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ABSTRACT In this paper, the synchronization of drive-response coupled memristive neural networks

(CMNNs) and CMNNwithmulti-links is investigated. Thememristors show thememory characteristics, low

energy consumption, and nanometer scale so that CMNN can more truly simulate the working mechanism

of brain neural networks. The classic treatment method is no longer being applied because of the parameter-

dependent property in CMNN. The new approach is proposed that CMNN is transformed into a class of

neural networks with interval parameters under the framework of Filippov solution. This method overcame

the problem of mismatched parameters and be less conservative than those existing methods. Sufficient

criteria are derived to guarantee the synchronization of the drive-response networks based on the drive-

response concept and the Lyapunov function. Finally, the effectiveness of the proposed theories is validated

with the numerical experiments.

INDEX TERMS Finite-time synchronization, couple memristive neural network, robust control, drive-

response concept.

I. INTRODUCTION

Recently, as a result of the continuous development of brain

science, the brain neural networks as a kind of complex net-

works play a decisive role in the field of artificial intelligence,

brain science and neural disease [1]–[4]. What is the brain

structure? How does the brain coordinate its work? There is

an urgent issue to give a visual explanation. Therefore, some

researchers have also started from the brain neural network to

attempt to simulate the whole human brain. Themain purpose

is to study brain, understand brain and further to protect brain.

Based on the understanding of human brain, artificial neu-

ral network is firstly abstracted as a mathematical model

from the biological neural network by means of mathe-

matical, physical and information processing methods. With

the development of artificial intelligence, researchers further

actively explore the working mechanism of human brain and
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expect to simulate the learning and memory functions of

human brain. The artificial neural network model are always

developed to restore the real biological neural network as far

as possible. The two most important parts of neural connec-

tions in neural networks are neurons and synapses, synapses

are bridges among neurons. Due to synapses play a vital role

in receiving signal plasticity, dynamic information memory

in transmission and storage of receiving information among

neurons. Therefore, the selection of elements for simulating

synapses is very important when constructing artificial neural

network models. The memristor is regarded as the equivalent

electronic component of the synapse, which brings a new

opportunity for the development of artificial neural network

and makes the memristive neural network (MNN) be closer

to the human brain in the way of information processing. The

detail description of memristor can refer to reference [5].

Compared with the traditional artificial neural network,

the MNN is more adaptive to the new model and new

data, and will improve the computing speed and parallel
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processing capability. The application of the memory will

better simulate the human brain and consciousness behavior

in the robot application. At present, the research of memristor

are mainly focused on the following two aspects: first is to

carry out the research ideas of HP laboratory researchers,

which is to study how tomake electronic components with the

characteristic of memristor using the most economical and

substantial material; second is to follow the research idea of

Professor Cai [6]–[8] and to construct mathematical model

of the dynamic system by introducing the memristor, fur-

thermore, the dynamic behavior and application of the

MNN system are explored. Meanwhile, the system dynam-

ics behavior with memristor plays a key role in practical

applications and can also provide ideas for making memristor

devices. At present, the research on the dynamic behavior of

the MNN has just begun, especially some researchers have

made some progress in the synchronous control of the MNN,

where the stability of a class of memristor-based recurrent

neural networks are researched in [9] and [10]. Wu etc.

has given some new results in dynamic behaviors, expo-

nential synchronization, anti-synchronization of a class of

memristive recurrent neural networks [11]–[16]. Wen etc. has

given another effective results in dynamics analysis, expo-

nential stability analysis, dynamic behaviors of memristor-

based recurrent networks [17]–[19]. After, a class of mem-

ristive neural networks with time-varying delays are further

investigated in [20]–[23]. In order to further obtain the more

abundant dynamics of the MNN, the researchers get some

important conclusions in the stability analysis of the MNN

and all kinds of synchronization control based on the Filippov

solution, the set value mapping and the differential inclusion

theory [24]–[26]. The research above is the exploration of

a simple MNN model. In fact, the connection of neurons

are complicated and have a large number of coupling phe-

nomena. However, there are few studies on the MNN with

coupling connection. Therefore, the study of CMNN is of

theoretical and practical significance.

To achieve faster synchronization between the drive system

and the respond system, many effective control theories have

been introduced. Particularly, the finite time was introduced

in 1961 [27], the studies about the finite-time stability and

synchronization are of great significance in practical applica-

tions, which has much faster convergence time. In the secure

communication, compared with asymptotic synchronization

and exponential synchronization, the finite-time synchroniza-

tion technique enables us to recover the transmitted signals

in a setting time, which improves the efficiency and the

confidentiality greatly.

