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Abstract—Due to strongly coupled nonlinearities of the grasped
dual-arm robot and the internal forces generated by grasped ob-
jects, the dual-arm robot control with uncertain kinematics and
dynamics raises a challenging problem. In this paper, an adaptive
fuzzy control scheme is developed for a dual-arm robot, where an
approximate Jacobian matrix is applied to address the uncertain
kinematic control, while a decentralized fuzzy logic controller is
constructed to compensate for uncertain dynamics of the robotic
arms and the manipulated object. Also, a novel finite-time conver-
gence parameter adaptation technique is developed for the estima-
tion of kinematic parameters and fuzzy logic weights, such that
the estimation can be guaranteed to converge to small neighbor-
hoods around their ideal values in a finite time. Moreover, a partial
persistent excitation property of the Gaussian-membership-based
fuzzy basis function was established to relax the conventional per-
sistent excitation condition. This enables a designer to reuse these
learned weight values in the future without relearning. Extensive
simulation studies have been carried out using a dual-arm robot to
illustrate the effectiveness of the proposed approach.
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I. INTRODUCTION

I
N RECENT decades, there has been a pronounced ten-

dency to focus the studies of coordinated dual-arm robots

in robotics and automation communities [1]–[5]. With a biman-

ual cooperation, the dual-arm robots can accomplish complex

tasks, such as cooperative load transporting and coordinate ma-

nipulation. But difficulties of the controller designs are also

increased significantly, since an additional arm not only leads

to a complicated structure and mechanism, but also adds strong

coupled nonlinearities as well as the internal forces generated by

the grasped object. To address these problems, coordinate con-

trol of dual-arm robots has been widely investigated [6]–[10].

Early work of the dual-arm coordinate position tracking control

was presented in [1] and [2]. A decentralized adaptive control

algorithm was proposed for multiple redundant cooperative ma-

nipulators to address the position tracking and internal forces

regulation in [6]. In [8], the coordination problem of redundant

robot systems was addressed by using the dual neural network

with multicriteria to minimize the energy cost. In [11], an adap-

tive neural control for the humanoid robot was presented to deal

with unknown output nonlinearities by employing a smooth

adaptive inverse technique.

It is worth mentioning that many existing dual-arm robot co-

ordinated control schemes were developed under the assumption

that the robot kinematics are fully known. However, in realistic

operational scenarios, kinematic uncertainties widely exist. For

example, when a dual-arm robot equips with replaceable tools

or grasps an unknown object, the system parameters may be

changed and lead to unknown kinematic parameters. Recently,

the robot tracking control with uncertain kinematics for single-

arm robots has been reported [12]–[16]. An adaptive set-point

control scheme of robots with uncertain kinematics and gravita-

tional force was proposed in [14], where the exact knowledge of

kinematics and Jacobian matrix was not required. This scheme

has been extended to the robot tracking control [15], without

using knowledge of robotic kinematics, dynamics, and actuator

model. A neural network controller combined with the approx-

imate Jacobian matrix (AJM) scheme was also presented to

deal with the robot tracking in the absence of kinematics and
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dynamics [12]. The uncertain kinematics control of a single-

arm robot was well addressed in the above-mentioned works,

however, few research in the literature has investigated the con-

trol of the dual-arm robot, where accurate kinematic parameters

are unavailable. Without precise kinematic information, the task

space position cannot be accurately converted into joint space,

and therefore, the control performance of the dual-arm robot

may be greatly limited.

On the other hand, dynamic uncertainties of the dual-arm

robot widely exist as well, let alone various unknown factors

of the operating environment and the objects under manipula-

tion. These uncertainties may cause degeneration of the control

performance or even incur instable system states. To deal with

this problem, especially the unstructured model uncertainties,

model-free control design approaches have been extensively

studied [17]–[24]. It is worth mentioning that, among these

control approaches, fuzzy logic system (FLS) has been charac-

terized as a powerful approximator by using linguistic knowl-

edge representations and fuzzy rules and has been wildly used

to deal with uncertainties [25]–[30], [31]. To address the strict-

feedback control of single-input single-output systems, an FLS

was constructed for the compensation of uncertain nonlinearities

in [25]. To compensate for the unknown system dynamics of a

class of nonlinear systems, a backstepping-based adaptive con-

troller was developed by utilizing the universal approximation

ability of the FLS [32]. In [33], to enhance the control perfor-

mance of a humanoid robot in the presence of unknown actuator

backlash and uncertain dynamics, a decentralized controller was

designed by using the adaptive FLS and a smooth backlash in-

verse. In the above-mentioned works, however, only ultimate

boundedness of the weights estimation error can be guaranteed,

and the convergence of the weights was not analyzed. The FLS

is required to online adjust the learned weights to transform

the expert linguistic knowledge into adaptive learning ability

of the control system. Without convergence, the weight values

need to relearn every time when the FLS runs again even if

repeating the same task. It is desirable to guarantee fast and

accurate convergence of estimated parameters to improve the

control performance [34].

In this paper, we develop a dual-arm robot control scheme by

using the AJM technique and the adaptive FLS, such that the

robot can be well controlled in the absence of robot dynamics

and kinematics. The proposed control scheme can guarantee

the convergence of the tracking errors in a finite time (FT), in

addition to the parameter estimation. It has been reported that

the estimation performance can be improved if the adaptation

law contains the information of the estimation errors [35]. An

adaptive estimation technique was proposed in [36], where the

parameter estimation errors were used to ensure the convergence

of the estimated parameters. In [37], an optimal control strategy

was applied in a nonlinear system by using the dynamic pro-

gramming algorithm to ensure the FT convergence. Inspired by

the concept of “direct” parameter estimation [35]–[38], in this

paper, an FT adaptive estimation algorithm is developed by in-

troducing a leakage term driven by parameter estimation errors,

such that the estimated kinematic parameters can converge to

small neighborhoods of their optimal values in FT.

It should be noted that the persistent excitation (PE) condition

is important to guarantee the convergence of estimated param-

eters [34]. However, for the conventional FLS, the requirement

of the PE condition is restricted and not easy to be satisfied. In

[39], a partial persistent excitation (PPE) is proposed to relax

the PE condition of the neural network control, which proved

that the PE condition of certain regression subvectors of radical

basis functions (RBFs) along with a recurrent trajectory (e.g.,

periodic and periodic-like orbits) could be rigorously guaran-

teed [39]. Inspired by this work, in this paper, the PPE condition

of the FLS is investigated to replace the conventionally used PE

condition. Based on the PPE condition, an adaptive weight up-

dating scheme is further developed by introducing an auxiliary

framework to express the weights errors. Under the PPE condi-

tion, the FT convergence of partial FLS weight estimated and

accurate approximation of unknown dynamics are guaranteed.

The main contributions of the proposed control scheme could

be summarized as follows:

1) constructing an adaptive fuzzy logic control scheme for

the coordinated robot arms with neither a priori knowl-

edge of system dynamics nor information of the kinematic

parameters;

2) designing a novel parameters adaptation framework by

applying a set of auxiliary filtered matrices, such that

the parameter estimation errors could be appropriately

expressed without using the robot joint accelerations;

3) relaxing the PE condition by introducing the concepts of

the PPE and spatially localized approximation (SLA) of

the FLS, such that the weights could converge to their

optimal values when tracking a periodic trajectory.

II. MODELING PROCEDURE OF THE ROBOT

AND PRELIMINARIES

A. Kinematics Modeling of the Dual-Arm Robot

As shown in Fig. 1, the dual-arm robot is commanded to grasp

a common object to follow a reference trajectory. Assume that

the end effector of each arm grasps the object rigidly so that

no relative motion occurs between the end effectors and the

object. Then, the object’s position and orientation vector can be

calculated by the joint variable of each arm as follows:

x = fkinei
(qi), i = 1, 2 (1)

where x ∈ R
N0 is the position of the object, N0 is the object’s

degree of freedom (DOF), qi denotes the joint angle of the ith
arm. The subscript “i” denotes the “left” and “right” robotic

arms. Differentiating (1) with respect to time yields

ẋ = Ji(qi , φi)q̇i (2)

where φi ∈ R
h i denotes the kinematic parameters of the ith arm,

and hi denotes the number of the D–H parameters. Ji(qi , φi) ∈
R

No ×N i is the Jacobian matrix, which satisfies the following

property.

