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�is paper addresses the formation control problem without collisions for multiagent systems. A general solution is proposed for
the case of any number of agents moving on a plane subject to communication graph composed of cyclic paths. �e control law is
designed attending separately the convergence to the desired formation and the noncollision problems. First, a normalized version
of the directed cyclic pursuit algorithm is proposed. A	er this, the algorithm is generalized to a more general class of topologies,
including all the balanced formation graphs. Once the 
nite-time convergence problem is solved we focus on the noncollision
complementary requirement adding a repulsive vector 
eld to the previous control law. �e repulsive vector 
elds display an
unstable focus structure suitably scaled and centered at the position of the rest of agents in a certain radius. �e proposed control
law ensures that the agents reach the desired geometric pattern in 
nite time and that they stay at a distance greater than or equal
to some prescribed lower bound for all times. Moreover, the closed-loop system does not exhibit undesired equilibria. Numerical
simulations and real-time experiments illustrate the good performance of the proposed solution.

1. Introduction

During the last years, formation control in multiagent sys-
tems has received much attention due to the wide range of
applications in which they can be used as exploration, res-
cue tasks, toxic residues cleaning, and so forth, [1, 2]. A
very important issue in formation control is the collision
avoidance problem, with either other agents or obstacles [3].
If the formation control algorithms are designed in a totally
centralized way, that is, with information exchange among all
the agents, the computational load can increase seriously. On
the other hand, an additional constraint arises if the com-
munication among agents is restricted. �en, in most cases
it is assumed that every agent in the group knows for all time
the state or simply the position of a speci
c subset of robots
and, eventually, can sense the position of any robot within a
certain radius, [4]. Taking into account this di�culty several
types of communications, as cyclic or balanced formations
graphs, have been studied, [5–8].

Initially, the proposed solutions to the noncollision prob-
lem were designed as the sum of attractive and repulsive vec-
tor 
elds, in most cases obtained as the negative gradient of
potential functions. Attractive potential functions are cen-
tred, for each agent, at its desired position, while the repulsive
potential functions are centred at the positions of the rest
of agents or even at obstacles’ positions, [9, 10]. Under this
approach, onemain drawback is the fact that the combination
of gradients of attractive and repulsive potential functions
could result in the appearance of undesired equilibrium
points, leading the agents to get stuck at an undesired forma-
tion. Attending this problem, a solution has been proposed
with the requirement of having totally centralized schemes
[11].Moreover, the repulsive vector 
elds are designed in such
a way that they appear smoothly as the distance between any
pair of agents becomes smaller and tends to in
nity when this
distance tends to zero.�en, although the collision avoidance

is ensured, the position among agents can be arbitrarily small,
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which could imply a collision in real applications where phys-
ical dimensions cannot be ignored.

Related works can be found in [12] where authors con-
sider formation control problems under limited and inter-
mittent sensing. Based on a navigation function framework,
a decentralized hybrid controller is developed to ensure net-
work connectivity and collision avoidance while controlling
the formation. In [13] the di�erential game approach is used
for a group of agents to reach desired target positions while
avoiding collisions among them. A methodical approach to
the problem of collision avoidance of mobile robots taking
advantages of multiagent systems has been presented in [14].
In order to achieve the trajectory, a control strategy based on
a pure pursuit algorithm was implemented in the robots. �e
collision avoidance in the leader-follower multiagent systems
was studied in [15]. �e graph theory is used to model the
communication topology between agents. To avoid collisions
between neighboring agents, a fuzzy separation controller is
proposed.

In a recent work, a new strategy for designing the
repulsive vector 
elds has been proposed [16]. �is approach
di�ers from the classical one on the use of scaled unstable
focus structures centred at the position of others agents.
�ese functions cannot be obtained as the gradient of a
scalar function of the distance between agents. Although this
technique can also lead to undesired equilibria, these can be
removed. �e key point is to use an unstable focus scaled
by a function depending on the distance among agents. �is
scaling function vanishes when the agents are far enough
and tend to in
nity as distance tends to zero. �e analysis
in [16] has been presented for the case of two agents only,
while in [5] an extension to an arbitrary number of agents
has been presented for the case of a directed cyclic pursuit
communication graph.

In this paper we study the noncollision problem in forma-
tion control using discontinuous vector 
elds for an arbitrary
number of agents. In one hand we undertake the design of
attractive vector 
elds based on the well known cyclic pursuit
algorithm but, unlike the results reported in the literature [7],
we focus our analysis on normalized vector 
elds. �at is,
regarding only the attractive part, the agentsmove at constant
known velocity and they reach the desired formation in 
nite
time. Moreover, the case of more general communication
graphs is analysed as the combination of single cyclic pursuit
schemes. On the other hand, the repulsive vector 
elds have
the unstable focus structure scaled by a suitable constant.
As mentioned before, the general problem of an arbitrary
number of robots is treated and the designed controllers are
proven to be e�ective from the case where no collision risk
exists to the one when a robot is rounded by a set of robots
and there could be collisionwith any of them. It will be shown
in this paper that this is the most complex situation that can
occur.

�is paper is organized as follows. We start in Section 2
stating some useful de
nitions and technical preliminaries.
A	er this, in Section 3 we present the problem statement
along with a couple of standing assumptions. �e main
contribution is given in Section 4, initially regarding the 
nite
time convergence problem. �en, we take into account all

the possible scenarios of collisions, starting with the simplest
case of two robots in danger of collision. Based on this simple
casewe extend the study to risk ofmultiple collisions. Numer-
ical simulations and real-time experiments are presented in
Sections 5 and 6, respectively. Finally, in Section 7, we list the
conclusions and outlooks of this research.

2. Preliminaries

As we mentioned before, in this section we state some useful
de
nitions [17, 18] and a technical lemma that we will use in
the rest of the paper.

De�nition 1 (formation graph). A formation graph � ={�, �, �} that describes the communication among the agents
consists of a set of vertices � = {�1, . . . , ��} corresponding
to each of the agents in the group and a set of edges � ={(����) ∈ � × �, � ̸= 
}, which denotes the agent �� receives
information about ��. Finally, a set � = {��� ∈ �2 | (����) ∈� × �, � ̸= 
} of constant vectors that represent the relative
desired position of agent �� with respect to ��.

