
Research Article

Finite Time Stability of Finance Systems with or without Market
Confidence Using Less Control Input

Chao Ma ,1 Yujuan Tian ,2 and Zhongfeng Qu1

1School of Mathematical Sciences, University of Jinan, Jinan 250022, China
2School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China

Correspondence should be addressed to Chao Ma; chaos ma@163.com

Received 6 October 2018; Accepted 6 December 2018; Published 20 December 2018

Academic Editor: Ivo Petras

Copyright © 2018 ChaoMa et al.�is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we make an exploration of a technique to control a class of 	nance chaotic systems. �is technique allows one to
achieve the 	nite time stability of the 	nance system more e
ectively with less control input energy. First, the 	nite time stability
of three dimension 	nance system without market con	dence is analyzed by using a single controller. �en, two controllers are
designed to stabilize the four-dimension 	nance system with market con	dence. Moreover, the 	nite time stability of the three-
dimension and four-dimension 	nance system with unknown parameter is also studied. Finally, simulation results are presented
to show the chaotic behaviour of the 	nance systems, verify the e
ectiveness of the proposed control method, and illustrate its
advantages compared with other methods.

1. Introduction

�e complex nonlinear behavior and chaos phenomenon in
economic system were 	rst found in 1985 [1]. Since then,
many research results of these phenomenon were presented
through studying econometrics and 	nancial models [2].
�e authors in [3] proposed a nonlinear 	nancial system
using the method of systematic dynamics. Ma and Chen
studied the bifurcation topological structure and the global
complicated character of this 	nancial system [4, 5]. �e
authors in [6] investigated the dynamical behavior of this
system. Ma and Wang [7] studied the Hopf bifurcation and
gave the veri	cation for the topological horseshoe chaos in
this 	nance system. Some extended forms of the 	nancial
system in [3] have been presented, such as fractional form
[8–10] and delayed form [11, 12]. In fact, the most important
factor in�uencing the economy is con	dence, especially in
times of economic crisis [13]. So [14] extended the above
system to a four-dimensional form by considering market
con	dence into the system. All these extended forms of
the 	nancial system exhibit unstable and chaotic behaviors.
From the economic perspective, the existence of the instable
and complicated dynamic behavior means that there is an

inherent inde	niteness in the 	nancial system [15]. And the
emergence of chaos makes it is almost impossible to predict
the economic behaviors precisely. What is more, it most
likely makes the system slide into huge 	nancial losses or
economic crisis. �erefore, it has important theoretical and
practical value for the stable economic growth to study how
to overcome this inde	niteness. In other words, we need to
study how to realize e
ective control of the unstable and
chaotic behaviors in the economic system.

In recent years, some interesting research results on the
control of the 	nancial systems in [3] or its extended forms
have been presented. Based on nonlinear state feedback
mechanism andmultiobjective optimization framework, [16]
proposed an active control policy design to achieve the
stabilization of chaos in a fractional form of 	nancial system.
�e active control strategy was also employed to synchro-
nize two 	nancial systems in [17]. In [18], some e
ective
controllers were given for the synchronization control of the
	nancial system by using feedback control method. �rough
designing adaptive sliding mode controller, [8] and [19]
realized the chaos control of the three- and four-dimension
fractional 	nancial system, respectively. �e authors in [20]
modi	ed the 	nancial system and designed an adaptive
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controller to stabilize the chaos in 	nancial system. In [21,
22], the similar adaptive technique was used to implement
the synchronization of four-dimensional 	nance system.
�e hyperchaotic 	nance system was stabilized employing a
controller which combines passive and feedback method in
[23]. Unfortunately, in order to suppress instability or chaos
in the 	nancial system, all these methods need to add the
controllers to all the state equations of the system.�is would
mean that the governments must take more radical policies to
prevent a further economic slump in crisis.

It is well known that the radical solutions could be
even more disruptive to the economy. �erefore, it is of
great practical importance to suppress the unstable states or
chaos in 	nancial system with less control inputs. In [24],
a fuzzy controller was designed to realize the stabilization
of the fractional chaotic 	nance system. But the control
signal never converges to zero in this method, which means
that the control input applied on the 	nance systems will
always exist. What is indisputable is that no one expected an
endless 	nancial regulation policy. In [25], a speed feedback
controller is presented to achieve the control of chaotic
	nance system. But it needs a long time for stabilization.
�ese two studies achieved the stable control of the 	nancial
system by applying a single controller exerted in one of the
state equations.