In addition, the concept of network convergence has

attracted wide attention in recent years, this idea of network

convergence is a trend of future development, a gradual and

complex process and its integration is very broad. Network

convergence can not be understood as a simple synthesis of

multiple networks, and can not be considered as a generalized

substitution between networks, but, it is not only necessary to

understand the advantages and disadvantages of each network

with the idea of splitting the network, but also to consider the

new network form with the macro pattern of network con-

vergence. Especially the aspect of the brain neural network,

researchers mainly focus on a single simple neural network,

but the artificial neural network model which is integrated

into complex and multiple neural networks is relatively less

concerned. The MNN is the closest simulation tool with the

biological brain. The dynamics of the CMNNmay be directly

related to the internal mechanism of the memristor as a neu-

ron, which help us to reveal the information storage principle

of the brain [28]. However, there are few related work, espe-

cially the stability and synchronous control of CMNN with

multi-links. Themulti-links complex network was introduced

in detail by [29], which are more realistic than single link.

The multi-links complex network are split into some sub-

networks based on different time-delays, which are shown in

human communication network, transportation network and

relationship network etc. However, the form of multi-links

are more practical significance in neural network because

of nerve transmission delay and complex neuronal connec-

tions. In the past, we have given a series of explorations

in general complex networks with multi-links [30]–[35].

But, there are few studies on the CMNN with multi-links.

Therefore, we firstly introduce some new results of synchro-

nization in CMNN, then give some extensions to CMNN

with multi-links in the paper. The contributions of this paper

are shown as follows: (1) Different from previous research

methods for MNN or CMNN, we give a new method that the

CMNN are transformed into a class of neural networks with

unmatched uncertain parameters to be investigate. Further-

more, we overcome the difficulties of parameter mismatch to

obtain some new results; (2) The main results are obtained

to ensure finite-time synchronization of CMNN with time-

varying delays by designing discontinuous controller, using

robust control approach and finite time stability, which may

be less conservative than the previous research methods of

MNN [36]–[40]; (3) Additionally, results of this paper can be

easily extended to CMNN with multi-links, we further give

the effect of multiple delays on the dynamic performance of

the whole network.
This paper is organized as follows. In Section 2, the corre-

sponding preliminaries of this paper are given. In Section 3,

some new results about the finite-time synchronization cri-

teria of CMNN are obtain appropriate Lyapunov function

and designing an appropriate controller, then we extend

the above method to solve CMNN with multi-links and

hope observe some interesting dynamic characteristics.

In Section 4, numerical examples are given to demonstrate

the effectiveness of proposed methods. Finally, conclusions

and prospects are given in Section 5.
Notations: In this paper, if not explicitly stated, matrices

are assumed to have compatible dimensions. R denotes the

set of real numbers, Rn and Rm×n refer to, respectively, the n

dimensional Euclidean space and the set of all m × n real

matrices. ‖x‖ = (
∑n

i=1 x
2
i )

1
2 . The notation P > 0 means

P is real symmetry positive definite and the superscript T
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stands for the transpose for vector or matrices. In addi-

tion, ∗ refers to the ellipsis in symmetric matrices expres-

sions and I denotes the identity matrix with the appropriate

dimension.

II. PROBLEM FORMULATION AND PRELIMINARIES

Definition 1 [25]: Let X and Y be two sets, a map F : X → Y

is called set-valued map, if any x ∈ X ,there is always a

corresponding set F(x) is said to the value or image of F

at x.

Definition 2 [25]: A set-valued map F : X → Y is

said to be upper-semi-continuous at x0 ∈ x, if for every

neighborhood NY of F(x0) ⊂ Y , there exists a neighborhood

NX of x0 such that F(NX ) =
⋃

x∈NXF(x)
⊂ NY . If F is upper-

semi-continuous for every x ∈ X , then the set-valued map F

is upper-semi-continuous on the set X .

Definition 3 (Filippov Regularization [24]): For differen-

tial system, ẋ(t) = f (t, x), where f (t, x) is discontinuous

in x(t) and x(t) is a solution of the differential system on

[t0, t1] in Filippov’s sense, if x(t) is absolutely continuous on

any compact interval [t0, t1], for almost all t ∈ [t0, t1] such

that

ẋ = KF [f ](t, x)

where

KF [f ](t, x) =
⋂

δ>0

⋂

µ(N )=0

co[f (B(x, δ) \ N ), t]

where co[·] is the convex closure hull of a set, B(x, δ) = {y :

‖y− x‖ ≤ δ} is the ball of center x and radius δ, intersection

is taken over all sets N of measure zero and over all δ > 0,

and µ(N )is Lebesgue measure of set N .

Firstly, we give the mathematical model of mem-

ristive neural network without coupled connections as

follows:

ẋm(t) = −cmxm(t) +

n
∑

l=1

aml(xm(t))ḡl(xl(t))

+

n
∑

l=1

bml(xm(t))gl(xl(t − τ0(t))) + Im(t), (1)

where m = 1,2,. . . ,n, x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈

Rn and I (t) = (I1(t), I2(t), . . . , In(t))
T ∈ Rn are, respec-

tively, the voltage of capacitor and external input. ḡl(xl(t))

and gl(xl(t − τ0(t))) are, respectively, the bounded feedback

functions without and with time-varying time delay between

the memristor and x(t); cm is the mth neuron self-inhibitions,

A(x(t)) = (aml(xm(t)))n×n and B(x(t)) = (bml(xm(t)))n×n
represent the non-delayed and delayed memristive synaptic

weights, respectively.

