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Abstract— This paper deals with the finite-time stability
problem for continuous-time linear time-varying systems with

finite jumps. This class of systems arises in many practical
applications and includes, as particular cases, impulsive sys-
tems and sampled-data control systems. The paper provides
a necessary and sufficient condition for finite-time stability,
requiring a test on the state transition matrix of the system
under consideration, and a sufficient condition involving two
coupled differential/difference linear matrix inequalities. The
sufficient condition turns out to be more efficient from the
computational point of view. Moreover, it is the starting point
for solving the stabilization problem, namely for finding a
state feedback controller which finite-time stabilizes the closed
loop system. Some examples illustrate the effectiveness of the
proposed approach.

I. INTRODUCTION

The concept of finite-time stability (FTS) dates back to

the Sixties, when it was introduced in the control litera-

ture [11], [8]. A system is said to be finite-time stable if,

given a bound on the initial condition, its state does not

exceed a certain threshold during a specified time interval.

It is important to recall that FTS and Lyapunov Asymptotic

Stability (LAS) are independent concepts; indeed a system

can be FTS but not LAS, and vice versa. While LAS

deals with the behavior of a system within a sufficiently

long (in principle infinite) time interval, FTS is a more

practical concept, useful to study the behavior of the system

within a finite (possibly short) interval, and therefore it finds

application whenever it is desired that the state variables

do not exceed a given threshold (for example to avoid

saturations or the excitation of nonlinear dynamics) during

the transients.

In [4] and [3] a sufficient condition for FTS and finite-

time stabilization of continuous-time linear time-invariant

systems is provided, by using an approach based on Lya-

punov functions theory; such condition requires the solution

of a feasibility problem involving Linear Matrix Inequalities

(LMIs). A different approach, which is reminiscent of

optimal control techniques and is also applicable to linear

time-varying systems, has been proposed in [2] and [1]. In

the time-invariant case, the main result of [1] turns out to

be less conservative than the condition provided in [4], but
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it is computationally more demanding since it involves the

solution of a Differential Linear Matrix Inequality (DLMI).

In this paper we consider the class of linear time-

varying systems with finite state jumps. The concept of

linear systems with jumps was firstly proposed by Sun,

Nagpal and Khargonekar in [10]. Roughly speaking, such

system is a linear continuous-time system whose state

undergoes finite jump discontinuities at discrete instants of

time. Obviously, linear systems with jumps contain the class

of continuous-time linear systems, but capture many other

cases of practical interest in engineering applications, e.g.

impulsive control systems [12], hybrid control systems [5]

and sampled data control systems. In particular, systems

with jumps were introduced as a suitable framework for

representing closed loop sampled-data systems in which the

inter-sample behavior is of interest.

This work follows the spirit of [2] and [1] to derive

the main results for FTS analysis and design of linear

systems with jumps. The first contribution of the paper

is a necessary and sufficient condition for FTS. It re-

quires the computation of the state transition matrix of the

given system, a numerically hard problem except for time-

invariant systems; moreover this result is not useful for

design purposes. Therefore we also provide a sufficient con-

dition for FTS, which requires the solution of two coupled

differential/difference Lyapunov inequalities; the Lyapunov

inequalities can be turned into differential/difference linear

matrix inequalities (D/DLMIs) which can be efficiently

solved with many existing software packages. Moreover

the sufficient condition is the starting point to solve the

finite-time stabilization problem. To this regard, a sufficient

condition, again based on D/DLMIs, for the existence of a

finite-time stabilizing state feedback controller is provided.

Some examples illustrate the application of the proposed

technique.

The paper is organized as follows: in Section II the

definition of FTS for a linear system with jumps is precisely

stated, some preliminary results are provided and the main

problems we will deal with in the paper are defined. In

Section III the analysis conditions are given; they are

thoroughly discussed and illustrated through a numerical

example. In Section IV the conditions for the existence of

a stabilizing state feedback controller are provided. Finally

some concluding remarks are given in section V.
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ẋ(t) = A(t)x(t)

jump generator system

6

(

tk, x(t+k )
)

Fig. 1. Linear system with jumps.

