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Abstract: This paper investigates the attitude control problem for underactuated body-flap hyper-
sonic vehicles (BFHSVs) with mixed disturbances. First, the control-oriented model for BFHSV is
introduced. Then, an improved finite-time super twisting disturbance observer (STDO) is designed.
Finite-time convergence of estimate error and smoother inputs are achieved. Meanwhile, a para-
metric command method is introduced to calculate the differential of inputs which can enhance the
dynamic response of the closed-loop system. Subsequently, the virtual control signal is derived by a
second-order filter to avoid the differential explosion problem. The overall stability of the closed-loop
system is demonstrated by applying the Lyapunov stability theory. Finally, the performance of the
proposed control scheme is evaluated through extensive and comparative numerical simulations
under multiple disturbances.

Keywords: body-flap hypersonic vehicle; super twisting algorithm; disturbance observer;
backstepping control
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1. Introduction

Hypersonic vehicles (HSVs) have attracted increasing attention due to their unique
features of both an aircraft and a spacecraft. Due to their wide speed range and large
flight envelope, they need to have a high lift-to-drag ratio and good thermal protection
capabilities, and the traditional aerodynamic shape of the aircraft is no longer applicable.
From the reusable launch vehicle to the X-37B, the shape of the large-lift body has grad-
ually become the main aerodynamic shape for the HSV [1]. Among them, the body-flap
hypersonic vehicle (BFHSV) such as HTV-2 with combined wave-rider and lifting-body has
been developed. The whole fuselage has only two flaps, which not only reduce weight and
energy consumption but also further improve the lift-to-drag ratio, effectively avoiding
aerodynamic heating and thermal protection issues. This trend is expected to continue in
future development [2]

In recent years, nonlinear control methods have replaced linear control methods for
the attitude control of HSVs. The backstepping method has shown excellent ability in
dealing with the complex dynamics of hypersonic vehicles [3–5]. Sliding mode control
has strong robustness to model uncertainties [6], and many better control methods have
been derived [7–9]. Additionally, methods such as fuzzy control [10] and intelligent
control [11–13], which are independent of specific model knowledge, have also been
developed for hypersonic vehicles. However, all the above approaches are based on the
theory that hypersonic vehicles can provide three-axis moments. For a body-flap hypersonic
vehicle, the number of actuators in the system is less than the number of degrees of freedom
to be controlled, resulting in an underactuated system. The underactuated system does
not have a complete relative order and is a nonminimum phase system. The system is
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transformed into a cascaded form of a linear system and a nonlinear system after feedback
linearization. The linear part is the external dynamics and the relevant state is called the
external state; the nonlinear part is the internal dynamics, and the corresponding state is
called the internal state [14]. Neglecting the stability of the internal dynamics and directly
applying these methods to the system can result in unexpected oscillations or even loss
of stability of the overall system, which will cause server flight accidents. A study [15]
used phase diagrams to judge the internal dynamic stability within underactuated systems,
proposed the concept of optimal bounded inverse, converted the internal dynamic stability
problem into a trajectory optimization problem, and designed an anti-windup backstepping
controller. Another study [16] proposed a criterion for determining the stability of internal
dynamics, pointing out that the stability of the internal dynamics of this type of vehicle is
related to its lateral control departure parameter (LCDP) [17], linking control stability and
aerodynamic characteristics. However, both of them only studied the control problem with
instable internal dynamics, and it is essential to study the BFHSV stability control of the
internal dynamic which is stable.