The parameters signification and performance of MNN are

described as

cm =
1

Cm
[

n
∑

l=1

(Wḡml +Wgml) × sgnml +
1

Rm
],

FIGURE 1. Circuit of MNN, where xi (·) is the state of the i th subsystem,
f̄j (·), gj (·) are the amplifiers, Wḡij (·) is the connection memristor between
the amplifier ḡj (·) and state xi (·) and Wgij (·) is the connection memristor
between the amplifier gj (·) and state xi (·), Ri and Ci are the resistor and
capacitor, Ii is the external input, ai , bi are the outputs.

aml(xm(t)) =
Wḡml

Cm
× sgnml,

bml(xm(t)) =
Wgml

Cm
× sgnml,

aml(xm(t)) =

{

âml, |xm| ≤ Tm,

ǎml, |xm| > Tm,
(2)

bml(xm(t)) =

{

b̂ml, |xm| ≤ Tm,

b̌ml, |xm| > Tm,
(3)

Remark 1: For the model of MNN, compared with the

electric circuits in Zhao et al. [40] in 2015 etc., the mem-

ductances of the memristors Wḡij, Wgij and Ri, respectively

take place of the resistors Rij, Fij and Ri of a general class

of neural networks. MNN can be implemented by very large-

scale integration (VLSI) circuits as shown in Figure 1. But

in the coupled memristive neural networks, every MNN acts

as a node connecting each other into the structure of coupled

network.

Then, time-varying coupled memristive neural network

(CMNN) as drive network contains N identical MNN, which
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is described by

ẋi(t) = −Cxi(t) + A(xi(t))ḡ(xi(t))

+B(xi(t))g(xi(t − τ0(t)))

+ I (t) + σ

N
∑

j=1

w0
ijŴxj(t)

+ σ

N
∑

j=1

w1
ijŴxj(t − τ1(t)), (4)

where τ1(t) and τ2(t) is the time-varying delay satisfying

τ̇0(t) ≤ µ0 < 1, τ̇1(t) ≤ µ1 < 1, µ = max{µ0, µ1}, where

τ and µ are given constants. w0
ij and w1

ij are, respectively,

non-delayed and delayed coupled matrices, which satisfy the

following conditions:

H1: If there is a directed edge from j to i, then w0
ij = 1 and

w1
ij = 1, otherwise w0

ij = 0 and w1
ij = 0;

H2: For i = 1, 2, . . . ,N , diffusive coupling conditions are

satisfied as w0
ii = −

N
∑

j=1,j 6=i

w0
ij and w

1
ii = −

N
∑

j=1,j 6=i

w1
ij.

The corresponding response network can be described as

follows:

ẏi(t) = −Cyi(t) +

n
∑

j=1

A(yi(t))ḡ(yi(t))

+

n
∑

j=1

B(yi(t))g(yi(t − τ0(t)))

+ I (t) + σ

N
∑

j=1

w0
ijŴyj(t)

+ σ

N
∑

j=1

w1
ijŴyj(t − τ1(t))

+ ui(t), i = 1, 2, . . . ,N , (5)

where y(t) = (yT1 (t), y
T
2 (t), . . . , y

T
N (t))

T is the response state

scalar. ui(t)(i = 1, 2, . . . ,N ) is a nonlinear controller to be

designed and the remaining parameters are the same as drive

system.

Â = (âml)n×n, Ǎ = (ǎml)n×n.

B̂ = (b̂ml)n×n, B̌ = (b̌ml)n×n.

Ã = (ãml)n×n, B̃ = (B̃ml)n×n.

Denote

Ā = max{Â, Ǎ}, A = min{Â, Ǎ}.

B̄ = max{B̂, B̌}, B = min{B̂, B̌}.

A =
1

2
(Ā+ A), Ã =

1

2
(Ā− A).

B =
1

2
(B̄+ B), B̃ =

1

2
(B̄− B).

Therefore, the Eq.(4) can be written as

ẋ(t) ∈ −Cx(t) + (A+ co[−Ã, Ã])ḡ(x(t))

+ (B+ co(−B̃, B̃))g(x(t − τ0(t))),

+ I (t) + σW0x(t) + σW1x(t − τ1(t)), (6)

where x(t) = (xT1 (t), x
T
2 (t), . . . , x

T
N (t))

T , ḡ(x(t)) =

(ḡT (x1(t), ḡ
T (x2(t), . . . , ḡ

T (xN (t))
T ) and

g(x(t)) = (gT (x1(t), g
T (x2(t), . . . , g

T (xN (t))
T ). W0 =

(w0
ij)N×N andW1 = (w1

ij)N×N .Ŵ denotes inner couple matrix,

which omits here due to it is as an identity matrix.

Furthermore, there exist the measurable functions

i
A1(t) =

{

Ã, A = Ā,

−Ã, A = A,
(7)

i
B1(t) =

{

B̃, B = B̄,

−B̃, B = B,
(8)

According to differential inclusions theory and set-valued

mappings technique, we have

ẋ(t) = −Cx(t) + (A+
i

A1(t))ḡ(x(t))

+ (B+
i

B1(t))g(x(t − τ0(t)))

+ I (t) + σW0x(t) + σW1x(t − τ1(t)), (9)

where the initial conditions of CMNN (9) is x(t) = 9(t),

t ∈ [−τ, 0].