II. PROBLEM STATEMENT

Let us consider the continuous-time linear time-varying

system described by

ẋ(t) = A(t)x(t) , t ≥ 0 , x(0) = x0 , (1)

where A(·) : t ∈ [0, +∞) 7→ R
n×n is continuous.

We assume that the evolution of the state vector x(t)
may be right discontinuous at the time instants tk > 0,

k = 1, 2, . . . , v, where the state may exhibit a finite jump

from x(tk) to x(t+k ) 6= x(tk), according to the decision

of a “jump generator system” (see Figure 1). Since A(·) is

continuous, x(·) cannot have a finite escape time. Therefore

x(·) turns out to be a piecewise continuous function, i.e. in

each compact interval of [0, +∞) it has a finite number of

discontinuities and the right and left limits at the disconti-

nuity points are both finite.

The configuration shown in Figure 1 captures many cases

of practical interest. For example if x(t+k ) is generated

through an asynchronous impulsive input entering the sys-

tem, we reobtain the class of impulsive control systems [12],

while if x(t+k ) is computed according to a given algorithm

(for example it is the output of a discrete event system [6])

the system depicted in Figure 1 falls in the category of

hybrid control systems [5].

According to [10], we consider the case when the jump

of the state variables is computed as the output of a discrete-

time system described by the following difference equation

x(t+k ) = Ad(k)x(tk) , k = 1, 2, . . . , v , (2)

where Ad(·) : k 7→ R
n×n. Note that, according to [10],

sampled-data systems can be described through (1) and (2)

(see also Section III-A).

In this paper we deal with the behavior of the system (1)–

(2) within a finite interval ]0, T ] and let r such that T ∈
[tr, tr+1]. The solution of system (1)–(2) in the considered

interval is given by

x(t) = Φ(t, 0)x0 , t ∈ [0, T ], (3)

where the matrix function Φ(t, τ) is the state transition

matrix of system (1)-(2). The transition matrix turns out to

be piecewise continuous with possible right discontinuities

at the time instants tk, k = 1, 2, . . . , r . In the first interval,

Φ(t, τ) satisfies the following matrix differential equation

∂

∂t
Φ(t, 0) = AΦ(t, 0) , t ∈ [0, t1]

Φ(0, 0) = I ;

in the following intervals we have

∂

∂t
Φ(t, t+k ) = AΦ(t, t+k ) , t ∈]tk, tk+1] ,

k = 1, 2, . . . , r − 1

Φ(t+k , t+k ) = Ad(k)Φ(tk, t+k−1
) , k = 1, 2, . . . , r − 1 ,

where t+0 = t0 := 0 (obviously at t0 = 0 there is no

discontinuity). Finally in the last interval we have

∂

∂t
Φ(t, t+r ) = AΦ(t, t+r ) , t ∈]tr, T ]

Φ(t+r , t+r ) = Ad(r)Φ(tr , t
+

r−1) .

In the following we extend the definition of FTS [11],

[4], to the class of linear systems with jumps in the form

(1)-(2).

Definition 1 (FTS of linear systems with jumps): Given

a positive number T , a positive definite matrix R, a positive

definite matrix-valued function Γ(·) defined over [0, T ],
with Γ(0) < R, system (1)-(2) is said to be finite-time

stable with respect to
(

T, R, Γ(·)
)

, if

xT
0 Rx0 ≤ 1 ⇒ x(t)T Γ(t)x(t) < 1 ∀t ∈ [0, T ] . (4)

♦

Remark 1: The definition can be interpreted in terms

of ellipsoidal domains. The set defined by xT
0 Rx0 ≤ 1

contains all the admissible initial states. The inequality

x(t)T Γ(t)x(t) ≤ 1, instead, defines a time-varying ellipsoid

that bounds the state trajectory over the interval [0, T ]. ♦

III. MAIN RESULTS: ANALYSIS

The following theorem provides a necessary and suf-

ficient condition for FTS of system (1)-(2) involving the

transition matrix.

Theorem 1: System (1)-(2) is FTS with respect to

(T, R, Γ(·)) iff for all t ∈ [0, T ]

Φ(t, 0)T Γ(t)Φ(t, 0) < R . (5)

Proof: Assume that (5) holds and let xT
0 Rx0 ≤ 1.