Property 1 (see[12]): The Jacobian matrix Ji(qi , φi) can be

formulated with a linearly parameterized form as

Ji(qi , φi)ξi = Ri(qi , ξi)φi (3)
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Fig. 1. Overlook of the dual-arm robot manipulating an object.

where Ri(qi , ξi) ∈ R
No ×h i is the regressor matrix of kinematics

with respect to qi and ξi , and ξi is a known vector. Without loss

of generality, we assume that φi is bounded by known vectors

φi and φi , as φi ≥ φi ≥ φi , where φi and φi denote the lower

and upper bounds of φi , respectively.

From Property 1, we can derive that Ji(qi , φi)ξi = Ji(qi ,

φ̂i)ξi + Ji(qi , φ̃i)ξi , where φi = φ̂i + φ̃i , φ̂i is the estimated

kinematic parameters and φ̃i is the estimation error. This prop-

erty is useful in the identification of the kinematic parameters.

B. Dynamics Modeling of the Dual-Arm Robot

The dynamics model of the ith robotic arm is given by the

Lagrangian method as follows:

Hi(qi)q̈i + Di(qi , q̇i)q̇i + Gi(qi) = τi + JT
e i

(qi)Fe i
(4)

where Hi(qi) ∈ R
N i ×N i , Di(qi , q̇i) ∈ R

N i ×N i , and Gi(qi) ∈
R

N i are the inertial matrix, Coriolis matrix, and gravity term,

respectively. Ni denotes the DOF of the ith robotic arm. JT
e i

(qi)
is the Jacobian matrix of the ith robotic arm, while τi ∈ R

N i is

the joint torque and Fe i
∈ R

N0 is the external force exerted at

the ith end effector. The dynamics of the object can be described

as follows:

Ho(x)ẍ + Do(x, ẋ)ẋ + Go(x) = Fo (5)

where Ho(x) ∈ R
N0 ×N0 denotes the inertial matrix of the ob-

ject, Do(x, ẋ) ∈ R
N0 ×N0 is the Coriolis and centrifugal matrix,

Go(x) ∈ R
N0 ×N0 is the object’s gravity term, and Fo ∈ R

N0

denotes the result force exerted on the object. As shown in

Fig. 1, the force Fo can be represented by two force vectors as

follows:

Fo = −Foe1
− Foe2

(6)

where Foe i
∈ R

N0 is the interaction force applied by the object

on the ith end effector. The relationship between Foe i
and Fe i

is described as

Foe i
= JT

oe i
(x)Fe i

(7)

where Joe i
(x) ∈ R

N0 ×N0 is the manipulated Jacobian matrix

from the ith manipulator’s end effector to the mass center of the

object. The force Foe i
can be decomposed into an external force

and an internal force, such that

Foe i
= fi + fo i

(8)

where the external forces foi only contribute to the motion of

the object, while the internal forces fi satisfy f1 + f2 = 0[n ] .

The combination of (5), (6), and (8) yields

Ho(x)ẍ + Do(x, ẋ)ẋ + Go(x) = −fo1
− fo2

. (9)

The external force fo i
could be represented as follows [33]:

fo i
= −Ci(t)

(

Ho(x)ẍ + Do(x, ẋ)ẋ + Go(x)
)

(10)

where Ci(t) is a positive-definite N0 × N0 diagonal matrix de-

noting the object load distribution onto the ith robotic arm,

with C1(t) + C2(t) = IN0
; IN0

∈ R
N0 ×N0 is an identity ma-

trix. Substituting (9) and (10) into (8), we have

fi = Foe i
− Ci(t)(fo1

+ fo2
). (11)

Let us combine (4)–(6), (8), (11), and the kinematic equa-

tions (1), (2), the dynamics of the ith robotic arm could be

reformulated as follows:

τi = Hi(qi)q̈i + Di(qi , q̇i)q̇i + Gi(qi) − JT
i (qi , φi)fi (12)

where Hi = Hi + CiHo , Ho = JT
i MoJi , Di = Di + Ci

(HD + Do), Do = JT
i DoJi , HD = JT

i Ho J̇i , Gi = Gi +
CiGo , Go = JT

i Go , and Jei = Joe i
Ji . To facilitate the anal-

ysis, a number of useful properties and assumptions are given

as follows.

Property 2 (see [7]): The matrix 2Di(qi , q̇i) − [Ḣi(qi) −
Ċi(t)Ho(qi , q̇i)] is skew-symmetric and satisfies that

∂T
{

(

2Di(qi , q̇i) − Ḣi(qi)
)

− Ċi(t)Ho(qi , q̇i)
}

∂ = 0 ∀∂

Property 3 (see[7]): The term Ċi(t)H0(qi) is uniformly

continuous and bounded by a known constant as

‖Ċi(t)H0(qi)‖ ≤ 2̺ ∀t ≥ 0

where ̺ is a positive constant.

Assumption 1: The Jacobian matrices of the robotic arms are

of full rank during the operation.

Assumption 2: The robot grasps the object tightly such that

no relative motion or rotation occurs between the object and the

grasper. In addition, the rigid object would not be deformed by

the applied forces.

Assumption 3: The reference task space trajectory xd and its

time derivative ẋd are continuous and bounded.
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C. Preliminaries

1) FLS: The FLS has been widely applied in the control

of nonlinear systems by its powerful ability to approximate

complex systems and no requirement of a priori experience of

system dynamics. Considering the unknown nonlinear function

F (z) ∈ R
m , and the measurable scalar input z ∈ R

n , with n and

m being the dimensions of the input and output, respectively,

we employ a multi-input multi-output FLS to approximated an

unknown nonlinear system F (z) with the following steps [40].

1) Fuzzification: Fuzzification maps a real scalar input z into

fuzzy linguistic terms by using membership functions.

2) Fuzzy IF–THEN rules: The fuzzy IF–THEN rules are

adopted to relate an input set to an output set with the

Mamdani min-implication as follows.

Rule l, (l = 1, 2, . . . , L): If z1 is Al
1 , z2 is Al

2 , . . . ,
zn is Al

n , then

y1 is Bl
1 , y2 is Bl

2 , . . . , ym is Bl
m , where z =

[z1 , . . . , zn ] ∈ R
n and y = [y1 , . . . , ym ] ∈ R

m are the

premise variables with respect to the input and output,

Al
i and Bl

j are fuzzy sets, i = 1, . . . , n, j = 1, . . . , m,

and L is the number of the rules.

3) Fuzzy inference engine and defuzzification: Combining

the singleton fuzzifier, sum-product inference, and

center-average defuzzifier, the defuzzification can be

performed as

yj (z) =

∑L
l=1 Φl

j

∏n
i=1 μA l

i
(zi)

∑L
l=1

∏n
i=1 μA l

i
(zi)

(13)

where μA l
i
(zi) is the membership function of the linguis-

tic variable Al
i(zi), and Φl

j=maxy j (z )∈R{μB l
j
(Φl)} is the

point at which μB l
j
(Φl

j ) achieves its maximum value. Let

pl(z) =

∏ n
i = 1 μ

A l
i
(z i )

∑L
l = 1

∏ n
i = 1 μ

A l
i
(z i )

, P (z)=[p1(z), p2(z), . . . , pL

(z)]T ∈ R
L , Wj = [Φ1

j ,Φ
2
j , . . . ,Φ

L
j ]T ∈ R

L , W = [W1 ,

W2 , . . . , Wm ] ∈ R
L×m . Then, the FLSs can be rewritten

as follows:

y(z) = W T P (z). (14)

Lemma 1 (see[31]): Let fj (z) ∈ R be a continuous function

defined on a compact set Ωj ; then, for any given constant ǫj ,

there exists an FLS such that

sup
fj (z )∈Ω j

|fj (z) − yj (z)| ≤ ǫj (15)

where yj = W T
j P (z).

