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Abstract

We investigate the probability that an insurance portfolio gets ruined within a finite time period
under the assumption that the r largest claims are (partly) reinsured. We show that for regularly
varying claim sizes the probability of ruin after reinsurance is also regularly varying in terms of
the initial capital, and derive an explicit asymptotic expression for the latter. We establish this
result by leveraging recent developments on sample-path large deviations for heavy tails. Our
results allow, on the asymptotic level, for an explicit comparison between two well-known large-
claim reinsurance contracts, namely LCR and ECOMOR. We finally assess the accuracy of the
resulting approximations using state-of-the-art rare event simulation techniques.

1. Introduction

We consider the following ruin problem of the classical Cramér-Lundberg model in risk theory; see e.g.
[4]. Let {X1, X2, . . . } be a sequence of i.i.d. positive random variables representing successive claim
sizes that arrive according to a homogeneous Poisson process N(t), t ≥ 0, with rate λ. Premiums
are received continuously at a constant rate p > λEX. We assume that there is also a reinsurance
agreement in place, where R(t) is the reinsured amount at time t. More precisely, if S(t) =

∑N(t)
i=1 Xi is

the aggregate claim amount at time t and pD is the remaining premium for the insurer after reinsurance
has been purchased, then the aggregate loss minus premiums at time t for the insurer is equal to
S(t)− pDt−R(t). If u ≥ 0 is the initial capital, then the probability of ruin before time T is defined as

ψ(u, T ) = P

(
sup

0≤t≤T
{S(t)− pDt−R(t)} > u

)
. (1)

We will restrict our attention to two forms of large claims reinsurance, namely LCR and ECOMOR.
In an LCR (largest claim reinsurance) contract (see e.g. [3] for an early reference), the reinsurer agrees
to cover the largest r claims, where r ≥ 1 is a fixed number, while in an ECOMOR (excédent du coût
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moyen relatif) contract [19], the reinsurer covers the excess of the r largest claims over the (r + 1)st
largest claim; see [2] for more details on this type of reinsurance contracts.

We assume that the distribution of the claim sizes belongs to a class of distributions with a
regularly varying tail, which is valid for many applications [11]. It is well known that the principle of
one big jump holds in the heavy-tailed claim setting, i.e. ruin is typically caused by a single large claim.
However, under the presence of large claim reinsurance contracts, ruin probabilities are typically harder
to analyse because the largest claims are covered by the reinsurer and thus multiple claims may be
responsible for the event of ruin.

Several papers have studied properties of large claim reinsurance contracts. For example, when
claim sizes are light-tailed, the asymptotic tail behavior of the reinsured amounts is considered in [12, 13]
and their joint tail behavior in [17]. For asymptotic properties of the reinsured amounts when the claim
size distribution is heavy-tailed, see [1, 15]. For dependence between claim sizes and interarrival times
in this context, see [16]. An interesting recent link between large claim treaties and risk measures is
given in [8]. However, none of these contributions deal with the ruin probability, which is considered
here.

In this paper, we suggest to leverage recent new tools developed in the context of sample-path large
deviations for heavy-tailed stochastic processes for the study of ruin problems under LCR and ECOMOR
treaties. Concretely, for a centered Lévy process Y (t), t ≥ 0, with regularly varying Lévy measure
ν, sample-path large deviations were developed in [18]. Consider the process Ȳn = {Ȳn(t), t ∈ [0, 1]},
where Ȳn(t) = Y (nt)/n, t ≥ 0. Then, asymptotic estimates of P(Ȳn ∈ A) for a large collection of sets
A were derived. For Lévy processes with only positive jumps that are regularly varying with index −α,
α > 1, these results take the form

CJ (A)(A
◦) ≤ lim inf

n→∞

P(Ȳn ∈ A)(
n · ν[n,∞)

)J (A)
≤ lim sup

n→∞

P(Ȳn ∈ A)(
n · ν[n,∞)

)J (A)
≤ CJ (A)(Ā), (2)

where A◦ and Ā are the interior and closure of A, J (A) is interpreted as the minimum number of jumps
in the Lévy process that are needed to cause the event A, and Cj is a measure. We will show how the
reinsurance problem fits in the above framework. For this, we resolve several technical challenges such
as showing how ruin probabilities in the reinsurance setting can be written as continuous maps of the
input process in a suitable Skorokhod space.

Apart from the fact that reinsurance contracts are an interesting object of study in their own right,
the present application seems to be the first example for which it is possible to compute the pre-factors
in the asymptotics (2) explicitly. More precisely, we show for both the LCR and ECOMOR treaty that
CJ (A)(A

◦) = CJ (A)(Ā) and we provide an explicit expression for this value.

The rest of the paper is organised as follows. In Section 2, we provide some preliminary results
and introduce the necessary notation. Section 3 develops the main result, i.e. the tail asymptotics for
finite time ruin probabilities. For this, we are inquired to write (1) in terms of (2). This leads to the
need to show continuity of certain mappings, as well as several additional technical requirements. In
Section 4, we validate our asymptotic results with numerical experiments.
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2. Model description and preliminaries

Following the notation and terminology used in Section 1, let F denote the distribution function of the
claim sizes and EX be their expectation. We assume that F is regularly varying with index −α, i.e.
there exists a slowly varying function L(x) such that F̄ (x) := 1− F (x) = L(x)x−α, with α > 1. Let
further X?

1,N(t) ≥ X
?
2,N(t) ≥ · · · ≥ X

?
N(t),N(t) denote the order statistics of X1, X2, . . . XN(t).

In an LCR treaty, the reinsured amount R(t) is equal to

Lr(t) :=
r∑
i=1

X?
i,N(t), (3)

i.e. the r largest claims are paid by the reinsurer. On the other hand, the reinsured amount R(t) in an
ECOMOR treaty takes the form

Er(t) :=
r∑
i=1

X?
i,N(t) − rX

?
r+1,N(t) =

N(t)∑
i=1

(
Xi −X?

r+1,N(t)

)
+
. (4)

That is, the ECOMOR constitutes an excess-of-loss treaty with a random retention, and the latter
is the (r + 1)-largest claim. For more details and background on such reinsurance contracts, see [2]. In
either treaty, the number of reinsured claims is equal to r.

