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The 2D water wave problem

VACUUM REGION

cQ)(t) INTERFACE

Q(t) WATER REGION

Velocity:  u(x, t) € R?

Pressure: p(x,t) € R } defined for x € Q(t)



THE EQUATIONS

» V-u=0, Vxu=0 inQ(t).

> U+ (u-Vu=-Vp—g(0,1), inQ(?).

» p=0 atoQ(t).

» 0Q(t) moves with the fluid.



Irrotational flows

We assume that the vorticity is zero in the interior of the domain
Q(t). We can consider that the vorticity is supported on the free
boundary curve z(«, t) and it has the form

VEu(x, t) = w(a, )o(x — z(a, t)).

i.e. the vorticity is a Dirac measure on z defined by

(V4w ) = /R w(a, tn(z(a, 1))do,

with 7(x) a test function.



Scenarios

» Asymptotically flat: lim (z(«,t) — («,0)) =0,

» Periodic curves: z(« + 2km, t) = z(a, t) + 2kn(1,0).

» Compact: z(a + 2km, t) = z(a, t).

-




The water waves equations

Let us assume that z(«, t) is smooth and satisfies the chord-arc
condition. We have to solve

V-u=0 .
Vxu—0 }an(t)

We can write
u=vVe¢ u=Vy

with
A =0 A =0
Plaairy =P Intlaan) = —?;‘(2%?




“Biot-Savart law”

u(x, t) = 217 / mw(a, t)da for x € Q(t) (interior)

v Y
Here,v:< 1>:>vi:< 2)
Vo Vq

The velocity u, the velocity potential ¢, and the vorticity
amplitude w, all carry the same information.



However, to obtain w from u or ¢, one has to solve an integral
equation.

We can write

u(z(e, 1), 1) - Za(a, t) = Ba®(ar, 1) = BR(2,w) - Za(ar, 1) + “(z’ Y
where the Birkhoff-Rott integral is defined by

[ e —zE)
BR(z,w)_ZﬂPV/R e (e nd




Also we have to solve
ou+ (u-Vyu=-Vp—(0,1) inQ(t)
that we can write
o+ Slulf = —p—y.

We will take
Plaa) =0



The equations may be rewritten in the form

zi(a,t) = BR(z,w)(a, 1) + c(a, 1)daz(a, 1),
jw|?
4|0,2|?
+2¢9,BR(z,w) - 0n2(cr, t) — 2204 22,

wi(a, t) = —20iBR(z,w) - 002 — 0a( )+ Oa(Cw)

where the Birkhoff-Rott integral is defined by

_ 1 (z(o t) — 2(8, )"
BR(z,w) = EPV L 2 ) = 2.1 w(a, t)da



The linearized equation

A linearization around a flat contour («, ef(a, t)) and
w = €g(a, t), allows us to find

fi(a, t) = H(g) (e 1),
gi(a, t) = =00, f(a, t),

It can be written as follows:
%t %t
oc<0= eltl?t gl

fe(o, ) = —aA(F)(a, 1),
o>0= cos(|o€|2t), sin(|o€|zt)

and ’
1
Eu(t) = 5 [ (010 f +[A3gP)da.



Rayleigh-Taylor condition

» Rayleigh-Taylor condition:
o(a,t) = =(Vp(z(a, 1), 1)) - 05 2(a,t) > O,
By taking the divergence of the Euler equation
—Ap=|Vv[2>0

which, together with the fact that the pressure is zero on the
interface then by Hopf’s lemma

o(a,t) = ~|z; (. )|0np(2(e, 1), 1) > O,

where 0, denotes the normal derivative.



Local existence

Theorem (Sijue Wu, 1997)

Local existence for initial data satisfying zy(a) € H* and
wo(a) € HK1 (k > 4),

F(z0)(e, ) < 0, and o(a,0)>0.

where
_ 18|
f(Z)(Oé7ﬂ,t)— |Z(O[,t)—Z(O[—ﬂ, t)| Va,ﬂe(—ﬂ,w),
and

F(@)(@,0,0) = 1.



Energy of the system

Case z € H*:

E0) = 2050+ [ MW&@ NG

+ I F (@) (1) + lwliFe(t) + lel2,_y (1),
H 2

for o(a, t) > 0 and ¢(«, t) given by

w(a, t)

s~ O Dldaz(es Bl

<p(a, t) =

» Beale, Hou & Lowengrub (1993)
» Ambrose & Masmoudi (2005)



Previous work

» Solutions exist and stay smooth for short time

[Sijue Wu (1997); see also Lannes,
Christodoulou-Lindblad, Lindblad, Ambrose-Masmoudi,
Coutand-Shkoller, Shatah-Zeng,
Cordoba-Cordoba-Gancedo, Alazard-Burg-Zuilly,..]

