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We consider two reaction-di�usion equations connected by one-directional coupling function and study the synchronization prob-
lem in the case where the coupling function a�ects the driven system in some speci	c regions.We derive conditions that ensure that
the evolution of the driven system closely tracks the evolution of the driver system at least for a 	nite time. �e framework built to
achieve our results is based on the study of an abstract ordinary di�erential equation in a suitableHilbert space. As a speci	c applica-
tion we consider the Gray-Scott equations and perform numerical simulations that are consistent with our main theoretical results.

1. Introduction

�e synchronization of the evolution of systems that are
sensitive to changes in the initial condition is a phenomenon
that occurs spontaneously in systems ranging from biology
to physics. As a matter of fact, starting from publications
by Fujisaka and Yamada [1] and later by Pecora and Carroll
[2], there have been many explanations about the occurrence
of this phenomenon as well as new practical applications
[3]; among these we highlight [4]. For localized systems
(ODE) the problem is well understood; see, for example,
[4, 5] and the references therein. On the other hand, a much
smaller number of results are available for extended systems
represented by partial di�erential equations (PDE). Among
these in [6, 7], the authors have considered a pair of unidi-
rectionally coupled systems with a linear term that penalizes
the separation between the actual states of the systems.
When the coupling function is linear, the synchronization
problem has been addressed through di�erent approaches
like invariantmanifoldmethod viaGalerkin’s approximations
[8], via an abstract formulation using semigroup theory [7, 9],
or numerically [6].

With the exception of works [6, 10], in the rest of the
references [7–9, 11, 12] the coupling function disturbs the
system in its entirety. In contrast, in [6, 10], the authors
propose a synchronization scheme that does need to disturb
the whole driven system. Moreover, the subset of sites in the
driven system is chosen arbitrarily.

In this work we present a general procedure for two
reaction-di�usion equations connected through a one-
directional coupling function. We study the synchronization
problem in the case where the coupling function a�ects the
driven system in some speci	c regions and our approach,
which is based in an abstract formulation coming from
semigroup theory, allows establishing a relation between the
conditions to obtain synchronization in 	nite time and the
intensity of the coupling. To illustrate the theoretical results
we consider a pair of equations of Gray-Scott [13].

�e paper is organized as follows: in Section 2 we set the
problem, in Section 3we give an abstract representation of the
problem in a suitable Hilbert space, in Section 4 we give the
main theoretical results, as the existence of bounded solutions
of the abstract equation, in Section 5 we give an example and
numerical simulations of the performance of the strategy, and
	nally in Section 6 we give some 	nal remarks.
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2. Setting of the Problem

We consider the following system with boundary Dirichlet
conditions:

�� = ���� + � (�) , (1)

V� = �V�� + � (V) + � (�) (V − �) , (2)

where 0 < � < �, � > 0. � = diag(	1, 	2, . . . , 	�) is a diagonal
matrix with positive entries, the function � : R� → R

� is a
continuous locally Lipschitz function, and �(�) is de	ned as

� (�) = �∑
�=1
]�X[�� ,��] (�) , (3)

where, for � ∈ {1, 2, . . . , �}, each ]� ∈ R and X[�� ,��] is the
characteristic function of the interval [��, ��], with 0 < �1 <�1 < ⋅ ⋅ ⋅ < �� < �� < �.

We show that the evolution of (2) closely tracks the
evolution of (1) which means V behaves, in some sense, like�. To set precisely our problem and consider it in an abstract
framework we start with a bounded solution �(�, �) of (1).
�us, there exists� > 0 such that

|� (�, �)| fl √ �∑
�=1

�2� (�, �) ≤ �; 0 < � < �, � > 0, (4)

where �� are the components of the vector valued function �.
Also, we assume that for any interval � = [�, �] ⊂ (0, +∞)
there exists a constant� > 0, depending on �, such that������ (�, �)���� ≤ �; 0 < � < �, � ∈ �. (5)

Let us de	ne a function � : (0, �) × (0,∞) ×R
� → R

� by

� (�, �, �) fl � (� + � (�, �)) − � (� (�, �)) + � (�) � (6)

and consider the transformation

� (�, �) = V (�, �) − � (�, �) . (7)

If V is a solution of (2), with input �(�, �), then (6) and (7) lead
us to the equation

�� = ���� + � (�, �, �) . (8)

Now, we consider (8) together with Dirichlet boundary
conditions:

� (0, �) = 0,
� (�, �) = 0,

� > 0.
(9)

Our e�orts will focus on problem (8)-(9). Concretely, we are
interested in solutions such that the driven systems closely
track the evolution of the driver systems at least for a 	nite
time interval.