Assumption 1. If N(t) ≤ r, we set X?
i,N(t) = 0, for i = N(t) + 1, . . . , r + 1. This means that in case

there are less than r + 1 claims, the reinsurer pays all the claims in the ECOMOR treaty.

Another modeling assumption is concerned with the way the reinsurance is affecting the capital
position of the insurance company under consideration.

Assumption 2. We assume that at each time t, the currently applicable reinsured amount R(t) is
considered in the determination of the available surplus. In particular, this means that before the
arrival of the (r + 1)-st claim, the random retention in the ECOMOR treaty is considered to be zero.
As a consequence in the ECOMOR treaty, the arrival of a new claim can lead to a modification of R(t)

of either sign, as the excess over the (r + 1)-st claim may also decrease.

Note also that the setup we study here is that the duration of the reinsurance contract is T , and the
implied premium for the reinsurance contract over the period [0, T ] is uniformly spread over this time
interval. We will study the asymptotic behavior of the finite time ruin probabilities (1) utilizing (2).
Therefore, we formulate in the next section the large deviation problem that arises in our reinsurance
context.

2.1 Large deviations in reinsurance

In [18], the large deviations results (2) were derived in the Skorokhod J1 topology. Correspondingly, we
let D = D([0, 1],R) be a Skorokhod space, i.e. a space of real-valued càdlàg (right continuous with left
limits) functions on [0, 1], equipped with the J1-metric defined by

d(ξ, ζ) = inf
h∈Λ
{‖h− id‖ ∨ ‖ξ − ζ ◦ h‖}, (ξ, ζ) ∈ D2, (5)

3



where Λ denotes the set of all strictly increasing continuous bijections from [0, 1] to itself, id denotes
the identity mapping, and ‖ · ‖ denotes the uniform (sup) norm on [0, 1]. Thus, A and Cj in (2) are a
measurable set and a measure on D, respectively. Furthermore, if φ : D → R is a continuous functional
on D and B ∈ B(R) is a Borel set such that A = φ−1(B), where φ−1 stands for the inverse of φ, it
holds that

P
(
φ(Ȳn) ∈ B

)
= P

(
Ȳn ∈ φ−1(B)

)
= P(Ȳn ∈ A). (6)

The above relation portrays how it is possible to use the result (2) to study continuous functionals
of Ȳn. To connect this to our ruin problem, we define S̄n := {S̄n(t), t ∈ [0, 1]} as the centred and scaled
process

S̄n(t) =
1

n
S(nt)− λEXt =

1

n

N(nt)∑
i=1

Xi − λEXt, t ≥ 0. (7)

Moreover, we assume that the capital u increases linearly in n, i.e. there exists an a > 0 such that
u = na. We now formulate the large deviations problem to estimate the probabilities

P

(
sup
t∈[0,1]

{S(nt)− pDnt−R(nt)} ≥ na

)

= P

(
sup
t∈[0,1]

{S(nt)− λEXnt− (pD − λEX)nt−R(nt)} ≥ na

)

= P

(
sup
t∈[0,1]

{nS̄n(t)− cnt−R(nt)} ≥ na

)
= P

(
sup
t∈[0,1]

{S̄n(t)− ct− 1

n
R(nt)} ≥ a

)
, (8)

where c = pD − λEX. As a next step, we must identify a continuous functional φ such that

sup
t∈[0,1]

{S̄n(t)− ct− 1

n
R(nt)} = φ(S̄n), (9)

so that we can write

P

(
sup
t∈[0,1]

{S̄n(t)− ct− 1

n
R(nt)} ≥ a

)
= P

(
φ(S̄n) ≥ a

)
= P

(
S̄n ∈ φ−1

(
[a,∞)

))
. (10)

However, it is not immediately obvious from Equation (9) what the functional φ looks like because
R(nt) is not expressed in terms of S̄n. We focus first on the LCR treaty and observe that

1

n
R(nt) =

1

n
Lr(nt) =

1

n

r∑
i=1

X?
i,N(nt) = max

(s1,...,sr)∈[0,t]r

si 6=sj ,∀i 6=j

r∑
i=1

(
S̄n(si)− S̄n(s−i )

)
, t ∈ [0, 1],

i.e. Lr(nt)/n can be expressed as the sum of the r biggest jumps of the process S̄n(t). For every ξ ∈ D
and m ∈ N, we define

Jmξ (t) = sup
(s1,...,sm)∈[0,t]m

si 6=sj ,∀i 6=j

m∑
i=1

(
ξ(si)− ξ(s−i )

)
= max

(s1,...,sm)∈[0,t]m

si 6=sj ,∀i 6=j

m∑
i=1

(
ξ(si)− ξ(s−i )

)
, for t ∈ (0, 1], (11)

as the supremum of the sum of them largest jumps of the function ξ. Naturally, Jmξ (0) = 0. Consequently,
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the functional φ we are looking for is a mapping φr : D → R defined for every ξ ∈ D as

φr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
. (12)

Moreover, we denote the pre-image of [a,∞) under φr as Arc,a = φ−1
r

(
[a,∞)

)
where

Arc,a =

{
ξ ∈ D : sup

t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
≥ a

}
. (13)

By comparing Equations (3) and (4), we observe that the relation between the reinsured amounts
of the two treaties is

Er(t) = Lr(t)− rX?
r+1,N(t) = (r + 1)Lr(t)− r

(
Lr(t) +X?

r+1,N(t)

)
= (r + 1)Lr(t)− rLr+1(t).

