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This paper investigates the problem of finite-time stabilization for a class of stochastic
nonholonomic systems in chained form. By using stochastic finite-time stability theorem and the
method of adding a power integrator, a recursive controller design procedure in the stochastic
setting is developed. Based on switching strategy to overcome the uncontrollability problem
associated with x0(0) = 0, global stochastic finite-time regulation of the closed-loop system states is
achieved. The proposed scheme can be applied to the finite-time control of nonholonomic mobile
robot subject to stochastic disturbances. The simulation results demonstrate the validity of the
presented algorithm.

1. Introduction

The nonholonomic systems, which can model many classes of mechanical systems such
as mobile robots and wheeled vehicles, have attracted intensive attention over the past
decades. From Brockett’s necessary condition [1], it is well known that the nonholonomic
systems cannot be stabilized to the origin by any static continuous state feedback although
it is controllable. As a consequence, the classical smooth control theory cannot be applied
directly used to such systems. In order to overcome this obstruction, several approaches
have been proposed for the problem, such as discontinuous time-invariant stabilization
[2, 3], smooth time-varying stabilization [4–6], and hybrid stabilization [7]. Using these
valid approaches, many fruitful results have been developed [8–15]. Particularly, considering
the unavoidability of stochastic disturbance, the asymptotic stabilization for stochastic
nonholonomic systems was achieved in [16–18]. However, it should be mentioned that those
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aforementioned papers consider the feedback stabilizer that makes the trajectories of the
systems converge to the equilibrium as the time goes to infinity.

Compared to the asymptotic stabilization, the finite-time stabilization, which renders
the trajectories of the closed-loop systems convergent to the origin in a finite time,
has many advantages such as fast response, high tracking precision, and disturbance-
rejection properties. In many practical situations, the finite-time stabilization problem is
more meaningful than the classical asymptotical stability. For the deterministic case, a
sufficient and necessary condition for finite-time stability has been proposed in [19]. Its
improvements and extensions have been given in [20, 21], for continuous systems satisfying
uniqueness of solutions in forward time and for nonautonomous continuous systems,
respectively. Reference [22] defined finite-time input-to-state stability for continuous systems
with locally essentially bounded input. Accordingly, the problem of finite-time stabilization
for nonlinear systems has been studied and numerous theoretical control design methods
were presented and developed for various types of nonlinear systems over the last years
[23–27]. Especially with help of time-rescaling and Lyapunov based method [28] proposed
a novel switching finite time control strategy to nonholonomic chained systems in the
deterministic setting.

However, the finite-time stabilization for stochastic nonholonomic systems cannot be
solved by simply extending the methods for deterministic systems because of the presence of
stochastic disturbance. As pointed out by Yin et al. [29], the existence of a unique solution and
the nonsatisfaction of local Lipschitz condition are the preconditions of discussing the finite-
time stability for a stochastic nonlinear system. Therefore, the finite-time controller design
for stochastic nonholonomic systems in this paper should solve the following questions.
Under what conditions, the stochastic nonholonomic systems exist possibly finite-time
stabilizer? Under these conditions, how can one design a finite-time state-feedback stabilizing
controller? Inspired by the works [25, 28], we generalize adding a power integrator design
method to a stochastic system and based on stochastic finite-time stability theorem, by
skillfully constructing C2 Lyapunov functions, a state feedback controller is successfully
achieved to guarantee that the closed-loop system states are globally regulated to zero within
a given settling time almost surely.

The remainder of this paper is organized as follows. Section 2 presents some necessary
notations, definitions and preliminary results. Section 3 describes the systems to be studied
and formulates the control problem. Section 4 gives the main contributions of this paper
and presents the design scheme to the controller. Section 5 gives a practical example,
the model of which falls into our class of uncertain nonlinear system (3.1) via some
technical transformations, to demonstrate the effectiveness of the theoretical results. Finally,
concluding remarks are proposed in Section 6.

2. Notations and Preliminary Results

The following notations, definitions, and lemmas are to be used throughout the paper. R+

denotes the set of all nonnegative real numbers and Rn denotes the real n-dimensional space.
For a given vector or matrix X, XT denotes its transpose, Tr{X} denotes its trace when X
is square, and |X| is the Euclidean norm of a vector X. Ci denotes the set of all functions
with continuous ith partial derivatives. K denotes the set of all functions: R+ → R+, which
are continuous, strictly increasing, and vanishing at zero; K∞ denotes the set of all functions
which are of class K and unbounded.
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Consider the stochastic nonlinear system

dx = f(t, x)dt + g(t, x)dω, (2.1)

where x ∈ Rn is the system state with the initial condition x(0) = x0, ω is an m-
dimensional independent standard Wiener process defined on a complete probability space
(Ω,F, {Ft}t≥0, P) with Ω being a sample space, F being a σ-field, {Ft}t≥0 being a filtration,
and P being a probability measure. The functions: f : R+ ×Rn → Rn and g : R+ ×Rn → Rn×m

are piecewise continuous and continuous with respect to the first and second arguments,
respectively, and satisfy f(t, 0) ≡ 0 and g(t, 0) ≡ 0.