3. Preliminaries and Abstract Formulation of
the Problem

In this section, by choosing an appropriate Hilbert space, we
discuss some preliminaries and set our problem as an abstract
ordinary di�erential equation. Let us start considering the

Hilbert space� fl �2((0, �),R�)with the usual inner product;
that is, if Φ = (Φ1, . . . , Φ�)	, Ψ = (Ψ1, . . . , Ψ�)	 ∈ �, then

⟨Φ,Ψ⟩ = ∫

0
( �∑
�=1

Φ� (�)Ψ� (�))	� (10)

and the induced norm is given by

‖Φ‖2 = ∫

0
( �∑
�=1

[Φ� (�)]2)	�. (11)

Next, we consider the linear unbounded operator * :�(*) ⊂ � → � de	ned by

*Φ fl −� 	2	�2Φ, (12)

where

� (*) = �10 ((0, �) ,R�) ∩ �2 ((0, �) ,R�) . (13)

We summarize some very well-known important properties
related to the operator *:

(i) * is a sectorial operator. As a consequence −*
generates an analytic semigroup, �−��, which is, for
each � > 0, compact.

(ii) �e spectrum 4(*), of *, consists of just eigenvalues5�,� = 	�(�6/�)2, with � = 1, 2, . . . and 8 = 1, 2, . . . , 9.
We order the set of eigenvalues {5�,�} according to the
sequence 0 < 51 ≤ 52 ≤ ⋅ ⋅ ⋅ → ∞, where

51 = min {	1, 	2, . . . , 	�} (6� )2 . (14)

(iii) �ere exists a complete orthonormal set {Φ�}∞�=1, of
eigenvectors of *, such that

*Φ = ∞∑
�=1

5� ⟨Φ,Φ�⟩Φ�, Φ ∈ � (*) . (15)

(iv) �−�� is given by

�−��Φ = ∞∑
�=1

�−��� ⟨Φ,Φ�⟩Φ�, Φ ∈ �. (16)

In the remainder of this section we mainly follow [14, 15]
and the notations used come from [15]. In order to study
the nonlinear part of the abstract equation corresponding
to (8)-(9), we consider the fractional power spaces and the
interpolation spaces associated with the operator *. For any
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E ≥ 0, the domain�(*�) of the fractional power operator*�
is de	ned by

G2� fl �(*�)
fl {Φ ∈ � : ∞∑

�=1
5�2� ����⟨Φ,Φ�⟩����2 < ∞} , (17)

and the operator *� is given by

*�Φ = ∞∑
�=1

5�� ⟨Φ,Φ�⟩Φ�, ∀Φ ∈ � (*�) . (18)

G� itself becomes a Hilbert space with the G�-inner product
given by ⟨Φ,Ψ⟩� fl ∑∞�=1 5�� ⟨Φ,Φ�⟩⟨Ψ,Φ�⟩ and the G�-norm
is the graph norm associated with*�; that is, ‖Φ‖� = ‖*�Φ‖.
Moreover, if E ≥ L, then G� is a continuous embedding intoG� that veri	es the estimate ‖Φ‖2� ≤ 5�−�1 ‖Φ‖2�, for allΦ ∈ G�.
In particular,

‖Φ‖2 ≤ 5−�1 ‖Φ‖2� , ∀Φ ∈ G�. (19)

Also, according to �eorem 1.6.1 in [14] and the discussion

given there, for 1/4 < E ≤ 1 we have that G2� is a continuous
embedding into N((0, �),R�). �us, there exists a positive
constant N such that

sup
�∈(0,
)

|Φ (�)| ≤ N ‖Φ‖2� , ∀Φ ∈ G2�. (20)

�e next proposition, whose proof is similar to the one

given in [7], contains estimates relating the semigroup {�−��}
with norms ‖ ⋅ ‖� and ‖ ⋅ ‖. Also, it will play an important role
in the discussion of our main theoretical results.