Thus, in the ECOMOR treaty, the functional φ in (10) is the mapping ϕr : D → R defined for every
ξ ∈ D as

ϕr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− (r + 1)Jrξ(t) + rJr+1

ξ (t)
}
, (14)

while the pre-image of [a,∞) under ϕr, i.e. Arc,a = ϕ−1
r

(
[a,∞)

)
, is defined as

Arc,a =

{
ξ ∈ D : sup

t∈[0,1]

{
ξ(t)− ct− (r + 1)Jrξ(t) + rJr+1

ξ (t)
}
≥ a

}
. (15)

2.2 Preliminaries on the Skorokhod topology and notation

Consider the complete metric space
(
D, d(, )

)
. The functional Jmξ (t) defined in (11) will play a significant

role in the forthcoming analysis. Thus, it is important to confirm that it is well-defined. For this reason,
let D(ξ) be the set of discontinuities of ξ ∈ D, i.e.

D(ξ) = {t ∈ [0, 1] : ξ(t−) 6= ξ(t)}, (16)

and let D(ξ, ε) be the set of discontinuities of magnitude at least ε, i.e.

D(ξ, ε) = {t ∈ [0, 1] :
∣∣ξ(t−)− ξ(t)

∣∣ ≥ ε}. (17)

The following result is standard.

Lemma 2.1 (Theorem 12.2.1 & Corollary 12.2.1 of [20]). For any ξ ∈ D and ε > 0, D(ξ, ε) is a finite
subset of [0, 1]. In particular, D(ξ) is either finite or countably infinite.

Consequently, the supremum in Equation (11) is attained because only finitely many jumps can
exceed a given positive number. As a result, Jmξ (t) is well defined.

Some important subspaces of D for our analysis are those restricted to step functions. We let D↑S
be the set of all non-decreasing step functions vanishing at the origin. Furthermore, Dj is the subspace
of D consisting of non-decreasing step functions, vanishing at the origin, with exactly j steps, and
similarly, D6j =

⋃
0≤i≤j Di consists of non-decreasing step functions, vanishing at the origin, with at

most j steps. Finally, if D+(ξ) denotes the number of discontinuities of ξ ∈ D, we can then formally
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define the integer-valued set function J (A) appearing in Equation (2) by:

J (A) = inf
ξ∈A∩D↑S

D+(ξ), (18)

which we call the rate function. Observe that every ξ ∈ Dj is determined by the pair of jump sizes and
jump times (x,u) ∈ Rj+ × [0, 1]j , i.e. ξ(t) =

∑j
i=1 xi1{ui,1}(t), where 1B is the indicator function on

the set B. For x = (x1, . . . , xj) and u = (u1, . . . , uj), we define the sets

R
j↓
+ = {x ∈ Rj+ : x1 ≥ x2 ≥ · · · ≥ xj > 0}, (19)

and

Sj = {(x,u) ∈ Rj↓+ × (0, 1)j : u1, . . . , uj are all distinct}, (20)

where the uj ’s are not following the ordering of the xj ’s, i.e. xk ≥ xl 6⇒ uk ≥ ul. Thus, we can formally
define the mapping Tj : Sj → Dj by Tj(x,u) =

∑j
i=1 xi1{ui,1}.

Furthermore, let να(x,∞) = x−α (i.e. the pure power decay part of the regularly varying claim
sizes), and let νjα denote the restriction to Rj↓+ of the j-fold product measure of να. We define for each
j ≥ 1 the measure Cj concentrated on Dj as

Cj(•) = E
[
νjα{y ∈ R

j
+ :

j∑
i=1

yi1{Ui,1} ∈ •}
]
, (21)

where the random variables Ui, i = 1, . . . , j, are i.i.d. uniform on [0, 1].

Finally, we say that a set A ⊆ D is bounded away from another set B ⊆ D if infx∈A,y∈B d(x, y) > 0.
Additionally, we let δA = {ξ ∈ D : d(ξ, A) ≤ δ} for any δ > 0.

3. Main result

Note that the parameter c = pD − λEX introduced in Section 2.1 can be either positive or negative.
However, for a ≤ −c, the rare event probability in Equation (10) converges to one by the functional
law of large numbers. For this reason, we focus only on the case c+ a > 0. Letting 2F 1(b, e; d; z) =
+∞∑
k=0

(b)k(e)k
(d)k

zk

k!
be the hypergeometric function, with (b)k = b(b + 1) . . . (b + k − 1) denoting the

Pochhammer symbol, we have the following theorem.

Theorem 3.1. For a > 0, c+ a > 0, and r ∈ N, it holds that

ψ(na, n) ∼ Cr+1

(
λL(n)

)r+1
n−(r+1)(α−1), n→∞, (22)

where

Cr+1 =

[
a−(r+1)α

2F 1[r + 1, (r + 1)α; r + 2;−c/a] · 1{c>0} + (a+ c)−(r+1)α · 1{c<0}

]
× 1

(r + 1)!

×

1, if R(t) = Lr(t) (LCR),

(r + 1)(r+1)α, if R(t) = Er(t) (ECOMOR).
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The proof of Theorem 3.1 is based on sample-path large-deviations results developed in [18].
Specifically, Theorems 3.1–3.2 in [18] provide the conditions under which the result (2) holds, and in
addition the lim inf and lim sup are equal. Thus, to achieve our goal, we must verify that these conditions
are satisfied for Ȳn = S̄n and A = Arc,a (LCR) or A = Arc,a (ECOMOR) defined in Equations (13)
and (15), respectively. However, their verification is rather involved. Hence, to make the proof of
Theorem 3.1 more accessible, we split it in various steps after the aforementioned conditions and we
provide additional explanations for each step.

Note that all of the forthcoming results are similar in the two treaties with possible deviations in
small details. Therefore, we will first prove them for the LCR treaty and then show briefly how they
can be extended to the ECOMOR treaty.

3.1 Proof of Theorem 3.1

The first step is to show that both mappings φr, ϕr : D → R from Equations (12) and (14), respectively,
are Lipschitz continuous. Due to their continuity, Equation (10) will hold and, consequently, we will be
able to write P

(
φr(S̄n) ≥ a

)
= P(S̄n ∈ Arc,a) and P

(
ϕr(S̄n) ≥ a

)
= P(S̄n ∈ Arc,a). For this, we need

the following intermediate result.