For a directed communication graph, (����) ∈ � implies
that (����) ∉ �. For an undirected formation graph (����) ∈� implies that (����) ∈ �.
De�nition 2 (paths and cycles). �ere exists a path between
the vertices �� and �� in the formation graph if there is a
sequence of edges (����1), (��1��2), . . . , (�����) for some� ̸= 
. We call a “cycle” to some path that starts and 
nishes in
the same vertex.

If there is a path between any two vertices of the formation
graph, then the graph is called connected. If a formation
graph is connected and the vector ��� ∈ � satis
es the so-
called closed-formation condition [19], that is, ���1 + ��1�2 +⋅ ⋅ ⋅ + ���� = 0, then the formation control problem is solvable
and the formation graph is said to be well-de
ned.

De�nition 3 (Laplacian matrix). �e Laplacian matrix asso-
ciated with a formation graph � is given by

L (�) = Δ −A�, (1)

where Δ is the degree matrix de
ned as Δ = diag{�1, . . . , ��},
where �� is the number of edges directed to ��, � = 1, . . . , �,
andA� is the adjacency matrix of � de
ned as follows:

��� = {{{1, if (����) ∈ �0, otherwise. (2)

Proposition 4. Consider the dynamical system �̇ = ��, where� = [�1, . . . , ��]� and the matrix � ∈ R
�×� is Hurwitz.

	en the normalized system �̇ = ��(�)� with �(�) =
diag{1/‖�1‖, . . . , 1/‖��‖} is stable with �nite time convergence.

Proof. Since� is Hurwitz, then, for every matrix� = �� > 0
there exists a matrix � = �� > 0 such that the Lyapunov

equation���+�� = −� holds and� = ���� is a Lyapunov
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function for the system �̇ = ��. Taking � = ���� as a
Lyapunov function candidate and evaluating the time deriva-
tive along the trajectories of the normalized system we have

�̇ = �� (� (�)��� + ��� (�)) �. (3)

Note that, since �(�) is diagonal, it follows that ���(�)V ≤��‖�(�)‖V and V
��(�)� ≤ V

�‖�(�)‖�, where V = ����;
therefore �̇ ≤ �� (‖� (�)‖��� + �� ‖� (�)‖) �. (4)

Moreover, since the matrix� is Hurwitz, the Lyapunov equa-

tion���+�� = −� always admits a positive de
nite solution� for every positive de
nite matrix �. Taking � = � the time
derivative is bounded from above by

�̇ ≤ − ‖� (�)‖ ‖�‖2 . (5)

Now, since�(�) is diagonal, we have
‖� (�)‖ = max{ 1!!!!��!!!!}= 1

min {!!!!��!!!!} ≥ 1
max {!!!!��!!!!} , � = 1, . . . , �. (6)

On the other hand, knowing that‖�‖ ≥ max {!!!!��!!!!} , (7)

it is true that1‖�‖ ≤ 1
max {!!!!��!!!!} ≤ ‖� (�)‖ , � = 1, . . . , �, (8)

which implies directly that

− 1‖�‖ ≥ − ‖� (�)‖ . (9)

�en, �̇ is bounded as follows:�̇ ≤ − ‖�‖ . (10)

If we regard the quadratic form ���� as a norm for vector �,
we can write

�̇ ≤ −ℓ� (����)1/2 , (11)

where ℓ� > 0 is a proportionality constant. �is leads to

nally write the last expression as

�̇ ≤ −ℓ��1/2, (12)

that, according to [20], ensures convergence in 
nite time.

3. Problem Statement

Consider a group of � mobile agents denoted by ' = {�1,. . . , ��}moving on a plane.�e cartesian coordinates of agent�� are given by *�(-) = [��(-), 2�(-)]� ∈ R
2, � = 1, . . . , �. Every

robot is described by the kinematic model*̇� = 3�, � = 1, . . . , �, (13)

where 3� = [3�1, 3�2]� ∈ R
2 are the velocities along the4- and 5-axes. In this paper we consider a decentralized

general scheme. We assume that robot �� can detect the
position of a subset of robots '� ⊂ ', where '� ̸= 0,� = 1, . . . , �. �erefore, the desired position of robot ��, say*∗� , with respect to'� is de
ned by

*∗� = 1�� ∑�∈�� (*� + ���) , (14)

where �� is the cardinality of '� and ��� = [ℎ��, V��]�, ∀
 ∈'�.�roughout the paper, the following assumptions are sup-
posed to hold.

Assumption 5. Agent �� measures the position of agents �� ∈'� for all time and, eventually, can detect the presence of any
other agent within a circle of radius ;. More precisely, �� can
detect the agents in the set<�(-) = {�� ∈ ' | ‖*�(-)−*�(-)‖ ≤;}.
Assumption 6. �e initial conditions of all agents satisfy‖*�(0) − *�(0)‖ > ;, ∀� ̸= 
.
3.1. Control Goal. �e goal is to design control laws 3� =?(*�, *∗� ,<�(-)), � = 1, . . . , �, such that

(i) the agents reach a desired formation; that is,
lim�→∞(*�(-) − *∗� (-)) = 0;

(ii) there are no collisions among agents; moreover, at all
times robots remain at some distance greater than or
equal to a prede
ned distance ; from each other; that
is, ‖*�(-) − *�(-)‖ ≥ ;, ∀- ≥ 0, � ̸= 
.

4. Control Design

�e control design is presented in two parts, one of each
attending a di�erent objective according to the control goal.
We start proposing a control law based on normalized
attractive vector 
elds to ensure 
nite time convergence of
the agents to the desired formation.

4.1. Attractive Vector Fields. �e control law to reach the
desired formation pattern is designed based on attractive
vector 
elds proportional to the position error; that is,@� = −A*̃�, � = 1, . . . , �, (15)

where *̃� = *�−*∗� corresponds to the position errors and A > 0
is a design parameter. In this paper, we consider a normalized
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Figure 1: Cyclic pursuit formation graphs.

version of (15) to treat a suitable system where all the agents
move at the same known velocity; namely,

@� = {{{−C
*̃�!!!!*̃�!!!! , *̃� ̸= 00, *̃� = 0 � = 1, . . . , �, (16)

where C is the constant velocity of all agents. In real time
experiments, the control law (16) can induce chattering e�ects
which can be avoided as it is shown in Section 6. Now, we can
state our 
rst main result regarding a cyclic pursuit directed
communication graph, as shown in Figure 1(a), which is the
basement for further cases.