Then

x(t)T Γ(t)x(t) = xT
0 Φ(t, 0)T Γ(t)Φ(t, 0)x0

< xT
0 Rx0 ≤ 1 .

Therefore system (1)-(2) is FTS.

Conversely, assume by contradiction that system (1)-(2)

is FTS and that for some t̄, x̄

x̄T Φ(t̄, 0)T Γ(t̄)Φ(t̄, 0)x̄ ≥ x̄T Rx̄ . (6)

Now let

x(0) = λx̄

,
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where λ is such that

x(0)T Rx(0) = 1 .

Then (6) implies that

x(0)T Φ(t̄, 0)T Γ(t̄)Φ(t̄, 0)x(0) ≥ 1 .

Therefore

x(t̄)T Γ(t̄)x(t̄) = x(0)T Φ(t̄, 0)T Γ(t̄)Φ(t̄, 0)x(0) ≥ 1 ,

which contradicts the initial assumption that system (1)-(2)

be FTS.

The condition in Theorem 1 may be difficult to apply, unless

we are in the time-invariant case, because it requires the

computation of the transition matrix. Moreover (5) is not

useful for design purposes.

For these reasons, we provide an alternative condition

for FTS which involves two coupled differential/difference

Lyapunov inequalities. The condition stated in the theorem,

however, is only sufficient and therefore it introduces a

certain degree of conservativeness in the FTS analysis.

Theorem 2: Assume that the coupled differen-

tial/difference Lyapunov inequalities

Ṗ (t) + A(t)T P (t) + P (t)A(t) < 0 , (7a)

t ∈]0, T ] , t 6= tk , k = 1, 2, . . . , r

P (tk) > Ad(k)T P (t+k )Ad(k) , k = 1, 2, . . . , r (7b)

P (t) ≥ Γ(t) , ∀t ∈ [0, T ] , (7c)

P (0) < R , (7d)

admits a piecewise continuously differentiable symmetric

solution P (·); then system (1)-(2) is FTS with respect to
(

T, R, Γ(·)
)

.

Proof: Let t ∈ [0, T ], τ ∈ [0, t] and V (τ, x) =
xT P (τ)x. Then, if τ 6= tk, k = 1, . . . , rt, the derivative

of V along the trajectories of system (1) yields

V̇ (τ, x) = xT
(

Ṗ (τ) + A(τ)T P (τ) + P (τ)A(τ)
)

x , (8)

which is negative definite by virtue of (7a).

At the discontinuity points we have

V (t+k , x)−V (tk, x) = xT
(

Ad(k)P (t+k )Ad(k) − P (tk)
)

x ,
(9)

which is negative definite in view of (7b).

We can conclude that V (τ, x) is strictly decreasing along

the trajectories of system (1)-(2) in the interval [0, T ]; hence,

given x0 such that xT
0 Rx0 ≤ 1, we have

x(t)T Γ(t)x(t) ≤ x(t)T P (t)x(t) by (7c)

< x(0)T P (0)x(0)

< x(0)T Rx(0) ≤ 1 by (7d) ;

the proof follows from the arbitrariness of t.
Remark 2: Theorem 2 reduces the FTS analysis to a

feasibility problem in the matrix variable P (·) involving

two coupled differential/difference linear matrix inequalities

(D/DLMIs), namely (7a) and (7b), a LMI to be tested for
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Fig. 2. Sampled-data-system

all t ∈ [0, T ] (inequality (7c)) and the LMI (7d). When the

structure of the matrix P (·) is fixed, for example piecewise

affine (see Example 1 below), the feasibility problem can

be turned into a classical optimization problem involving

LMIs [7]. ♦

The example in the next section illustrates the application

of Theorem 2; since the system we deal with in this case

is time-invariant, the example is also useful to perform a

comparison between the necessary and sufficient condition

stated in Theorem 1 and the sufficient condition provided

in Theorem 2.

A. Sampled-data systems as linear systems with jumps

In this subsection we show how a sampled-data system

can be expressed as a linear system with finite jumps.

