

−1,
the state observer gains are Li = Y2iP

^

2i

−1
= Y2iUiΣiP̄11, iΣi

−1
Ui

T, and the
event-triggering threshold is εosem = | ε̄osem|, where P

^

2i satisfies
CiP̄2i = P

^

2iCi.
 
Proof: First, choose the Lyapunov function candidate for the
augmented switched closed-loop system (28) as

V(ξ(t)) = Vσ(t)(ξ(t)) = ξ
T(t)P̄σ(t)

−1
ξ(t),

where P̄i is defined below (32).
Then, using the conditions (7) and (8) in Theorem 1 with the
replacements Āi → A

^

i, B̄i → B
^

i and εsem → εosem, the sufficient
analysis conditions can be similarly deduced to guarantee the
finite-time boundedness of switched closed-loop system (28) under
OSEM (5). In this case, (7) can be written as

A
^

iP̄i + P̄iA
^

i

T
+ η

−1
B
^

iB
^

i

T
− αP̄i < 0 (33)

Substituting the specific expressions A^

i and B^

i into (33) gives

Ξ7 LiCiP̄2i

∗ Ξ8

< 0, (34)
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where

Ξ7 = AiP̄1i + P̄1iAi
T + BiKiP̄1i + P̄1iKi

T
Bi

T

+BiKiKi
T
Bi

T − αP̄1i

Ξ8 = AiP̄2i + P̄2iAi
T − LiCiP̄2i − P̄2iCi

T
Li

T − αP̄2i

According to the structure of the defined matrix P̄2i (below (32))
and Lemma 1, there exists a matrix P

^

2i satisfying the condition
CiP̄2i = P

^

2iCi. Furthermore, using the changes of variables
Y1i = KiP̄1i and Y2i = LiP

^

2i, Schur complement and condition (32),
one can obtain the sufficient design condition (31) from (34). □
 
Remark 6: Corollary 1 provides a theoretical proof to ensure that
the Zeno behaviour does not occur. Note that the lower bound
estimation given by (29) depends on the sampled state value |x^(tk)|
for each inter-execution interval tk + 1 − tk. Here, a computation
method is given using another estimation of a unified lower bound
on the inter-execution intervals.
Since from Corollary 2

λmin(R)ξT(t)ξ(t) ≤ ξ
T(t)Rξ(t) ≤ co2,

one can obtain

|x^(t) | , | x~(t) | ≤ c̄o,

where c̄o = (co2/λmin(R)). In view of this, it follows from (27) and
(30) that

D
+ |e^(t)| ≤ (ϕ1 + ϕ4)c̄o + ϕ2εosem (35)

Then, a positive lower bound on the inter-execution intervals can
be computed as

T̄ =
εosem

(ϕ1 + ϕ4)c̄o + ϕ2εosem
(36)

5 Simulation and comparison results
In this section, two numerical examples are provided. The first one
is to illustrate the effectiveness of the proposed event-triggered
control methods (both SEM and OSEM). Also, the second one is to
illustrate the effectiveness of the proposed event-triggered control
compared with time-triggered control.
 

Example 1: Consider the switched linear system given by

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = [0.2 − 0.2]T

with

A1 =
−1.0 0.3

0 0.5
, B1 =

0.2
1.3

, C1 = 1.3 1.0

A2 =
0.4 0.4

0 −1.0
, B2 =

1.2
0.3

, C2 = 1.5 0.1

Since the system matrices A1 and A2 are not Hurwitz, both sub-
systems 1 and 2 are unstable. The simulations are conducted for the
SEM and OSEM, respectively.
First, we consider the finite-time boundedness under SEM and
state-feedback control, i.e. the co-design of SEM (2) and the state-
feedback gains in (3). Choose c1 = 1, c2 = 10, η = 1.6, α = 0.0001,
Tf = 3 and R = I, after solving the LMI conditions (8), (20) and
(21) in Theorem 3, we obtain a set of solutions for the event-
triggering threshold and state-feedback controller gains, which are
εsem = 0.02 and

K1 = − 0.6531 0.1009 , K2 = 0.0019 −0.6951

Then using (9), the average dwell time for guaranteeing the finite-
time boundedness of the resulting switched closed-loop system (6)
is τa = 0.7 > τa