In terms of Lemma 1, F (z) = [f1(z), f2(z), . . . , fm (z)] ∈
R

m can be formulated as

F (z) = W T P (z) + ε (16)

where W ∈ R
L×m is the optimal weight matrix, P ∈ R

L is the

fuzzy basis vector, ε ∈ R
m is the approximation error, and L is

the number of fuzzy rules.

2) SLA [41]: The SLA means that for any bounded trajec-

tory z that remains in a compact set Ω, the unknown function

f(z) can be approximated by a limited number of fuzzy rules

in a local region (close to the trajectory z) as

f(z) = W ∗T
ξ Pξ (z) + εξ (z) (17)

where Pξ (z) = [p1ξ
(z), . . . , pL ξ

(z)]T ∈ R
L ξ denotes a subvec-

tor of P , with Lξ < L, |plξ | > ς with ς being a small positive

constant, W ∗
ξ = [W ∗T

j1 , . . . , W ∗T
jξ ]T represents the correspond-

ing weight matrix, and εξ is the construction error, which satis-

fies ||εξ (z) − ε(z)|| ≤ σ, with σ being a small value.

3) PPE Condition: In the parameter estimation, the PE con-

dition is important to ensure the convergence of estimated pa-

rameters. The definition of the PE condition could be described

as follows.

Definition 1 (see[36]): A vector or matrix P (t) is called per-

sistently excited if there exist two constants T > 0 and ̟ > 0,

such that

∫ t+T

t

P T (r)P (r) dr ≥ ̟I ∀t ≥ 0.

Note that for FLS, the PE condition is relatively strict and

not easy to be satisfied. To relax the PE condition, we introduce

a PPE condition for the FLS with the Gaussian membership

function, which is established by the following theorem.

Theorem 1: Consider a periodic trajectory Z(t), which is

continuous on a compact set Ω, and Ż(t) is bounded. For an

FLS W T P (Z) with P (Z) chosen to be Gaussian fuzzy mem-

bership functions, and the centers placed on a regular lattice

(large enough to cover the compact set Ω), the regressor sub-

vector Pξ (Z(t)) could satisfy the PE condition.

Proof: See the Appendix.

Remark 1: In the previous studies [39], [41], [42], the SLA

of the RBF-based neural network was well established, such that

the accurate approximation can be achieved by a limited num-

ber of neural nodes. This property has been widely employed

in the identification of system dynamics such as robotic ma-

nipulators [39], unmanned surface vessels [42], fault detection

system [43], etc. Inspired by the above discussion, in this paper,

we investigate the PPE property of the FLS. We have proved

that the PPE condition of FLS holds if the inputs trajectory is

periodic, which means that the PPE condition of the FLS could

be more easy to satisfy.

Remark 2: Theorem 1 shows that for the GFBFs whose cen-

ters are close to the periodic trajectory, the PE condition could

be relaxed to PPE condition, and hence, the convergence of the

estimated weights is more easy to satisfy. On the other hand,

for the GFBFs whose centers are far away from the tracking

trajectory, the weights are only slightly updated.

III. CONTROL DESIGN

A. Control Design for the Closed-Loop Robot System

Step 1: Define the tracking error as ex = x(t) − xd(t). Taking

its differentiation with respect to time, we have

ėx = ẋ(t) − ẋd(t) = Ji(qi , φi)q̇i − ẋd (18)
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Fig. 2. Control strategy of the dual-arm robot with uncertain dynamics and
kinematics.

where ẋ = Ji(qi , φi)q̇i holds according to (2). Then, an auxil-

iary controller q̇d i
is designed as follows:

q̇d i
= J+

i (qi , φ̂i)(ẋd − Keex − αfi
) (19)

where J+
i (qi , φ̂i) is the Moore–Penrose inverse of Ji(qi , φ̂i),

Ke is the control gain, αfi
is an auxiliary term defined by

αfi
= βfi

ΛF i
, with βfi

being a positive constant, and ΛF i
is a

leakage term, which will be designed later. The combination of

(3), (18), and (19) yields

ėx = −Keex + Ji(qi , φi)eq i
+ Ri(qi , q̇d i

)φ̃i − αfi
(20)

where eq i
= q̇i − q̇d i

.

Step 2: Substituting (18) and (19) into (12), we have

Hi(qi)ėq i
+ Di(qi , q̇i)eq i

= τi −Hi(qi)q̈d i
−Di(qi , q̇i)q̇d i

− Gi(qi) + Ji(qi , φi)fi . (21)

Let us define

Fi(zi) = Hi(qi)q̈d i
+ Di(qi , q̇i)q̇d i

+ Gi(qi) (22)

where zi = [q̈T
d i

, q̇T
d i

, qT
i , q̇T

i ]T . Since Hi(qi), Di(qi , q̇i), and

Gi(qi) are not available, we use an FLS to approximate (22) as

Fi(zi) = W T
F i

PF i
+ εF i

(23)

where WF i
∈ R

σF i
×N i is the optimal FLS weight matrix, and

PF i
(zi) = [PF i 1

(zi), PF i 2
(zi), . . . , PF i σ F i

(zi)]
T ∈ R

σF i is

the fuzzy basis vector, σF i
is the number of fuzzy rules, and

εF i
∈ R

N i is the construction error.

Then, the controller τi can be designed as follows:

τi = F̂i(eq i
) − Kieq i

− JT
i (qi , φ̂i)(ex − Kfi

Λfi
+ fd i

)

+ Υi(eq i
) (24)

where Ki is the selected control gain, F̂i(zi) = Ŵ T
F i

PF i
(zi),

and ŴF i
∈ R

σF i
×N i is the estimation of WF i

; fdi is the desired

internal force. The robust term Υi(eq i
) is designed as Υi(eq i

) =

{−β i
e q i

||e q i || , eq i
�=0

0, otherwise
, and βi is a selected positive constant. And Λfi

is defined as Λfi
=

∫ t

0 f̃idt; f̃i = fi − fd i
. The overall control

scheme is shown in Fig. 2.

Substituting (23) and (24) into (21), the closed-loop error

dynamics of the dual-arm robot can be rewritten as

Hi(qi)ėq i
+ Di(qi , q̇i)eq i

= −Kieq i
− JT

i (qi , φ̂i)ex

+ Υi(eq i
) + JT

i (qi , φi)fi − JT
i (qi , φ̂i)(fd i

− Kfi
Λfi

)

+ εF i
+ W̃ T

F i
SF i

(zi) (25)

where W̃F i
= ŴF i

− WF i
.

B. FT Kinematic Parameter Estimation Design

In this section, we will preform the parameter estimation

design of the unknown system parameters.

1) Finite-Time Convergence Parameter Adaptation (FCPA)

Design of the Kinematic Parameters: In order to derive the

parameter estimation of φ̂i , we define an auxiliary matrix Ui ∈
R

h i ×h i and two vectors Ti ∈ R
N i , Pi ∈ R

N i as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U̇i = −ζiUi + Ri(qi , q̇i)
T Ri(qi , q̇i), Ui(0) = 0

Ṫi = −ζiTi + Ri(qi , q̇i)
T ẋ, Ti(0) = 0

Pi = Ti − Ui φ̂i

(26)

where ζi is a positive constant that introduces a forgetting factor

for the filter matrix, which can be designed to make a tradeoff

of the robustness and the convergence rate.