Another realistic problem is disturbance and uncertainty. Due to its excellent perfor-
mance in anti-disturbance and convergence time, sliding mode control (SMC) is a popular
choice for designing controllers of nonlinear systems [18–21]. In a study [22], SMC com-
bined with learning controllers was designed for a T-S fuzzy system of HSVs, and a sliding
mode-based extended state observer (ESO) was employed to estimate unmodeled dynam-
ics. Another study [23] combines adaptive techniques to alleviate the chattering in sliding
mode-based backstepping control for the HSV. Ju et al. [24] designed a fractional-order
SMC, which allows the unsaturated state of the reusable launch vehicle to be executed to a
predetermined residual at the origin and within a fixed time interval. A novel multivariable
robust adaptive SMC scheme is designed in [25] based on super twisting algorithms to
surmount the uncertainties from the unmodeled dynamics and the lumped disturbances.
A study [26] designed a disturbance observer and a controller using terminal sliding mode
and super twisting approaches, respectively, for the nonlinear systems of HSVs. The
essence of SMC is to use the switching function to control the state to a suitable sliding
mode surface, but the existence of switching items will lead to chattering problems. To date,
few works of literature have considered both the finite-time stability and output chattering
problems of SMC, which is still challenging for practical applications.

Inspired by the discussions above, the purpose of this paper is to present a control
method for BFHSVs that can achieve accurate command tracking from the guidance system.
This paper focuses on attitude control for the body-flap hypersonic vehicle. The main
contributions include:

1. The proposed STDO is employed for the lumped disturbances of a BFHSV, which has
a smaller estimation error and smoother control variables than conventional super
twisting approaches.

2. The parametric command method can strengthen the states’ convergence speed of the
backstepping control method. In addition, the “explosion of complexity” is avoided
by introducing a second-order filter.

The remainder of this paper is organized as follows. Section 2 introduces the strict
feedback model of the BFHSV. In Section 3, the STDO is developed for the BFHSV system
with its stability analysis. In Section 4, a robust backstepping controller is designed based
on STDO, and the stability of the composite method is also analyzed. Section 5 presents the
simulation results and analysis, followed by a conclusion to end the paper.

2. Problem Formulation

The attitude dynamics of a BFHSV are given as those of the HTV-2 model. As shown
in Figure 1, the vehicle adopts a lifting-body configuration with two body flaps. However,
it has several RCS thrusters which are used in low dynamic pressure regions. At the end of
the cruise phase and the beginning of the dive phase, only two body flaps are available.



Mathematics 2023, 11, 2460 3 of 14

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 16 
 

 

2. Problem Formulation 
The attitude dynamics of a BFHSV are given as those of the HTV-2 model. As shown 

in Figure 1, the vehicle adopts a lifting-body configuration with two body flaps. However, 
it has several RCS thrusters which are used in low dynamic pressure regions. At the end 
of the cruise phase and the beginning of the dive phase, only two body flaps are available. 

2
1

 
2 1

 
(a) (b) 

Figure 1. (a) Three-dimensional view of the BFHSV; (b) bottom view of the BFHSV. 

Both body flaps deflect in the same direction to act as an elevator and differentially 
deflect to act as an aileron, so the control variables e  and a  are defined as follows: 

 
 

1 2

2 1

/ 2

/ 2
e

a

  

  








 (1)

where, 1  and 2  are the left and right flaps, respectively. 
The attitude dynamics of the BFHSV are written as follows: 

   2

2

cos cossin tan cos tan
cos cos

cos sincos sin

cos sin (tan sin tan ) tan cos cos tan cos
cos

xy x y z xy y z y
x z

x y xy x y x

v
z y x

v
y x

x y v v v
v

x

J J J J J J J J
J J J J J

gY
mV V

gZ
mV V
Y Z mg

mV

J

 
       

 
 

    

 

 

         






    

   

   
 

  







 









 

 

2

2 2

2 2

2 2

a

a

e

y z a
y

xy x y zxy x x z
x z y z a

x y xy x y xy

x y xy
x y x y e

z z

y

z

P P

J J J JJ J J J
R R

J J J J J J
J J J

Q Q
J J

 

 

 





   

     

     





 

 
   

 


















 
 



 


  





 (2)

where 

2 2

2 2

,  ,

,  ,

,                 .

a

a

a

e

a

a a

e

yy

x y xy x y xy

x y xy x y

xyxy

x xyx

y

z

xy

x

z

J

JJ
P P

J J J J J J
JJ

R R
J J J J J J

Q

P J RP J R

R J PR

Q Q
J J

P

Q


 





 




 








  
 

  










  

 

Figure 1. (a) Three-dimensional view of the BFHSV; (b) bottom view of the BFHSV.