Consider the sampled-data feedback system in Figure 2

where G is a linear continuous-time, time-invariant plant

described by

ẋc = Acxc + Bcuc (10a)

yc = Ccxc , (10b)

where xc ∈ R
n, uc ∈ R

m, yc ∈ R
o, xc(0) = xc0, and K is

a linear discrete-time, time-invariant controller

xd(k + 1) = Adxd(k) + Bdud(k) (11a)

yd(k) = Cdxd(k) + Ddud(k) , (11b)

where xd ∈ R
p, ud ∈ R

o, yd ∈ R
m, xd(0) = 0.

The block labeled STs
represents the sampling operator

with period Ts such that

STs
: yc → (STs

yc) : (STs
yc)(k) = yc(kTs) , (12)

and the block denoted by HTs
represents the zero order

hold operator with time period Ts defined as

HTs
: yd → (HTs

yd) : (HTs
yd)(t) = yd(k),

kTs < t ≤ (k + 1)Ts . (13)

Observe that

ud(k) = yc(kTs) = Ccxc(kTs) (14a)

uc(t) = yd(k), kTs < t ≤ (k + 1)Ts . (14b)
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Such an interconnection can be reduced to the following

state space representation

ẋ(t) = A(t)x(t) , x(0) = x0

t ≥ 0 , t 6= kTs , k = 1, 2, . . .

x(kT+
s ) = Ad(k)x(kTs) , , k = 1, 2, . . . (15a)

by letting

x1(t) = xc(t) ∀t

x2(t) = yd(k) kTs < t ≤ (k + 1)Ts

x3(t) = xd(k + 1) kTs < t ≤ (k + 1)Ts

x(0) =
(

xc0 0 0
)T

A =





Ac Bc 0
0 0 0
0 0 0



 Ad =





I 0 0
DdCc 0 Cd

BdCc 0 Ad



 .

Thus, the sampled-data system can be expressed as a linear

system with finite jumps where tk = kTs.

Remark 3: If we consider a sampled-data static state

feedback system, i. e. yd(k) = Ddud(k) with ud(k) =
xc(kTs), the state variables of the corresponding linear

system with jumps (15a) reduce to

x1(t) = xc(t) ∀t

x2(t) = yd(k) kTs < t ≤ (k + 1)Ts ,

and

A =

(

Ac Bc

0 0

)

Ad =

(

I 0
Dd 0

)

.

♦

Example 1: Consider the sampled-data static state feed-

back system, made up of the continuous-time linear plant

G, defined by the matrices

Ac =

(

0 1
−15 −0.2

)

Bc =

(

0
1

)

Cc = diag(1, 1),

(16)

and the state feedback controller

K =
(

0.0333 0.8519
)

, (17)

designed through LQ optimization, sampling and hold

blocks having Ts = 0.025 s. Theorem 2 is exploited to

analyze the FTS of the closed-loop linear system with jumps

with respect to (T, R, Γ), with T = 1 s,

Γ =





0.1 0 0
0 0.003 0
0 0 0.02



 , R =





0.3 0 0
0 0.02 0
0 0 50



 .

(18)

In order to recast in terms of LMIs the conditions provided

in Theorem 2, the matrix function P (·) has been assumed

piecewise affine, that is

P (0) = Π0
1

P (t) = Π0
k + Πs

k (t − (k − 1)Ts) ,

k ∈ N : k ≤ k , t ∈ ](k − 1)Ts, kTs]

P (t) = Π0
k + Πs

k

(

t − kTs

)

, t ∈]kTs, T ]

where k̄ = max{k ∈ N : k < T/Ts}.

Exploiting the Matlab LMI toolbox [9], it is possible to

find matrices Πs
k and Π0

k, k = 1, 2, ..., r such that P (·)
verifies the conditions of Theorem 2. Therefore we can

conclude that the sampled data system with matrices (16)–

(17) is FTS with respect to (T, R, Γ).
Example 2: In order to measure the conservativeness of

the sufficient condition stated in Theorem 2 with respect to

the necessary and sufficient condition stated in Theorem 1,

let us consider the same sampled-data feedback system

given in the previous example. We computed the maximum

ǫ such that the system is FTS with respect to (T, R/ǫ, Γ).
The exact value of ǫ, computed by using Theorem 1, is

ǫtrue = 1.74 while its estimated value, obtained through

Theorem 2, is ǫsuff = 1.68. Therefore, in this case the

degree of conservativeness is about 3%.