�eorem7. Consider system (13) and the control law (16). Also
assume a formation graph with directed cyclic pursuit topol-
ogy (Figure 1(a)). 	en, in the closed-loop system (13)–(16) the
mobile robots converge to the desired formation in �nite time.

Proof. Consider the error coordinates *̃� = *�−*∗� , � = 1, . . . , �.
For the closed-loop system (13)–(16) the error dynamics is
given by ̇̃*1 = − C *̃1!!!!*̃1!!!! + C *̃2!!!!*̃2!!!! ,...̇̃*� = − C *̃�!!!!*̃�!!!! + C *̃1!!!!*̃1!!!! .

(17)

Or, in matrix form, it is given by

̇̃* = −C (L (�) ⊗ �2) [ *̃1!!!!*̃1!!!! , . . . , *̃�!!!!*̃�!!!!]� , (18)

where L(�) is the Laplacian matrix of the communication
graph in Figure 1(a), C > 0 is the constant velocity of agents,⊗
denotes the Kronecker product, and �2 ∈ R

2×2 is the identity
matrix. �is yields to writė̃* = −C (L (�) ⊗ �2) (� (*̃) ⊗ �2) *̃, (19)

where

� (*̃) = diag{ 1!!!!*̃1!!!! , . . . , 1!!!!*̃�!!!!} . (20)

�erefore, the closed-loop system has the same form as ̇̃* =−C(L(�) ⊗ �2)*̃ but is a�ected by the normalization as the
system in the Proposition 4; then it is enough to show that
in the system without normalization the agents converge
asymptotically to the desired formation to ensure 
nite time
convergence for the closed-loop system (13)–(16). According
to [11], the Laplacian matrix of a connected formation graph
has a single zero eigenvalue, K1 = 0, associated with the

vector [1, . . . , 1]� ∈ R
�, while the rest of them satisfy

Re(K2), . . . ,Re(K�) > 0. As it was assumed, the closed forma-

tion condition holds, which directly implies *̃1 + ⋅ ⋅ ⋅ + *̃� = 0.
�en, is it possible to analyse a subsystem formed by the 
rst�−1 error coordinates knowing that *̃� = −(*̃1+⋅ ⋅ ⋅+*̃�−1). For
the speci
c case of a cyclic pursuit directed formation graph
the Laplacian matrix has the form

L (�) =
[[[[[[[[[[

1 −1 0 ⋅ ⋅ ⋅ 00 1 −1 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... 1 −1−1 0 ⋅ ⋅ ⋅ 0 1

]]]]]]]]]]
; (21)

then, the reduced system is given by

̇S = −C (L� (�) ⊗ �2) S, (22)

where S = [*̃1, . . . , *̃�−1]� and L�(�) ∈ R
(�−1)×(�−1) is the

resulting matrix for the reduced system.



Mathematical Problems in Engineering 5

�en, the stability of the system is simpli
ed to the anal-
ysis of the matrix

L� (�) =
[[[[[[[[[[

1 −1 0 ⋅ ⋅ ⋅ 00 1 −1 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... 1 −11 1 ⋅ ⋅ ⋅ 1 2

]]]]]]]]]]
. (23)

In order to verify that L�(�) > 0 we compute the deter-
minant of the � − 1 
rst principal minors. Denote by |<�|
the determinant of the principal minor of dimension A.
�erefore, for the 
rst �−2 cases it is clear that |<1| = |<2| =⋅ ⋅ ⋅ = |<�−2| = 1 because all of them are upper diagonal
matrices. To check that |<�−1| > 0 we develop by the last
column in an iterative way

UUUU<�−1UUUU = 2 UUUU<�−2UUUU +
UUUUUUUUUUUUUUUUUUUUUUUUU

1 −1 0 ⋅ ⋅ ⋅ 00 1 −1 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... 1 −11 1 ⋅ ⋅ ⋅ 1 1

UUUUUUUUUUUUUUUUUUUUUUUUU⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�−2 dimension

= 2 UUUU<�−2UUUU + UUUU<�−3UUUU +
UUUUUUUUUUUUUUUUUUUUUUUUU

1 −1 0 ⋅ ⋅ ⋅ 00 1 −1 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... 1 −11 1 ⋅ ⋅ ⋅ 1 1

UUUUUUUUUUUUUUUUUUUUUUUUU⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�−3 dimension...UUUU<�−1UUUU = 2 UUUU<�−2UUUU + UUUU<�−3UUUU + ⋅ ⋅ ⋅ + UUUU<2UUUU + UUUU<1UUUU + 1= � > 0.

(24)

�is ensures all the eigenvalues of L�(�) have strictly posi-
tive real parts, and this implies the reduced system ̇S =−C(L�(�) ⊗ �2)S is asymptotically stable, that is, *̃1, . . .,*̃�−1 → 0 as - → ∞, and because of the relation *̃� =−(*̃1+⋅ ⋅ ⋅+*̃�−1), it is clear that also *̃� → 0 as - → ∞.�en,

in the whole system ̇̃* = −C(L(�) ⊗ �2)*̃ agents converge
asymptotically to the desired formation, and even more, by
direct application of Proposition 4, for the closed-loop system
(13)–(16), the agents reach the desired formation in 
nite
time. �is concludes the proof.

In the last proof, the closed formation condition was
useful in order to reduce the original system. In the sameway,
we can state a corollary to show the stability for the case of an
undirected cyclic pursuit formation graph.

Corollary 8. Consider the closed-loop system (13)–(16) using
an undirected communication graph (Figure 1(b)). 	en, the
agents converge to the desired formation in �nite time.