Both body flaps deflect in the same direction to act as an elevator and differentially
deflect to act as an aileron, so the control variables δe and δa are defined as follows:

δe , (δ1 + δ2)/2
δa , (δ2 − δ1)/2

(1)

where, δ1 and δ2 are the left and right flaps, respectively.
The attitude dynamics of the BFHSV are written as follows:
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where
P′β =

JyPβ+JxyRβ

Jx Jy−J2
xy

, P′δa
=

JyPδa+JxyRδa
Jx Jy−J2

xy
,

R′β =
Jx Rβ+JxyPβ

Jx Jy−J2
xy

, R′δa
=

Jx Rδa+JxyPδa
Jx Jy−J2

xy
,

Q′α = Qα
Jz

, Q′δe
=

Qδe
Jz

.

In Model (2), state variables α, β, γv, ωx, ωy, and ωz denote the angle of attack, sideslip
angle, bank angle, roll rate, yaw rate, and pitch rate, respectively. Jx, Jy, and Jz represent the
moments of inertia of the three body axes and Jxy is the product of inertia. V, m, θ, Y, and Z
are the velocity, mass, flight path angle, and lift and side forces of the vehicle, respectively.
The notions R′β, P′β, Q′α, Q′δe

, R′δa
, and P′δa

denote the linearization of the contribution of
sideslip to yaw and rolling moment, angle of attack and elevator to pitching moment, and
aileron to yaw and rolling moment, respectively [27].

According to [28], the internal dynamics of a vehicle can stabilize if LCDP < 0, and
therefore the model of the BFHSV can be simplified to a parameter-strict feedback form as
shown in Equation (3).

.
x1 = F1 + G1x2 + d1.
x2 = F2 + G2u + d2

(3)

where x1 =
[
α γv

]T , x2 =
[
ωx ωz

]T , u =
[
δe δa

]T , d1, d2 are equivalent disturbances
caused by environment and model uncertainties and F1, F2, G1, G2 are defined as follows:

F1 =

[
ωy sin α tan β− Y

mV cos β + g cos θ cos γv
V cos β

−ωy sin α
cos β + Y(tan θ sin γv+tan β)+Z tan θ cos γv−mg cos θ tan β cos γv

mV

]
(4)
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F2 =

− Jxy(Jx+Jy−Jz)
Jx Jy−J2

xy
ωxωz +

J2
xy−Jy(Jz−Jy)

Jx Jy−J2
xy

ωyωz + L′ββ

Jx−Jy
Jz

ωxωy +
Jxy
Jz

(
ωx

2 −ωy
2)+ M′αα

 (5)

G1 =

[
− cos α tan β 1

cos α
cos β 0

]
(6)

G2 =

[
0 L′δa

M′δe 0

]
(7)

3. Super Twisting Algorithm Disturbance Observer Design
3.1. Observer Design

It can be seen that disturbances di are independent of the differential equations without
couplings. Thus, the observer for di can be designed independently.

Assumption 1. The disturbances di, i = 1, 2 are bounded, meaning that |di| ≤ Di,
∣∣∣ .
di

∣∣∣ ≤ δi,
where Di and δi are positive constants.

Inspired by the work in [29], an improved super twisting algorithm disturbance
observer is developed to estimate the equivalent disturbance in finite time. The relevant
auxiliary variables of the disturbance observer can be constructed as

.
z1 = F1 + G1x2 +

^
d1

.
z2 = F2 + G2u2 +

^
d2

(8)

The auxiliary sliding mode variables can be defined as

si = xi − zi (9)

Thus, an observer for di can be designed as

^
di = k1ibsieµ1i + k2i

∫ t

0
bsieµ2i dτ (10)

where k1i, k2i, µ1i ∈
(

1
2 , 1
)

and µ2i = 2µ1i − 1 are the parameters of the observer.