Lemma 3.2. For every (ξ, ζ) ∈ D2, m ∈ N, and h ∈ Λ, it holds that

∣∣Jmζ◦h(t)− Jmξ (t)
∣∣ ≤ 2m‖ξ − ζ ◦ h‖, ∀t ∈ [0, 1]. (23)

Proof. By the definition of Jmζ◦h(t), there exists (σ1, . . . , σm) ∈ [0, t]m with σi 6= σj for all i 6= j, such
that

Jmζ◦h(t) =

m∑
i=1

(
ζ ◦ h(σi)− ζ ◦ h(σ−i )

)
. (24)

In addition, we have that

Jmξ (t) = max
(s1,...,sm)∈[0,t]m

si 6=sj ,∀i 6=j

m∑
i=1

(
ξ(si)− ξ(s−i )

)
≥

m∑
i=1

(
ξ(σi)− ξ(σ−i )

)
. (25)

Subtracting now Equations (24) and (25), we obtain

Jmζ◦h(t)− Jmξ (t) ≤
m∑
i=1

(
ζ ◦ h(σi)− ζ ◦ h(σ−i )− ξ(σi) + ξ(σ−i )

)
≤

m∑
i=1

(
|ζ ◦ h(σi)− ξ(σi)|+

∣∣ζ ◦ h(σ−i )− ξ(σ−i )
∣∣ )

≤ 2m‖ξ − ζ ◦ h‖.

Following similar arguments, we can also show that Jmξ (t)− Jmζ◦h(t) ≤ 2m‖ξ − ζ ◦ h‖, which completes
the proof.

We are now ready to establish the desired continuity.

Lemma 3.3 (Lipschitz continuity of the mapping). The mappings φr, ϕr : D → R defined by
Equations (12) and (14), respectively, are Lipschitz continuous w.r.t. J1. More precisely, there ex-
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ist K ∈ [0, |c| + 2r + 1] and L ∈ [0, |c| + 4r2 + 4r + 1] such that |φr(ξ)− φr(ζ)| ≤ Kd(ξ, ζ) and
|ϕr(ξ)− ϕr(ζ)| ≤ Ld(ξ, ζ), for all (ξ, ζ) ∈ D2.

Proof. W.l.o.g. we assume that φr(ξ) ≥ φr(ζ), otherwise we switch the roles of ξ and ζ. For every ε > 0,
there exists t∗ ∈ [0, 1] such that

ξ(t∗)− ct∗ − Jrξ(t∗) > φr(ξ)− ε. (26)

On the other hand, by the definition of J1, there exists h = h(ξ, ζ, ε) ∈ Λ so that

d(ξ, ζ) + ε = ‖h− id‖ ∨ ‖ξ − ζ ◦ h‖ ≥
(
h(t∗)− t∗

)
∨
(
ξ(t∗)− ζ ◦ h(t∗)

)
. (27)

Furthermore, using the fact that h is a homeomorphism on [0, 1], we obtain

ζ ◦ h(t∗)− ch(t∗)− Jrζ◦h(t∗)

= ζ ◦ h(t∗)− ch(t∗)− max
(s1,...,sr)∈[0,t∗]r

si 6=sj ,∀i 6=j

r∑
i=1

(
ζ ◦ h(si)− ζ ◦ h(s−i )

)
= ζ
(
h(t∗)

)
− ch(t∗)− max

(s1,...,sr)∈[0,h(t∗)]r

si 6=sj ,∀i 6=j

r∑
i=1

(
ζ(si)− ζ(s−i )

)
= ζ
(
h(t∗)

)
− ch(t∗)− Jrζ(h(t∗)) ≤ φr(ζ). (28)

Subtracting (28) from (26) yields

φr(ξ)− φr(ζ) < ε+
(
ξ(t∗)− ζ ◦ h(t∗)

)
+ c
(
h(t∗)− t∗

)
+
(
Jrζ◦h(t∗)− Jrξ(t∗)

)
< ε+

(
d(ξ, ζ) + ε

)
+ |c|

(
d(ξ, ζ) + ε

)
+ 2r

(
d(ξ, ζ) + ε

)
= (2 + |c|+ 2r)ε+ (1 + |c|+ 2r)d(ξ, ζ),

where we have also used (27) and Jrζ◦h(t∗)− Jrξ(t∗) ≤ 2r‖ξ − ζ ◦ h‖ by applying Lemma 3.2 with t = t∗

and m = r. Letting ε→ 0, we conclude that φr(ξ)− φr(ζ) ≤ (1 + |c|+ 2r)d(ξ, ζ), i.e. φr is Lipschitz
continuous. The Lipschitz continuity for the ϕr mapping can be shown in an analogous manner. More
precisely, for every ε > 0, there exists t∗ ∈ [0, 1] such that

ξ(t∗)− ct∗ − (r + 1)Jrξ(t∗) + rJr+1
ξ (t∗) > ϕr(ξ)− ε. (29)

For a homeomorphism h on [0, 1] satisfying Equation (27), we have

ζ ◦ h(t∗)− ch(t∗)− (r + 1)Jrζ◦h(t∗) + rJr+1
ζ◦h (t∗)

= ζ
(
h(t∗)

)
− ch(t∗)− (r + 1)Jrζ(h(t∗)) + rJr+1

ζ (h(t∗)) ≤ ϕr(ζ). (30)

We assume now w.l.o.g. that ϕr(ξ) ≥ ϕr(ζ) and we subtract (30) from (29) to attain

ϕr(ξ)− ϕr(ζ) < ε+
(
ξ(t∗)− ζ ◦ h(t∗)

)
+ c
(
h(t∗)− t∗

)
+ (r + 1)

(
Jrζ◦h(t∗)− Jrξ(t∗)

)
+ r
(
Jr+1
ξ (t∗)− Jr+1

ζ◦h (t∗)
)

<
(
2 + |c|+ 4r(r + 1)

)
ε+

(
1 + |c|+ 4r(r + 1)

)
d(ξ, ζ),
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where we have also used (27) and twice Lemma 3.2 with m = r, r + 1 and t = t∗. Letting ε→ 0, the
result is immediate.