It is more regrettable that all but [14] (which exerts four
controllers to the system) of the above techniques just con-
sidered asymptotic stability of the 	nancial system. However,
there is no country around the world that wishes to come
out of the 	nancial crisis in a short period of time. So in this
sense, 	nite time control, which can make the system states
converge to an equilibrium point in a 	nite time [26], has
more realistic signi	cance for the economy to emerge from
the crisis and embark on the track of recovery. Furthermore,
studies have shown that the 	nite time control method
has not only better robustness and disturbance rejection
[27], but also the following advantages. First, 	nite time
control method can integrate well with other methods. For
example, [28] designed continuous state feedback controllers
to solve the 	nite time synchronization control problem of
chaotic system. Reference [29] presented adaptation laws
and 	nite-time controller to stabilize nonlinear system, [30,
31] employed sliding mode controller to achieve 	nite time
synchronization and control of the system. Combined with
recurrent neural network, [32] realized 	nite time stability of
the system. Second, 	nite time control method can stabilize
the dynamic systems under various complicated condition
e
ectively, such as the system subject to time delay [33],
the time varying system [34, 35], the system with uncertain
parameters [36], the stochastic nonlinear system [37], and
nonlinear impulsive dynamical systems [38]. Due to the
above-mentioned advantages, 	nite time control technique
has been applied to many 	elds, such as designing con-
sensus and collision avoidance algorithms of autonomous
underwater vehicle [39], stabilizing the chaos in permanent
magnet synchronous motor [40] and the centrifugal �ywheel
governor system [41], synchronizing multi-agent networks
[42], and complex networks [43].

�is paper will investigate the 	nite time control of
the 	nancial system with or without market con	dence
in�uence. According to previous analysis, it is considered
muchmore signi	cant to achieve stable control of the system
by using as few controllers as possible. Unfortunately, nearly
all the aforementioned results (about 	nite time control)
exert control to all the state equations of the system. In
[44], a single input controller was designed to stabilize the
3-dimensional (3D) chaotic system. Inspired by this result,
we will stabilize the 	nancial system in a 	nite time by a
single controller. �en, we will develop this technique and
apply it to stabilize the 4-dimensional (4D) 	nancial system
with market con	dence. Furthermore, the application of
this method in the stabilization of the 	nance system with
unknown parameter will be investigated. �e outline of the
paper is as follows. A�er some preliminaries in Section 2,
we will give in Section 3 the 	nite time stability theorem of
the 	nancial system without market con	dence. Section 4
studies the 	nite time control of the system with market
con	dence. Some simulations are included in Section 5 to
show the e�ciency and superiority of this method. Finally,
conclusions are presented in Section 6.

2. Preliminaries

�is section mainly introduces the 	nance system and the
	nite time stability theory.

2.1. Finance Chaotic System

2.1.1. 3D Finance Chaotic System without Market Confidence.
Considering the in�uences of production, money, security,
and labor force, the authors of [45] used the system dynamic
method to establish a 	nancial model aṡ� = �1 (� − ��)� + �2
,�̇ = �3 (�
� − �� − ��2) ,
̇ = −�4
 − �5�,

(1)

where� denotes the interest rate,� is the investment demand,
and 
 presents the price exponent. �� is the amount of saving,
and �
� is the rate of return on investment. ��, � = 1, 2, ..., 5,�, and � are constants.

For the 	nancial model, the most important is not the
value of parameters, but the relationship between the param-
eters and how relative changes of them a
ect the system
behavior. By choosing the appropriate coordinate system and
setting an appropriate dimension to state variables [4], a
further simpli	ed 	nancial model is written aṡ� = 
 + (� − �) �,�̇ = 1 − �� − �2,
̇ = −� − �
, (2)

where the parameter � is the saving, � is the per-investment
cost, � is the elasticity of demands of commercials, and �, �, �
are positive real constants.



Mathematical Problems in Engineering 3

Choosing the parameters � = 2, � = 0.1, � = 1, and the
initial values �0 = 0.1, �0 = 0.2, 
0 = 0.3, one can obtain that
the three lyapunov exponents of the 	nance system (2) are0.134, 0.000, −0.514, and the Lyapunov dimension is 2.261.
�e existence of topological horseshoe chaos has already been
proved in the authors’ previous work [7].