By integrating on both sides of (26) with respect to time, the

solution of Ui and Ti can be derived as

{

Ui(t) =
∫ t

0 e−ζ i (t−r)Ri(qi(r), q̇i(r))
T Ri(qi(r), q̇i(r))dr

Ti(t) =
∫ t

0 e−ζ i (t−r)Ri(qi(r), q̇i(r))
T ẋ(r)dr.

(27)

Remark 3: From the analysis in Section II, we have ẋ =
R(qi , q̇i)φi . Comparing the structure between Ti and Ui in (27),

we can derive that Ti = Uiφi . Then, Pi can be represented by

Pi = Uiφi − Ui φ̂i = Ui φ̃i . In this sense, the term Pi contains

the information of estimation error of φi . This is important to

improve the estimation performance.

Then, the updating law for φ̂i is designed by using the fol-

lowing projection algorithm:

(
˙̂
φi)k =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−λi

(

RT
i (qi , q̇d i

)ex + κi
UT

i Pi

||Pi || + Ni

)

k
,

if (φ
i
)k ≤ (φ̂i)k ≤ (φi)k

or if (φ̂i)k = (φ
i
)k and (φiF

)k ≤ 0

or if (φ̂i)k = (φi)k and (φiF
)k ≥ 0

0, otherwise

(28)

where λi and κi are positive constants to be specified by

the designer, (·)k denotes the kth element of the vector (·),
Ni is a leakage term which will be designed later, φiF

=

−RT
i (qi , q̇d i

)ex − κi
UT

i Pi

||Pi || −Ni , and φi and φ
i

are the known

lower and upper bounds of the real value of φi , respectively.

2) FCPA Design of the FLS Weights: In order to achieve

the FT estimation of the FLS weight parameters without us-

ing the joint acceleration q̈i , the following functions have been
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designed:
{

Ξi(zc i
) = Hieq i

Ψi(zd i
) = −Ḣieq i

+ Di(qi , q̇i)eq i
− JT

i (qi , φi)fi

(29)

where zc i
= [qT

i , q̇T
i , q̇T

d i
]T , zd i

= [qT
i , q̇T

i , q̇T
d i

, fT
i ]T . By com-

bining (22) and (29), and considering that Ξ̇(zc i
) = Hi ėq i

+

Ḣieq i
, the closed-loop dual-arm robot system (12) can be rep-

resented as

Fi(zi) + Ξ̇i(zc i
) + Ψi(zd i

) = τi . (30)

Since Ξi(zc i
) and Ψi(zd i

) are not available, the following FLS

is constructed for Ξi and Ψi as
{

Ξi(zc i
) = W T

Ξ i
PΞ i

+ εΞ i

Ψi(zd i
) = W T

Ψ i
PΨ i

+ εΨ i

(31)

where WΞ i
∈ R

σΞ ×N i and WΨ i
∈ R

σΨ i
×N i are the optimal

weight matrices, PΞ i
∈ R

σΞ i and PΨ i
∈ R

σΨ i are the fuzzy

basis vectors, and εΨ i
and εΞ i

are the construction errors.

Inspired by the work in [36], we introduce a stable linear filter

(·)f = 1
bi s+1 (·), bi > 0 on both sides of (30) as follows:

Fif (zi) + Ξ̇if (zc i
) + Ψif (zd i

) = W T
F i

PF i f + W T
Ξ i

ṖΞ i f

+ W T
Ψ i

PΨ i f + εF i f + ε̇Ξ i f + εΨ i f = τif (32)

where PF i f ∈ R
σF i , PΞ i f ∈ R

σΞ i , PΨ i f ∈ R
σΨ i , εF i f ∈ R

N i ,

εΞ i f ∈ R
N i , εΨ i f ∈ R

N i , and τif ∈ R
N i are the filtered version

of PΞ i
, PΨ i

, PF i
, εF i

, εΞ i
, εΨ i

, and τi , respectively, and given

as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

biṖF i f + PF i f = PF i
bi ε̇F i f + εF i f = εF i

biṖΞ i f + PΞ i f = PΞ i
biṖΨ i f + PΨ i f = PΨ i

bi ε̇Ξ i f + εΞ i f = εΞ i
bi ε̇Ψ i f + εΨ i f = εΨ i

bi τ̇if + τif = τi

(33)

where bi is a positive constant, PF i
(0) = 0, εF i

(0) = 0,

PΞ i f (0) = 0, PΨ i f (0) = 0, εΞ i f (0) = 0, εΨ i f (0) = 0, and

τi(0) = 0. Then, the filtered dynamics can be rewritten as

τif = W T
i Si(Zi) + εi (34)

where Wi = [W T
F i

, ψT
i ]T ∈ R

σ i ×N i and ψi = [W T
Ξ i

,W T
Ψ i

]T ∈
R

σY i
×N i are the optimal weight matrices of the FLS, Si(Zi)

= [P T
F i f

(zi), P
T
Y i

(ci)]
T ∈ R

σ i , and PY i
(ci) = [

P T
Ξ i

−P T
Ξ i f

bi
,

P T
Ψ i f

]T ∈ R
σY i is the fuzzy basis function, σi = σF i

+ σY i
with

σY i
being the number of fuzzy rules; εi = εF i f

+ εY i
∈ R

N i

and εY i
=

εΞ i
−εΞ i f

bi
+ εΨ i f ∈ R

Ψ i are the approximation

errors. To derive the parameter estimation of Wi , we design the

auxiliary filter matrices Li ∈ R
σY i

×σY i , Qi ∈ R
σY i

×N i , and

Vi ∈ R
σY i

×N i as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L̇i = −δiLi + Si(zi)S
T
i (zi), Li(0) = 0

Q̇i = −δiQi + Si(zi)τ
T
if , Qi(0) = 0

Vi = LiŴi −Qi

(35)

where δi is a positive constant. The solutions of Li and Qi are

derived by integrating on both sides of (35) as

{

Li(t) =
∫ t

0 e−δ i (t−r)Si(zi(r))Si(zi(r))
T dr

Qi(t) =
∫ t

0 e−δ i (t−r)Si(zi(r))
T τidr.

(36)

From the definition of Vi , Li , and Qi in (35) and (36), we have

Vi = LiŴi − LiWi + χi = LiW̃i + χi (37)

where χi = −
∫ t

0 exp(−δi(t − r))Si(zi(r))εi(r)dr. Since εi

and the basis function Si(zi) are bounded, the χi is also bounded

and satisfies that χi ≤ χ̄i , where χ̄i is the upper bound of χi .

Then, the FLS weight updating law
˙̂

Wi is designed as follows:

˙̂
Wi = −Γi

(

MiSF i
(zi)e

T
q i

+ γi
LT

i Vi

||Vi ||

)

(38)

where Mi = [
Iσ F i

×σ F i
0σ Y i

×σ F i

] and γi is a positive constant.

C. Stability Analysis

The stability analysis of the proposed control algorithm is

established by the following theorem.

Theorem 2: Consider the dual-arm robot system grasping

a common object in (12). Assume that the regressor matrices

Ri(qi , q̇i) and Pi(Zi) satisfy the PE condition. Then, the adap-

tive control input τd i
developed in (24) with the auxiliary con-

trollers q̇d i
in (19), as well as the parameter adaptation law (28)

and the FLS weight adaptation law in (38), can guarantee that all

the signals in the closed-loop system are uniformly ultimately

bounded, the tracking error ex converges to a small residual set

around zero, and the estimate error φ̃i and W̃i could converge

to a small neighborhood around zero.

Proof: Consider the following Lyapunov function for the

dual-arm robot:

Vi = Vi1 + Vi2 + Vi3 (39)

where

Vi1 =
1

2
eT
x ex +

1

2λi
φ̃T

i φ̃i (40)

Vi2 =
1

2
eT
q i
Hieq i

+
1

2
βiΛ

T
fi

Λfi
(41)

Vi3 =
1

2
tr
(

W̃ T
i Γ−1

i W̃i

)

(42)

and φ̃i = φi − φ̂i , βi is a positive constant.