» For small initial data solutions remain smooth for
exponentially long time

[Sijue Wu (2009)]



Results on 3D water waves

» Global existence for small initial data

[Wu (2011) and Germain-Masmoudi-Shatah (2011) ]

» Also may drop, for local existence, restriction to irrotational
flows

[Christodoulou-Lindblad, Zhang-Zhang]



Numerics

» | Global existence

» |Turning and ....

» [ Singularity




Splash Singularity

Numerics were performed using the method developed by
Beale, Hou and Lowengrub with special modifications to keep it
reliable as we approach the SPLASH.



Salient Features

At first, the interface 0Q(t) is the graph of a function
Xo = F(X1 s t)




Salient Features

Later, the interface 0(t) is no longer the graph of a function

We say that a "turnover" has occurred.



Salient Features

Still later, the interface 0€(t) touches itself at one point, but is
otherwise smooth.

We say that our solution reaches a SPLASH.



Singularities for Water waves: Theorems

Theorem: Turnover

There exists a non-empty open set of smooth initial data for which the
solution of water waves may start as a graph at time ty, then fail to be a graph
at a later time t,. That is, a TURNOVER may occur.

Theorem: Splash singularity

There exists a non-empty open set of smooth initial data for which the
solution of water waves develops a splash singularity in finite.

Theorem: Stability from the splash

Given an approximate solution (x(«, t), v(«, t)) of water waves (up to the
splash) then near (x(«, t),v(a, t)) there exists an exact solution
(z(a, t),w(a, t)) of water waves.
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Ideas of the proof of Turnover
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» There exists a curve z(a) = (z1(a), z2(«)) and an amplitude of the
vorticity w(«) with the following properties:

1. zi(a) — a and z:(«) are smooth 27 — periodic functions and z(«)
satisfies the arc-chord condition,

2. z(a)is odd and

3. 0azi(a) > 0if « # 0, 9.21(0) = 0 and 9.2»(0) > O,

such that
(9av1)(0) < O.



Steps of the proof of splash singularity

» The water wave equations are invariant under time
reversal. To obtain a solution that ends in a splash, we can
therefore take our initial condition to be a splash, and show
that there is a smooth solution for small times t > 0.



What is NOT a Splash
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Figure: Two examples of non-splash curves.




For a splash curve we cannot use the amplitude of the vorticity.




We define the new potential and a stream function

D%, 7,8) = (P (% 7). 1), (X, 7,1) = 6(PT (X, 7))
the new velocity,

and the restriction

(o, t) = d(2(a, 1), 1), U(a, t) = P(2(a, 1), 1).

Thus
Ap(x,y,t) =0 in P(Q(t))
¢ Hat = (D(og, t)
V=Ve¢ inP(Q(t))
And also

O(a,t) = ®(a,t) V(a,t) = V(o t)  Unormal(@, t) = Unormal(e, t)

IMPORTANT: In P(Q(t)) = Q(t) we can use the amplitude of
the vorticity & even if the curve in Q(t) is a splash curve.



Take Z(«, t) and &(a, t) to be the unknowns. Write the water
wave equation in the form

Z(a, t) = Q%(or, )BR(Z,&)(ar, t) + B(cv, )Za (v, 1)

at(a, t) = —28:BR(2,&)(a, t) - Zo(a, t) — |BR(Z, )70, Q% (a, t)

B Qz(a,l‘) Jj(oz,t)z 2o 5 ). 3 (o
Ba( 4 |Za(a,t)|2)+20(  1)0aBR(2,8) - Za(a, 1)

+0a (8(a, Dd(a 1) — 220. (P ' (2(0,1)))
where

Qo t) = ‘Z—V/T/(Z(a, )| .




Local Existence in the Tilde Domain

Theorem
Let 2°(a) be a splash curve. Let u°(a) - (22)* (o) € H*(T) satisfying:

1 o) G 0 lag). B

|zal |18

0
o [ . @) ds:/uo(a)~(zg)Lda:O

a0 12|
Then there exist a finite time T > 0, a curve 2(a, t) € C([0, T]; H*) satisfying:

< 0.

1. P7'(Z(a, 1)) — a, P7'(22(a, t)) are 2x-periodic,
2. P~'(2(a, t)) satisfies the arc-chord condition for all t € (0, T],

and U(a, t) € C([0, T]; H3(T)) which provides a solution of the water waves
equations in the new domain 2°(a) = P(2°()).



A priori energy estimates

- QP03 4 -
E(t) =12l (1) + T 72 |95z da(t) + |F(2)E= (1)

- 4
115 (8) + llel?o,y (6) + % 2 e

where
> -
plon) =350 aa, iz o)
_at+m [T 2pa o . Zs(B,1)
C(Oé, t) == - [ﬂ(O BR(Zv ))ﬁ(ﬂ’ t) ‘zﬁ(ﬁv t)|2dﬂ

2
¢ 2 5~ . Zﬁ(ﬁv t)
- [ (@A) - T d

o3 is the R-T function.