As a next step, we calculate the rate functions J (Arc,a) and J (Arc,a) that appear in Equation (2)
and are formally defined in (18). We set for simplicity c+ = max{0, c} and c− = max{0,−c}.

Lemma 3.4 (Evaluation of the rate function). The rate function defined by Equation (18) is equal to
r + 1 in both treaties, i.e.

J (Arc,a) = J (Arc,a) = r + 1.

Proof. We need to show first that J (Arc,a) cannot take any value smaller than or equal to r. Let us
assume on the contrary that ξ ∈ Arc,a∩D

↑
S such that D+(ξ) = k ≤ r. This means that ξ =

∑
i≤k xi1{ui,1},

with x1 ≥ x2 ≥ . . . xk > 0 and {0, u1, u2, . . . , uk, 1} all distinct. By taking into account Assumptions 1
and 2, we calculate

φr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
= sup

t∈[0,1]

{
��

���
���k∑

i=1

xi1{ui,1}(t) − ct−
��

���
���k∑

i=1

xi1{ui,1}(t)
}

= c−,

which states that ξ 6∈ Arc,a because φr(ξ) = c− 6≥ a. As a result, J (Arc,a) 6= k, k ≤ r.

Let us assume now that ξ ∈ Arc,a ∩ D
↑
S such that D+(ξ) = r + 1, i.e. ξ =

∑r+1
i=1 xi1{ui,1}, with

x1 ≥ x2 ≥ . . . xr+1 > 0 and {0, u1, u2, . . . , ur+1, 1} all distinct. To calculate φr(ξ), observe first that

ξ(t)− Jrξ(t) =

r+1∑
i=1

xi1{ui,1}(t)− Jrξ(t) =

0, t < max{u1, . . . , ur+1}

xr+1, t ≥ max{u1, . . . , ur+1}
, (31)

because all the claims are “absorbed” according to Assumption 2 before the arrival of the (r + 1)st
claim, which happens at time t∗ = max{u1, . . . , ur+1}. Thus, we can write

φr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
= sup

t∈[0,1]

{
xr+1

r+1∏
i=1

1{ui,1}(t)− ct
}

= xr+1 − c+ max{u1, . . . , ur+1}+ c−,

since xr+1
∏r+1
i=1 1{ui,1}(t) remains fixed at the value xr+1 from t∗ = max{u1, . . . , ur+1} onward, while

−ct decreases or increases depending on the value of c. Due to the fact that ξ ∈ Arc,a, we get

φr(ξ) ≥ a⇒ xr+1 ≥ a+ c+ max{u1, . . . , ur+1} − c− ≥ a− c− > 0,

i.e. Arc,a ∩D
↑
S 6= ∅ but contains all step functions with r + 1 steps such that the (r + 1)st largest step

satisfies: xr+1 ≥ a+ c+ max{u1, . . . , ur+1} − c−. Thus, J (Arc,a) = r + 1.

The proof for J (Arc,a) = r + 1 in the ECOMOR treaty is similar. More precisely, it can easily be
shown that 6 ∃ ξ ∈ Arc,a ∩D

↑
S with D+(ξ) = k ≤ r. Consequently, J (Arc,a) 6= k, k ≤ r. Let us assume

next that ξ ∈ Arc,a ∩D
↑
S such that D+(ξ) = r + 1, i.e. ξ =

∑r+1
i=1 xi1{ui,1}, with x1 ≥ x2 ≥ . . . xr+1 > 0

and {0, u1, u2, . . . , ur+1, 1} all distinct. It holds that

rJr+1
ξ (t)− (r + 1)Jrξ(t) = −Jrξ(t) +

0, t < max{u1, . . . , ur+1}

rxr+1, t ≥ max{u1, . . . , ur+1}
, (32)
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due to Assumption 1. By combining now Equations (31) and (32), we calculate

ϕr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− (r + 1)Jrξ(t) + rJr+1

ξ (t)
}

= sup
t∈[0,1]

{
(r + 1)xr+1

r+1∏
i=1

1{ui,1}(t)− ct
}

= (r + 1)xr+1 − c+ max{u1, . . . , ur+1}+ c−.

Since ξ ∈ Arc,a, we get ϕr(ξ) ≥ a⇒ (r + 1)xr+1 ≥ a+ c+ max{u1, . . . , ur+1} − c−, i.e. Arc,a ∩D
↑
S 6= ∅

but contains all step functions with r + 1 steps such that the (r + 1)st largest step satisfies: xr+1 ≥(
a+ c+ max{u1, . . . , ur+1} − c−

)
/(r + 1). Thus, J (Arc,a) = r + 1, and the proof is complete.

Remark 3.5. The above lemma does not only give the value of the rate function, but it also provides
the form of the minimal ξ that belongs to the sets Arc,a and Arc,a, i.e. all step functions with r + 1 steps
such that their (r+1)st greatest step is greater than or equal to the value a+c+ max{u1, . . . , ur+1}−c−
in the LCR treaty and the value (a+ c+ max{u1, . . . , ur+1} − c−)/(r + 1) in the ECOMOR treaty.

An essential condition of Theorem 3.2 in [18] is that the sets
δ
Arc,a∩D6J (Arc,a) and δ

Arc,a∩D6J (Arc,a)

are bounded away from D6J (Arc,a)−1 and D6J (Arc,a)−1, respectively. Verifying this condition allows us
then to derive the result (2) for both treaties. We can directly use the value of the rate function in the
following result due to Lemma 3.4.

Lemma 3.6 (Bounded away property). The sets
δ
Arc,a ∩D6r+1 and

δ
Arc,a ∩D6r+1 are bounded away

from D6r for some δ > 0.

Proof. To simplify the notation in the proof, we write A instead of Arc,a and A instead of Arc,a, while
the notation δA, δA follows naturally.