The differentiation of (40) with respect to time gives us

V̇i1 = eT
x ėx +

1

λi
φ̃T

i
˙̂
φi . (43)
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Substituting (20) and the updating law (28) into (43) yields

V̇i1 = eT
x

(

− Keex + Ji(qi , φi)eq i
+ Ri(qi , q̇di)φ̃i − αfi

)

+
1

λi
φ̃T

i
˙̂
φi

= −eT
x Keex + eT

x Ji(qi , φ̂i)eq i
+ eT

x Ji(qi , φ̃i)eq i
− eT

x αfi

− φ̃T
i

(

RT
i (qi , q̇i)ex + κi

UT
i Pi

||Pi ||
+ Ni

)

+ eT
x Ri(qi , q̇di)φ̃i .

(44)

As mentioned above,Pi can be represented byPi = Ui φ̃i . Then,

(44) can be rewritten as

V̇i1 = −eT
x Keex + eT

x Ji(qi , φ̂i)eq i
− κi φ̃

T
i

UT
i Ui φ̃i

||Ui φ̃i ||
− φ̃T

i Ni

− eT
x αfi

. (45)

Taking the derivative of Vi2 with respect to time yields

V̇i2 = eT
q i
Hi ėq i

+
1

2
eT
q i
Ḣieq i

+ βiΛ
T
fi

f̃i . (46)

Substituting the error dynamics of the closed-loop system (25)

into (46), we have

V̇i2 = eT
q i

(

− Kieq i
+ Υi(eq i

) + W̃ T
F i

SF i
(zi) + εF i

)

+ eT
q i

(

− JT
i (qi , φ̂i)(ex + fd i

− Kfi
Λfi

) + JT
i (qi , φi)fi

)

+
1

2
eT
q i
Ḣieq i

− eT
q i
Di(qi , q̇i)eq i

+ βiΛ
T
fi

f̃i . (47)

In terms of Properties 2 and 3 of the dual-arm robot, and

employing the inequality eT
q i

(

2Di(qi , q̇i) − Ḣi(qi)
)

eq i
≤ ̺ie

T
q i

eq i
, (47) can be rewritten as

V̇i2 ≤ −
(

Ki − ̺i

)

eT
q i

eq i
+ eT

q i
W̃ T

F i
SF i

(zi) + eT
q i

εF i

− eT
q i

JT
i (qi , φ̂i)ex + eT

q i
JT

i (qi , φi)fi − βi ||eq i
||

− eT
q i

JT
i (qi , φ̂i)

(

fd i
− Kfi

Λfi

)

+ βfi
ΛT

fi
f̃i . (48)

Note that Ji(qi , φi)eq i
= ėx + Keex − Ri(qi , q̇d i

)φ̃i + αfi

and Ji(qi , φ̂i)eq i
= ėx + Keex − Ri(qi , q̇i)φ̃i + αfi

hold ac-

cording to (20); then, the combination of (45) and (48) yields

V̇i1 + V̇i2

≤ −eT
x Keex −

(

Ki − ̺i

)

eT
q i

eq i
− βi ||eq i

|| − κi ||Ui φ̃i ||

− φ̃T
i Ni +

(

ėx + Keex + αfi

)T

(fi − fdi + Kfi
Λfi

)

− φ̃i
T
RT

i (qi , q̇d i
)fi + φ̃i

T
RT

i (qi , q̇i)fdi + eT
q i

W̃ T
F i

SF i
(zi)

− φ̃i
T
RT

i (qi , q̇i)Kfi
Λfi

+ eT
q i

εF i
+ βfi

ΛT
fi

f̃i − eT
x βfi

ΛF i
.

(49)

Let us design Ni to be Ni = RT
i (qi , q̇i)fdi − RT

i (qi , q̇d i
)fi −

RT
i (qi , q̇i)Kfi

Λfi
, and substituting it into (49) yields

V̇i1 + V̇i2

≤ −eT
x Keex −

(

Ki − ̺i

)

eT
q i

eq i
− βi ||eq i

|| − κi ||Ui φ̃i ||

+
(

ėx + Keex + αfi

)T

(f̃i + Kfi
Λfi

) + eT
q i

W̃ T
F i

SF i
(zi)

+ eT
q i

εF i
+ βfi

ΛT
fi

f̃i − eT
x βfi

ΛF i
. (50)

Then, let us consider the convergence of the FLS weight errors.

Taking the derivative of the Vi3 in (42), we have

V̇i3 = tr
(

W̃ T
i Γ−1

i
˙̂

Wi

)

= −eT
q i

W̃ T
F i

SF i
(zi) − tr

(

γiW̃
T
i

LT
i Vi

||Vi ||
)

= −eT
q i

W̃ T
F i

SF i
(zi) − γi

||Li ||2
||Vi ||

||W̃i ||2 − γiCi (51)

where Ci = tr(W̃ T
i LT

i χi/||Vi ||) is a bounded term.

Combining V̇i1 , V̇i2 , and V̇i3 , and according to the definition

of Vi in (39), we can obtain the time derivation of Vi as follows:

V̇i = V̇i1 + V̇i2 + V̇i3

≤ −eT
x Keex −

(

Ki − ̺i

)

eT
q i

eq i
− βi ||eq i

||

− κi ||Ui φ̃i || +
(

ėx + Keex + αfi

)T

(f̃i + Kfi
Λfi

)

+ eT
q i

W̃ T
F i

SF i
(zi) + eT

q i
εF i

+ βfi
ΛT

fi
f̃i − eT

x βfi
ΛF i

− eT
q i

W̃ T
F i

SF i
(zi) − γi

||Li ||2
||Vi ||

||W̃i ||2 − γiCi . (52)

Let us consider the following inequalities:

eT
q i

εF i
≤ 1

2
eT
q i

eq i
+

1

2
εT
F i

εF i
(53)

−eT
x βfi

ΛF i
≤ βfi

2
eT
x ex +

βfi

2
ΛT

F i
ΛF i

. (54)

Substituting (53) and (54) into (52), we have

V̇i ≤ −eT
x

(

Ke −
βfi

2

)

ex −
(

Ki − ̺i −
1

2

)

eT
q i

eq i
− βi ||eq i

||

− κi ||Ui φ̃i || +
(

ėx + Keex + αfi

)T

(f̃i + Kfi
Λfi

) − γiCi

+
1

2
εT
F i

εF i
+ βfi

ΛT
fi

f̃i +
βfi

2
ΛT

fi
Λfi

− γi
||Li ||2
||Vi ||

||W̃i ||2 .
(55)

Let αfi
= −βfi

Λfi
, and Kf1

= Kf2
= Kf and βf1

= βf2
=

βf , with Kf and βf being a positive constants. Then, con-

sidering the property of internal forces errors f̃1 + f̃2 = 0,

Λ1 + Λ2 = 0, and taking the Lyapunov function V = V1 +
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V2 =
∑2

i=1 (Vi1 + Vi2 + Vi3), we have

V̇ =

2
∑

i=1

(

V̇i1 + V̇i2 + V̇i3

)

≤ − eT
x (2Ke − βf )ex −

2
∑

i=1

(

Ki − ̺i −
1

2

)

eT
q i

eq i

+

2
∑

i=1

(

−κi ||Ui φ̃i || − βi ||eq i
|| + βfi

ΛT
fi

f̃i

)

+

2
∑

i=1

(

− βfi
ΛT

fi
f̃i − βfi

ΛT
fi

Kf Λfi
+

βfi

2
ΛT

fi
Λfi

)

−
2

∑

i=1

(

γi
||Li ||2
||Vi ||

||W̃i ||2 + γiCi −
1

2
εT
F i

εF i

)