Remark 2: From CMNN (4) to CMNN (9), a novel tech-

nique is proposed to transform a CMNN system to a CNN

with interval parameters, and the finite-time synchronization

is obtained by investigating this CNN.

Remark 3:According to the conditions (2) and (3) of state-

dependence, the variables
a
A1 and

a
B1 may not reach their

maximum and minimum values at the same time. That is,

when Â > Ǎ or Â < Ǎ, it does not mean the corresponding

B̂ > B̌ or B̂ < B̌ hold.

Similar to Eq.(4), the Eq.(5) is also rewritten as follows:

ẏ(t) = −Cy(t) + (A+
i

A2(t))ḡ(y(t))

+ (B+
i

B2(t))g(y(t − τ0(t))) + I (t)

+ σW0y(t) + σW1y(t − τ1(t))

+ u(t), (10)

where the initial conditions of Eq.(10) is x(t) = 8(t),

t ∈ [−τ, 0],
a
A2 ∈ [−Ã, Ã] and

a
B2 ∈ [−B̃, B̃].

Noting 1: Obviously, the variables
a
A2 and

a
B2 may not

reach their maximum and minimum values at the same time.

Let e(t) = y(t)−αx(t) be the synchronization error, where

α ⊂ R is a real scaling factor. Especially, the initial condition

of the error system is e(t) = 8(t) − α9(t).

Then we yield the error system from systems (9) and (10)

as follows:

ė(t) = −Ce(t) + (A+
i

A2(t))f (e(t))

+ (B+
i

B2(t))f (e(t − τ0(t))) + 4(t)

+ σW0e(t) + σW1e(t − τ1(t)) + u(t), (11)
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where f (e(·)) = ḡ(e(·) + x(·)) − ḡ(x(·)) = g(e(·) +

x(·)) − g(x(·)), 4(t) = (
a
A2 −

a
A1(t))g(x(t)) + (

a
B2 −a

B1(t))g(x(t − τ1(t))).

Through the above analysis, we can give the following

Assumptions and Lemmas.

Remark 4: The parameters
a
Ai(t) and

a
Bi(t)(i = 1, 2)

are time-varying but norm-bounded, which satisfy

i
A1(t) = H1F1(t)M1,

i
A2(t) = H1E1(t)M1,

i
B1(t) = H2F2(t)M2,

i
B2(t) = H2E2(t)M2.

where Mi and Hi (i = 1, 2) are the known real constant

matrices. In this paper, M1 = Ā − A,M2 = B̄ − B and Hi =

diag{ 1
2
, 1
2
, . . . , 1

2
}, Fi(t) and Ei(t) are unknown real matrices

with appropriate dimension and Lebesgue norm measurable

elements and satisfying

FTi (t)Fi(t) ≤ I , ETi (t)Ei(t) ≤ I .

Assumption 1: The activation function g(x) is bounded and

it satisfies a Lipschitz condition

|gi(ξ1) − gi(ξ2)| ≤ li|ξ1 − ξ2|, i = 1, 2, . . . n

for any ξ1, ξ2 ∈ R, where real constant li > 0 for any i and

let L = diag{l1, l2, . . . , ln}.

Assumption 2: There exist constant Zi such that gi(x) 6 Zi
for ∀x ∈ R, i = 1, 2, . . . , n.

Assumption 3: For any two vectors x, y ∈ Rn and a positive

definite matrix Q ∈ Rn×n, the following matrix inequality

holds:

2xT y ≤ xTQx + yTQ−1y.

Lemma 1 (See [42]): If X and Y are real matrices with

appropriate dimensions, then there exists a number ε > 0,

such that

XTY + Y TX ≤ εXTX +
1

ε
Y TY .

Lemma 2 [43]: Assume that a continuous, positive-

definite function V (t) satisfies the following differential

inequality:

V̇ (t) + αV η(t) ≤ 0, ∀t ≥ t0, V (t0) ≥ 0,

where α > 0, 0 < η < 1 are two constants. Then,

for any given t0,V (t) satisfies the following differential

inequality:

V 1−η(t) ≤ V 1−η(t0) − α(1 − η)(t − t0), t0 ≤ t ≤ t1,

and

V (t) ≡ 0, ∀t ≥ t1,

with t1 given by

t1 = t0 +
V 1−η(t0)

α(1 − η)
.

Lemma 3 [44]: Let x1, x2, . . . , xn ∈ Rn are any vec-

tors and 0 < q < 2 is a real number, which satisfy

as follows:

‖x1‖
q + ‖x2‖

q + · · · + ‖xn‖
q

≥ (‖x1‖
2 + ‖x2‖

2 + · · · + ‖xn‖
2)

q
2 .

Lemma 4 [45] (See Wang et al., 2009): The linear matrix

inequality
[

Q(x) S(x)

ST (x) R(x)

]

> 0,

whereQ(x) = QT (x),R(x) = RT (x) and S(x) depend affinely

on x, and it is equivalent to

R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0.