2.1.2. 4D Finance Chaotic System with Market Confidence. In
	nancial market, the maintenance of con	dence can stabilize
the markets and promote 	nancial growth. When 	nancial
crisis happens, market con	dence will be shattered, and this
in turn might lead to the market falling still further. �e
consensus view of economists is that, along with e
orts to
haul the world out of recession, one of the most important
steps may be to restore the 	nancial market con	dence.
For more accurate simulation of the dynamics of 	nancial
market during the 	nancial crisis, the model should take the
in�uence of market con	dence into account. By considering
market con	dence into the 	nancial system (2), [14] proposed
a novel four-dimensional chaotic 	nancial system as follows.̇� = 
 + (� − �) � + �1�,�̇ = 1 − �� − �2 + �2�,
̇ = −� − �
 + �3�,�̇ = −��
,

(3)

where �, �, 
, �, �, � have the same meanings as those de	ned
in system (2), � is the market con	dence, and�1, �2, �3 are
the impact factors.

When the parameters are chosen as � = 2, � = 5, � = 1.3,�1 = 4.4, �2 = 4.4, �3 = 0.2, and the initial values are taken
as �0 = 1.5, �0 = 2, 
0 = 0.3, �0 = 0.1, the four Lyapunov
exponents of system (3) are 0.129, 0.000, −1.200, −7.061, and
the Lyapunovdimension is 2.1078. So the dynamics of 	nance
system with market con	dence is chaotic.

2.2. Finite Time Stability 	eory. Finite time stabilization
means that the state of the system can converge to the origin
in a 	nite time. �e de	nition of 	nite time stabilization and
a lemma are given below.

Definition 1. Consider the following nonlinear system:

�̇ = � (�) , (4)

where � = (�1, �2, ..., ��)T ∈ �� is the state of the system

and �(�) = (�1(�), �2(�), ..., ��(�))T : �� �→ �� is smooth
function. Let �0 = 0 be an equilibrium point of system (4). If
there exists a positive constant �, such that

lim
��→�

‖� (�)‖ = 0, (5)

and ‖�(�)‖ ≡ 0 if � ≥ �, then the stabilization of system (4) is
achieved in a 	nite time.

Lemma2 (see [27, 46]). Suppose that there exists a continuous
function �(�) : ! �→ � such that the following conditions
hold:

(i) �(�) is positive definite,
(ii) 	ere exist real numbers � > 0 and � ∈ (0, 1) and an

open neighborhood Ω ⊂ ! of the origin such that�̇ (�) ≤ −��� (�) ∀� ≥ �0, � (�0) ≥ 0. (6)

	en, for any given �0, �(�) satisfies the following inequality:�1−� (�) ≤ �1−� (�0) − � (1 − �) (� − �0) , �0 ≤ � ≤ �1,� (�) ≡ 0, ∀� ≥ �1, (7)

with �1 given by
�1 = �0 + �1−� (�0)� (1 − �) . (8)

We refer the interested reader to [27, 46] for the proof of
Lemma 2.

Based on above de	nition and lemma, this paper will
design an adaptive control method with less control input to
achieve the 	nite time stability of systems (2) and (3).

3. Finite Time Stability of 3D Financial
System Using a Single Controller

By introducing the linear transformation�1 (�) = �(�),�2(�) =�(�) − 1/�, �3(�) = 
(�), system (2) becomes

�̇1 = (1� − �)�1 + �3 + �1�2,�̇2 = −��2 − �21,�̇3 = −�1 − ��3.
(9)

System (2) and system (9) are topologically equivalent.
System (9) can be written in compact form as follows:

�̇ = � (�) , (10)

where � = (�1, �2, �3)T, �(�) = (�1(�), �2(�), �3(�))T. And
it is easy to obtain that the origin *(0, 0, 0) is an equilibrium
point of system (9).

Consider the following subsystem of system (9):

̇�2 = −��2 − �21,̇�3 = −�1 − ��3. (11)

Obviously, the vector function (�2 , �3) = (−��2−�21, −�1−��3) is smooth in a neighborhood of �1 = 0, and the systeṁ�2 = �2 (0, �2, �3) ,̇�3 = �3 (0, �2, �3) (12)

is stable about the origin (�2, �3) = (0, 0) for all (�2, �3) ∈�2. Based on the above properties of system (9), this section
will design a single controller - exerted to �1 to achieve the



4 Mathematical Problems in Engineering

	nite time stability of the origin of system (9).�e controlled
system of the three-dimension 	nancial system is given bẏ�1 = �1 (�) + -,̇�2 = �2 (�) ,̇�3 = �3 (�) . (13)

�en we give the following 	nite time stability theorem
for the controlled system (13).

�eorem 3. 	e origin of system (9) can be stabilized within a
finite time, if the controller - is designed as

- = {{{{{
A�1 − B(�1 (�))��1 , �� �1 ̸= 00, �� �1 = 0 (14)

where B > 0, � ∈ (0, 1) and�1(�) = (1/2)(�1)2+�0(�2, �3), in
which�0 is a positive definite function of (�2, �3). A is adapted
under the following update law:Ȧ = −D�2, (15)

where �2 = �21 + �22 + �23 and D is a control parameter (D can
be arbitrary positive real number).