Notation 1. For all s = [s1, s2, · · ·sn]
T ∈ Rn×1, the symbol bseq denotes[

|s1|qsign(s1), · · ·, |sn|qsign(sn)
]T .

3.2. Stability Analysis

Theorem 1. With assumption 1 and the proposed disturbance observer (10), observation errors of
xi, i = 1, 2 can converge in finite time to an arbitrarily small neighborhood of zero [30].

Proof of Theorem 1. Recalling (9), it is not difficult to obtain that

.
si = di −

^
di (11)

Substituting Equation (10) into Equation (11) yields

.
si = di − ki1bsieµ1i − ki2

∫ t

0
bsieµ2i dτ (12)
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In order to simplify the following derivation, we define υi = −k2i
∫ t

0 bsieµ2i dτ + di.
Then, Equation (12) can yield the following second-order system.{ .

si = −k1ibsieµ1i + υi.
υi = −k2ibsieµ2i + di

(13)

Due to the dependence on different channels in the error dynamic system Equation
(13), all we need to demonstrate is that system Equation (14) possesses stable characteristics
within a finite amount of time. { .

s = −k1bseµ1 + υ
.
υ = −k2bseµ2 + d

(14)

Consider the candidate Lyapunov function

V = ζTQζ (15)

where ζ = [bseµ1 , υ]
T , Q = 1

2µ1

[
2k2 + µ1k2

1 −µ1k1
−µ1k1 2µ1

]
.

Notice that the Lyapunov function is continuously differentiable, except for the set
Ω = { (s, υ)|s = 0} , and it can be acquired that

λmin(Q)‖ζ‖2 ≤ V ≤ λmax(Q)‖ζ‖2 (16)

where λmin(·) and λmax(·) are the minimum and maximum eigenvalues of the matrix Q.
By taking the derivative of both sides of Equation (15), we obtain:

V̇=
1

µ1
[bseµ1 , υ]

[
2k2 + µ1k2

1 −µ1k1
−µ1k1 2µ1

][
µ1|s|µ1−1(−k1Lseµ1 + v

−k2bseµ2 + d

]
≤ −|s|µ1−1

[(
2k2 + µ1k2

1

)
k1|s|2µ1 + µ1k1v2 − 2k2

1µ1bseµ1 v
]
+ ζT

[
k1
−2

]
d

≤ −|s|µ1−1ζT Rζ + d‖ζ‖‖h‖

(17)

where R = k1

[
2k2 + µ1k2

1 −µ1k1
−µ1k1 2µ1

]
and h =

[
k1
−2

]
. From the definition of ζ, we can

obtain that:

R = k1

[
2k2 + µ1k2

1 −µ1k1
−µ1k1 2µ1

]
(18)

Substituting (18) into (17) yields:

.
V ≤ −|s|µ1−1λmin(R)‖ζ‖2 + d‖ζ‖‖h‖
≤ −λmin(R)‖ζ‖((µ1+µ2)/µ1) + d‖h‖λmin(Q)−(1/2)V1/2

≤ −λmin(R)λmin(Q)−((µ1+µ2)/2µ1)V((µ1+µ2)/2µ1) + d‖h‖λmin(Q)−(1/2)V1/2

≤ −M1V(µ1+µ2)/2µ1) + M2V1/2

(19)

where M1 = λmin(R)λmin(Q)−((µ1+µ2)/2µ1), M2 = d‖h‖λmin(Q)−(1/2).
Recalling the setting rules of the STDO in Equation (12), µ1 ∈ ( 1