III. MAIN RESULTS

We give the following controller u(t)

u(t) = −Re(t) − 3sign(e(t))

− k1sign(e(t))|e(t)|
β

− k1
e(t)

‖e(t)‖2

1
∑

m=0

(

∫ t

t−τm(t)

eT (s)e(s)ds)
β+1
2 , (12)

where R = diag(r1, r2, . . . , rn) is the feedback gain matrix

to be designed, 3 = diag(λ1, λ2, . . . , λn), ri and λi, i =

1, 2, . . . , n are positive constants, and

λi =

n
∑

j=1

(|âij − ǎij| + |b̂ij − b̌ij|)Zj. (13)

sign(e(t)) = (sign(e1(t)), sign(e2(t)), . . . , sign(en(t)))
T . 0 <

β < 1 and k1 is a random constant. And sign(x) is the sign

function which is defined as follows:

sign(x) =











−1, if x < 0,

0, if x = 0,

1, if x > 0.

Remark 5 (See [41]): According to the boundedness of

chaotic signals, the Assumption 2 can be guaranteed to

achieve robust synchronization of CMNN.

Theorem 1: Under Assumptions 1-3, the drive network (4)

and the response network (5) can realize finite-time projective

synchronization with the controller (12), if there exist a pos-

itive matrix R and two positive constants θ1 and θ2 satisfying

the following conditions:




































�0 L A H1 B H2 W1
⋆ 2θ1 0 0 0 0 0

⋆ ⋆ −
1

θ1
I 0 0 0 0

⋆ ⋆ ⋆ −
1

(θ1‖M1‖2)
0 0 0

⋆ ⋆ ⋆ ⋆ −
1

θ2
I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −
1

(θ2‖M2‖2)
0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

σ 2





































≤0,
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where

�0 = 2(
I

1 − µ
− R− C + σW0),

and

2

θ2
L2 − I ≤ 0,

Then, synchronization is achieved in a finite time:

t0 =
V (0)1−(β+1)/2

γ (1 − β+1
2

)
,

and

V (0) = eT (0)e(0) +
1

(1 − µ)

1
∑

m=0

(

∫ 0

−τm(0)

eT (s)e(s)ds),

where e(0), υ̂(0) are the initial conditions of e, υ,

respectively.

Remark 6: Based on the research of the above CMNN, we

extend the method to the general situation for the CMNN that

CMNNwithmulti-links is introduced. Due to the connections

between neurons in the neural network are complex and each

of two neurons have more than one link. The study of CMNN

with multi-links has more practical theoretical significance.

Next, CMNN with multi-links is described as follows:

ẋi(t) = −Cxi(t) + A(xi(t))ḡ(xi(t))

+B(xi(t))g(xi(t − τ0(t))) + I (t)

+ σ

N
∑

j=1

w0
ijŴxj(t)

+ σ

l
∑

m=1

N
∑

j=1

wmijŴxj(t − τm(t)), (14)

where wmij ,m = 1, . . . , l is the lth sub-network’s topological

structure, which satisfy the conditions H1 and H2. Time-

varying delay τm(t),m = 0, 1, . . . l satisfy τ̇m(t) ≤ µm <

1, µ = max{µm,m = 0, 1, . . . , l}. The reminding parame-

ters are same to Eq.(4).

Similarly, Eq.(18) as drive network can be rewritten as

ẋ(t) = −Cx(t) + (A+
i

A1(t))ḡ(x(t))

+ (B+
i

B1(t))g(x(t − τ0(t))) + I (t)

+ σW0x(t) +

l
∑

m=1

σW1x(t − τm(t)), (15)

Then, the corresponding response network is given as

ẏ(t) = −Cy(t) + (A+
a
A2(t))ḡ(y(t))

+(B+
a
B2(t))g(y(t − τ0(t))) + I (t)

+σW0 y(t) +
l

∑

m=1

σW1y(t − τm(t))

+u(t),

(16)

where

u(t) = −Re(t) − k1sign(e(t))|e(t)|
β

−3sign(e(t)) − k1
e(t)

‖e(t)‖2

×
l

∑

m=0

(
∫ t
t−τm(t)

eT (s)e(s)ds)
β+1
2 ,

(17)

The corresponding Theorem 2 is extended as follows,

shown at the top of the next page.

Theorem 2: Under Assumptions 1-4, the drive net-

work (15) and the response network (16) with the

controller (17) can realize finite-time projective synchro-

nization, if there exist a positive matrix R and two

positive constants θ1 and θ2 satisfying the following

conditions:

where

�0 =
l + 1

1 − µ
I − 2(R− C + σW0),

and

2

θ2
L2 − I ≤ 0,

Then, synchronization is achieved in a finite time:

t1 =
V (0)1−(β+1)/2

γ (1 − β+1
2

)
,

and

V (0) = eT (0)e(0) +
1

(1 − µ)

l
∑

m=0

(

∫ 0

−τm(0)

eT (s)e(s)ds),

where e(0), υ̂(0) are the initial conditions of e, υ,

respectively.