Proof. �e closed-loop system in terms of the Laplacian
matrix and using initially (15) instead of (16) takes the form

̇̃* = −C(((((((
(

[[[[[[[[[[[[[[

1 −12 0 ⋅ ⋅ ⋅ −12−12 1 −12 ⋅ ⋅ ⋅ 00 −12 1 ⋅ ⋅ ⋅ 0... ... ... 1 −12−12 0 ⋅ ⋅ ⋅ −12 1

]]]]]]]]]]]]]]
⊗ �2)))))))

)
*̃, (25)

which in terms of the Laplacian matrix can be written aṡ̃* = −C (12L (�) ⊗ �2) *̃, (26)

where the Laplacian matrix of an undirected cyclic pursuit
formation graph is

L (�) =
[[[[[[[[[[

2 −1 0 ⋅ ⋅ ⋅ −1−1 2 −1 ⋅ ⋅ ⋅ 00 −1 2 ⋅ ⋅ ⋅ 0... ... ... 2 −1−1 0 ⋅ ⋅ ⋅ −1 2

]]]]]]]]]]
. (27)

Now, if we consider the undirected graph as a combination of
two directed graphs, we have

L
+ (�) =

[[[[[[[[[[

1 −1 0 ⋅ ⋅ ⋅ 00 1 −1 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... ... 1 −1−1 0 ⋅ ⋅ ⋅ 0 1

]]]]]]]]]]
,

L
− (�) =

[[[[[[[[[[

1 0 0 ⋅ ⋅ ⋅ −1−1 1 0 ⋅ ⋅ ⋅ 00 −1 1 ⋅ ⋅ ⋅ 0... ... ... 1 00 0 ⋅ ⋅ ⋅ −1 1

]]]]]]]]]]
,

(28)

where the Laplacian L
+(�) corresponds to the directed

(clockwise) original graph, while L
−(�) corresponds to

the opposite direction (counter-clockwise) formation graph.
Both Laplacian matrices L

+(�) and L
−(�) satisfy the

closed-formation condition. �is means that ∑��=1 *̃+� =∑��=1 *̃−� = 0, where *̃+� and *̃−� are the error variables

de
ned for the formation described for L+(�) and L
−(�),

respectively. Combining these conditions we have

�∑
�=1
*̃+� + �∑
�=1
*̃−� = �∑
�=1

(*̃+� + *̃−�) = 0, (29)
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Figure 2: Four agents formation graphs with two cycles.

which by simplifying becomes

�∑
�=1

(*̃+� + *̃−�)
= �∑
�=1

[2*� − (*�+1 + ��+1,� + *�−1 + ��−1,�)]
= 2 �∑
�=1
*̃� = 0,

(30)

where *̃� are the error variables for the composed Laplacian
L(�). As before, knowing that the Laplacian matrix of a
connected communication graphhas a single zero eigenvalue,K1 = 0, while the rest of them satisfy Re(K2), . . . ,Re(K�) > 0.
Using the relationship *̃� = −(*̃1 + ⋅ ⋅ ⋅ + *̃�−1) the analysis can
be reduced again to the 
rst � − 1 error variables, in such a
way that

̇S = −C (12L� (�) ⊗ �2) S (31)

is asymptotically stable, with S de
ned as above.�is implies,
again, *̃1, . . . , *̃�−1 → 0 as - → ∞ which also means*̃� → 0 as - → ∞. As a result, the closed-loop systeṁ̃* = −(C/2)(L(�) ⊗ �2)*̃ is asymptotically stable, which
ensures in the closed-loop system (13)–(16) by application of
Proposition 4, the agents reach the desired formation in 
nite
time.

Example 9. To cover a more general class of communication
graphs, let us consider as an example the graphic shown
in Figure 2. �is communication graph can be described
entirely as the superposition of two directed cyclic pursuit
communication subgraphs, that is, the combination of the
cyclic paths �1 = {�4�3, �3�2, �2�1, �1�4} and �2 ={�4�3, �3�2, �2�4}. �e errors for the closed-loop system are
given in matrix form, by

̇̃* = −C(
(

[[[[[[[[

1 −1 0 00 1 −1 00 0 1 −1−12 −12 0 1
]]]]]]]]
⊗ �2)

)
*̃, (32)

which can be written in terms of the Laplacian matrix as

̇̃* = −C (Δ−1L (�) ⊗ �2) *̃ (33)

with Δ de
ned as in Section 2. Since Δ−1 > 0 the analysis
is reduced to the properties of L(�). For this particular
example we have

Δ−1 = [[[[[[[[

1 0 0 00 1 0 00 0 1 00 0 0 12
]]]]]]]]
,

L (�) = [[[[[[
1 −1 0 00 1 −1 00 0 1 −1−1 −1 0 2

]]]]]]
,

(34)

while the Laplacian matrices corresponding to the subgraphs�1 and �2 are
L1 (�) = [[[[[[

1 −1 0 00 1 −1 00 0 1 −1−1 0 0 1
]]]]]]
,

L2 (�) = [[[[[[
0 0 0 00 1 −1 00 0 1 −10 −1 0 1

]]]]]]
.

(35)

As the Laplacian matrices for each cyclic path satisfy a
di�erent closed-formation condition, we have for the errors
de
ned by L1(�) that *̃(1)1 + *̃(1)2 + *̃(1)3 + *̃(1)4 = 0 while for
L2(�) the condition implies *̃(2)2 + *̃(2)3 + *̃(2)4 = 0. �en, if
we combine these conditions, for the general system matrixΔ−1L(�) the relation is *̃1+2*̃2+2*̃3+2*̃4 = 0. It is important
to notice that, in the last expression, the coe�cient for every*̃�, � = 1, . . . , �, is related with the cyclic paths in which the
agent�� is involved. Evenmore, if a linear dependency among
error variables can be found, then it is always possible to
focus the analysis on reduced systems as in previous cases.
�en, we present the next result for a more general class of
communication graphs.

�eorem10. Consider a group of � agentsmoving in the plane,
described by (13) along with the control law (16). Consider now
a connected formation graph which is composed entirely as the
superposition of i di
erent cyclic paths. 	en, in the closed-
loop system (13)–(16) the mobile robots converge to the desired
formation in �nite time.
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Proof. For this case, knowing that the stability of the closed-
loop system can be analysed using the system without nor-
malization ̇̃* = −C (L� (�) ⊗ �2) *̃, (36)

whereL�(�) = Δ−1L(�), with Δ−1 de
ned as in Section 2.
If there are i di�erent cyclic paths described byL�(�), A =1, . . . , i, alsoi di�erent closed-formation conditions can be
stated. �e combination of all these conditions leads to

i1*̃1 + i2*̃2 + ⋅ ⋅ ⋅ + i�*̃� = 0, (37)

where i� represents the number of cycles the �th agent is
involved with. As the communication graph is connected
there exists a single zero eigenvalue while the rest satisfy
Re(K2), . . . ,Re(K�) > 0. Using (37) the system can be reduced
to the 
rst � − 1 error variables such that

̇S = −C (Δ−1� L� (�) ⊗ �2) S, (38)

with S de
ned as above, Δ−1� = diag{1/�1, . . . , 1/��−1} and
L�(�) ∈ R

(�−1)×(�−1) having strictly positive real part eigen-
values. �is implies again that *̃1, . . . , *̃�−1 → 0 as - → ∞
which also means *̃� → 0 as - → ∞. As a result, the
whole closed-loop system is asymptotically stable and as a
consequence, by application of Proposition 4, in the system
(13)–(16) the agents reach the desired formation in 
nite
time.