IV. STATE FEEDBACK DESIGN

In this section the analysis result will be exploited to

derive operative conditions for the design of a state feedback

controller guaranteeing the FTS of a given linear system

with jumps.

Problem 1 (Finite-time Control via State Feedback):

Consider the linear time-varying system

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0 (19a)

t ≥ 0, t 6= tk, k = 1, 2, . . . , r

x(t+k ) = Ad(k)x(tk) , k = 1, 2, . . . , r , (19b)

where u(t) is the control input. Given a positive number

T , a positive definite matrix R, a positive definite matrix-

valued function Γ(·) defined over [0, T ], with Γ(0) < R,

find a state feedback controller in the form

u(t) = K(t)x(t) (20)

such that the closed loop system obtained by the intercon-

nection of (19) and (20), namely

ẋ(t) = (A(t) + B(t)K(t))x(t), x(0) = x0 (21a)

t ≥ 0, t 6= tk, k = 1, 2, . . . , r

x(t+k ) = Ad(k)x(tk) , k = 1, 2, . . . , r , (21b)

is FTS with respect to (T, R, Γ(·)).
Theorem 3: Problem 1 is solvable if there exist a piece-

wise continuously differentiable symmetric matrix-valued

function Q(·) and a matrix-valued function L(·) such that

− Q̇(t) + A(t)Q(t) + Q(t)A(t)T + L(t)T B(t)T +

+ B(t)L(t) < 0 , t ∈]0, T ], t 6= tk, k = 1, 2, ..., r
(22a)

(

−Q(t+k ) Ad(k)Q(tk)
Q(tk)Ad(k)T −Q(tk)

)

< 0 , k = 1, 2, ..., r

(22b)

Q(t) ≤ Γ−1(t) ∀t ∈ [0, T ] (22c)

Q(0) > R−1 . (22d)
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In this case a controller gain which solves Problem 1 is

K(t) = L(t)Q−1(t).

Proof: From Theorem 2 it follows that Problem 1

admits a solution if there exist a piecewise continuously

differentiable symmetric matrix function P (·) and a matrix

function K(·) such that

Ṗ (t) + (A(t) + B(t)K(t))T P (t)

+ P (t)(A(t) + B(t)K(t)) < 0

t ∈]0, T ], t 6= tk, k = 1, 2, . . . , r (23a)

P (tk) > Ad(k)T P (t+k )Ad(k) , k = 1, 2, . . . , r (23b)

P (t) ≥ Γ(t) , ∀t ∈ [0, T ] , (23c)

P (0) < R . (23d)

Now pre and post-multiply (23a) by P−1(t) =: Q(t).
Condition (22a) is obtained noticing that

Q̇(t) = −Q(t)Ṗ (t)Q(t) (24)

and letting L(t) = K(t)Q(t). Conditions (22c) and (22d)

are easily derived from (23c) and (23d) respectively. Finally,

condition (23b) can be rewritten as (22b) by using Shur

Complements.

Example 3: Consider the second order linear system with

jumps (19) defined by the matrices

A =

(

0 1
−1 −1

)

B =

(

0
1

)

(25a)

Ad =

(

1.1 0
0 1.1

)

(25b)

with tk = kTs, Ts = 0.1 s. Theorem 3 is exploited to

design a state feedback controller which guarantees the FTS

of the closed-loop linear system with jumps with respect to

(T, R, Γ), with

T = 1s,

Γ =

(

1 0
0 1

)

,

R =

(

2.5 0
0 2.5

)

.