Proof: Similarly with the proof of Theorem 1. The

detailed proofs are omitted here.

Remark 7: In previous research, differential inclusions the-

ory and set-valued mappings technique have been recently

introduced to deal with this CMNN system. But, we study

the synchronization of CMNN without using the previ-

ous solution technique. A novel analytical technique is

first proposed to transform the CMNN to a class of neu-

ral network with interval parameters, which is an exten-

sion of our paper [5]. In addition, we give a proper con-

troller that a part of the uncertainties (4(t) = (
a
A2 −a

A1(t))g(x(t)) + (
a
B2 −

a
B1(t))g(x(t − τ1(t))) ) is

treated as a perturbation term to achieve robust con-

trol. In this paper, we use the boundedness of uncer-

tain parameters to fill the gap for the previous researches,

the results have less conservative than those previous analysis

technique.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are given to demon-

strate the effectiveness of our proposed scheme. Firstly,
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�0 L A H1 B H2 W1 ··· Wl
⋆ 2θ1 0 0 0 0 0 ··· 0

⋆ ⋆ −
1

θ1
I 0 0 0 0 ··· 0

⋆ ⋆ ⋆ −
1

(θ1‖M1‖2)
0 0 0 ··· 0

⋆ ⋆ ⋆ ⋆ −
1

θ2
I 0 0 ··· 0

⋆ ⋆ ⋆ ⋆ ⋆ −
1
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⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

σ 2
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⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ··· 0
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. . .

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ··· −
1

σ 2



















































≤ 0,

we give the following memristive neural network without

coupled connections:

ẋm(t) = −cmxm(t) +

n
∑

l=1

aml(xm(t))ḡl(xl(t))

+

n
∑

l=1

bml(xm(t))gl(xl(t − τ0(t)))

+ Im(t), m = 1, 2 (18)

where n = 2, I1 = I2 = 0, ḡl(x) = gl(x) = tanh(x), l =

1, 2, τ0(t) = 0.2|cost| and c1 = 1, c2 = 1.5. The remaining

parameters are given with (19)-(22)

a11(x1) =

{

0.7, |x1(t)| ≤ 1,

0.3, |x1(t)| > 1,

a12(x1) =

{

1.5, |x1(t)| ≤ 1,

0.5, |x1(t)| > 1,
(19)

a21(x2) =

{

−0.1, |x2(t)| ≤ 1,

−0.3, |x2(t)| > 1,

a22(x2) =

{

0.1, |x2(t)| ≤ 1,

0.9, |x2(t)| > 1.
(20)

b11(x1) =

{

−1.5, |x1(t)| ≤ 1,

−1.3, |x1(t)| > 1,

b12(x1) =

{

−0.1, |x1(t)| ≤ 1,

−0.05, |x1(t)| > 1,
(21)

b21(x2) =

{

−0.15, |x2(t)| ≤ 1,

−0.2, |x2(t)| > 1,

b22(x2) =

{

−2.3, |x2(t)| ≤ 1,

−2.5, |x2(t)| > 1.
(22)

Then, by the above Eqs.(19)-(22), one has

A =

(

0.5 1

−0.2 0.5

)

, Ã =

(

0.2 0.5

0.1 0.4

)

,

M1 =

(

0.4 1

0.2 0.8

)

, (23)

B =

(

−1.4 −0.175

−0.075 −2.4

)

, B̃ =

(

0.1 0.025

0.025 0.1

)

,

(24)

M2 =

(

0.2 0.05

0.05 0.2

)

, H1=H2=

(

0.5 0

0 0.5

)

,

L =

(

1 0

0 1

)

, (25)

and Fi(t) ∈ [−1, 1], i = 1, 2.

Example 1: Based on MNN system (18), we consider

the following CMNN systems as drive system and response

system with controller:

ẋi(t) = −Cxi(t) + A(xi(t))ḡ(xi(t))

+B(xi(t))g(xi(t − τ0(t)))

+ σ

3
∑

j=1

w0
ijŴxj(t)

+ σ

3
∑

j=1

w1
ijŴxj(t − τ1(t))

+ Ii, i = 1, 2, 3 (26)

ẏi(t) = −Cyi(t) + A(yi(t))ḡ(yi(t))

+B(yi(t))g(yi(t − τ0(t)))

+σ

3
∑

j=1

w0
ijŴyj(t)

+σ

3
∑

j=1

w1
ijŴyj(t − τ1(t)) + Ii + ui(t). (27)
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FIGURE 2. The phase curves of systems (26) and (27) in two dimensional
cases.