∗ = 0.2359.
On the other hand, we consider the event-triggered observer-based
state-feedback control, i.e. the co-design of OSEM (5), the state-
feedback gains in (3) and the observer gains in (4). The values of
the corresponding parameters are chosen as co1 = 1, co2 = 10,
η = 3.8, α = 0.0002, Tf = 3 and R = I. Solving the LMI conditions
(8), (31) and (32) in Corollary 2 gives a set of feasible solutions,
which are εosem = 0.02 and

L1 = 1.9729 0.3970 T, L2 = −0.3043 2.6662 T

K1 = − 1.0912 0.1112 , K2 = − 0.0167 1.1159

From (9), the average dwell time is obtained as
τa = 0.7 > τa

∗ = 0.5226. The initial state of the observers is set as
x^(0) = [0.17 − 0.17]T.
The simulation results about the switched closed-loop system's
state response together with the event-triggered updated state for
both cases are shown in Fig. 2. For the event-triggered state-
feedback control with SEM, the evolution of the error norm
∥ eET(t) ∥ and the inter-execution intervals are shown in Fig. 3. For
the event-triggered observer-based state-feedback control with
OSEM, the corresponding results are shown in Fig. 4. Also, the
switching signal (N0 = 2) used by both cases is shown in Fig. 5. As
shown in Fig. 2, the system state is finite-time bounded with either
the event-triggered state-feedback controllers or the event-triggered
observer-based state-feedback controllers, and the performances of
both are similar. More importantly, as can be seen in Figs. 3 and 4,
the triggering frequency always decreases with the convergence of
the system state, and the Zeno behaviour is excluded in both cases. 
 
Example 2: Consider the switched linear system given by

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = [0.1 − 0.1]T

with

A1 =
0 −0.3

0.6 3.0
, B1 =

0.2
1.5

A2 =
0 −1.2

0.4 −4.0
, B2 =

1.0
0.3

Fig. 2  State response (upper two sub-figures) and event-triggered updated
state (lower two sub-figures) under SEM (2) and OSEM (5), respectively.
State-feedback control with SEM (red line) and observer-based state-
feedback control with OSEM (blue line)

 

3246 IET Control Theory Appl., 2017, Vol. 11 Iss. 18, pp. 3240-3248
© The Institution of Engineering and Technology 2017



In this example, we make a comparison between the proposed
event-triggered control (take SEM as an example) and the time-
triggered control. The sampling period of time-triggered control is
selected as the average inter-execution time in the same line [42].
The parameters c1, c2, Tf and R are chosen the same as Example 1.
The comparison results are given in Table 1, in which νET and νTT

denote the maximum value of xT(t)Rx(t) for event-triggered control
and time-triggered control, respectively. Clearly, the event-

triggered control has a smaller maximum value of xT(t)Rx(t) than
the corresponding time-triggered control for the same given initial
condition. Thus, it is inferred directly that in the sense of a uniform
average sampling period, for a given initial condition, the proposed
event-triggered control can more effectively configure the system
resources to get relatively good performance than the time-
triggered control. 

6 Conclusions
By implementing an event-triggering mechanism with fixed
threshold in switched linear systems, we are interested in the finite-
time boundedness problem of the system via state-feedback
control. A design method has been developed for designing the
event-triggering mechanism and sub-controllers. Different from the
traditional time-triggering scheme in switched systems, the sub-
controllers are triggered and updated only if the state signal-based
error norm reaches a pre-defined threshold. As a basic and
important type of control system, state-feedback control design has
been considered in the study. Moreover, the multiple Lyapunov
functions approach and LMI technique have been adopted to
construct the sufficient conditions for the design, which can
guarantee the finite-time boundedness of the resulting switched
closed-loop system. In addition, a positive lower bound on inter-
execution intervals has been presented to avoid Zeno behaviour.
Moreover, motivated by the application, the results obtained in the
full state feedback have been extended to the observer-based state-
feedback control. The simulation has shown that the transmission
frequency of the feedback signal could be reduced to a certain level
and the finite-time boundedness of the closed-loop system can be
ensured. We are working towards applying some of the ideas to
switching systems that contain non-linear components.
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