Proof. Introduce a positive de	nite function as follows.

� (A,�) = �1 (�) + 12D (A + E)2 , (16)

where E is a constant coe�cient that needs to be determined.
By calculating the time derivative of �(A,�) along the

trajectory of system (13), we obtain

�̇ (A,�) = F�1 (�)F� ⋅ (�1 (�) + -, �2 (�) , �3 (�))T
+ 1D (A + E) Ȧ = F�1 (�)F�1 ⋅ (�1 (�) + -)
+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 ) ⋅ (�2 (�) , �3 (�))T
− (A + E)�2 = �1 (�1 (�) + A�1 − B(�1 (�))��1 )
+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ ((�2 (�) , �3 (�))T− (�2 (0, �2, �3) , �3 (0, �2, �3))T)
+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (�2 (0, �2, �3) , �3 (0, �2, �3))T − (A + E)�2

(17)

Since �1(�) is a Lipschitz continuous function, a positive
real number �1 can be found, such thatJJJJ�1 (�)JJJJ ≤ �1 ‖�‖ (18)

Obviously, the vector function (�2(�), �3(�)) is smooth in
the neighborhood of �1 = 0, so there exists a real �2 > 0 such
that JJJJJJ((�2 (�1, �2, �3) , �3 (�1, �2, �3))T− (�2 (0, �2, �3) , �3 (0, �2, �3))T)JJJJJJ ≤ �2 JJJJ�1JJJJ≤ �2 ‖�‖

(19)

�e system �̇2 = �2(0, �2, �3), �̇3 = �3(0, �2, �3) can be
written as ̇�2 = −��2,̇�3 = −��3. (20)

For this system, choosing Lyapunov function as

�0 (�2, �3) = 12 (�22 + �23) , (21)

and taking the time derivative of �0 along the solution of
system (20), one has

�̇0 (�2, �3) = (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (�2 (0, �2, �3) , �3 (0, �2, �3))T≤ −��22 − ��23.

(22)

So there is a real number �3 > 0, such that

�̇0 (�2, �3) ≤ −�3 JJJJ(�2, �3)JJJJ2 . (23)

It is obvious thatJJJJJJJJJ(F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )JJJJJJJJJ = JJJJ(�2, �3)JJJJ (24)

Substituting inequalities (18), (19), (23), and (24) into the
right hand of (34), we can get the following inequality:

�̇ (A,�) ≤ �1 ‖�‖2 + �2 ‖�‖ JJJJ(�2, �3)JJJJ − �3 JJJJ(�2, �3)JJJJ2− B (�1 (�))� − E ‖�‖2 (25)

Taking E ≥ �1 + �22 /4�3, we have�̇ (A,�) ≤ −B (�1 (�))� (26)

From (33), it is easy to get that �(A, �) ≥ �1(�). So we can
	nd a positive constant K = B/� and one has(� (A,�))� ≤ K (�1 (�))� (27)
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Combining inequalities (26) and (27) yields�̇ (A,�) ≤ −� (� (A,�))� (28)

According to Lemma 2, under the adaptive law (30),
the three-dimension 	nancial system (9) can be stabilized
by the controller (29) in 	nite time. �e proof is then
completed.

In fact, the 	nance system is very complex and some
system parameters are di�cult to obtain. �erefore, to study
the 	nite time control of 	nance system with unknown
parameters is of great importance to realize the econom-
ical stable growth. When the parameter � of system (9)
is unknown, we provide the following 	nite time stability
theorem for the controlled system (13).

�eorem4. 	e origin of system (9) with unknown parameter� can be stabilized within a finite time, if the controller - is
designed as

- = {{{{{
(A + �̂) �1 − B(�1 (�))��1 , �� �1 ̸= 00, �� �1 = 0 (29)

where B > 0, � ∈ (0, 1) and �1(�) = (1/2)(�1)2 + �0(�2, �3),
in which �0 is a positive definite function of (�2, �3). A and �̂
are adapted under the following update law, respectively:

Ȧ = −D�2, (30)̇̂� = −�21, (31)

where �2 = �21 + �22 + �23, D is an control parameter (D can be
arbitrary positive real number), and �̂ is the estimation of the
unknown parameter �.
Proof. Let M	 = � − �̂; then ̇M	 = − ̇̂�. (32)