2 , 1) and µ2 = 2µ1 − 1,
we can obtain µ1+µ2

2µ1
∈ ( 1

2 , 1). According to [31], the system (14) is ultimately bounded in
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finite time, meaning that the variables s and υ can stabilize to the origin D0 within finite
time T0, and D0 and T0 can be expressed as

D0 =

{
ζ

∣∣∣∣V(ζ) <
(

M2
θ

)2µ1/µ2
}

, θ ∈ (0, M1)

T0 ≤ V(ζ0)
1− µ1+µ2

2µ1

(M1−θ)
(

1− µ1+µ2
2µ1

) (20)

That is, the equivalent disturbances di can be estimated in finite time, and the cor-
responding max value of the convergence time can also be estimated. The proof of the
STDO’s stability is complete. �

4. STDO-Based Improved Backstepping Controller Design
4.1. Improved Backstepping Controller Design

For the attitude system of a BFHSV, the desired command is yc = [ac, γvc ]
T . The

attitude angle tracking error e1 can be defined as e1 = yc − x1, whose differentiation is

.
e1 =

.
yc − F1 −G1x2 − d1 (21)

Considering x2 as a virtual control variable, the desired virtual command can be
defined as follows:

x2c = G−1
1 (−F1 +

.
yc + k1e1 −

^
d1) (22)

where k1 is the designed positive definite diagonal matrix,
^
d1 is the estimate of the lumped

disturbance by the STDO.
Virtual control Equation (22) needs to use the differential

.
yc of the attitude angle

command. In the previous backstepping controller design work, the differential of the
attitude angle command is obtained by deriving the command with respect to time as
follows:

.
yc =

[
αc
∆t

γvc
∆t
]T (23)

where ∆t is the step size of the simulation.
In fact, there will be a situation where the rate of change of command conflicts with

the command when the actual value of the attitude angle differs greatly from its desired
value. For example, if the pitch channel is a step command of 5◦ while the actual angle of
attack is 0◦, then the desired rate of change

.
αc = 0◦/s. However, the system should have

a large rate of change. It is contradictory to
.
αc = 0◦/s, and the greater the gap between

the desired value and the actual value, the more significant the contradiction will be. The
method of directly deriving the attitude angle command only uses the desired value and
does not consider the actual value. This method is only applicable when the tracking gap is
small. When the tracking gap is larger, the control performance will be significantly worse.

As an improvement, the command of attitude angle change rate in this paper is as
follows:

.
yc =

[
αc−α

∆t
γvc−γv

∆t

]T
(24)

Considering the actual dynamic characteristics of the control system itself, such as
delay and overshoot, the corresponding process of the command cannot be completed
within one control step. Therefore, the formula is modified appropriately, and a parametric
calculation method for the change rate of the attitude angle command is proposed, that is,

.
yc =

[
αc−α
Kp∆t

γvc−γv
Kr∆t

]T
(25)

where Kp and Kr are the calculation parameters of the pitch and roll channels, respectively.
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Remark 3. An intuitional interpretation of Equation (25) is the desired value of the rate of change
of attitude angle while Equation (23) is the change rate of the desired value. The actual value
of the system is introduced into the parametric calculation method of change rate to improve the
information utilization rate. It is not only suitable for the case of small tracking errors but also
can realize fast and smooth tracking control under the condition of large tracking errors well. The
response capability of the backstepping control system can be effectively adjusted by adjusting the
calculation parameters.