We start by showing that δA ∩ D6r+1 is bounded away from D6r for some δ > 0. Thanks
to Lemma 3.2, we have that δA ⊂ A(δ), where A(δ) = φ−1

r

(
[a − (|c| + 2r + 1)δ,∞)

)
. Hence, it

suffices to show that A(δ) ∩ D6r+1 is bounded away from D6r. Let ξ ∈ A(δ) ∩ D6r+1. Since
ξ ∈ D6r+1, we can write ξ =

∑r+1
i=1 xi1{ui,1} with x1 ≥ x2 ≥ · · · ≥ xr+1 ≥ 0, for which it holds

that φr(ξ) ≤ xr+1 − c+ max{u1, . . . , ur+1} + c− ≤ xr+1 + c− according to the proof of Lemma 3.4.
Furthermore, ξ ∈ A(δ)⇔ φr(ξ) ≥ a− (|c|+ 2r + 1)δ. Combining the two inequalities, we obtain that
xr+1 ≥ (a− c−)− (|c|+ 2r + 1)δ ≥ (a− c−)/2, for δ ≤ (a− c−)/2(|c|+ 2r + 1). In other words, for
δ ≤ (a− c−)/2(|c|+ 2r + 1), ξ ∈ A(δ) ∩Dr+1 ⊂ A(δ) ∩D6r+1 with jump sizes bounded from below by
(a− c−)/2, which implies that A(δ) ∩D6r+1 is bounded away from D6r .

In a similar manner, it suffices to show that A(δ) ∩ D6r+1 is bounded away from D6r, where
A(δ) = ϕ−1

r

(
[a − (|c| + 4r2 + 4r + 1)δ,∞)

)
. Let ξ ∈ A(δ) ∩ D6r+1. Since ξ ∈ D6r+1, we can write

ξ =
∑r+1

i=1 xi1{ui,1} with x1 ≥ x2 ≥ · · · ≥ xr+1 ≥ 0, for which it holds that ϕr(ξ) ≤ (r + 1)xr+1 −
c+ max{u1, . . . , ur+1}+c− ≤ (r+1)xr+1 +c−. Furthermore, ξ ∈ A(δ)⇔ ϕr(ξ) ≥ a−(|c|+4r2 +4r+1)δ.
Combining the two inequalities, we obtain that (r + 1)xr+1 ≥ (a − c−) − (|c| + 4r2 + 4r + 1)δ ≥
(a − c−)/2, for δ ≤ (a − c−)/2(|c| + 4r2 + 4r + 1). In other words, the jump sizes of ξ are bounded
from below by (a − c−)/2(r + 1), which implies that A(δ) ∩ D6r+1 is bounded away from D6r for
δ ≤ (a− c−)/2(|c|+ 4r2 + 4r + 1), and the proof is complete.

Let CLr+1:= Cr+1(Arc,a) and CEr+1:= Cr+1(Arc,a). According to Section 3.1 in [18], the lim inf and
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lim sup in Equation (2) yield the same result when

CJ (A)(A
◦) = CJ (A)(A) = CJ (A)(Ā).

However, the above equality holds when the set A is CJ (A)-continuous, i.e. CJ (A)(∂A) = 0, where the
boundary ∂A = Ā \A◦ of a set A is the closure of A without its interior. We prove in the next lemma
that the sets Arc,a and Arc,a are both Cr+1-continuous.

Lemma 3.7 (Equality of the limits). The sets Arc,a and Arc,a are Cr+1-continuous, i.e. Cr+1(∂Arc,a) =

Cr+1(∂Arc,a) = 0.

Proof. To simplify the notation in the proof, we write again A instead of Arc,a and A instead of Arc,a,
while the notation A◦, A◦, Ā, Ā follows naturally.

We start by showing the Cr+1-continuity of A. In compliance with the notation introduced in
Section 2.2, we consider the function T−1

r+1 : Dr+1 → Sr+1 such that

T−1
r+1 (A◦) = T−1

r+1

(
φ−1
r

(
(a,∞)

))
=
{

(x,u) ∈ Sr+1 : xr+1 > a+ c+ max{u1, . . . , ur+1} − c−
}
,

T−1
r+1

(
Ā
)

= T−1
r+1

(
φ−1
r

(
[a,∞)

))
=
{

(x,u) ∈ Sr+1 : xr+1 ≥ a+ c+ max{u1, . . . , ur+1} − c−
}
.

Obviously, the set T−1
r+1

(
Ā
)
\ T−1

r+1 (A◦) has zero Lebesgue measure. Combining this with A◦ ⊆ A ⊆ Ā
and φr being a continuous function, we conclude that Cr+1(∂A) = 0, i.e. A is Cr+1-continuous. To
prove the Cr+1-continuity of A, it suffices to observe that the set T−1

r+1

(
Ā
)
\T−1

r+1 (A◦) has zero Lebesgue
measure, where

T−1
r+1 (A◦) = T−1

r+1

(
ϕ−1
r

(
(a,∞)

))
=
{

(x,u) ∈ Sr+1 : xr+1 >
(
a+ c+ max{u1, . . . , ur+1} − c−

)
/(r + 1)

}
,

T−1
r+1

(
Ā
)

= T−1
r+1

(
ϕ−1
r

(
[a,∞)

))
=
{

(x,u) ∈ Sr+1 : xr+1 ≥
(
a+ c+ max{u1, . . . , ur+1} − c−

)
/(r + 1)

}
,

which follows by the same reasoning.

We calculate now the pre-constants CJ (Arc,a)(A
r
c,a) and CJ (Arc,a)(Arc,a).

Lemma 3.8 (Calculation of the pre-constant). The constants CLr+1 and CEr+1 are given by

CLr+1 =
1

(r + 1)!
×

a−(r+1)α · 2F 1[r + 1, (r + 1)α; r + 2;−c/a], c > 0,

(a+ c)−(r+1)α, c < 0.
,

CEr+1 =
(r + 1)(r+1)α

(r + 1)!
×

a−(r+1)α · 2F 1[r + 1, (r + 1)α; r + 2;−c/a], c > 0,

(a+ c)−(r+1)α, c < 0.