Proposition 1. For each Φ ∈ G�, E > 0, one has the following
estimates: OOOOO�−��ΦOOOOO2� ≤ �−2�1� ‖Φ‖2� , � ≥ 0,

OOOOO�−��ΦOOOOO2� ≤ �−�E��−��−�1� ‖Φ‖2 , � > 0. (21)

Now, we associate with system (8)-(9) an abstract ordi-
nary di�erential equation on� with an initial condition

Φ̇ + *Φ = Q (�, Φ) , � > 0;
Φ (0) = Φ0, (22)

where Q, acting on [0,∞) × G2�, is de	ned by

Q (�, Φ) (�) fl � (�, �, Φ (�)) . (23)

For some R > 0 and 1/4 < E < 1, we assume Qmaps [0,∞) ×S� into�, where S� = {Φ ∈ G2� : ‖Φ‖2� ≤ R}.
�e following lemma establishes that Q is Lipschitz

continuous in the second variable on S�.
Lemma 2. �ere exists a constant � = �(S�) such that forΦ1, Φ2 ∈ S�, � > 0,OOOOQ (�, Φ1) − Q (�, Φ2)OOOO ≤ � OOOOΦ1 − Φ2OOOO2� . (24)

Proof. Given a ball T�(0) of radius R and center 0 inR
�, there

exists a positive constant � = �(R) such that |�(U2) − �(U1)| ≤�|U2 − U1| for all U1, U2 ∈ T�(0).
For any Φ1, Φ2 ∈ S�, we consider Δ fl |Q(�, Φ1)(�) −Q(�, Φ2)(�)|, 0 < � < �, and � > 0. Now, let us consider� andN as in (4) and (20), respectively. If we choose R = NR + �,

then there exists � = �(R) such that

Δ ≤ � ����Φ1 (�) − Φ2 (�)���� + ����� (�)���� ����Φ1 (�) − Φ2 (�)����
≤ (� + ����� (�)����) sup

�∈(0,
)

����Φ1 (�) − Φ2 (�)����
≤ (� + ����� (�)����) N OOOOΦ1 − Φ2OOOO2� .

(25)

�erefore,

∫

0
Δ2	� ≤ ∫


0
N2 (� + ����� (�)����)2 OOOOΦ1 − Φ2OOOO22� 	�

≤ 2N2 (��2 + OOOO�OOOO2) OOOOΦ1 − Φ2OOOO22� .
(26)

�us, OOOOQ (�, Φ1) − Q (�, Φ2)OOOO ≤ � OOOOΦ1 − Φ2OOOO2� (27)

with

� = √2N(��2 + OOOO�OOOO2)1/2 . (28)

We 	nish this section with a lemma that will be used to
obtain ourmain theoretical results. It can be established as an
application of Lemma 3.3.2 in [14].

Lemma 3. A continuous function Φ : (0, �1) → G2� is a
solution of the integral equation

Φ (�) = �−��Φ0 + ∫�
0
�−�(�−�)Q (^, Φ (^)) 	^,

� ∈ (0, �1) ,
(29)

if and only if Φ is a solution of (22).

4. Main Theoretical Results

�eorem 4. For anyΦ0 ∈ int(S�) there exists �1 = �1(Φ0) > 0
such that (22) has a unique solution Φ on (0, �1) with initial
condition Φ(0) = Φ0.
Proof. By Lemma 3, it su�ces to prove the corresponding
result for integral equation (29).

Choose _ > 0, with _ + ‖Φ0‖2� < R, such that the set

G = {Φ ∈ G2� : OOOOΦ − Φ0OOOO2� ≤ _} (30)

is contained in S�. We have, applying Lemma 2, that Q is
Lipschitz continuous, in the second variable, onG. Moreover,
for the estimateOOOOQ (�, Φ1) − Q (�, Φ2)OOOO ≤ � OOOOΦ1 − Φ2OOOO2� ,

for � > 0, Φ1, Φ2 ∈ G, (31)
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we choose� = √2N(��2+‖�‖2)1/2, with� = �(N(_+‖Φ0‖2�)+�). Next, we select �1 > 0 such that

OOOOO(�−�� − b)Φ0OOOOO2� ≤ _2 ,
0 ≤ � ≤ �1, (32)

(2E� )� � (_ + OOOOΦ0OOOO2�) ∫�10 �−��−(�1/2)�	� ≤ _2 . (33)

Let us de	ne c as the set of continuous functions Ψ :[0, �1] → G2� such that ‖Ψ(�) − Φ0‖2� ≤ _ on [0, �1]. If c is
endowed with the supreme norm ‖Ψ‖�1 fl sup0≤�≤�1‖Ψ(�)‖2�,
then it is a complete metric space.