The following Lemma is a corollary of Theorem 170 in [30], which provides a sufficient
condition to ensure the existence and uniqueness of solution for the system (2.1).

Lemma 2.1. Assume that f(t, x) and g(t, x) are continuous in x. Further, for any 0 < δ < 1, each
N = 1, 2, . . ., and each 0 ≤ T < ∞, if the following conditions hold:

∣∣f(t, x)
∣∣ ≤ c(t)(1 + |x|),

∣∣g(t, x)
∣∣2 ≤ c(t)

(
1 + |x|2

)
,

∣∣f(t, x1) − f(t, x2)
∣∣ ≤ cNT (t)|x1 − x2|,

∣∣g(t, x1) − g(t, x2)
∣∣ ≤ cNT (t)|x1 − x2|,

(2.2)

as 0 < δ ≤ |xi| ≤ N, i = 1, 2, t ∈ [0, T], where c(t) and cNT (t) are nonnegative functions such that∫T
0
c(t)dt < ∞ and

∫T
0
cNT (t)dt < ∞. Then for any given x0 ∈ Rn, system (2.1) has a pathwise unique

strong solution.

Definition 2.2 (see [31]). For system (2.1), define τ(0, x0) = inf {T ≥ 0 : x(t, x0) = 0, for all
t ≥ T}, which is called the stochastic settling time function of system (2.1), where x0 ∈ Rn.

Definition 2.3 (see [31]). The equilibrium x ≡ 0 of the system (2.1) is said to be a stochastic
finite-time stable equilibrium if

(i) it is stable in probability: for every pair of ε ∈ (0, 1) and r > 0, there exists δ > 0
such that P{|x(t, x0)| < r, for all t ≥ 0} ≥ 1 − ε, whenever |x| < δ.

(ii) its stochastic settling-time function τ(t0, x0) exists finitely with probability and
E[τ(0, x0)] < ∞.

Lemma 2.4 (see [32]). Consider the stochastic nonlinear system described in (2.1). Suppose there
exists a C2 function V (x), classK∞ functions µ1 and µ2, real numbers c > 0 and 0 < α < 1, such that

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

LV (x) =
∂V

∂x
f +

1

2
Tr

{
gT ∂

2V

∂x2
g

}
≤ −cV α(x).

(2.3)
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Then it is globally finite-time stable in probability and the stochastic settling time function τ(0, x0)

satisfies

E[τ(0, x0)] ≤
V 1−α(x0)

c(1 − α)
. (2.4)

Lemma 2.5 (see [25]). For any real numbers xi, i = 1, . . . , n and 0 < b < 1, the following inequality
holds:

(|x1| + · · · + |xn|)
b ≤ |x1|

b + · · · + |xn|
b, (2.5)

when b = p/q < 1, where p > 0 and q > 0 are odd integers,

∣∣∣xb − yb
∣∣∣ ≤ 21−b

∣∣x − y
∣∣b. (2.6)

Lemma 2.6 (see [25]). Let c, d be positive real numbers and π(x, y) > 0 be a real-valued function.
Then,

|x|c
∣∣y

∣∣d ≤
cπ

(
x, y

)
|x|c+d

c + d
+
dπ−c/d

(
x, y

)∣∣y
∣∣c+d

c + d
. (2.7)

3. Problem Formulation

In this paper, we focus our attention on the following class of stochastic nonholonomic
systems:

dx0 = d0(t)u0dt,

dxi = di(t)xi+1u0dt + gT
i

(
x0, x[i]

)
dw, i = 1, . . . , n − 1,

dxn = dn(t)u1dt + gT
n

(
x0, x[n]

)
dw,

(3.1)

where x0 ∈ R and x = (x1, . . . , xn)
T ∈ Rn are system states, u0 ∈ R and u1 ∈ R are control

inputs, respectively; x[i] = (x1, . . . , xi)
T , x[n] = x; di, i = 1, . . . , n represent the possible

modeling error, refered to as disturbed virtual control coefficients; gi : R × Ri → Rm, i =

1, . . . , n, are uncertain continuous functions satisfying gi(0, 0) = 0; and ω is an m-dimensional
independent standard Wiener process defined on a complete probability space (Ω, F, P)with
Ω being a sample space, F being a filtration, and P being a probability measure.

Remark 3.1. It should be mentioned that the system investigated in this paper, which
emphasizes the effect of stochastic disturbance on the x-subsystem, is a special one; however
it can be found in many real systems, such as the angular velocity of mobile robot subject to
stochastic disturbances (see Section 5).