FIGURE 3. The two dimensional state trajectory of drive systems (26) and
response system (27) without controller.

where τ1(t) = 0.2∗|sint|, which means that τ = 0.2,µ = 0.2

and σ = 0.1. Besides

Ŵ =

[

1 0

0 1

]

, W0 =





−2 1 1

1 −2 1

1 1 −2



 ,

W1 =





−2 1 1

1 −1 0

1 0 −1



 ,

We take the initial values of drive and response systems as

xi1(0) = (cos(t) + 5, sin(t) − 5, sin(t))T , xi2(0) = (sin(t) −

5, cos(t)−5, cos(t))T ,yi1(0) = (cos(t), cos(t)−5, sin(t)−5)T

and yi2(0) = (sin(t), sin(t) − 5, cos(t) + 5)T . Let r = 70,

according to the LMI toolbox, we obtain θ1 = 98.1305, θ2 =

2.036. Fig.2 show the phase curves of systems (26) and (27)

in two dimensional cases, which indicates the boundedness of

chaotic signals. Figs.3 and 4 show the two dimensional drive-

response systems with three nodes and error state trajectory

of CMNN without controller. Figs.5 and 6 show the two

dimensional drive-response systems with three nodes and

error state trajectory of CMNN with controller.

Example 2: Based on CMNN systems (26) and (27),

we consider the following CMNN with multi-links as drive

FIGURE 4. The two dimensional error state trajectory of CMNN system
without controller.

FIGURE 5. The two dimensional state trajectory of drive systems (26) and
response system (27) with controller.

system and response system with controller:

ẋi(t) = −Cxi(t) + A(xi(t))ḡ(xi(t))

+B(xi(t))g(xi(t − τ0(t)))

+ σ

6
∑

j=1

w0
ijŴxj(t)

+ σ

6
∑

j=1

w1
ijŴxj(t − τ1(t))

+ σ

6
∑

j=1

w2
ijŴxj(t − τ2(t))
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FIGURE 6. The two dimensional error state trajectory of CMNN system
with controller.

FIGURE 7. The two dimensional state trajectory of drive systems (28) and
response system (29) without controller.

+ Ii, i = 1, 2, . . . , 6 (28)

ẏi(t) = −Cyi(t) + A(yi(t))ḡ(yi(t))

+B(yi(t))g(yi(t − τ0(t)))

+ σ

6
∑

j=1

w0
ijŴyj(t)

+ σ

6
∑

j=1

w1
ijŴyj(t − τ1(t))

+ σ

6
∑

j=1

w2
ijŴyj(t − τ2(t)) + Ii + ui(t). (29)

FIGURE 8. The two dimensional error state trajectory of CMNN with
multi-links and without controller.

where τ1(t) = 0.2∗ |sint|, τ2(t) = 0.15∗ |sint|, which means

that τ = 0.2,µ = 0.2. The topological structures of these

three sub-networks (W0,W1 and W2) in the network are as

follows:

W0 =

















−6 3 2 1 0 0

3 −4 1 0 0 0

2 1 −3 0 0 0

1 0 0 −7 4 2

0 0 0 4 −6 2

0 0 0 2 2 −4

















,

W1 =

















−7 2 0 3 0 2

2 −2 0 0 0 0

0 0 −5 3 0 2

3 0 3 −9 0 3

0 0 0 0 0 2

2 0 2 3 0 −7

















,

W2 =

















−3 2 0 0 0 1

2 −5 3 0 0 0

0 3 −7 4 0 0

0 0 4 −9 5 0

0 0 0 5 −11 6

1 0 0 0 5 −6

















.

The initial values of drive and response systems as

xi1(0) = (cos(t) + 5, sin(t) − 1, cos(t), cos(t), cos(t) − 2,

sin(t)−5)T , xi2(0) = (sin(t)−3, cos(t)−2, cos(t)+3, sin(t)+

3, sin(t) − 5, cos(t) + 5)T , yi1(0) = (sin(t) − 5, cos(t) + 5,

sin(t), sin(t) − 9, sin(t) + 5, cos(t) − 8)T and yi2(0) =

(cos(t), sin(t) + 5, sin(t), cos(t), cos(t) + 1, sin(t) + 5)T .

In the same way, let r = 90, according to the LMI

toolbox, we obtain θ1 = 77.8076, θ2 = 6.9805.

Figs.7 and 8 show the two dimensional drive-response sys-

tems with three nodes and error state trajectory of CMNN
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FIGURE 9. The two dimensional state trajectory of drive systems (32) and
response system (33) with controller.

FIGURE 10. The two dimensional error state trajectory of CMNN with
multi-links and with controller.

without controller. Figs.9 and 10 show the two dimensional

drive-response systems with three nodes and error state tra-

jectory of CMNN with controller.

V. CONCLUSION AND PROSPECT

In this paper, the finite-time synchronization of CMNN and

CMNN with multi-links have been studied based on robust

control technique. It is different from previous analysis tech-

nique, we give a new approach to study finite-time synchro-

nization for CMNN and CMNN with multi-links based on

the drive-response concept and the finite-time stability theory.

The paper overcome some difficult of parameter unmatch

and synchronization difficult of complex CMNN. The results

filled the blank for CMNN and be less conservative than those

previous analysis technique. Numerical simulations verify the

effectiveness of our theoretical analysis.

Furthermore, we extend the CMNN model to simulate

more specific form of brain neural network, especially some

dynamical behavior of the associative memory CMNN and

applications in network security communication.