Introduce a positive de	nite function

� (A,�) = �1 (�) + 12D (A + E)2 + 12M2	, (33)

where E is a constant coe�cient that needs to be determined.
�e time derivative of �(A,�) along the trajectories of

systems (13) and (32) is

�̇ (A,�) = F�1 (�)F� ⋅ (�1 (�) + -, �2 (�) , �3 (�))T
+ 1D (A + E) Ȧ + ̇M	M	 = F�1 (�)F�1 ⋅ (�̃1 (�) − ��1
+ -) + (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (�2 (�) , �3 (�))T − (A + E)�2 + ̇M	M	

= �1 (�̃1 (�) + A�1 − B(�1 (�))��1 )
+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ ((�2 (�) , �3 (�))T− (�2 (0, �2, �3) , �3 (0, �2, �3))T)
+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (�2 (0, �2, �3) , �3 (0, �2, �3))T − (A + E)�2,

(34)

where �̃1(�) = �1(�)+��1. Obviously, �̃1(�) also is a Lipschitz
continuous function. �e remaining proof of �eorem 4 is
similar to that of �eorem 3.

4. Finite Time Stability of 4D
Financial System with Market Confidence
Using Two Controllers

By applying linear transformation �1(�) = �(�), �2(�) =�(�) − 1/�, �3(�) = 
(�), �4(�) = �(�), system (3) becomes

̇�1 = (1� − �)�1 + �3 + �1�2 + �1�4,̇�2 = −��2 − �21 + �2�4,̇�3 = −�1 − ��3 + �3�4,̇�4 = −�1�2�3 − 1��1�3.
(35)

�e compact form of system (35) can be written as

�̇ = � (�) , (36)

where � = (�1, �2, �3, �4)T, �(�) = (O1(�), O2(�), O3(�),O4(�))T. And *(0, 0, 0, 0) is an equilibrium point of system
(35).

Consider the following subsystem of system (35):̇�2 = −��2 − �21 + �2�4,̇�3 = −�1 − ��3 + �3�4. (37)

Obviously, the vector function (O2, O3) = (−��2 − �21 +�2�4, −�1 − ��3 + �3�4) is smooth in a neighborhood of(�1, �4) = (0, 0), and the systeṁ�2 = O2 (0, �2, �3, 0) ,̇�3 = O3 (0, �2, �3, 0) (38)

is stable about the origin (�2, �3) = (0, 0) for all (�2, �3) ∈�2. So we will design a double controller -1, -4 to achieve the



6 Mathematical Problems in Engineering

	nite time stability of the origin of system (35) in this section.
�e controlled system of the 4D 	nancial system is given bẏ�1 = O1 (�) + -1,̇�2 = O2 (�) ,̇�3 = O3 (�) ,̇�4 = O4 (�) + -4.

(39)

Now, we propose the following 	nite time stability theo-
rem for the controlled system (39).

�eorem 5. 	e origin of system (35) can be stabilized within
a finite time, if the controller - is designed as(-1, -4)T
= {{{{{

P (�1, �4)T − B
 (�1 (�))� (�1, �4)TJJJJ(�1, �4)JJJJ2 , �� JJJJ(�1, �4)JJJJ ̸= 00, �� JJJJ(�1, �4)JJJJ = 0
(40)

where B > 0, � ∈ (0, 1), and �1 is given as�1 (�) = 12 ((�1, �4)T ⋅ (�1, �4)) + �0 (�2, �3) , (41)

in which �0 is a positive definite function of (�2, �3), and P is
adapted adjustment according to the following update rule:Ṗ = −Q�2, (42)

where �2 = �21 + �22 + �23 + �24 , Q is a control parameter (Q can
be arbitrary real number).

Proof. Introduce a Lyapunov function with an undetermined
constant coe�cient E as follows:�(P,�) = �1 (�) + 12Q (P + E)2 , (43)

By calculating the time derivative of �(P, �) along the
trajectory of system (39), we have

�̇ (P,�) = F�1 (�)F� ⋅ (O1 (�)
+ -1, O2 (�) , O3 (�) , O4 (�) + -4)T + 1Q (P + E) Ṗ
= (F�1 (�)F�1 , F�1 (�)F�4 ) ⋅ (O1 (�) + -1, O4 (�)
+ -4)T + (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (O2 (�) , O3 (�))T − (P + E)�2 = (�1, �4)
⋅ ((O1 (�) , O4 (�))T + P (�1, �4)T
− B(�1 (�))� (�1, �4)TJJJJ(�1, �4)JJJJ2 )

+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ ((O2 (�) , O3 (�))T− (O2 (0, �2, �3, 0) , O3 (0, �2, �3, 0))T)
+ (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (O2 (0, �2, �3, 0) , O3 (0, �2, �3, 0))T − (P + E)�2