Remark 11. Corollary 8 and �eorem 10 are extensions of
the results presented in [5], where the simpli
ed case of
the directed cyclic pursuit formation graph was studied. A
complete generalization of this result would be the study of

nite time formation control using general communication
graphs possessing a spanning tree [18]. �is is le	 as an issue
for future research.

4.2. Repulsive Vector Fields. Once we have shown the 
nite
time convergence for agents, we attend the noncollision prob-
lem by designing a proper complementary control law based
on repulsive vector 
elds focusing on the distance among
agents. For this purpose it is useful to de
ne the relative
distance variables j�� = �� − �� and k�� = 2� − 2�, �, 
 =1, . . . , �, � ̸= 
. Note that if we consider the plane j�� − k��,
we can identify the origin as a collision between �th and 
th
agents and a circle of radius ;, centered at the origin as the
in�uence region between any two agents. Outside this circle,
only attractive vector 
elds prevail while inside the circle the
discontinuous repulsive vector 
elds appear.�is is shown in
Figure 3.

�e 
rst step to design the repulsive vector 
elds is done
regarding the most simple case of a scenario when only two
robots are in risk of collision. �en, the situation is geomet-
rically generalized to the case of a robot rounded by a group
of possible colliding robots. �e vector 
elds are proposed
in such a way that for robot �� there exists an unstable

qij

pij

�ij = 1

�ij = 0

d

Figure 3: Relative distance between �th and 
th agents on the planej�� − k��.
counterclockwise focus, centred at the position of the other
robots.�e general expression of the repulsive vector 
elds is

l� = m �∑
�=1,� ̸=�

n�� [[(�� − ��) − (2� − 2�)(�� − ��) + (2� − 2�)]] , (39)

where m > 0 and the functions n�� depend on the distance
between �� and ��; in the next way

n�� = {{{
1, if

!!!!!*� − *�!!!!! ≤ ;,0, if
!!!!!*� − *�!!!!! > ;, (40)

where ; is the minimum allowed distance between any pair
of agents. If the sensed area is the same for all agents, it is clear
that n�� = n��, � ̸= 
. Finally, the control law for each agent is
given by 3� = @� + l�, � = 1, . . . , �, (41)

where @� is given by (16) and l� is given by (39). Now consider
the case when there exist collision risk between agents �� and�� only while the rest of agents are far enough each one from
the others. �en n�� = 1, and the dynamics of �� and �� are

*̇� = −C *̃�!!!!*̃�!!!! + m [(�� − ��) − (2� − 2�)(�� − ��) + (2� − 2�)] ,
*̇� = −C *̃�!!!!*̃�!!!! + m [(�� − ��) − (2� − 2�)(�� − ��) + (2� − 2�)] .

(42)

Regarding the described situation, we state the next theorem
that is fundamental because it is the most simple case of
danger of collision.

�eorem 12. Consider the system (13) and the control law (41)
along with de�nitions (16), (39), and (40). Suppose that there
exists risk of collision between only two agents at time instant- > 0 and that the design parameter m satis�es m > C/;. 	en,
in the closed-loop system (13)–(41) themobile robots reach their
desired position at �nite time and they stay for all - ≥ 0 at a
distance greater than or equal to ;.
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Proof. Assume 
rst that there are �−2 agents without danger
of a collision; then it is necessary to show �� and �� will avoid
collision between them and stay at some minimum distance
from each other. As mentioned above, there exists a circle,
given by q�� = j2�� + k2�� − ;2 = 0, (43)

where the composite control law becomes discontinuous.
Under the mentioned scenario, the trajectories de
ned by j��
and k�� lie inside the region q�� ≤ 0. Once the repulsive vector

elds appear, the behaviour of trajectories is determined
by analysing the time derivative of (43) evaluated along
the closed-loop system. �e dynamics of relative position
variables is

[j̇��̇k��] = −C( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!) + 2m [j�� − k��j�� + k��] . (44)

�en,

q̇�� = 2 [j�� k��] [j̇��̇k��] ,
q̇�� = 2(−C [j��, k��] ( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!)) + 4m (j2�� + k2��) .

(45)

At this point, it is necessary to ensure that q̇�� > 0; in
the inner region q�� ≤ 0. �at means the resulting vector

eld inside the discontinuous surface points outwards. First
consider the case when the attractive vector 
eld points to
inside the surface. �en, the constant m should be selected
in such a way that q̇�� > 0. Taking the case where attractive

elds for both agents point to each other, resulting in themost
negative magnitude in q̇�� and restricting our analysis to the

limit of the discontinuous surface, where q�� = j2�� +k2�� = ;2,
we can easily check that the time derivative of q�� is bounded
from below by q̇�� > 2 (−2C; + 2m;2) ; (46)

therefore if m > C/; then q̇�� > 0.�is implies that there exists
a repulsive resulting vector 
eld between �� and �� such that
they will reject each other at least until they reach a distance;. Moreover, since ‖*�(0) − *�(0)‖ ≥ ;, then the agents not
only avoid the collision but also satisfy ‖*�(-) − *�(-)‖ ≥ ; for
all time.

Even though the control laws proposed in this paper are
not intended to produce a sliding mode motion, in case that
the attractive vector 
elds outside the surface point to the
surface q�� = 0, then a sliding behaviour should exist on
the surface such that the agents stay at a distance ;, until
there exist conditions for the trajectories to leave the surfaceq�� = 0. �is situation might occur depending on the initial
conditions, [21, 22].