APPENDIX

Proof of Theorem 1: We construct a Lyapunov function as

follows

V (t) = V1(t) + V2(t),

where

V1(t) = eT (t)e(t),

V2(t) =
1

1 − µ

1
∑

m=0

(

∫ t

t−τm(t)

eT (s)e(s)ds).

The derivative of V1(t) along with the trajectory of e(t) is

given as

V̇1(t) = 2eT (t)ė(t),

= 2eT (t)[−Ce(t) + (A+
i

A2(t))f (e(t))

+ (B+
i

B2(t))f (e(t − τ (t))) + 4(t)

+ σW0e(t) + σW1e(t − τ1(t)) + u(t)],

= −2eT (t)Ce(t) + 2eT (t)(A+
i

A2(t))f (e(t))

+ 2eT (t)(B+
i

B2(t))f (e(t − τ (t)))

+ 2eT (t)4(t) + 2σeT (t)W0e(t)

+ 2σeT (t)W1e(t − τ1(t)) + 2eT (t)u(t).

According to Lemma 1 and Assumption 1, we get

2eT (t)(A+
i

A2(t))f (e(t))

≤ θ1 e
T (t)AAT e(t) +

1

θ1
f T (e(t))f (e(t))

+ θ1 e
T (t)H1E1M1M

T
1 E

T
1 H

T
1 e(t)

+
1

θ1
f T (e(t))f (e(t)),

≤ eT (t)[θ1AA
T +

2

θ1
L2 + θ1‖M1‖

2H1H
T
1 ]e(t),

2eT (t)(B+
i

B2(t))f (e(t − τ0(t)))

≤ θ2 e
T (t)BBT e(t)

+
1

θ2
f T (e(t − τ0(t)))f (e(t − τ0(t)))

+ θ2 e
T (t)H2E2M2M

T
2 E

T
2 H

T
2 e(t)

+
1

θ2
f T (e(t − τ0(t)))f (e(t − τ0(t))),

≤ eT (t)[θ2BB
T + θ2‖M2‖

2H2H
T
2 ]e(t)

+
2

θ2
eT (t − τ0(t))L

2e(t − τ0(t)).
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It is clear from Assumption 2 that

|4(t)| ≤ |
i

A2(t) −
i

A1(t)||g(x(t))|

+ |
i

B2(t) −
i

B1(t)|

× |g(x(t − τ (t))|

≤ 2(Ã+ B̃)Z , (30)

Due to the controller u(t),we can obtain

2eT (t)u(t) = 2eT (t)[−Re(t) − 3sign(e(t))

− k1sign(e(t))|e(t)|
β

− k1
e(t)

‖e(t)‖2

1
∑

m=0

(

∫ t

t−τm(t)

eT (s)

× e(s)ds)
β+1
2 ,

= −2reT (t)e(t)

− 2k1|e
T (t)e(t)|

β+1
2

− 2eT (t)3sign(e(t))

− 2k1

1
∑

m=0

(

∫ t

t−τm(t)

eT (s)

× e(s)ds)
β+1
2 . (31)

From Eqs.(13),(30),(31), we get

2eT (t)(4(t) − 3sign(e(t)))

≤ 2

n
∑

i=0

|ei(t)|[2

n
∑

j=0

(ãij + b̃ij)Zj − λi]

= 0, (32)

Under Assumption 3, the following inequality is estab-

lished

2σeT (t)W1e(t − τ1(t)) ≤ σ 2 eT (t)W1W
T
1 e(t)

+ eT (t − τ1(t))e(t − τ1(t)).

Similarly, the derivative of V2(t),V3(t) are given as

V̇2(t) =
2

1 − µ
eT (t)e(t)

−
1 − τ̇0(t)

1 − µ
eT (t − τ0(t))e(t − τ0(t))

−
1 − τ̇1(t)

1 − µ
eT (t − τ1(t))e(t − τ1(t)),

≤
2

1 − µ
eT (t)e(t) − eT (t − τ0(t))e(t − τ0(t))

− eT (t − τ1(t))e(t − τ1(t)),

Above all, V (t) can be written as

V̇ (t) =

2
∑

i=1

V̇i(t),

≤ eT (t)�1e(t) + eT (t − τ (t))�2e(t − τ (t))

− γ (|eT (t)e(t)|
β+1
2

+

1
∑

m=0

(
1

1 − µ

∫ t

t−τm(t)

eT (s)e(s)ds)
β+1
2 ,

where

�1 = 2(
1

1 − µ
− r)I − 2C + 2σW0 + σ 2W1W

T
1

+
2

θ1
L2 + θ1(AA

T + ‖M1‖
2H1H

T
1 )

+ θ2(BB
T + ‖M2‖

2H2H
T
2 ),

�2 =
2

θ2
L2 − I ,

and γ = min{2k1, 2k1(1 − µ)
β+1
2 }.

Based on the condition of Theorem 1 and Lemma 4, we get

V̇ (t) ≤ −γV
β+1
2 (t). (33)

Therefore, synchronization is achieved in a finite time:

t0 =
V (0)1−(β+1)/2

γ (1 − β+1
2

)
,

The proof of Theorem 1 is completed.
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