Define e2 = x2c − x2 as the tracking error of the angular rate. Substituting Equation
(22) into Equation (21) results in

.
e1 = −k1e1 + G1e2 +

^
d1 − d1 (26)

The angular rate error dynamics can be obtained as

.
e2 =

.
x2c − F2 −G2u− d2 (27)

Then, the control input variables are designed as follows:

u = G−1
2 (−F2 +

.
x2c + G1e1 + k2e2 −

^
d2) (28)

where k2 is the designed positive definite diagonal matrix,
^
d2 is the estimate of the equiva-

lent disturbance by the STDO.
Equations (27) and (28) contain the differentiation of the virtual control

.
x2c, but it can

be known from Equation (3) that the existence of uncertainty and nonlinearity makes the
differentiation of the virtual input variable very difficult, and it may cause the “explosion
of terms” problem. To solve this problem, a second-order filter proposed by Li et al. [32] is
employed to estimate the differentiation of

.
x2c, that is,

.
¯
x2c = −

¯
x2c − x2c

τ1
−

ζ f 1(
¯
x2c − x2c)

‖¯x2c − x2c‖+ ε f 1

(29)

^
x2c = −

^
x2c −

.
¯
x2c

τ2
−

ζ f 2(
^
x2c −

.
¯
x2c)

‖^
x2c −

.
¯
x2c‖+ ε f 2

(30)

where τi is the time constant of filters, ζi and εi is the constant.

Define e f 1 =
¯
x2c − x2c, e f 2 =

^
x2c −

.
¯
x2c as the estimated errors of filters.

4.2. Stability Analysis

The overall stability of the proposed control scheme is stated by Theorem 2.

Theorem 2. Considering the model (3) of a BFHSV, satisfying assumptions 1–3, with the applica-
tion of control variables (22), (38), filters (29), (30), and STDO (10). The attitude tracking error of
the closed-loop system can guarantee to converge to a small neighborhood of origin.

Proof of Theorem 2. The Lyapunov candidate function is considered as follows:

V =
1
2

eT
1 e1 +

1
2

eT
f 1e f 1 +

1
2

eT
2 e2 +

1
2

eT
f 2e f 2 (31)
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Its differentiation can be expressed as

.
V = eT

1
.
e1 + eT

f 1
.
e f 1 + eT

2
.
e2 + eT

f 2
.
e f 2 (32)

The following inequalities are derived from the estimation filter estimation error [32]

eT
f 1

.
e f 1 ≤ −‖

¯
x2c − x2c‖c1

 ρ1‖
¯
x2c − x2c‖

‖¯x2c − x2c‖+ ε1

− 1

 (33)

eT
f 2

.
e f 2 ≤ −‖

^
x2c −

.
¯
x2c‖c2

 ρ2‖
^
x2c −

.
¯
x2c‖

‖^
x2c −

.
¯
x2c‖+ ε2

− 1

 (34)

Assumption 2. The differentiation of x2c is bounded with a known positive constant c1, that is to
say ‖ .

x2c‖ ≤ ‖
.
x2c‖max ≤ c1, and ζ1 = ρ1c1, ρ1 > 1.

Assumption 3. The differentiation of
¯
x2c is bounded with a known positive constant c2, satisfying

‖
.
¯
x2c‖ ≤ ‖

.
¯
x2c‖max ≤ c2, and ζ2 = ρ2c2, ρ2 > 1. Additionally, if ‖¯x2c − x2c‖ > ε1

ρ1−1 ,

‖^
x2c −

.
¯
x2c‖ > ε2

ρ2−1 , eT
f 1

.
e f 1 ≤ 0 and eT

f 2
.
e f 2 ≤ 0.

Furthermore, the convergence of the estimation error from the filters is guaranteed.
Equation (32) yields

.
V ≤ eT

1
.
e1 + eT

2
.
e2

= eT
1

(
−k1e1 + G1e2 +

^
d1 − d1

)
+ eT

2

(
−G1e1 − k2e2 +

^
d2 − d2

)
= −k1eT

1 e1 + eT
1 G1e2 − eT

1

(
d1 −

^
d1

)
− eT

2 G1e− k2eT
2 e2 − eT

2

(
d2 −

^
d2

)
≤ −k1‖e1‖2 − k2‖e2‖2 − ‖e1‖

~
d1 − ‖e2‖

~
d2

(35)

where
~
d1 = d1 −

^
d1,

~
d2 = d2 −

^
d2. The estimation errors

~
d1 and

~
d2 can be stabilized in a

small neighborhood of zero within finite time based on Theorem 1. Then, Equation (35)
yields

.
V ≤ −k1‖e1‖2 − k2‖e2‖2

≤ 0
(36)

Therefore, the proof of Theorem 2 is completed and the closed-loop system is stable. �
The overall structure of the proposed attitude control system is presented as Figure 2.