In order to generalize the problem under discussion, it
is insightful to consider now the situation of having three

Rs Rt

Rr

ds dt

Figure 4: Agent �� in risk of collision with both �� and ��, ;��, ;�� <;.
di�erent robots ��, ��, and �� and possible collision risks
between �� and �� and �� and �� as shown in Figure 4. �is
leads to present the next result, where we show the reasoning
to generalize the noncollision scenario.

�eorem 13. Consider the system (13) and the control law (41)
along with de�nitions (16), (39), and (40). Suppose that there
exists a risk of collision among three agents at time instant -, as
shown in Figure 4, and that m > 2(C/;). 	en, in the closed-
loop system (13)–(41) the mobile robots reach their desired
position in �nite time and they stay at a distance greater than
or equal to ; for all - ≥ 0.
Proof. In this case, due to the possible collision among the
di�erent agents, the discontinuous surface consists of two
di�erent components, each one being related with a pair of
agents; that is,

q = [q��q��] = [j2�� + k2�� − ;2j2�� + k2�� − ;2] = 0. (47)

According to Figure 4, n�� = n�� = 1 which implies the
dynamics

[j̇��̇k��] = −C( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!) + 2m [j�� − k��j�� + k��] + m [j�� − k��j�� + k��] ,
[j̇��̇k��] = −C( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!) + 2m [j�� − k��j�� + k��] + m [j�� − k��j�� + k��] .

(48)

To analyse the behaviour on the discontinuity surface we use
the positive de
nite function

� = 14q�q, (49)

whose time derivative is given by

�̇ = 12q�q̇ = 12 (q��q̇�� + q��q̇��) ,
�̇ = q�� ([j��, k��] [j̇��̇k��]) + q�� ([j��, k��] [j̇��̇k��]) .

(50)
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Evaluate �̇ considering that the trajectories lie in the inner

region of q = 0, which implies q��, q�� ≤ 0; that is, j2�� + k2�� =;2�� and j2�� + k2�� = ;2��, with ;��, ;�� < ;. Hence,
�̇ ≤ q∗ (−C [j��, k��] ( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!)

− C [j��, k��] ( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!) + 2m;2�� + 2m;2��
+ 2m [j��, k��] [j��k��]) ,

(51)

where q∗ = max{q��, q��}. Now, we bound the norm of the
di�erence of unitary vectors as!!!!!!!!! *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!!!!!!!!!! ≤ 2, !!!!!!!!! *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!!!!!!!!!! ≤ 2. (52)

�erefore, �̇ is bounded from above by�̇ ≤ q∗ (−4C;∗ + 4m (;∗)2 − 2m (;∗)2) , (53)

where;∗ = max{;��, ;��}. Sincewe have selected m > 2(C/;∗),
we get −4C;∗ + 2m (;∗)2 > 0, (54)

which 
nally implies that �̇ < 0. (55)

�en, the trajectories of the closed-loop system point out-
wards of the surfacesq�� = q�� = 0 in every point insideq = 0.
As it was assumed, for any initial conditions the trajectories
start outside q = 0; then, in order to avoid getting into the
surface, it is enough to ensure that they point towards the
surface as ;∗ → ;; this means that m > 2(C/;), ensuring
the distance between agents will be greater than or equal to
the prede
ned distance ;. �is concludes the proof.

At this point, wewould addmore agents to analyse amore
complex collision problem. Geometrically, the most general
case occurs when a robot �� is surrounded by 6 other agents.
Figure 5 shows this case, where �� is in danger of collision
with 6 other robots, and any of these 6 robots is in danger
of collision with other 2 robots only. �e behaviour of the
surrounding agents has already been analysed. �is occurs
when all of them are at distance ; from each other. Now, we
can state our second main result, proceeding by induction to
propose a solution to the general noncollision problem.

�eorem 14. Consider the system (13) and the control law (41)
along with de�nitions (16), (39), and (40). Suppose that there
exists a risk of collision among j + 1 ≥ 4 agents at time instant-, as shown in Figure 5 and m > 6(C/;).	en, in the closed-loop
system (13)–(41) the mobile robots reach their desired position
in �nite time and they stay at a distance greater than or equal
to ; for all - ≥ 0.

R1

R2

R3R4

R5 Rr

R6

dr1

dr2

dr3dr4

dr5

dr6

Figure 5: Agent �� in risk of collision with 6 di�erent robots, ;�� <;, � = 1, . . . , 6.
Proof. For simplicity, and without loss of generality, let us
denote by �� the robot at the center of the con
guration
shown in Figure 5 and assume that there are j robots�1, �2, . . . , �� around ��. �e cases j = 1 and j = 2 have
already been analysed, resulting in conditions m > C/; andm > 2(C/;), respectively. �en, to proceed by induction,

we take the Lyapunov function �� = (1/4)q�q, with q =[q�1, . . . , q��]�, whose time derivative satis
es �̇� < 0 ifm > j(C/;) for j = 2. Now, we analyse the case for j + 1
possible colliding robots; then the discontinuous surface q is
composed of j + 1 components given by

q =
[[[[[[[[[[

q�1q�2...q��q�,�+1

]]]]]]]]]]
=
[[[[[[[[[[[

j2�1 + k2�1 − ;2j2�2 + k2�2 − ;2...j2�� + k2�� − ;2j2�,�+1 + k2�,�+1 − ;2

]]]]]]]]]]]
= 0. (56)

According to Figure 5, n�1 = n�2 = ⋅ ⋅ ⋅ = n�� = n�,�+1 = 1;
therefore the dynamics of the relative position variables are

[j̇��̇k��] = − C( *̃�!!!!*̃�!!!! − *̃�!!!!*̃�!!!!) + 2m [j�� − k��j�� + k��]
+ �∑
�=1,� ̸=�

m [j�� − k��j�� + k��] .
(57)

Consider now the positive de
nite function

��+1 = 14q�q = �� + 14 (q�,�+1)2 . (58)

�e time derivative of ��+1 in terms of the functions q�� is
�̇�+1 = �̇� + 12q�,�+1q̇�,�+1. (59)

By hypothesis, �̇� < 0; then we have to ensure �̇�+1 < 0 form > (j+1)(C/;). �is is achieved if the product q�,�+1q̇�,�+1 <0.�en, since we are evaluating the Lyapunov function inside
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the surface q = 0, q�,�+1 < 0, the analysis reduces to show thatq̇�,�+1 > 0; hence
q̇�,�+1 = [j�,�+1, k�,�+1] [j̇�,�+1̇k�,�+1] , (60)

which evaluated along the dynamics of the closed-loop sys-
tem becomesq̇�,�+1 = [j�,�+1, k�,�+1]

⋅ [[−C( *̃�+1!!!!!*̃�+1!!!!! − *̃�!!!!*̃�!!!!)
+2m [j�,�+1 − k�,�+1j�,�+1 + k�,�+1] + �∑�=1m [j�� − k��j�� + k��]]] .