The objective of this paper is to find a robust state feedback controller of the form

u0 = u0(x0), u1 = u1(x0, x), (3.2)
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such that the stochastic finite-time regulation of closed-loop system states is achieved, that is,
P{limt→ T (|x0(t)| + |x(t)|) = 0} = 1 and P{(x0(t), x(t)) = (0, 0)} = 1 for any t ≥ T , where T is a
given settling time.

To achieve the above control objective, we need the following assumptions.

Assumption 3.2. For i = 0, 1, . . . , n, there are known positive constants ci1 and ci2 such that

ci1 ≤ di(t) ≤ ci2. (3.3)

Assumption 3.3. For i = 1, . . . , n, there are constants b and τ ∈ (−2/(4n + 1), 0) such that

∣∣gi
(
x0, x[i]

)
− gi

(
x0, x̂[i]

)∣∣ ≤ b
(
|x1 − x̂1|

(2mi+τ)/2m1 + · · · + |xi − x̂i|
(2mi+τ)/2mi

)
, (3.4)

where mi = 1 + (i − 1)τ .
For simplicity, in this paper we assume τ = −p/q with p being any even integer and

q being any odd integer, under which and the definition of mi in Assumption 3.3, we know
that mi is an odd number.

Remark 3.4. Noting that gi(0, 0) = 0 is assumed, Assumption 3.3 implies that

∣∣gi(t, x, u)
∣∣ ≤ b

(
|x1|

(2mi+τ)/2m1 + · · · + |xi|
(2mi+τ)/2mi

)
. (3.5)

In fact, Assumption 3.3 is a generalization of the homogeneous growth condition introduced
in [33] where x̂[i] = 0 and τ ≥ 0. The assumption is necessary, which plays an essential
role in ensuring the existence of finite-time stabilizer for stochastic nonholonomic system
(3.1). Furthermore, it is worthwhile to point out that there exist some nonlinearities such
as sinx that can be bounded by a function |x|m for any constant m ∈ (0, 1) and satisfies
Assumption 3.3.

4. Finite-Time Stabilization

In this section, we give a constructive procedure for the finite-time stabilizing control of
system (3.1) within any given settling time T . For clarity, the case that x0(0)/= 0 is considered
first. Then, the casewhere the initial x0(0) = 0 is dealt later. The inherently triangular structure
of system (3.1) suggests that we should design the control inputs u0 and u1 in two separate
stages.

4.1. Control for x0(0)/= 0

For x0-subsystem, we take the following control law:

u0 = −k0x
α0

0 , 0 < α0 =
p

q
< 1, (4.1)

where k0 is a positive design parameter, and p, q are positive odd numbers.
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Taking the Lyapunov function V0 = x2
0/2, a simple computation gives

−c02k0x
1+α0

0 ≤ V̇0 ≤ −c01k0x
1+α0

0 ≤ 0, (4.2)

which implies |x0(t)| ≤ |x0(0)|.
Furthermore, we have

−c02k0(2V0)
(1+α0)/2 ≤ V̇0 ≤ −c01k0(2V0)

(1+α0)/2. (4.3)

Thus, x0 tends to 0 within a settling time denoted by T0. Moreover,

|x0(0)|
1−α0

c02k0(1 − α0)
≤ T0 ≤

|x0(0)|
1−α0

c01k0(1 − α0)
. (4.4)

To secure finite-time convergence within T for any x0(0)/= 0, we need to keep T0 ≤

|x0(0)|
1−α0/c01k0(1 − α0) ≤ T by taking k0 > |x0(0)|

1−α0/c01T(1 − α0). If we take T∗ =

(c01T0)/(2c02), then we obtain x0(t) ∈ R does not change its sign when t < T∗, x0(0)/= 0 and
moreover

|x0(0)| ≥ |x0(t)| ≥
|x0(0)|

2
, ∀t ∈ [0, T∗]. (4.5)

Therefore, u0 is bounded and does not change sign during [0, T∗]. Furthermore, from
this and Assumption 3.2, the following result can be obtained.

Lemma 4.1. For i = 1, . . . , n, there are positive constants λi and µi such that

λi ≤ di(t)αiu0 ≤ µi, λn ≤ dn(t) ≤ µn, (4.6)

where αi = −sgn(x0(0)). Besides, for the simplicity of expression in later use, let αn = 1.

Since we have already proven that x0 can be globally finite-time regulated to zero as
t → T0. Next, we only need to stabilize the time-varying x-subsystem

dxi = di(t)xi+1u0dt + gT
i

(
x0, x[i]

)
dw, i = 1, . . . , n − 1,

dxn = dn(t)u1dt + gT
n

(
x0, x[n]

)
dw,

(4.7)

within the given settling time T∗. The control law u1 can be recursively constructed by
applying the method of adding a power integrator.