STDO is used to estimate time-varying disturbance. A parametric command method is
designed to calculate the differentiation of the command. Based on the above methods, a
controller is designed with the backstepping method.
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5. Simulation Results

Several simulations are shown in this section to show the performance of the control
scheme proposed in this paper. The initial simulation conditions are given as follows:
H = 30, 000 m, V = 3000 m/s, α = 5◦, β = 0◦, γv = 0◦, and ωx = ωy = ωz = 0◦/s.
The permissible ranges of rudder deflection are δe ∈ [−30◦, 20◦] and δa ∈ [−25◦, 25◦]. The
dynamic parameters of the BFHSV are given in Table 1. In addition, all simulation results
are obtained by the software MATLAB with fixed step time ∆t = 0.01 s.

Table 1. Dynamic parameters of BFHSV.

Parameters Value Parameters Value

m(kg) 1000 P′β 0.21
S(m2) 0.5 P′δa

−0.60
Jx 800 R′β −0.19
Jy 5000 R′δa

0.02
Jz 5000 Q′α −0.43
Jxy 100 Q′δe

−0.15

5.1. Simulation Analysis of The Parametric Command Method

In this part, comparisons between the parametric command method and the conven-
tional method are given to illustrate the performance of the proposed method.

The step command is used as the attitude angle command to analyze the effect of
command parameters on the performance of the system, without considering the influence
of deviations in aerodynamic parameters and disturbances. In addition, the controller
parameters are given as k1 = diag(15, 5), k2 = diag(20, 10) and the command parameters
are given as Kp, Kr = 10, 20, 35, 60, respectively.

A comparison of the simulation results using the conventional calculation method
and the proposed scheme with different parameters is shown in Figures 3 and 4. The
simulation results were tallied to obtain the tuning time ts (the minimum time required for
the output response to reach and stay within the 2% error band of its steady-state value),
the overshoot σ%, and the steady-state accuracy εσ of the command response process for
different simulation conditions, as listed in Table 2. The smaller the command parameters
Kp and Kr, the greater the overshoot in the command response process, the greater the
rudder deflection angle output by the actuator, and the stronger the dynamic response
capability of the control system. With the increase in Kp and Kr, the basic change trend
of the adjustment time and accuracy of the attitude angle command response is firstly
decreased and then increased. When Kp and Kr are 20 and 35, respectively, the response
time and control accuracy reach the minimum. Therefore, by optimizing the command
parameters Kp and Kr, the best performance of the system can be obtained. Comparing
the simulation results obtained by command parameters Kp = 20 and Kr = 35 with the
conventional method, the parametric command method proposed in this paper improves
the command response speed, shortens the corresponding process time, and controls the
command tracking error to near zero in a shorter time.

Table 2. Command tracking performance comparison under different simulation conditions.

Simulation Conditions
ts/s σ% εσ /o

α γv α γv α γv

Conventional Method 1.67 1.95 7% 7% 5.6× 10−8 1.5× 10−6

Parametric Command Method

10 2.56 2.43 9% 38% 2.4× 10−5 2.9× 10−5

20 1.67 2.25 2.6% 10% 5.6× 10−9 8.2× 10−7

35 1.68 1.90 0 9% 2.6× 10−8 1.1× 10−6

60 1.71 2.15 0 16% 2.4× 10−8 1.2× 10−6
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where 6d    and 5
dv

   . 
The equivalent disturbance terms are formulated as follows: 

11

21 22

0.03sin(0.3 ) rad/s
0.02sin(0.25 ) Nm

d t
d d t





 

 (39)

Table 3. Controller parameters. 