(44)

Since O1(�), O4(�) are Lipschitz continuous, and the
vector function (O2(�), O3(�)) is smooth in the neighborhood
of (�1, �4) = (0, 0), there exists real K1, K2 > 0, such thatJJJJ(O1 (�) , O4 (�))JJJJ ≤ K1 JJJJ�JJJJ (45)JJJJJJ((O2 (�) , O3 (�))T− (O2 (0, �2, �3, 0) , O3 (0, �2, �3, 0))T)JJJJJJ≤ K2 JJJJ(�2, �3)JJJJ ≤ K2 JJJJ�JJJJ

(46)

For the system �̇2 = O2(0, �2, �3, 0), ̇�3 = O3(0, �2, �3, 0),
choosing Lyapunov function as �0(�2, �3) = (1/2)(�22 + �23 ),
and taking the time derivative of �0 along the solution this
system, one has

�̇0 (�2, �3) = (F�0 (�2, �3)F�2 , F�0 (�2, �3)F�3 )
⋅ (O2 (0, �2, �3, 0) , O3 (0, �2, �3, 0))T≤ −��22 − ��23 ≤ −K3 JJJJ(�2, �3)JJJJ2 ,

(47)

where K3 > 0 is a real number.
Combining (44), (45), (46), and (47) gives

�̇ (P,�) ≤ K1 JJJJ�JJJJ2 + K2 JJJJ�JJJJ JJJJ(�2, �3)JJJJ − K3 JJJJ(�2, �3)JJJJ2− B (�1 (�))� − E JJJJ�JJJJ2 (48)

Similar to the proof of �eorem 3, we get

�̇ (P,�) ≤ −� (� (P,�))� (49)

According to Lemma 2, the four-dimension 	nancial
system (35) can be stabilized by the controller (40) under the
adaptive law (42) in 	nite time.

Remark 6. Similar to �eorem 4, when the parameter � is
unknown, system (35) also can be stabilized within a 	nite
time by simply substituting the controller (40) in �eorem 5
with
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Figure 1: �e chaotic attractor and projects of poincare section of 3D 	nance system (9).

(-1, -4)T = {{{{{
P (�1, �4)T − B
 (�1 (�))� (�1, �4)TJJJJ(�1, �4)JJJJ2 + (�̂�1, 0)T , �� JJJJ(�1, �4)JJJJ ̸= 00, �� JJJJ(�1, �4)JJJJ = 0 (50)

and designing the parameter updated law as

̇̂� = −�21 (51)

5. Simulation Results

In this section, we will give some numerical simulations to
show the chaotic behaviors of the 	nance systems (9) and
(35). Furthermore, other simulation results are employed to
illustrate the e
ectiveness and advantage of the proposed
control method.

5.1. 3D Finance System. When � = 2, � = 0.1, � = 1, and the
Poincare plane is de	ned as �1 = −�3, the chaotic attractor
and projects of poincare section of system (9) on coordinate
planes are shown in Figure 1.

�e existence of chaos makes it very di�cult to predict
and analyze the economic trends. In the following subsec-
tions, the e
ectiveness of the controller in �eorems 3 and
4 will be shown through simulations, and some explanations
from the view of economics will be given.

5.1.1. Finite TimeControl with KnownParameters. To con	rm
the validity of the control method proposed in�eorem 3, we
carry out numerical simulations using the following initial
conditions [�1(0), �2(0), �3(0)] = [8, 5, 3], A(0) = −1, and
the control parameters B = 0.000001, � = 1/2, D = 5.
As can be clearly seen from Figure 2, the trajectory of the
controlled system (13) converges to origin. �is means that
the chaos behavior in the 	nance system will be eliminated,
and the stabilized economic performance can be achieved.
And more signi	cantly, this result provides an e
ective
economic adjustment measure by only applying the interest
rate management tool.
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Figure 2: Stabilization of the 3D 	nance system (9).
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Figure 3: �e trajectory of the controller -.
From Figure 3, one can see that the trajectory of the

controller - also converges to zero within a short period of
time, which means that the 	nancial regulation policies can
be removed when the 	nance system has stabilized in 	nite
time.

Remark 7. For the autonomic system �̇ = T� + �(�), where
� = (�1, �2, ..., ��)T, T = (���)�×�, �(�) is a nonlinear func-
tion. In [25], the speed feedback controlmethodwas designed
as −P�̇� feedback on the right side of the equation of �� of P >0, � ̸= U. P is a control parameter that satis	es Routh-Hurwitz
criterion. Obviously, this method provides six operational
approaches to control a three-dimensional system. However,
stabilization of the 3D 	nance system is only achieved when−P�̇1 is fed back on �3 (a proof is provided in Appendix).