(61)

Taking into account that we are analyzing the closed-loop

system behaviour inside the region j2�,�+1 + k2�,�+1 = ;2�,�+1.
�en, we have

q̇�,�+1 = (2mj (;�,�+1)2 + [j�,�+1, k�,�+1]
⋅ [[−C( *̃�+1!!!!!*̃�+1!!!!! − *̃�!!!!*̃�!!!!) + �∑�=1m [j�� − k��j�� + k��]]]) .

(62)

If we take the most negative possible case, we have!!!!!!!!!!!( *̃�+1!!!!!*̃�+1!!!!! − *̃�!!!!*̃�!!!!)
!!!!!!!!!!! ≤ 2,

!!!!!!!!!![j�� − k��j�� + k��]!!!!!!!!!! ≤ √2;�,�+1,
(63)

and, �̇ reduces in the worst case toq̇�,�+1 = (2mj (;�,�+1)2 − 2jC;�,�+1 − √2mj;�,�+1) . (64)

If we take the proposed condition m > (j + 1)(C/;∗)
can be easily veri
ed that q̇�,�+1 > 0 resulting in a general

requirement for ensuring �̇�+1 < 0. Again, if we consider the
trajectories of the closed-loop system start outside q = 0, this
condition becomes m > (j+1)(C/;).�is implies the repulsive
vector 
elds will reject agents from each other keeping them
to a distance greater than or equal to the minimum allowed
distance ;. Since there does not exist any condition where
a given agent can be in a risk of collision with more than 6
robots, this concludes the proof.

5. Numerical Simulation Results

A numerical simulation was carried out in order to illustrate
the performance of the proposed algorithm. �e simulated
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R3 R4 R5
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R7R8

R9

c98

c87

c76

c65

c54c43

c32

c21 c19

Figure 6: Desired formation, where the agents have been located
according to the desired geometric pattern.
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Figure 7: Distances among the nine agents.

system consists of nine mobile robots {�1, . . . , �9} and the
goal is to reach the formation shown in Figure 6, where the

relative position vectors are de
ned as �21 = �32 = [0, 1.5]�,�43 = �54 = [−1.5, 0]�, �65 = �76 = [0, −1.5]�, �87 =[1.5, 0]�, and �19 = [1.5, −1.5]�. �e constant velocity when
no collision risk exists is C = 1 and the minimum allowed
distance is; = 1. According to the condition found above, the
parameter m was set to m = 6 to ensure the minimum distance
condition will not be violated.

Results are shown in Figures 7 and 8. In Figure 7 all the
possible distances among agents have been drawn. Despite
the apparent complexity of this graph, two aspects are to be
emphasized. First, note that the distance between any pair
of agents is always greater than or equal to the prede
ned
distance ; = 1. Second, and perhaps more interestingly,
note that some agents converge to their desired positions
without sliding, while some others reach the discontinuity
surfaces q�� = 0, and slide for some time interval until they
eventually escape and reach the desired con
guration. On the
other hand, in Figure 8 the positions of agents corresponding
to selected time instants are shown. �e convergence to the
desired formation becomes clear. An animation of the time
evolution of the closed-loop system can be found in the
attached supplementary material (Supplementary Material
available online at http://dx.doi.org/10.1155/2015/948086).
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Figure 8: Agents distribution on the plane at di�erent times.
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Figure 9: Kinematic model of the unicycle-type mobile robot.

6. Real-Time Experiments

For real-time experiments, we used unicycle-type robots
as agents. For this reason, the control strategies previously
developed are modi
ed for the case of this type of mobile
robots. �e kinematic model for each robot ��, according to
Figure 9, is given by

[[[[
�̇�̇2�̇��
]]]] =

[[[
cos �� 0
sin �� 00 1]]][

V���] , � = 1, . . . , �, (65)

where V� is the longitudinal velocity of the middle point of
wheels axis of the �th robot, �� is its angular velocity, and�� is the orientation with respect to the 4-axis. It is known
that systems like (65) cannot be stabilized by any continuous
and time-invariant control law [23]. For this reason, to avoid
singularities in the control law, it is common in the literature
[16, 19] to study the kinematics of a point ?� o� the wheels’
axis. �e coordinates of point ?� are given by

?� = [?��?��] = [�� + ℓ cos ��2� + ℓ sin ��] . (66)

�e kinematics of point ?� is given by

?̇� = [?̇��?̇��] = � � (��) [V���] , (67)

where

� � (��) = [cos �� −ℓ sin ��
sin �� ℓ cos �� ] (68)

is the decoupling matrix for each robot ��. �e decoupling
matrix is nonsingular since det(� �(��)) = ℓ ̸= 0. By de
ning
auxiliary control variables 3� = [3��, 3��]� it is possible to
establish a strategy for controlling the position of the point?� by

[V���] = �−1� (��) [3��3��] , (69)

where

�−1� (��) = [[
cos �� sin ��− sin ��ℓ cos ��ℓ ]] (70)

is the inverse of the decoupling matrix. �e closed-loop sys-
tem (67)–(69) produces ?̇� = 3�. (71)

�e desired position of robot ��, related to the coordinates ?�,
is given by

?∗� = 1�� ∑�∈�� (?� + ���) . (72)

�en, a formation control with collision avoidance, similar to
that presented in Section 4, is de
ned as3� = @̃� + l̃�, � = 1, 2, . . . , �, (73)

where @̃� and l̃� are similar to the case of point robots but
related to coordinates ?�. It is clear that (71) is the same as
the case of point robots presented in (13). �us, the analysis
of convergence and collision avoidance is reduced to the
case of point robots presented before. Although the control
strategy (69) steers the coordinates of the points ?� to a
desired position, the angles �� remain uncontrolled.