Now, for Ψ ∈ c we de	ne d(Ψ) acting on [0, �1] as
d (Ψ) (�) = �−��Φ0 + ∫�

0
�−�(�−�)Q (^, Ψ (^)) 	^. (34)

First, we show that dmaps c into itself. In fact,

OOOOd (Ψ) (�) − Φ0OOOO2� ≤ OOOOO(�−�� − b)Φ0OOOOO2�
+ ∫�
0

OOOOO�−�(�−�)Q (^, Ψ (^))OOOOO2� 	^ ≤ _2
+ ∫�
0

OOOOO�−�(�−�)Q (^, Ψ (^))OOOOO2� 	^ ≤ _2 + (2E� )�
⋅ ∫�
0
(� − ^)−� �−(�1/2)(�−�) ‖Q (^, Ψ (^))‖ 	^ ≤ _2

+ (2E� )� ∫�
0
(� − ^)−� �−(�1/2)(�−�)� ‖Ψ (^)‖2� 	^

≤ _2 + (2E� )� � (_ + OOOOΦ0OOOO2�)
⋅ ∫�1
0

(� − ^)−� �−(�1/2)(�−�)	^ ≤ _, for 0 ≤ � ≤ �1.

(35)

�e fact that d(Ψ) is continuous from [0, �1] to G2� is easily
proved.

Next, we shall prove that d is a contraction. In fact, ifΨ1, Ψ2 ∈ c and 0 ≤ � ≤ �1, then for Δ fl ‖d(Ψ1)(�) −d(Ψ2)(�)‖2� we have that
Δ ≤ ∫�

0

OOOOO�−�(�−�) (Q (^, Ψ1 (^)) − Q (^, Ψ2 (^)))OOOOO2� 	^
≤ (2E� )� ∫�

0
(� − ^)−�

⋅ �−(�1/2)(�−�) OOOOQ (^, Ψ1 (^)) − Q (^, Ψ2 (^))OOOO 	^
≤ (2E� )� ∫�

0
� (� − ^)−�

⋅ �−(�1/2)(�−�) OOOOΨ1 (^) − Ψ2 (^)OOOO2� 	^ ≤ (2E� )�

⋅ � (∫�
0
(� − ^)−� �−(�1/2)(�−�)	^) OOOOΨ1 − Ψ2OOOO�1

≤ _2 (_ + OOOOΦ0OOOO2�) OOOOΨ1 − Ψ2OOOO�1 .
(36)

�erefore, ‖d(Ψ1)−d(Ψ2)‖�1 ≤ (1/2)‖Ψ1−Ψ2‖�1 for allΨ1, Ψ2 ∈c.
Finally, by the Banach 	xed point theorem,dhas a unique

	xed point Φ in c, which is a continuous solution of integral
equation (29). By Lemma 3, this is the unique solution of (22)
on (0, �1) with initial valueΦ(0) = Φ0.

�e previous theorem does not tell anything about the
maximal interval where Φ is de	ned. In this regard we have
the following.

�eorem 5. Assume that for every closed set T ⊂ int(S�),Q([0,∞) × T) is bounded in �. If Φ is a solution of (22) on(0, �1) and �1 is maximal, then either �1 = +∞ or else there
exists a sequence �� → �−1 as 9 → ∞ such that Φ(��) → gS�.
Proof. Suppose �1 < ∞ and there is not neighborhood � ofgS� such thatΦ(�) enters� for � in an interval [�1−h, �1), withh small enough.Wemay take� of the form� = S�−TwhereT is a closed subset of int(S�), andΦ(�) ∈ T for � ∈ [�1 −h, �1).

We are going to prove that there exists Φ1 ∈ T such thatΦ(�) → Φ1 in G2� as � → �−1 , and this implies that the
solution may be extended beyond time �1 (with Φ(�1) = Φ1),
contradicting maximality of �1.

Now let i fl sup{‖Q(�, Φ)‖ : � ≥ 0, Φ ∈ T}. We 	rst
show that ‖Φ(�)‖2� remains bounded on the interval (0, �1);
in fact

‖Φ (�)‖2�
≤ OOOOO�−��Φ0OOOOO2� + ∫�

0

OOOOO�−�(�−�)Q (^, Φ (^))OOOOO2� 	^
≤ �−�1� OOOOΦ0OOOO2�

+ (2E� )� ∫�
0
(� − ^)−� �−(�1/2)(�−�) ‖Q (^, Φ (^))‖ 	^

≤ �−�1� OOOOΦ0OOOO2� + i(2E� )� ∫�
0
(� − ^)−� 	^

= �−�1� OOOOΦ0OOOO2� + i(2E� )� �1−�1 − E .

(37)

Now we consider the di�erenceΦ(�)−Φ(j)with � and j such
that �1 − h ≤ j < � < �1. It is obtained that

Φ (�) − Φ (j)
= (�−�� − �−��)Φ0 + ∫�

�
�−�(�−�)Q (^, Φ (^)) 	^

+ ∫�
0
(�−�(�−�) − �−�(�−�)) Q (^, Φ (^)) 	^.