Proof. Recall that CLr+1:= Cr+1(Arc,a) and CEr+1:= Cr+1(Arc,a). To calculate these constants, we use
the definition of the measure Cr+1(•) in Equation (21). We start with CLr+1. It is known that
for U1, . . . , Ur+1 ∼ U(0, 1), the distribution of the r.v. max{U1, . . . , Ur+1} is given by the formula
P(max{U1, . . . , Ur+1 ≤ t) = tr+1. Furthermore, by using that

∫ +∞
b αy−nα−1dy = b−nα/n with b > 0,
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we calculate recursively the following multiple integrals for n ∈ N and positive yi’s

In =

∫
y1≥···≥yn+1

n∏
i=1

αy−α−1
i dy1 . . . dyn

=

+∞∫
yn=yn+1

+∞∫
yn−1=yn

· · ·
+∞∫

y2=y3

n∏
i=2

αy−α−1
i

( +∞∫
y1=y2

αy−α−1
1 dy1

)
︸ ︷︷ ︸

=y−α2

dy2 . . . dyn

=

+∞∫
yn=yn+1

· · ·
+∞∫

y3=y4

n∏
i=3

αy−α−1
i

( +∞∫
y2=y3

αy−2α−1
2 dy2

)
︸ ︷︷ ︸

=y−2α
3 /2

dy3 . . . dyn = · · · = 1

n!
(yn+1)−nα.

Consequently, in case c > 0, we obtain by virtue of Remark 3.5

CLr+1 = E
[
νr+1
α {y ∈ Rr+1

+ :
r+1∑
i=1

yi1{Ui,1} ∈ A
r
c,a}
]

= E

 ∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥a+cmax{U1,...,Ur+1}}dy1 . . . dyr+1


=

∫
t∈[0,1]

∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥a+ct}}(r + 1)trdy1 . . . dyr+1dt

=

∫
t∈[0,1]

∫
yr+1>0

Irαy−α−1
r+1 1{yr+1≥a+ct}}(r + 1)trdyr+1dt

=

∫
t∈[0,1]

+∞∫
yr+1=a+ct

1

r!
(yr+1)−rααy−α−1

r+1 (r + 1)trdyr+1dt

=
r + 1

r!

1∫
0

tr

( +∞∫
a+ct

α(yr+1)−(r+1)α−1dyr+1

)
dt =

1

r!

1∫
0

tr(a+ ct)−(r+1)αdt

=
a−(r+1)α

(r + 1)!
· 2F 1[r + 1, (r + 1)α; r + 2;−c/a].

Analogously, we find

CEr+1 = E
[
νr+1
α {y ∈ Rr+1

+ :
r+1∑
i=1

yi1{Ui,1} ∈ A
r
c,a}
]

=

∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥(a+cmax{U1,...,Ur+1})/(r+1)}dy1 . . . dyr+1

=

∫
t∈[0,1]

∫
yr+1>0

Irαy−α−1
r+1 1{yr+1≥(a+ct)/(r+1)}}(r + 1)trdyr+1dt

=
1

r!

1∫
0

tr
(
a+ ct

r + 1

)−(r+1)α

dt = (r + 1)(r+1)α 1

r!

1∫
0

tr(a+ ct)−(r+1)αdt
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= (r + 1)(r+1)αa
−(r+1)α

(r + 1)!
· 2F 1[r + 1, (r + 1)α; r + 2;−c/a].

In case c < 0, the coefficients simplify to

CLr+1 = E

 ∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥a+c}dy1 . . . dyr+1

 =

+∞∫
a+c

Irαy−α−1
r+1 dyr+1

= . . . =
1

(r + 1)!
(a+ c)−(r+1)α, and,

CEr+1 = (r + 1)(r+1)α 1

(r + 1)!
(a+ c)−(r+1)α.

Remark 3.9. When c > 0, the coefficients CLr+1 and CEr+1 can be equivalently expressed in terms of
finite sums involving the Gamma function. More precisely, by applying r times integration by parts, we
calculate for k > r + 1 that

1

r!

∫
tr(a+ ct)−kdt =

r+1∑
m=1

(−1)m+1tr+1−m

(r + 1−m)!

(a+ ct)m−k

cm
∏m
j=1(j − k)

=

r+1∑
m=1

(−1)m+1tr+1−m

(r + 1−m)!

(a+ ct)m−k

cm(1− k)m

=−
r+1∑
m=1

tr+1−m

(r + 1−m)!

(a+ ct)m−k

cm(k −m)m
⇒

1

r!

1∫
0

tr(a+ ct)−kdt =
ar+1−k

cr+1(k − r − 1)r+1
−

r+1∑
m=1

(a+ c)m−k

(r + 1−m)!cm(k −m)m
,

where (b)k = Γ(b+ k)/Γ(b) is again the Pochhammer symbol. Thus,

CLr+1 =
a−(r+1)(α−1)Γ

(
(r + 1)α

)
cr+1Γ

(
(r + 1)(α− 1)

) − r+1∑
m=1

(a+ c)m−(r+1)αΓ
(
(r + 1)α

)
(r + 1−m)!cmΓ

(
(r + 1)α−m

) ,
CEr+1 = (r + 1)(r+1)α

(
a−(r+1)(α−1)Γ

(
(r + 1)α

)
cr+1Γ

(
(r + 1)(α− 1)

) − r+1∑
m=1

(a+ c)m−(r+1)αΓ
(
(r + 1)α

)
(r + 1−m)!cmΓ

(
(r + 1)α−m

)) .
Remark 3.10. In the absence of reinsurance (r = 0), the pre-constant simplifies to

a−α+1 − (a+ c)−α+1

c(α− 1)
,

which can also be derived from existing results, see e.g. [6, 10].

Finally, we know from [14] that the compound Poisson aggregate claim process S(t) =
∑N(t)

i=1 Xi is
a special Lévy process with Lévy measure ν(dx) = λF (dx), which means that n · ν[n,∞) = λnF̄ (n) =

λL(n)n−α+1, n ∈ N. We conclude the proof by combining this result with Lemma 3.8 to obtain the
expression (22).
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4. Numerical implementations

Our primary goal in this section is to verify our asymptotic approximations in Theorem 3.1 via numerical
illustration. For this purpose, we employ an importance sampling scheme that was developed in [9] and
it is proved to be strongly efficient in the current setting. We provide a short description of this scheme
in Appendix A.