Step 1. Let ξ1 = xσ
1 , where σ > 2 is a odd number and choose V1 = x4σ−τ

1 /(4σ − τ) to be the
candidate Lyapunov function for this step. Then, along the trajectories of system (4.7), we
have

LV1 ≤ d1u0x
4σ−τ−1
1

(
x2 − x∗

2

)
+ d1u0x

4σ−τ−1
1 x∗

2 +
1

2
(4σ − τ − 1)b2x4σ

1 . (4.8)
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Obviously, the first virtual controller

x∗
2 = −

1

λ1
α1x

1+τ
1

[
M + n − 1 +

1

2
(4σ − τ − 1)b2

]

� − α1β1ξ
m2/σ
1 ,

(4.9)

with design constant M > 0, results in

LV1 ≤ −(M + n − 1)ξ41 + d1u0x
4σ−τ−1
1

(
x2 − x∗

2

)
. (4.10)

Inductive Step (2 ≤ k ≤ n)

Suppose at step k − 1, there is a C2 Lyapunov function Vk−1, which is positive definite and
proper, satisfying

Vk−1 ≤ 2
(
ξ
(4σ−τ)/σ
1 + · · · + ξ

(4σ−τ)/σ
k−1

)
, (4.11)

and a set of virtual controllers x∗
1, . . . , x

∗
k−1

defined by

x∗
1 = 0, ξ1 = xσ/m1

1 − x∗σ/m1

1 ,

x∗
2 = −α1β1ξ

m2/σ
1 , ξ2 = xσ/m2

2 − x∗σ/m2

2 ,
...

...

x∗
k
= −αk−1βk−1ξ

mk/σ
k−1

, ξk = xσ/mk

k
− x∗σ/mk

k
,

(4.12)

with constants β1 > 0, . . . , βk−1 > 0, such that

LVk−1 ≤ −(M + n − k + 1)
(
ξ41 + · · · + ξ4k−1

)
+ dk−1u0ξ

(4σ−τ−mk−1)/σ
k−1

(
xk − x∗

k

)
. (4.13)

We claim that (4.11) and (4.13) also hold at step k. To prove this claim, consider

Vk

(
x[k]

)
= Vk−1

(
x[k−1]

)
+Wk

(
x[k]

)
, (4.14)

where

Wk

(
x[k]

)
=

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(4σ−τ−mk)/σ
ds. (4.15)

Noting that

x∗σ/mk

k
= −ασ/mk

k−1
βσ/mk

k−1
ξk−1,

ξk = ckx
σ/mk

k
+ ck−1x

σ/mk−1

k−1
+ · · · + c1x

σ/m1

1 ,
(4.16)
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where

ci =

{
ασ/mk

k−1
βσ/mk

k−1
· · ·ασ/mi+1

i βσ/mi+1

i , i = 1, . . . , k − 1,

1, i = k.
(4.17)

Similar to the corresponding proof in [25], it is easy to verify that the Lyapunov
function Vk(x[k]) thus defined has several useful properties collected in the following
propositions.

Proposition 4.2. Wk(x[k]) is C
2. Moreover

∂Wk

∂xi
= −ci

4σ − τ −mk

σ
x
(σ−mi)/mi

i ×

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(3σ−τ−mk)/σ
ds,

∂Wk

∂xk
= ξ

(4σ−τ−mk)/σ
k

,

∂2Wk

∂xi∂xj
= cicj

4σ − τ −mk

σ
·
3σ − τ −mk

σ
x

(σ−mi)/mi

i x
(σ−mj )/mj

j

×

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(2σ−τ−mk)/σ
ds,

∂2Wk

∂x2
i

= c2i
4σ − τ −mk

σ
·
3σ − τ −mk

σ
x
2(σ−mi)/mi

i ×

∫xk

x∗
k

(
s1/mk − x∗1/mk

k

)(2σ−τ−mk)/σ
ds

− c2i
4σ − τ −mk

σ
x
(σ−2mi)/mi

i ×

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(3σ−τ−mk)/σ
ds,

∂2Wk

∂x2
k

= ck
4σ − τ −mk

σ
ξ
(3σ−τ−mk)/σ
k

x
(σ−mk)/mk

k
,

∂2Wk

∂xk∂xi
=

∂2Wk

∂xi∂xk
= ci

4σ − τ −mk

σ
ξ
(3σ−τ−mk)/σ
k

x
(σ−mi)/mi

i ,

(4.18)

where i, j = 1, . . . , k − 1, i /= j.