When a robot �� is near its equilibrium point, the forma-
tion control law @� induces the so-called chattering phenom-
enon, which is highly undesired. To eliminate the chattering
e�ects we propose to switch to a proportional control in a
small neighborhood of radius �, close to the equilibrium
point. Hence, the control law is given by

@� =
{{{{{{{{{{{{{
−C(?� − ?∗� )!!!!?� − ?∗� !!!! , if

!!!!?� − ?∗� !!!! > �
−C� (?� − ?∗� ) , if

!!!!?� − ?∗� !!!! ≤ �,� = 1, 2, . . . , �.
(74)

�e ratio C/� helps us to avoid an abrupt change in the
control law when we switch from the normalized control law
to the proportional one. �e value � was chosen so that the
chattering e�ects are alleviated. In our case, we have tried
di�erent values until obtaining a satisfactory result.

6.1. Experimental Platform. �e real-time experiments were
carried out over an experimental setup composed of the
following elements.

(i) Four di�erential-drive mobile robots, model Amigo-
Bot manufactured by MobileRobots Inc. (Figure 10):
Each one is furnished on the top with infrared mark-
ers which form a geometric pattern such that the
centroid of this 
gure coincides with the middle



Mathematical Problems in Engineering 13

Figure 10: AmigoBot robots.

Figure 11: Cameras Flex 13.

point of the wheels’ axis of each robot for iden-
ti
cation. �e parameters of AmigoBot robots are
wheel radius � = 0.06 meters, length of wheels
axis � = 0.28 meters, distance to the front point
of the robot ℓ = 0.15 meters, 8 sonar sensors
to avoid collisions or locate obstacles, and the max-
imum longitudinal velocity of 1m/s. �ey feature
wireless serial ethernet for remote operations, two
position encoders, and built-in velocity controllers.
�e workspace measures are 3.6 × 4.8 meters. �e
linear and angular velocities V� and �� obtained
from the control law developed in this paper are
transformed into linear velocities of the right and le	
wheel V�� , Vℓ� through the isomorphism:

[V��
Vℓ�
] = 12 [2 �2 −�][V���] , � = 1, . . . , �. (75)

Note that in (75) the value of � is not used because
the information sent to eachmobile robot is the linear
velocity of each wheel.

(ii) A positioning system: �e position and orientation
of each robot is measured through a vision system
composed of 12 cameras Flex 13 manufactured by
Natural Point (Figure 11) which are located at a height
of 4meters.�ese cameras have a resolution of 1280 ×1024pixelswith a frequency of 120 frames per second.
To detect an object, it must have a minimum of 3
markers and at least 3 cameras must locate the object
within their range of vision.

R1 R2

R3R4
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c32
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Figure 12: Desired formation.
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Figure 13: Trajectory in the plane of the four agents.

(iii) One Intel core i3-based computer: �e so	ware
Motive calculates the position of the centroid of
the geometric 
gure formed by the markers and its
orientation. �e control law is calculated in Visual
C++ using Aria libraries which are also used to
communicate with the robots. �e protocol VRPN is
used to share information betweenMotive and Visual
C++. Finally, the velocities of each wheel are sent
through Wi-Fi to the robots.

6.2. Real-Time Experiment. �e experiment consists of four
agents�1, . . . , �4 and the goal is to reach the square formation
shown in Figure 12 where the relative position vectors are

de
ned as �21 = [−1, 0]�, �14 = [0, −1], �24 = [−1, −1]�,�42 = [1, 1]�, �32 = [0, 1]�, and �43 = [1, 0]�. �e constant
velocity when no collision risk exists is C = 0.1m/s, the
minimum allowed distance is ; = 0.6 meters, � = 0.05
meters, and the parameter m was set to m = 2(C/;) = 1/3. In
this case, the theoretical value of m has to be m > 3(C/;) =1/2. Even though the value of m used in the experiment is
less than the theoretical value, the experiment was successful
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Figure 14: Position errors of the four agents.
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Figure 15: Distances among the four agents.
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Figure 16: Control inputs.

because one robot can only be in collision danger with at
most two robots simultaneously. �e initial conditions for

the agents are [�1, 21]� = [−0.10666, 0.43272]�, [�2, 22]� =[−0.01551, −0.36721]�, [�3, 23]� = [−0.06131, −1.08734]�,
and [�4, 24]� = [−0.08414, 1.0719]�. Figure 13 shows a com-
parison between a numerical simulation and a real-time
experiment of the trajectory in the plane of the agents. As
can be seen, numerical simulation and real-time experiment
responses are close, but they exhibit some di�erences. �is
can be explained by a number of reasons amongst the fol-
lowing: the theoretical results are valid for 
rst-order systems,
while the real robots aremodeled by second-order di�erential

equations. Second, the employed kinematic model does not
take into account dynamic e�ects like mass, inertia, and
so forth. Despite these di�erences, the multiagent system
converges to the desired formation.

Figure 14 shows the position errors of both the numerical
simulation and real-time experiment, which converge to zero
allowing the agents to achieve the desired formation.

In Figure 15 all the possible distances among agents are
depicted. Notice that the distance between agents in the real-
time experiment is lower than the design parameter ;. �is is
explained because of some dynamics that are not taken into
account in the model.
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Finally, Figure 16 shows the control inputs to achieve
the desired formation. Once the agents are aligned into the
desired geometric pattern the longitudinal velocity as the
angular velocity converges to zero. �e attached 
le shows a
video of this real-time experiment.

7. Conclusions

A solution to the general noncollision problem in formation
control has been proposed.�is solution is based on the com-
bination of attractive and repulsive vector 
elds. �e attract-
ive forces are designed proportionally to the error of each
robot. �e repulsive vector 
elds are designed as unstable
focus centred at the position of the other robots. Besides,
the attractive 
eld was normalized to ensure the agents move
at constant velocity when no danger of collision exists. As a
by-product, 
nite time convergence is ensured. We analysed
geometrically all the possible cases of multiple collisions and
we proved the proposed control law is suitable in all situa-
tions, ensuring that the agents reach the desired geometric
pattern in 
nite time and that they stay at a distance greater
than a prede
ned bound. As a further research, the analysis
can be extended not only to a general class of formation
graph possessing a spanning tree but also to nonholonomic
robots. Moreover, the di�erences that can be seen between
the real-time experiment and the numerical simulation, due
to unmodeled dynamics, motivate us to extend our work
considering second-order agents.
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