According to the analysis in Appendix, the parameters are
taken as � = 2, � = 0.3, � = 0.5. When the initial conditions[�1(0), �2(0), �3(0)] = [8, 5, 3], the 	nite time control result
with A(0) = −1, B = 0.000001, � = 1/2, D = 3 and speed
feedback control result with P = 3 are shown in Figures 4(a)
and 4(b), respectively. Combining with Figure 5, we can see
clearly that the 	nite time controller provides more e
ective
vibration reduction and converges more quickly with smaller
control inputs than the speed feedback controller. �ismeans
that the economic control measures designed according to
the control method presented in this paper can stabilize the
economic systembyusing smaller regulation in a shorter time
than that of speed feedback control.

Remark 8. Reference [6] presented the adaptive method of
system (9). According to this method the controlled system

is designed as �(�) = (�1(�) − P̃�1, �2(�), �3(�))T, P̃ =��21. In addition, linear feedback control method designed as

�(�) = (�1(�) − V�1, �2(�), �3(�))T is also used to compare
with the presented method. When � = 2, � = 0.1, � = 1,[�1(0), �2(0), �3(0)] = [8, 5, 3], A(0) = −1, B = 0.000001, � =1/2, D = 5 and � = 10, V = 8. �e control results and the
controllers varying with time are demonstrated in Figures
6 and 7, respectively. It can be seen from the simulation
results that the control input of the presented method has a
weak advantage over adaptive and linear feedback method.
However, the presented method exhibits a much better speed
of convergence than the other two methods. From the view
of economics, the shorter the adjustment time, the smaller
the in�uence of the economic chaos, which reveals that the
presented method has distinct advantages compared to other
two methods.

5.1.2. Finite Time Control with Unknown Parameters. To ver-
ify the e
ectiveness of the control method in �eorem 4, we
carry out numerical simulations under the initial conditions[�1(0), �2(0), �3(0)] = [8, 5, 3], A(0) = −1, and the control
parameters B = 0.000001, � = 1/2, D = 4.235. �e initial
estimated value of parameter � is �̂(0) = −5. As can be
clearly seen from Figure 8, the trajectory of the controlled
system converges to origin, and the estimated value of �
converges to its real value. �ese results clearly show that the
e
ective control of economic crisis can be realized even if
some 	nancial data is unknown.

5.2. 4D Finance System. When � = 2, � = 5,�1 = 4.4, �2 =4.4, �3 = 0.2, the simulation results exhibit that the system
(35) enters chaos state through period-doubling bifurcation
with the parameter � changing from 1.4 to 1.3. For example,
when � = 1.4, system (35) exhibits a single limit cycle as
illustrated in Figure 9(a). And � = 1.35, a double limit cycle
as Figure 9(b); � = 1.33, a 4-period limit cycle as Figure 9(c);� = 1.32, an 8-period limit cycle as Figure 9(d); � = 1.319, a
multiperiod limit cycle as Figure 9(e). When � = 1.31, chaos
attractor with largest Lyapunov exponent 0.087 occurs in the
system as shown in Figure 9(f).

When the parameters and the Poincare section are taken
as � = 2, � = 5, � = 1.3, �1 = 4.4, �2 = 4.4, �3 = 0.2, and
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0.0029�1 +3.0292�2 −4.782�3 = 7.2381, the chaotic attractor
and projects of poincare section of system (35) on coordinate
planes are provided in Figure 10.

�e simulation results in Figures 9 and 10 show that
the dynamics of the 	nance system (35) is unstable when
the parameter � varies in the range between 1.4 and 1.3.
�e existence of period doubling bifurcation cascade means
that the economic volatility increases exponentially with the
parameter changing and 	nally results in economic crisis. For

any country, this unstable phenomenon, especially the large
economic �uctuations, is undesirable. So, it is essential to
control these unstable behaviors in the 	nance system. Under
the following choices of initial conditions �1 (0) = 1.5, �2(0) =2, �3(0) = 0.3, �4(0) = 0.1, P(0) = −1, and the control
parameters Q = 0.00001, � = 4/5, B
 = 15, the dynamics
behavior of the controlled system (39) designed according to
�eorem 5 is exhibited in Figure 11(a). �e control signals -1
and-4 varyingwith time are shown in Figure 12, whichmeans
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that the use of the interest rate tool and the rebuilding of the
market con	dence can put the economy on track when the
economic chaos arises.