Controllers Parameters 

STDO-BC 
11 12 10k k  , 21 22 5k k  , 11 12 0.6   , 21 22 0.2    

1 diag(15,5)k , 2 diag(20,10)k , 20pK  , 35rK   

1 2 0.01   , 1 2 1 2 0.005f f f f        
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5.2. Simulation Analysis of The Proposed Control Scheme

In this part, simulations of the proposed scheme are shown while taking equivalent
disturbances into consideration. Comparisons between the STDO-based backstepping
control scheme proposed in this paper and the STDO-based conventional backstepping
control scheme mentioned in Zong et al. [33] are given to show the performance of the
proposed scheme in this paper. The parameters of the two controllers are listed in Table 3.

Table 3. Controller parameters.

Controllers Parameters

STDO-BC
k11 = k12 = 10, k21 = k22 = 5, µ11 = µ12 = 0.6, µ21 = µ22 = 0.2

k1 = diag(15, 5), k2 = diag(20, 10), Kp = 20, Kr = 35
τ1 = τ2 = 0.01, ζ f 1 = ζ f 2 = ε f 1 = ε f 2 = 0.005

STDO-CBC
k11 = k12 = 0.3449, k21 = k22 = 0.001,
k31 = k32 = 0.1052, k41 = k42 = 0.0082

k1 = diag(15, 5), k2 = diag(20, 10)

The desired attitude commands are given by:

αc

αd
=

0.2
s2 + 0.8s + 0.16

+ 6 (37)

γvc

γvd

=
0.3

s2 + 0.8s + 0.5
+ 5 (38)
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where αd = 6◦ and γvd = 5◦.
The equivalent disturbance terms are formulated as follows:

d11 = 0.03 sin(0.3πt) rad/s
d21 = d22 = 0.02 sin(0.25πt) Nm

(39)

The tracking curves of the attitude angles and their tracking error curves are shown in
Figures 5 and 6, respectively. It can be seen that both control schemes exhibit satisfactory
performance in the presence of disturbances, and the control scheme proposed in this
paper can guarantee the tracking results with a faster convergence time. The curves of the
control variables elevator deflection angle δe and roll deflection δa are shown in Figure 7. It
can be observed that due to the existence of the disturbance observer, both methods have
oscillations, but the scheme proposed in this paper has a smaller oscillation amplitude and
is smoother.
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The different performances of control inputs in Figure 7 and observer errors in Figure 8
between the two control schemes should be discussed. Due to the sign function appearing
directly in the conventional STDO, server chattering phenomena may occur when the
observation errors converge in the neighborhood of zero, which may cause serious flight
accidents in practical applications. For the STDO in this paper, the sign function is hidden
in the integral terms, and chattering will be effectively weakened. Thus, the curves of the
control input are smoother. It can also be observed that the estimation errors of the STDO
proposed in this paper are smaller than that of the STDO in [33]. Therefore, the proposed
STDO can effectively improve the robustness of the controller and is more conducive to
engineering applications.
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6. Conclusions

This paper mainly focuses on the underactuated attitude control problem of a body-
flap hypersonic vehicle. A simplified control-oriented model is first introduced. A finite-
time super twisting disturbance observer (STDO) is then designed to estimate the equivalent
disturbance to the BFHSV, which effectively enhances the anti-disturbance performance of
the control scheme. Additionally, a second-order filter is employed to avoid the “explosion
of terms” inherent in the conventional backstepping method. In order to enhance the
dynamic response of the system, we introduce a parametric command method in the
backstepping controller. The stability of the overall system is then demonstrated by utilizing
the Lyapunov method. Simulation results illustrate the effectiveness of the control scheme
proposed in this paper. In future work, we will extend the derived results for practical
applications and control of slide angle.
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