≤ − eT
x (2Ke − βfi

)ex −
2

∑

i=1

(

Ki − ̺i −
1

2

)

eT
q i

eq i

+
2

∑

i=1

(

− βfi
ΛT

fi

(

Kf − 1

2

)

Λfi

)

−
2

∑

i=1

(

γi
||Li ||2
||Vi ||

||W̃i ||2 −
1

2
εT
F i

εF i
+ γiCi

)

. (56)

If the gains Ki and Ke are selected to satisfy Ki ≥ ̺i + 1
2 and

Ke ≥ 1
2 βf , γi is chosen to be γi ≥ ||(L−1

i )T Γ−1
i ωi ||, then, from

(56) and the definition of V in (39) and (40)–(42), we can derive

that

V̇ ≤ −ηV + μ (57)

where η = min[λmax(2Ke − βfi
), λmax(

K i −̺ i −I
Hi

), γi
||Li ||2
||Vi || ,

βfi
(Kf − 1

2 )], μ = 1
2

∑2
i=1(ε

T
F i

εF i
+ γiCi), i = 1, 2. Accord-

ing to the results in [36], we can derive that the tracking errors

and estimation errors could converge to a small neighborhood

near zero. This completes the proof. �

Theorem 2 shows that the tracking error eq i
could converge to

a small neighborhood of zero. For the estimated parameters Ŵi ,

however, they may not converge to their optimal values since

the PE condition of the FLS is not easy to satisfy. According to

SLA in (17), the FLS in (23) and (31) can be expressed using

localized Gaussian fuzzy basis functions as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Fijξ (zi) = W T
F i j ξ

PF i j ξ
+ εF i j ξ

Ξijξ (zc i
) = W T

Ξ i j ξ
PΞ i j ξ

+ εΞ i j ξ

Ψijξ (zd i
) = W T

Ψ i j ξ
PΨ i j ξ

+ εΨ i j ξ

(58)

where P (·)ijξ and W (·)ijξ are the subvectors of P(·) and W(·) ,
whose centers are close to the reference trajectory ϕiξ = {ziξ ,
zc i ξ , zd i ξ}. Then, (34) can be rewritten as τij = W T

ijξPijξ (Zi)

+ εijξ , where Wijξ = [W T
F i j ξ

,W T
Ξ i j ξ

,W T
Ψ i j ξ

]T and Pijξ (Zi) =

[P T
F i j f ξ , (P

T
Ξ i j ξ − P T

Ξ i j f ξ )/2, P T
Ψ i j f ξ ]

T . Since the elements in

P (·)ijξ are activated, we can obtain that the regressors PF i j ξ ,

PΞ i j ξ , PΨ i j ξ , and Pijξ satisfy the PE condition. For the subvec-

tor of FLS weight Ŵijξ , its adaptation law can be designed as

˙̂
Wijξ = −Γijξ

(

PF i j ξ
eT
q i j

+ γi

LT
ijξVijξ

||Vijξ ||

)

(59)

where PF i j ξ
, Vijξ , and Lijξ are elements of the “subvector”

version of PF i
, Vi , and Li . Similar to (35) and (36), we have

Lijξ (t) =

∫ t

0

e−δ i (t−r)Pijξ (Zi(r))P
T
ijξ (Zi(r))dr

Qijξ (t) =

∫ t

0

e−δ i (t−r)P T
ijξ (Zi(r))τijdr

Vijξ (t) = LijξW̃ijξ + χijξ (60)

where χijξ = −
∫ t

0 exp(−δi(t − r))Pijξ (Zi(r))εijξ (r)dr.

Theorem 3: Consider the dual-arm robot system in (12) and

provide the auxiliary controllers q̇d i
in (20). Then, for any

recurrent trajectory ϕξ (Zi) starting from the initial condition

Zi(0) ∈ Ω0 (where Ω0 is a properly chosen compact set), the

adaptive control input τi developed in (24) with the parameter

adaptation law in (28) and the FLS weight adaptation law in

(59) can guarantee that the tracking error ex exponentially con-

verges to a small residual set around zero in FT, the estimation

error φ̃1 , φ̃2 , could converge to a small neighborhood around

zero in FT, and the estimated parameters Ŵi converge to small

neighborhoods of their optimal values in FT.

Proof: Let us consider the following Lyapunov function for

the robotic arm i:

Li = Vi1 + Vi2 + Vi3ξ (61)

where Vi1 and Vi2 are defined in (40) and (41) in the proof of

Theorem 2, and

Vi3ξ
=

1

2

N i
∑

j=1

VT
ijξ (L−1

ijξ )
T Γ−1

ijξL−1
ijξVijξ (62)

where Γiξ is the “subvector” version of Γi .

Then, considering the L−1
ijξVijξ in Vi3ξ , the derivation with

respect to time gives

∂L−1
ijξVijξ

∂t
=

˙̂
Wijξ − L−1

ijξ L̇ijξL−1
ijξχijξ + L−1

ijξ χ̇ijξ . (63)

Since Pijξ (Zi) is PE and Zi is bounded, we can obtain that L−1
ijξ

and L̇−1
ijξ are bounded; then, L−1

ijξ is also bounded. Then, taking

the derivative of Vi3ξ with respect to time and substituting (63)

in it, we obtain

V̇i3ξ =

N i
∑

j=1

VT
ijξL−1

ijξΓ
−1
ijξ (

˙̂
Wijξ + ωij ) (64)

where ωij = −L−1
ijξ L̇ijξL−1

ijξχijξ + L−1
ijξ χ̇ijξ .
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Then, substituting the updating law (59) into (64), and con-

sidering Vijξ = LijξW̃ijξ + χijξ , we have

V̇i3ξ =

N i
∑

j=1

VT
ijξ (L−1

ijξ )
T

(

− P T
F ijξeq i j

− γi

LT
ijξVijξ

||Vijξ ||
+ Γ−1

ijξωij

)

≤
N i
∑

j=1

(

− VT
ijξ (L−1

ijξ )
T PF ijξeq i j

+ VT
ijξ

(

L−1
ijξ

)T

Γ−1
ijξωij

)

+

N i
∑

j=1

(

− γi

VT
ijξ (L−1

ijξ )
T LijξVijξ

||Vijξ ||

)

≤
N i
∑

j=1

(

− W̃ T
ijξPF i j ξ

eq i j
+ ρij ||eq i j

||
)

−
N i
∑

j=1

(

(γi − ||(L−1
ijξ )

T Γ−1
ijξωij ||)||Vijξ ||

)

(65)

where ρij is a positive parameter defined by ρij = ||χT
ijξ

(L−1
ijξ )

T P T
F i j ξ

(zi)||. According to the definition of χijξ , it can

be proved that χijξ and χ̇ijξ are all bounded in terms of the

boundness of Pijξ (Zi) and εij , which have been established in

Theorem 2. L−1
ijξ is also bounded according to the satisfaction

of the PPE condition of Pijξ (Zi). Therefore, we can derive that

ρij and ωij are bounded; hence, the term ||(L−1
ijξ )

T Γ−1
ijξωij || is

also bounded.