Proposition 4.3. Vk(x[k]) is C
2, positive definite and proper, satisfying

Vk ≤ 2
(
ξ
(4σ−τ)/σ
1 + · · · + ξ

(4σ−τ)/σ
k

)
. (4.19)

Using Proposition 4.2, it is deduced from (4.13) that

LVk ≤ − (M + n − k + 1)
(
ξ41 + · · · + ξ4k−1

)
+ dk−1u0ξ

(4σ−τ−mk−1)/σ
k−1

(
xk − x∗

k

)

+ dku0ξ
(4σ−τ−mk)/σ
k

xk+1 +
k−1∑

i=1

∂Wk

∂xi
diu0xi+1
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+
1

2

k−1∑

i, j=1, i /= j

∣∣∣∣∣
∂2Wk

∂xi∂xj

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
∣∣∣gT

j

∣∣∣ + 1

2

k−1∑

i=1

∣∣∣∣∣
∂2Wk

∂x2
i

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
2

+
1

2

k−1∑

i=1

∣∣∣∣∣
∂2Wk

∂xk∂xi

∣∣∣∣∣
∣∣∣gT

k

∣∣∣
∣∣∣gT

i

∣∣∣ + 1

2

∣∣∣∣∣
∂2Wk

∂x2
k

∣∣∣∣∣
∣∣∣gT

k

∣∣∣
2
.

(4.20)

To estimate the second term in (4.20), by Lemma 2.5, we have

∣∣xk − x∗
k

∣∣ =
∣∣∣∣
(
xσ/mk

k

)mk/σ
−
(
x∗σ/mk

k

)mk/σ
∣∣∣∣ ≤ 2(σ−mk)/σ |ξk|

mk/σ . (4.21)

Noting that mk = mk−1 + τ , by applying (4.6) and Lemma 2.6, we have

dk−1u0ξ
(4σ−τ−mk−1)/σ
k−1

(
xk − x∗

k

)
≤

1

6
ξ4k−1 + lk1ξ

4
k, (4.22)

where lk1 is a positive constant.
Based on Proposition 4.2 and Lemma 2.6, the following propositions are given to

estimate the other terms on the right hand side of inequality (4.20), whose proofs are included
in the appendix.

Proposition 4.4. There exists a positive constant lk2 such that

k−1∑

i=1

∂Wk

∂xi
diu0xi+1 ≤

1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk2ξ

4
k. (4.23)

Proposition 4.5. There exists a positive constant lk3 such that

1

2

k−1∑

i, j=1, i /= j

∣∣∣∣∣
∂2Wk

∂xi∂xj

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
∣∣∣gT

j

∣∣∣ ≤ 1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk3ξ

4
k. (4.24)

Proposition 4.6. There exists a positive constant lk4 such that

1

2

k−1∑

i=1

∣∣∣∣∣
∂2Wk

∂x2
i

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
2
≤

1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk4ξ

4
k. (4.25)

Proposition 4.7. There exists a positive constant lk5 such that

1

2

k−1∑

i=1

∣∣∣∣∣
∂2Wk

∂xk∂xi

∣∣∣∣∣
∣∣∣gT

k

∣∣∣
∣∣∣gT

i

∣∣∣ ≤ 1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk5ξ

4
k. (4.26)
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Proposition 4.8. There exists a positive constant lk6 such that

1

2

∣∣∣∣∣
∂2Wk

∂x2
k

∣∣∣∣∣
∣∣∣gT

k

∣∣∣
2
≤

1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk6ξ

4
k. (4.27)

Substituting (4.22)–(4.27) into (4.20) yields

LVk ≤ −(M + n − k)
(
ξ41 + · · · + ξ4k−1

)
+ dku0ξ

(4σ−τ−mk)/σ
k

xk+1 + ξ4k(lk1 + · · · + lk6). (4.28)

Clearly, the C0 virtual controller

x∗
k+1 = −

1

λk
αkξ

(mk+τ)/σ
k (M + n − k + lk1 + · · · + lk6)

� − αkβkξ
mk+1

k
,

(4.29)

with βk > 0 being constant, results in

LVk ≤ −(M + n − k)
(
ξ41 + · · · + ξ4k

)
+ dku0ξ

(4σ−τ−mk)/σ
k

(
xk+1 − x∗

k+1

)
. (4.30)

This completes the proof of the inductive step.
The inductive argument shows that (4.30) holds for k = n. Hence, we conclude that at

the last step the actual controller

u1 = x∗
n+1 = −βnξ

mn+1/σ
n , (4.31)

with βn > 0 being constant and a C2 positive definite and proper Lyapunov function Vn(x[n])

of the form (4.14) and (4.15), such that

LVn ≤ −M
(
ξ41 + · · · + ξ4n

)
. (4.32)

We have thus far completed the controller design procedure for x0(0)/= 0.