We also added a constrain on the control input

‖u(t)‖ ≤ 10, t ∈ [0, T ] (26)

and implemented this constrain as LMI (see [7] p. 103)

(

Q(t) L(t)T

L(t) 100I

)

≥ 0, t ∈ [0, T ] . (27)

In order to recast in terms of LMIs the conditions

provided in Theorem 3, the matrix-valued functions P (·)

0 0.2 0.4 0.6 0.8 1
−25

−20

−15

−10

−5

0

5

time (s)

Fig. 3. Scalar functions K1(t) (solid line) and K2(t) (dashed line).

and L(·) have been assumed piecewise affine, that is

P (0) = Π0
1

P (t) = Π0
k + Πs

k (t − (k − 1)Ts) ,

k ∈ N : k ≤ k , t ∈ ](k − 1)Ts, kTs]

P (t) = Π0
k + Πs

k

(

t − kTs

)

, t ∈]kTs, T ]

L(0) = Λ0
1

L(t) = Λ0
k + Λs

k (t − (k − 1)Ts) ,

k ∈ N : k ≤ k , t ∈ ](k − 1)Ts, kTs]

L(t) = Λ0
k + Λs

k

(

t − kTs

)

, t ∈]kTs, T ]

where k̄ = max{k ∈ N : k < T/Ts}.

Exploiting the Matlab LMI toolbox [9], it is possible to

find matrices Πs
k, Π0

k, Λs
k and Λ0

k, k = 1, 2, ..., r such

that P (·) and L(·) verify the conditions of Theorem 3.

Therefore we can conclude that the closed loop system

obtained by the interconnection of (19) and (20), with

K(t) = L(t)Q−1(t) is FTS with respect to (T, R, Γ). The

time behavior of the two scalar functions K1(t) and K2(t),
K(t) =

(

K1(t) K2(t)
)

, is shown in Fig. 3.

V. CONCLUSIONS

This paper has dealt with the finite-time stability problem

for linear time-varying systems with jumps. A necessary

and sufficient condition is found by exploiting the transition

matrix properties; however such condition is numerically

hard to solve unless we deal with time-invariant systems;

moreover it is not useful for dealing with the synthesis

problem. Therefore a sufficient condition, involving two

coupled D/DLMIs, has been given. The effectiveness of

the proposed condition has been evaluated on a closed

loop sampled-data system, suggesting that the degree of

conservativeness remains acceptable. Finally, the analysis

result has been exploited to derive synthesis conditions

for the design of a state-feedback controller, again based

on coupled D/DLMIs. When the structure of the matrix

variable P (·) (or Q(·)) is a priori fixed, both the analysis
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and synthesis problems can be converted into a classical

LMIs optimization problem, allowing the resolution by

means of efficient off-the-shelf optimization algorithms.

REFERENCES

[1] F. Amato, M. Ariola, M. Carbone, and C. Cosentino. Finite-time
output feedback control of linear systems via differential linear matrix
conditions. In Proc. Conference on Decision and Control, pages
5371–5375, San Diego, CA, 2006.

[2] F. Amato, M. Ariola, and C. Cosentino. Finite-time control of linear
time-varing systems via output feedback. In Proc. American Control

Conference, pages 4722–4726, Portland, OR, 2005.
[3] F. Amato, M. Ariola, and C. Cosentino. Finite-time stabilization via

dynamic output feedback. Automatica, 42:337–342, 2006.
[4] F. Amato, M. Ariola, and P. Dorato. Finite time control of linear

systems subject to parametric uncertanties and disturbances. Auto-

matica, 37:1459–1463, 2001.
[5] P. J. Antsaklis. Hybrid Systems II. Springer, 1995.
[6] R. Boel and G. Stremersch. Discrete Event Systems: Analysis and

Control . Springer, 2000.
[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. SIAM Press, 1994.
[8] P. Dorato. Short time stability in linear time-varying systems. In Proc.

IRE International Convention Record Part 4, pages 83–87, 1961.
[9] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. LMI Control

Toolbox. The Mathworks Inc, 1995.
[10] W. Sun, K. Nagpal, and P.P. Khargonekar. H∞ control and filtering

for sampled-data systems. Ann Arbor, 1993.
[11] L. Weiss and E. F. Infante. Finite time stability under perturbing

forces and on product spaces. IEEE Trans. Auto. Contr., 12:54–59,
1967.

[12] T. Yang. Impulsive Control Theory. Springer, 2001.

1643