Combining V̇i1 , V̇i2 , and V̇i3ξ , we can obtain the time deriva-

tion of the Lyapunov function L = L1 + L2 as follows:

L̇ =

2
∑

i=1

(

V̇i1 + V̇i2 + V̇i3ξ

)

≤ − eT
x (2Ke − βfi

)ex −
2

∑

i=1

(

Ki − ̺i −
1

2

)

eT
q i

eq i

+

2
∑

i=1

(

− κi ||Ui φ̃i ||
)

−
2

∑

i=1

(

(βi − ρi)||eq i
||
)

+
2

∑

i=1

(

− βfi
ΛT

fi
Kf Λfi

+
βfi

2
ΛT

fi
Λfi

+
1

2
εT
F i

εF i

)

−
2

∑

i=1

N i
∑

j=1

(

(γi − ||(L−1
ijξ )

T Γ−1
ijξωij ||)||Vijξ ||

)

≤
2

∑

i=1

(

− κi ||Ui φ̃i ||
)

−
2

∑

i=1

(

(βi − ρi)||eq i
||
)

+

2
∑

i=1

(

−
N i
∑

j=1

(γi − ||L−1T
ijξ Γ−1

ijξωij ||)||Vijξ || +
1

2
εT
F i

εF i

)

≤ − η1

√
L + μ1 (66)

where ρi = max(ρi1 , ρi2 , . . . , ρiN i
), γi is chosen to be γi ≥

||L−1T
ijξ Γ−1

ijξωij ||, βi is chosen to be βi ≥ ρi , η1 =
√

2 min

[λmax(
γ i −||L−1 T

i ξ Γ−1
i ξ ω i ||

√

λm in (Γ−1
i ξ )

), (βi − ρi)/
√

λmin(Hi), κi ||Ui ||
√

λi ],

and μ1 = 1
2

∑2
i=1(ε

T
F i

εF i
), i = 1, 2. Following the results in

[44] and according to (66), the tracking errors and the param-

eter estimation errors could converge to a small neighborhood

near zero in FT. This completes the proof.

Remark 4: Note that for parameter estimation, the PE (or

PPE) condition should be fulfilled to guarantee the convergence

of the estimation errors. Also, in practical robot control im-

plementations, some unknown factors such as friction, actuator

nonlinearities, nonrigid grasping, and external disturbances may

exist. These factors could affect the parameter estimation per-

formance and may degrade the control performance. Further

investigation together with experimental studies shall be made

in our future work. �

IV. SIMULATION STUDY

To illustrate the effectiveness of the proposed control scheme,

simulation studies are carried out based on a model of a dual-

arm robot with three joints for each arm and in the scenario that

a common object is firmly held in between the arms. The robot

dyanmics model for each arm is described as follows [45]:

Hi(qi)q̈i + Di(qi , q̇i)q̇i + Gi(qi) = τi + JT
e i

(qi)Fe i

where the manipulator inertial matrix Hi(qi) and the Coriolis

matrix D(qi q̇i) are described as

Hi(qi) = HT
i (qi) =

⎡

⎣

H11 ∗ ∗
H21 H22 ∗
H31 H32 H33

⎤

⎦

Di(qi) =

⎡

⎣

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤

⎦ , Gi(qi) =

⎡

⎣

G11

G21

G31

⎤

⎦

with H11 = p1 + 2p4 l1c2 + 2p5(l2c3 + l1c23), H21 = p2 + p4

l1c2 + p5(2l2c3 + l1c23), H22 = p2 + 2p5 l2c3 , H31 = p3 + p5

(l2c3 + l1c23), H32 = p3 + p5 l2c3 , H33 = p3 , D11 = l1(p4s2

+ p5s12), D12 = l2p5s3 − l1p4s2 , D13 = −p5(l2s3 + l1s12),
D21 = l1(p4s2 + p5s12), D22 = l2p5s3 , D23 =−l2p5s3 , D31

= −l1p5s12 , D32 = V , D33 = 0, G11 = 0, G21 = 0, G31 = 0.

And sj = sin(qij ), cj =cos(qij ), sj1 j2
=sin(qij1

+ qij2
), cj1 j2

= cos(qij1
+ qij2

), s123 = sin(qi1 + qi2 + qi2), c123 = cos
(qi1 + qi2 + qi2), p1 = I1 + I2 + I3 + l21 (m1 + m2 + m3) +
2l1m1 lc2 + l22 (m2 + m3) + 2l2m2 lc2 , p2 = I2 + I3 + l22 (m1

+ m2) + 2l2m2 lc2 , p3 = I3 , p4 = m3 lc2 +l2(m2 +m3), and

p5 = m3 lc3 . The motion dynamics of the object is described as

Ho ẍ + Do ẋ + Go(x) = Fo (67)

where

Ho =

⎡

⎣

1 0 0
0 1 0
0 0 0.1

⎤

⎦ and Co = Go = 0.

The kinematics and inertia parameters of each link of the

robot are given in Table I. The parameters of the grasped object

are given as lo = 0.05 m, mo = 0.1 kg, and mo = 0.1 kg·m2 .
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TABLE I
LINK PARAMETERS OF THE ROBOT ARM

Fig. 3. Trajectory tracking performance in phase plane.

The dual-arm robot is commanded to grasp an object to follow

a desired periodic circular trajectory as follows:

⎛

⎝

x
y
θ

⎞

⎠ =

⎛

⎝

0.1 cos(0.5t)
0.38 + 0.1 sin(0.5t)

0.2 sin(0.5 ∗ t)

⎞

⎠ .

The initial position and velocity of the manipulated ob-

ject are chosen as x(0) = [−0.03, 0.52, 0] and ẋ(0) = [0, 0, 0],
respectively. The estimated kinematic parameters are initial-

ized as φ̂1(0) = [0.2, 0.2, 0, 0]T , and its upper and lower

bounds are given by φ̄1 = [0.5, 0.5, 0.2, 0.1]T and φ
1

=

[0.1, 0.1, 0,−0.05]T , respectively. For the FLS, Gaussian mem-

bership functions are selected for each input dimension. The

Gaussian membership functions are continuously differentiable

and have the advantage for the theoretical analysis of the FLS.

We choose parameter −3, −2, −1, 0.5, 1.5, 1, and 2 for the

central points and π for the standard deviations for the FLS. The

initial FLS weights are chosen to be Ŵ1(0) = 0, Ŵ2(0) = 0,

which will be updated with the FT estimated law (59). The

adaptation gains are chosen to be ζ1 = ζ2 = 5, δ1 = δ2 = 1.5,

κ1 = κ2 = 0.05, λ1 = λ2 = 5, Γ1 = Γ2 = 1.5, and b1 = b2 =
0.001. And the control gains are selected to be positive-definite

matrix as Ke = diag{5, 5, 3} and Ki = diag{20, 10, 9}.

We employ the proposed controller (24) into the dual-arm

robot system to achieve the control goal without using a priori

knowledge of both the kinematics and dynamics of the robot.

The simulation results are performed in Figs. 3–17. An over-

look of the tracking performance is shown in Fig. 3, where

the grasped object is controlled to follow the periodic tracking

trajectories in the phase plane. Figs. 4–6 and 7–9 depict the

tracking performance and tracking errors. As we can see, the

actual trajectories in all dimensions (red line “-”) have success-

fully followed the reference trajectory (blue dashed line “–”)

and all tracking errors converge to zeros, even in the presence

Fig. 4. Trajectory tracking performance in the x-direction.

Fig. 5. Trajectory tracking performance in the y-direction.

Fig. 6. Trajectory tracking performance in the θ-direction.

of kinematic and dynamic uncertainties. To verify the superi-

ority of the proposed control method, comparison studies have

been further carried out based on a model-based controller [6]

and a conventional proportional derivative (PD) controller. The

comparative results are depicted in Figs. 7–9. From the figures,

we can find that the proposed controller (24) obtained the best

control performance, and tracking errors are much smaller than

the other two methods.
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Fig. 7. Trajectory tracking errors ex1 .

Fig. 8. Trajectory tracking errors ex2 .

Fig. 9. Trajectory tracking errors ex3 .

The parameter estimation performance is shown in Figs. 10

and 11. From the figures, we can observe that the estimated

kinematic parameters of both arms converge to their real val-

ues (blue dashed line “–”) in a short period of time (less than

a periodic). Additionally, the profile of the auxiliary terms P1

and P2 and the minimum eigenvalue of the auxiliary matrices

U1 and U2 are also depicted in Figs. 12 and 13, respectively. It

is shown that both σ1 = λmin(U1) and σ2 = λmin(U2) are great

than zero. This implies that the PE condition is satisfied dur-

ing the estimation, which has been further verified in Fig. 12,

Fig. 10. Estimation performance of the kinematic parameters l11 , l12 , l13 ,
and lo .