4.2. Control for x0(0) = 0

In the last subsection, we gave the controller expressions (4.1) and (4.31) for u0 and u1 of
system (3.1) in the case of x0(0)/= 0. Now, we consider finite-time control laws for the case of
x0(0) = 0. In the absence of the disturbances, most of the commonly used control strategies
use constant control u0 = u∗

0 /= 0 in time interval [0, ts). In this paper, we also use this method
when x0(0) = 0, with u0 chosen as follows:

u0 = u∗
0, u∗

0 > 0. (4.33)



Abstract and Applied Analysis 11

Since x0(0) = 0, from the x0-subsystem we know that

ẋ(0) = u∗
0(0) = u∗

0 /= 0. (4.34)

We have x0 does not escape and x(ts)/= 0, for given any finite ts > 0.
During the time period [0, ts), using u0 defined in (4.33), new control law u1 = u∗

1(x0, x)
can be obtained by the control procedure described above to the original x-subsystem in
(3.1). Then we can conclude that the x-state of (3.1) cannot blow up during the time period
[0, ts). Since x0(ts)/= 0 at t = ts, we can switch the control inputs u0 and u1 to (4.1) and (4.31),
respectively.

The following theorem summarizes the main result of this paper.

Theorem 4.9. Under Assumptions 3.2 and 3.3, if the proposed control design procedure together
with the above switching control strategy is applied to system (3.1), then, for any initial conditions
in the state space (x0, x) ∈ Rn+1, the closed-loop system is globally finite-time regulated at origin in
probability.

Proof. According to the above analysis, it suffices to prove the statement in the case where
x0(0)/= 0.

Since we have already proven that x0 can be globally finite-time regulated to zero in
Section 4.1, we just need to show that x(t) is globally stochastically convergence to zero in a
finite time. For the system (4.7)+(4.31), it is not hard to verify that all conditions in Lemma 2.1
are satisfied, which means that the closed-loop system admits a unique solution. In this case,
choose the Lyapunov function V = Vn, from (4.32), its time derivative is given by

LV ≤ −M
(
ξ41 + · · · + ξ4n

)
. (4.35)

Let α = 4σ/(4σ − τ), by Proposition 4.3 and Lemma 2.5, we have

V α ≤ 2
(
ξ41 + · · · + ξ4n

)
. (4.36)

Then, putting (4.36) back to (4.35) gives

LV ≤ −MV α/2. (4.37)

By Lemma 2.4, system (4.7) under control law (4.31) is finite-time stable in probability
with its settling time Tx satisfying

Tx ≤
2V (1−α)(0)

M(1 − α)
. (4.38)

Hence with the choice of M satisfying M > 2V (1−α)(0)/[T∗(1 − α)], Tx < T∗ is
guaranteed. Thus, the conclusion follows.
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Remark 4.10. As seen from (4.31) and (4.1), the control law u1 may exhibit extremely large
value when x0(0)/= 0 is sufficiently small. This is unacceptable from a practical point of view.
It is therefore recommended to apply (4.33) in order to enlarge the initial value of x0 before
we appeal to the finite-time converging controllers (4.1) and (4.31).

5. Application to Mobile Robot

In this section, we illustrate systematic controller design method proposed above by means
of the example of mobile robot.

Consider the tricycle-type mobile robot with parametric uncertainty [34], which is
described by

ẋc = p∗1v cos θ,

ẏc = p∗1v sin θ,

θ̇ = p∗2ω,

(5.1)

where p∗1 and p∗2 are unknown parameters taking values in a known interval [pmin, pmax]with
0 < pmin < pmax < ∞, v and ω are two control inputs to denote the linear velocity and angular
velocity, respectively.

When the angular velocity ω is subject to some stochastic disturbances, that is,

ω
(
xc, yc, θ

)
= ω1

(
xc, yc, θ

)
+ω2

(
xc, yc, θ

)
Ḃ(t), (5.2)

where B(t) is the so-called white noise. Then system (5.1) is transformed into

dxc = p∗1v cos θdt,

dyc = p∗1v sin θdt,

dθ = p∗2ω1dt + p∗2ω2dB.

(5.3)

For system (5.3), by taking the following state and input transformation:

x0 = xc, x1 = yc, x2 = tan θ, u0 = v cos θ, u1 = ω1sec
2θ, (5.4)

we obtain

dx0 = p∗1u0dt,

dx1 = p∗1x2u0dt,

dx2 = p∗2u1dt + p∗2

(
1 + x2

2

)
ω2dB.

(5.5)

Clearly, system (5.5) is a special case of system (3.1). As discussed in Remark 3.4, there
always exist some nonlinearities satisfy Assumption 3.3. For simplicity, it is assumed theω2 =
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Figure 1: Time history of system states.