Remark 9. Linear feedback control designed as �(�) =(�1(�) − W�1 , �2(�), �3(�), �4(�) − W�4)T is employed to
compare with the presented method. When [�1(0), �2(0),�3(0), �4(0)] = [1.5, 2, 0.3, 0.1], W = 2, the control results and
the controllers varying with time are shown in Figures 11(b)
and 12, where we can see that the states and controllers of
the controlled system designed by 	nite time method have
a better speed of convergence. �e results show that the
economic control measures designed according to the 	nite
time method can stabilize the economic system in a shorter
time than that of linear feedback control method.

Remark 10. �e controlled system designed with adaptive
method is

� (�)
= (�1 (�) − W̃�1, �2 (�) , �3 (�) , �4 (�) − W̃
�4)T , (52)

where W̃ = ��21 , W̃
 = ��24 . When � = 10, �e trajectory
of the controlled system and the controllers are displayed in
Figures 13(b) and 14. It is clear that the presented method
has the obvious advantage in convergence speed. From the
simulation results, one can see that the 	nancial control
measures designed according to the adaptive method need
much longer span of time to stabilize the economic system
than the 	nite time method presented in this paper. �is
o�en means much more damage to the economic and the
social development. �us it can be seen that the 	nite time
control method has a strong advantage in the application of
stabilizing economic disarray.

Remark 11. �e speed feedback control method presented in
[25] cannot be applied to control the 4D 	nance system (35)
by using one or two controllers.

Remark 12. �e occurrence of chaos in the 	nance system
most likely drives the system to slide into unpredictable state,
even economic crisis. According to the method presented
in this paper, an e
ective control measure can be designed
to enable the economic state of the regions and countries
a
ected by the crisis to be recovered to its normal state in
	nite time.

6. Conclusions

In general, a government would like to restore 	nancial
stability in 	nite time by using less 	nancial regulation
policies. For this reason, this paper investigates the 	nite time
control of 	nance system with or without market con	dence.
�e theoretical analysis proves that the 	nance systems can
be stabilized e
ectively in 	nite time with less control input.
�e simulation results indicate that the proposed method
can provide a faster convergence speed of the controlled
	nance systems than speed feedback method, linear feedback
method, and adaptive control method. We hope that the
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results obtained in this paper would bene	t the studies of
healthy development of 	nancial markets.

Appendix

�e Jacobian matrix of system (9) is

X = (1� − � 0 −10 −� 0−1 0 −�) , (A.1)

and the characteristic equation of matrix (A.1) is

(\ + �) (\2 + (� − (1� − �))\ + 1 − � (1� − �))= 0. (A.2)

Using Routh-Hurwitz criterion, the following proposi-
tion can be obtained.

Proposition 13. System (9) is stable at the origin if the
parameters satisfy the following conditions.1� − � < �,1� − � < 1� . (A.3)

Case 1 (−P�̇3, (P > 0) feedback on �1). According to the
speed feedback control method used in [25], the controlled
3D 	nance system is as follows:

� (�) = (�1 (�) − P�̇3, �2 (�) , �3 (�))T . (A.4)

�e Jacobian matrix and characteristic equation of the
controlled system can be obtained as follows:

X = (P + (1� − �) 0 1 + P�0 −� 0−1 0 −� ) , (A.5)

(\ + �)
⋅ (\2 + (� − (P + 1� − �)) \ + 1 − � (1� − �))= 0,

(A.6)

where �, �, �, P > 0. �en, we can give the following
proposition.

Proposition 14. 	e controlled system (A.4) will converge to
origin when

P < � − (1� − �) ,1� − � < 1� . (A.7)

Combining the above two propositions, the following
theorem can be derived.

�eorem 15. 	e relation between the control performance
and the parameters of system is as follows:
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(1) � = 1: when the control is effective, system (9) is stable
at the origin.

(2) � > 1: when the control is effective, system (9) is stable
at the origin.When system (9) is unstable at the origin, effective
control cannot be implemented.

(3) � < 1: when system (9) is unstable at the origin, effective
control cannot be implemented.

�eorem 15 leads to the following conclusion. When
system (9) is unstable at the origin, the controlled system
(A.4) cannot converge to the origin no matter the value thatP takes.
Case 2 (−P�̇1, (P > 0) feedback on �3). Similar to the analysis
of Case 1, we conclude that the speed feedback method can
realize the stabilization of the unstable system (9), when � < 1,� < 1/� − � < 1/�, and P > (1/� − �) − �.
Other Cases. �e speed feedback method cannot realize the
stabilization of the unstable system (9) at origin.
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