We use a shifted Pareto distribution for the claim sizes, i.e. F̄ (x) = (x + 1)−α, x ≥ 0, and
EX = 1/(α − 1). In addition, we calculate the net premiums pLD = p − pLR and pED = p − pER of the
insurer after purchasing an LCR or ECOMOR reinsurance for a premium pLR and pER, respectively.

We assume here that the reinsurance premiums are determined according to an expected value
principle, see e.g. [2]. Hence, we need to determine ER(t). As the Pareto claims arrive according to a
Poisson process with rate λ, we follow [7] to obtain

ELr(t) = (λt)1/α
r∑
i=1

γ(i− 1/α, λt)

Γ(i)
−

r∑
i=1

γ(i, λt)

Γ(i)
,

EEr(t) = (λt)1/α

(
r∑
i=1

γ(i− 1/α, λt)

Γ(i)
− rγ(r + 1− 1/α, λt)

Γ(r + 1)

)
−

(
r∑
i=1

γ(i, λt)

Γ(i)
− rγ(r + 1, λt)

Γ(r + 1)

)
,

where γ(k, s) =

∫ s

0
e−uuk−1du is the lower incomplete gamma function. Thus, if θ, η > 0 are the

relative safety loadings imposed by the insurer and reinsurer, respectively, we calculate the annual
retained premium pD over a period of n years via the formula pD = (1 + θ)ES(1)− (1 + η)ER(n)/n.
Correspondingly,

pLD =(1 + θ)
λ

α− 1
− (1 + η)

(
(λn)1/α

r∑
i=1

γ(i− 1/α, λn)

Γ(i)
−

r∑
i=1

γ(i, λn)

Γ(i)

)/
n,

pED =(1 + θ)
λ

α− 1
− (1 + η)(λn)1/α

(
r∑
i=1

γ(i− 1/α, λn)

Γ(i)
− rγ(r + 1− 1/α, λn)

Γ(r + 1)

)/
n

+ (1 + η)

(
r∑
i=1

γ(i, λn)

Γ(i)
− rγ(r + 1, λn)

Γ(r + 1)

)/
n.

We fix now n = 20, α = 1.5, λ = 10, θ = 0.2, η = 0.3 (safety loadings for reinsurance are typically
larger than for primary insurance, see [2]) to obtain the following figures:

r pLR pER pLD pED cL cE
0 0 0 24 24 4 4
1 4.5309 3.0539 18.1098 20.0299 -1.8902 0.0298
2 6.0078 4.0719 16.1897 18.7065 -3.8102 -1.2935
3 6.9758 4.7505 14.9314 17.8242 -5.0686 -2.1757

Table 1: Premiums for LCR and ECOMOR treaties for varying r for n = 20, λ = 10, α = 1.5, θ = 0.2, and η = 0.3.

Finally, we choose the values of a such that the asymptotic approximations for LCR and ECOMOR
are simultaneously defined. In other words, it should hold that a > max{−cL,−cE , 0}, where ci =

piD − λ/(α− 1), i ∈ {L,E}. It is clear from Table 1 that cL < cE . Therefore, both approximations are
simultaneously valid for a > max{−cL, 0}.

The results under both LCR and ECOMOR treaties for different combinations of r and a are
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presented in Figures 1–3. We plot the simulation estimates (circles) together with the large deviation
approximation (line) of the rare event probabilities as a function of n. Note that the results for r = 0

can be considered as a sanity check for our simulation study.

We observe that the large deviation results become accurate as n grows, in line with Theorem 3.1.
It is quite remarkable that in most cases the resulting approximation is already excellent for n = 20.
This corresponds to a time horizon of 20 years for the present insurance application. For fixed n, the
quality of the asymptotic approximation improves as a increases. Finally, we recognize that LCR always
leads to lower ruin probabilities than ECOMOR, which is intuitively expected. However, the explicit
expression given in Theorem 3.1, allows for the first time to quantitatively assess the effects of the
model parameters on the resulting ruin probabilities.
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Figure 1: Numerical results for both LCR and ECOMOR treaties, for a = 20.

A. Appendix: Short description of the simulation technique

Our simulation estimator is based on an importance sampling strategy; see e.g. Chapter V of [5]. To be
precise, for δ > 0, we define the auxiliary set

Bδ = {ξ ∈ D : D(ξ, δ) ≥ r + 1},

where D(ξ, δ) is given in (17). We propose an importance distribution Qδ,w that is determined by

Qδ,w( • ) = wP( • ) + (1− w)Qδ( • ),

where w ∈ (0, 1) and Qδ( • ) = P( • | S̄n ∈ Bδ). Note that Qδ( • ) is the conditional distribution given
the event S̄n has at least r + 1 discontinuities of magnitude δ. The proposed importance distribution
has the following interpretation. We flip a coin at the beginning of each simulation. We generate with
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Figure 2: Numerical results for both LCR and ECOMOR treaties, for a = 80.

probability w the sample path of S̄n under the original measure and with probability 1− w, we sample
S̄n under the measure Qδ( • ). To compensate for the bias introduced by the importance distribution, a
likelihood ratio – that is the Radon-Nikodym derivative between P and Qδ,w – must be included in the
estimator. In our case, the estimator Zn for P(S̄n ∈ A) is then given by

Zn = 1{S̄n∈A}
dP

dQδ,w
= 1{S̄n∈A}

(
w +

1− w
P(S̄n ∈ Bδ)

1{S̄n∈Bδ}

)−1

.

The output analysis is performed similarly to the Monte Carlo method, i.e. we generate M i.i.d.
replicates of Zn from Qδ,w and we estimate P(S̄n ∈ A) as the arithmentic mean of the replicates. From
Theorem 1 in [9], there exists δ such that the simulation estimator has a bounded relative error. Hence,
the number of simulation runs required to achieve a given accuracy is bounded as n goes to infinity.
For more details of the estimator, we refer the readers to [9].
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