(x2 sinx1)/(1 + x2
2)

2. And as in [8], pmin = 1, pmax = 2, which are known for us in contructing
control laws to make (5.5) finite-time stable, and parameters p∗1 = p∗1 = 1.5 are unknown.
When (x0(0), x1(0), x2(0)) = (1, 1, 1), by choosing τ = −2/11 and σ = 3, according to the
design procedure proposed in Section 4, the following controllers can be obtained for a given
settling time T = 6:

u0 = −
1

2
x1/3
0 ,

u1 = −
[
x11/3
2 − (2M + 2)11/3x3

1

]7/33
(M + l21 + l22 + l24),

(5.6)

where l21, l22 and l24 are known positive constants. Choosing design parameter as M = 1, the
simulation results in Figures 1 and 2 show that the effectiveness of the controller.

6. Conclusion

In this paper, the finite-time state feedback stabilization problem has been investigated for
a class of nonholonomic systems with stochastic disturbances. With the help of adding
a power integrator technique, a systematic control design procedure is developed in the
stochastic setting. To get around the stabilization burden associated with nonholonomic
systems, a switching control strategy is proposed. It is shown that the designed control laws
can guarantee that the closed-loop system states are globally finite-time regulated to zero in
probability. In addition, the proposed approach can be applied tomobile robot with stochastic
disturbances.
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Figure 2: Time history of control inputs.

There are some related problems to investigate, for example, how to design a finite-
time state-feedback stabilizing controller for stochastic nonholonomic systems when the x0-
subsystem contains stochastic disturbances. Furthermore, if only partial state vector being
measurable, how to design a finite-time output feedback stabilizing controller for stochastic
nonholonomic systems.

Appendix

Proof of Proposition 4.4. Recall that ξi = xσ/mi

i − x∗σ/mi

i and x∗
i = −αi−1βi−1ξ

mi/σ
i−1 . By Lemma 2.5,

for i = 2, . . . , k,

|xi| ≤
∣∣∣ξi + x∗σ/mi

i

∣∣∣
mi/σ

≤ h(|ξi−1| + |ξi|)
mi/σ , (A1)

where h = max{1, βσ/m1

1 , . . . , βσ/mn
n }.

With (4.17), (4.18), and (A1), we get

k−1∑

i=1

∂Wk

∂xi
diu0xi+1 =

k−1∑

i=1

[
−ci

4σ − τ −mk

σ
x
(σ−mi)/mi

i ×

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(3σ−τ−mk)/σ
ds

]

× diu0xi+1 ≤ ak

k−1∑

i=1

|ξk|
(3σ−τ)/σ |xi|

(σ−mi)/mi |xi+1|

≤ âk

k−1∑

i=1

|ξk|
(3σ−τ)/σ(|ξi−1| + |ξi|)

(σ−mi)/σ(|ξi| + |ξi+1|)
mi+1/σ ,

(A2)

where ak and âk are positive constants.
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Applying Lemma 2.6 (3σ − τ + σ − mi + mi+1 = 4σ) to (A2), we can find a positive
constant lk2 such that

k−1∑

i=1

∂Wk

∂xi
di(t)u0xi+1 ≤

1

3

(
ξ41 + · · · + ξ4k−1

)
+ lk2ξ

d
k . (A3)

Proof of Proposition 4.5. According to (4.17), (4.18), (A1), and Remark 3.4, we have

1

2

k−1∑

i, j=1, i /= j

∣∣∣∣∣
∂2Wk

∂xi∂xj

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
∣∣∣gT

j

∣∣∣

=
1

2

k−1∑

i, j=1, i /= j

∣∣∣∣cicj
4σ − τ −mk

σ
·
3σ − τ −mk

σ
x
(σ−mi)/mi

i x
(σ−mj )/mj

j

×

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(2σ−τ−mk)/σ
∣∣∣∣∣
∣∣∣gT

i

∣∣∣
∣∣∣gT

j

∣∣∣

≤ bk

k−1∑

i, j=1, i /= j

|ξk|
(2σ−τ)/σ |xi|

(σ−mi)/mi
∣∣xj

∣∣(σ−mj )/mj

∣∣∣gT
i

∣∣∣
∣∣∣gT

j

∣∣∣

≤ b̂k

k−1∑

i, j=1, i /= j

i∑

l=1

j∑

r=1

|ξk|
(2σ−τ)/σx

(σ−mi)/mi

i x
(σ−mj )/mj

j × |xl|
(2mi+τ)/2ml |xr |

(2mj+τ)/2mr

≤ b̃k

k−1∑

i, j=1, i /= j

i∑

l=1

j∑

r=1

|ξk|
(2σ−τ)/σ(|ξi−1| + |ξi|)

(σ−mi)/σ ×
(∣∣ξj−1

∣∣ +
∣∣ξj

∣∣)(σ−mj )/σ

× (|ξl−1| + |ξl|)
(2mi+τ)/2σ × (|ξr−1| + |ξr |)

(2mj+τ)/2σ ,

(A4)

where bk, b̂k and b̃k are positive constants.
Applying Lemma 2.6 to the above inequality, we have