The function ¢ allows two show the following cancelation:

2.
d/ Cf 921 942|2do =Controlled Quantities + S

dt Jr |Za/?
gt N3 p(a, 1)ap(a, t)da =Controlled Quantities — S
where
84
s= [ 20% W/\(@gw)da,

We prove that



The regularization

2500, 1) = 05 = 05 » (@20 BR(Z 4, 754)) (1)
+ ¢y * (CE"S’” (gbu * Gaza"s’“)) (a, B),

w‘f’é’“ =+ ..

+ ...
|8a25’5’“]

—2¢ QZ(ze,é,u)

A(¢u * ¢,LL * ‘;06757“%



Cm o adT [T 9,2504(8))
e =y / 105255 (5) 2

X g5 * g5 * (95(QF (277" )(B)BR(2™"", ™)) (8))dB

[ )
L Ol

X @5 * g5 * (95(QF (257" )(B)BR(2"",w™*"))(8))dB,

o Q2(Z€,6,u)w€,67u

— _ CE’(S’H
2|0 z80H | ’

T £,0,1
ot = gswoss (U5 [ sty QoG IR (ol

— * * ° M . 2 (€0, £,0,u ws,é,u
s * b5 </_7r |9g2554()] (9s(Q°(z2"")(B)BR(z™"", ))(ﬁ))dﬁ)



Stability

(x,, ¢) are the solutions of

xi = Q3(x)BR(x ,’y)—i—bxa—i—f
a4+ ) o > Xo
= BR)s——-5d
b = /_W(o BR)., ra|2d /(Q )ﬁ|Xa|2 &
o+
+727T ’ a|2da—/ﬂf5

Tt +2BRI‘(X77) * X = *6(02()(2))04‘28’:',()(77”2 + 2bBRa(X77) "
+(07)a — (G2%) —2(P ' (x)a+g

2 (0%
(o 1) = Feled — p(a, t)]xa(a, 1)
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Q?c
(t)= (1013 + [~ T TFI08DR + 13 + IDI2, ., )

x 12

Then we have that

S| = +o)
where
€(t) = CCEW) x5y (00, 71 00 1Ty (), GO (1)
and

6(t) = (11l s g (8) + 1G9l g, 5 (£)"

H3+



We would like to prove

(1) There exists a solution of the water wave problem,for which
the interface starts as a graph, then turns over, and finally
forms a SPLASH.




Graph to Splash: Sketch of the proof

» Compute the constant in the stability theorem, i.e. quantify
how fast solutions with near starting conditions separate.

» From a given solution obtained by simulation, calculate
(using a computer!!) rigorous bounds in some HX norm on
how well the candidate satisfies the equation.

» By the stability theorem, there should be a function which
solves the water waves equation, is a graph at time 0 and a
splash at time T which is close enough to the candidate.



Further Results

» Singularities in 3D

» Splat
AVariant of the Splash:
SPLAT!
{
y <
\\
7 . | |
y y

Attime t,, the Interface self-intersacts along
anarc, but u and 002 are otherwise smooth,

» Surface tension



Splash singularities with surface tension
Laplace-Young law
Patm — Pfiuid = TR

where 7 is a constant which depend on the fluid we are
considering and « is the curvature.

Air

>=p

atm water

w>>1
Water




Water Waves equations with surface tension
In the physical domain

Zi(a, t) = BR(z,w)(a, t) + c(a, t)0nz(av, t),
| l?
4]0az|?
+2¢0,BR(z,w) - 0nZ(ar, t) — 280022 + TOuk(cv, I)

wi(a,t) = —20tBR(Z,w) - 002 — O ) + Oa(Cw)

In the tilda domain
Zi(a, 1) =Q%(ar, 1) BR(Z,&)(av, 1) 4 E(cv, 1) Za(x, 1)
(o, t) = — 20tBR(Z, ) (e, 1) - Zo(a, 1) — |BR(2, )20, Q%(a, 1)

—aa< (4 1) © ’Za((a 1‘))\2> + 28(cv, )0uBR(Z,5) - Za(ar, 1)

+ 00 (B, (e, 1) — 200 (P5 (2 1)) + TNT (e, 1),

The new term

NT (o, t) = 0, (QF(av, t)) + extra lower terms



The new energy
» Energy without the R-T condition.

E—.. +2|za\3/Q7 (23%) /0833 NP

9 3 ~ ~
— 6
+2\Za\72/o aw) &

Ambrose (2003)
» Energy with the R-T condition.

E—. + T|22“| /07 (82/%) +/Q4a§;¢/\¢

+ yzay2f/(cyy;;u,41(t) +7) QTORRNRR

+2(2,|ClRm (1) [ * (032) +12] [ o0® (32)

Ambrose and Masmoudi (2005) and Ambrose and
Masmoudi (2009)



Thank you!
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