Fig. 11. Estimation performance of the kinematic parameters l21 , l22 , l23 ,
and lo .

Fig. 12. Profile of auxiliary vectors P1 and P2 .

where both P1 and P2 (which contain the information of esti-

mation errors) have approached to zero. Therefore, the validity

of the kinematics identification is demonstrated. In comparison

to the work in [12], our proposed method ensures not only the
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Fig. 13. Profile of minimum eigenvalues of U1 and U2 .

Fig. 14. FLS weight W1 with FT adaptation.

Fig. 15. FLS weight W2 with FT adaptation.

convergence of the tracking errors, but also the FT convergence

of the estimated parameters.

Simulation results of the proposed fuzzy logic control are

depicted in Figs. 14–17. The weights of the FLS are shown in

Figs. 14 and 15. From the figures, we can see that the weights of

the FLSs of both arms are converged with a fast rate. It should

also be emphasized that not all of the FLS weights have con-

verged to a relatively larger value, and a number of weights

only converge to the small neighborhood around zero. This is

Fig. 16. FLS weight W1 with the conventional adaptation law.

Fig. 17. FLS weight W2 with the conventional adaptation law.

consistent with the PPE condition, and only part of the fuzzy

weights are activated and updated by the adaptive law, while

for the Gaussian membership functions, whose centers are far

away from the FLS inputs, the corresponding FLS weights are

not activated and hence will remain in their initial conditions.

A comparative study of the FLS weight estimation using gra-

dient descent adaptation is shown in Figs. 16 and 17. It can be

observed that some weights diverge in the estimation, and not

all the weights are converged to their optimal values.

The simulation results have illustrated that our proposed con-

troller can successfully track the desired trajectory in the pres-

ence of uncertain kinematics and dynamics with the guarantee

of FT convergence of the estimated weights.

V. CONCLUSION

In this paper, we have developed an adaptive fuzzy control

scheme for the coordinated robot arms in the presence of sys-

tem uncertainties. To guarantee that the estimated parameters

converge to the optimal values, the PPE property of the fuzzy

basis function has been investigated. An FCPA technique is

developed for the estimation of both the unknown kinematics

parameters and FLS weights. We have shown that, under the

PPE condition, the estimated parameters are able to converge

to a small neighborhood of their actual values in an FT, such
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that they could be reused next time with an improved computa-

tional efficiency and control performance. Extensive simulation

studies have been carried out to illustrate that the manipulated

object is able to track well a desired trajectory in the presence

of uncertain kinematics and dynamics.

APPENDIX

Before proceeding to prove Theorem 1, let us introduce some

useful definitions and lemmas as follows.

Definition 2 (see[39]): A uniformly bounded piecewise con-

tinuous vector function P ∈ R
m is said to be PE if there

exist positive constants α1 , α2 , and T0 such that α1 ≤
∫ t0 +T0

t0
|P (τ)T c|2dτ ≤ α2 holds for all unit vectors c ∈ R

m .

Other than Definition 1, Definition 2 introduces an alternative

expression of the PE condition, which is in the scalar form. The

following lemma holds for the RBF [41].

Lemma 2 (see[41]): Consider any continuous recurrent tra-

jectory Z(t), and Z(t) remains in a bounded compact set ΩZ ;

then, for the localized RBF S(Z) in the form of S(Z) =
[s(||Z(t) − ξ1 ||), . . . , ||s(Z(t) − ξL )||]T ,

s(||Z(t) − ξl ||) = exp
[

− (Z − ξl)
T (Z − ξl)

ς2

]

(68)

where ξ1 , . . . , ξL are the centers placed on a regular lattice

(large enough to cover the compact set Ωi), and ς is a positive

constant, the regressor subvector Sξ (Z(t)) ∈ R
N ξ is persistent

exiting, i.e., for any constant vector c ∈ R
L ξ , there exists

α1 ||c||2 ≤
∫ t0 +T0

t0

|Sξ (Z(t))T c|2dμ(τ) ≤ α2 ||c||2 (69)

where α1 and α2 are positive constants.

Proof of Theorem 1: As defined in (17), the subvector of

the fuzzy basis function of the FLS Pξ (Z) = [p1(Z), p2(Z),
. . . , pL (Z)]T ∈ R

L is given by

pl(Z) =

∏N
i=1 μA l

i
(zi)

∑L
l=1

∏n
i=1 μA l

i
(zi)

(70)

with L being the number of the active fuzzy rules of the Pξ (Z),
Z = [z1 , z2 , . . . , zN ]T . Without loss of generality, the fuzzy

membership function μA l
i
(zi) is chosen to be the Gaussian fuzzy

membership function as μA l
i
(zi) = exp[−( z i −ξ l i

ρ )2 ], where ρ is

a positive constant, and ξli are distinct points of the member-

ship function functions. Then,
∏N

i=1 μA l
i
(zi) = ϕl(Z) can be

rewritten as

ϕl(Z) =

N
∏

i=1

exp
[

−
(zi − ξli

ρ

)2]

= exp
[

−
N
∑

i=1

(zi − ξli

ρ

)2]

= exp
[

− (Z − ξl)
T (Z − ξl)

ρ2

]

where ξl = [ξl1 , ξl2 , . . . , ξlN ]T . And (70) can be rewritten as

pl(Z) =
ϕl(Z)

ϕl + ϕ2 + · · · + ϕL
. (71)

In comparison to (68) and (71), if ρ and ς are chosen to

be the same, we can deduce that ϕl is functional equiva-

lent to an RBF. Then, according to Lemma 2, for the RBF

ϕ = [ϕ1 , ϕ2 , . . . , ϕL ]T , there exist an arbitrary selected con-

stant vector c ∈ R
L and positive constants α′

1 and α′
2 , such that

α′
1 ||c||2 ≤

∫ t0 +T0

t0

|ϕ(Z(t))T c|2dμ(τ) ≤ α′
2 ||c||2 . (72)

ϕl is bounded with the boundedness of Z according to (71).

And, from (72), we can also easily obtain that there exists

a ϕl(Z(t)) among ϕ1 , . . . , ϕL , such that ϕl(Z(t)) > 0 in the

time interval [t0 , t0 + T0 ]. Let ϕu = ϕ1 + · · · + ϕL ; then, we

have ϕ̄u ≤ ϕu ≤ ϕ
u

, where ϕ̄u and ϕ
u

are the upper and lower

bounds of ϕu , which are positive constants.

Then, combining (71), (72), and the definition of Pξ , we have

∫ t0 +T0

t0

|Pξ (Z(τ))T c|2dμ(τ) =

∫ t0 +T0

t0

|ϕ(Z(τ))T c|2
ϕ2

u

dμ(τ)

≤
∫ t0 +T0

t0

|ϕ(Z(τ))T c|2
ϕ2

u

dμ(τ) ≤ αP 2 ||c||2 (73)

and
∫ t0 +T0

t0

|Pξ (Z(τ))T c|2dμ(τ)

≥
∫ t0 +T0

t0

|ϕ(Z(τ))T c|2
ϕ̄2

u

dμ(τ) ≥ αP 1 ||c||2 (74)

with αP 1 = α′
1/ϕ̄2

u and αP 2 = α′
2/ϕ2

u
.

Therefore, from (73) and (74), for any constant vector c ∈ RL ,

we have

αP 1 ||c||2 ≤
∫ t0 +T0

t0

|Pξ (Z(τ))T c|2dμ(τ) ≤ αP 2 ||c||2 . (75)

From the above analysis and Definition 2, we can conclude that

for any periodic trajectory Z(t), the corresponding regressor

subvector of the FLS Pξ (Z(t)) is persistently exciting. This

completes the proof.
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