1

2

k−1∑

i, j=1, i /= j

∣∣∣∣∣
∂2Wk

∂xi∂xj

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
∣∣∣gT

j

∣∣∣ ≤ 1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk3ξ

4
k, (A5)

where lk3 is a positive constant.
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Proof of Proposition 4.6. From (4.17), (4.18), (A1), and Remark 3.4, with Lemma 2.6, it is
deduced that

1

2

k−1∑

i=1

∣∣∣∣∣
∂2Wk

∂x2
i

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
2

=
1

2

k−1∑

i=1

∣∣∣∣∣c
2
i

4σ − τ −mk

σ
·
3σ − τ −mk

σ
x
2(σ−mi)/mi

i ×

∫xk

x∗
k

(
s1/mk − x∗1/mk

k

)(2σ−τ−mk)/σ
ds

−c2i
4σ − τ −mk

σ
x
(σ−2mi)/mi

i ×

∫xk

x∗
k

(
sσ/mk − x∗σ/mk

k

)(3σ−τ−mk)/σ
ds

∣∣∣∣∣
∣∣∣gT

i

∣∣∣
2

≤ dk

k−1∑

i=1

(
|ξk|

(2σ−τ)/σ |xi|
2(σ−mi)/mi + |ξk|

(3σ−τ)/σx
(σ−2mi)/mi

i

)∣∣∣gT
i

∣∣∣
2

≤ d̂k

k−1∑

i=1

i∑

j=1

(
|ξk|

(2σ−τ)/σ |xi|
2(σ−mi)/mi + |ξk|

(3σ−τ)/σx
(σ−2mi)/mi

i

)
x
(2mi+τ)/mj

j

≤ d̃k

k−1∑

i=1

i∑

j=1

(
|ξk|

(2σ−τ)/σ(|ξi−1| + |ξi|)
2(σ−mi)/σ + |ξk|

(3σ−τ)/σ(|ξi−1| + |ξi|)
(σ−2mi)/σ

)

×
(∣∣ξj−1

∣∣ +
∣∣ξj

∣∣)(2mi+τ)/σ ≤
1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk4ξ

4
k,

(A6)

where dk, d̂k, d̃k and lk4 are positive constants.

Proof of Proposition 4.7. From (4.17), (4.18), (A1), and Remark 3.4, with Lemma 2.6, it follows
that

1

2

k−1∑

i=1

∣∣∣∣∣
∂2Wk

∂xk∂xi

∣∣∣∣∣
∣∣∣gT

k

∣∣∣
∣∣∣gT

i

∣∣∣ = 1

2

k−1∑

i=1

∣∣∣∣ci
4σ − τ −mk

σ
ξ
(3σ−τ−mk)/σ
k

x
(σ−mi)/mi

i

∣∣∣∣
∣∣∣gT

k

∣∣∣
∣∣∣gT

i

∣∣∣

≤ ek

k−1∑

i=1

|ξk|
(3σ−τ−mk)/σ |xi|

(σ−mi)/mi

∣∣∣gT
k

∣∣∣
∣∣∣gT

i

∣∣∣

≤ êk

k−1∑

i=1

k∑

l=1

i∑

r=1

|ξk|
(3σ−τ−mk)/σ |xi|

(σ−mi)/mi |xl|
(2mk+τ)/2ml |xr |

(2mi+τ)/2mr

≤ ẽk

k−1∑

i=1

k∑

l=1

i∑

r=1

|ξk|
(3σ−τ−mk)/σ(|ξi−1| + |ξi|)

(σ−mi)/σ

× (|ξl−1| + |ξl|)
(2mk+τ)/2σ × (|ξr−1| + |ξr |)

(2mi+τ)/2σ

≤
1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk5ξ

4
k,

(A7)

where ek, êk, ẽk and lk5 are positive constants.
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Proof of Proposition 4.8. By (4.17), (4.18), (A1), and Remark 3.4, with Lemma 2.6, we can
obtain

1

2

∣∣∣∣∣
∂2Wk

∂x2
k

∣∣∣∣∣
∣∣∣gT

k

∣∣∣
2
=

1

2

∣∣∣∣ck
4σ − τ −mk

σ
ξ
(3σ−τ−mk)/σ
k

x
(σ−mk)/mk

k

∣∣∣∣
∣∣∣gT

k

∣∣∣
2

≤ fk

k∑

i=1

|ξk|
(3σ−τ−mk)/σ |xk|

(σ−mk)/mk |xi|
(2mk+τ)/2mi

≤ f̂k

k∑

i=1

|ξk|
(3σ−τ−mk)/σ(|ξk−1| + |ξk|)

(σ−mk)/σ × (|ξi−1| + |ξi|)
(2mk+τ)/σ

≤
1

6

(
ξ41 + · · · + ξ4k−1

)
+ lk6ξ

4
k,

(A8)

where fk, f̂k, and lk6 are positive constants.
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