(38)
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For each term in the right hand side we get an estimate. Let us

call b1 fl ‖(�−��−�−��)Φ0‖2�, b2 fl ‖ ∫�� �−�(�−�)Q(^, Φ(^))	^‖2�,
and b3 fl ‖ ∫�0 (�−�(�−�) −�−�(�−�))Q(^, Φ(^))	^‖2�; now we have

b1 = OOOOOOOO∫
�

�
*�−��Φ0	^OOOOOOOO2� ≤ ∫�

�

OOOOO*�−��Φ0OOOOO2� 	^
= ∫�
�

OOOOO�−��*Φ0OOOOO2� 	^ ≤ ∫�
�
(2E� )�

⋅ ^−��−(�1/2)� OOOO*Φ0OOOO 	^ ≤ (2E� )� OOOO*Φ0OOOO
⋅ ∫�
�
^−�	^ = (2E� )� OOOO*Φ0OOOO �1−� − j1−�1 − E ,

b2 ≤ ∫�
�

OOOOO�−�(�−�)Q (^, Φ (^))OOOOO2� 	^ ≤ ∫�
�
(2E� )� (�

− ^)−� �−(�1/2)(�−�) ‖Q (^, Φ (^))‖ 	^ ≤ i(2E� )�
⋅ ∫�
�
(� − ^)−� 	^ = i(2E� )� (� − j)1−�1 − E ,

b3 ≤ ∫�−�
0

OOOOO�−�(�−�−�) (�−�(�−�+�) − �−��)
⋅ Q (^, Φ (^))OOOOO2� 	^
+ ∫�
�−�

OOOOO(�−�(�−�) − �−�(�−�)) Q (^, Φ (^))OOOOO2� 	^
≤ i(2E� )� OOOOO�−�(�−�+�) − �−��OOOOO ∫�−�0 (j − ^
− h)−� 	^ + ∫�

�−�

OOOOO�−�(�−�)Q (^, Φ (^))OOOOO2� 	^
+ ∫�
�−�

OOOOO�−�(�−�)Q (^, Φ (^))OOOOO2� 	^ ≤ i(2E� )�

⋅ OOOOO�−�(�−�+�) − �−��OOOOO (j − h)1−�1 − E + i(2E� )�
⋅ ∫�
�−�

((� − ^)−� + (j − ^)−�) 	^ = i(2E� )�

⋅ OOOOO�−�(�−�+�) − �−��OOOOO (j − h)1−�1 − E + i(2E� )�
⋅ (� − j + h)1−� − (� − j)1−� + h1−�1 − E .

(39)

Since �−�� is compact for � > 0, then {�−��} is a uni-

formly continuous semigroup,which implies that ‖�−�(�−�+�)−�−��‖ → 0 as � → j.
Finally from the estimates given for b1, b2, and b3 we

conclude that there existsΦ1 ∈ T such that lim�→�−1Φ(�) = Φ1,
and the proof is complete.

Corollary 6. �ere exists h > 0 such that the solution Φ, of
problem (22), satis�es the estimate

‖Φ (�)‖2� ≤ OOOOΦ0OOOO2� (40)

for all � belonging to the interval [0, h).
Proof. Let T a closed subset of G2� that contains the initial
condition Φ0 in its interior and i fl sup{‖Q(�, Φ)‖ : � ≥0, Φ ∈ T}. �ere exists �̃1 > 0 such that

‖Φ (�)‖2� ≤ �−�1� OOOOΦ0OOOO2� + i(2E� )� �1−�1 − E ,
for 0 < � < �̃1.

(41)

�erefore

‖Φ (�)‖2� < OOOOΦ0OOOO2� + i(2E� )� �1−�1 − E , (42)

and the result follows due to the fact that
lim�→0+i(2E/�)�(�1−�/(1 − E))��1� = 0.
5. Example and Numerical Simulations

To illustrate our theoretical results we consider the particular
case of system (1)-(2):

g�1g� = 	1 g2�1g�2 − �1�22 + � (1 − �1) ,
g�2g� = 	2 g2�2g�2 + �1�22 − (� + �) �2,

(43)

gV1g� = 	1 g2V1g�2 − V1V
2
2 + � (1 − V1) + � (�) (V1 − �1) ,

gV2g� = 	2 g2V2g�2 + V1V
2
2 − (� + �) V2 + � (�) (V2 − �2) ,

(44)

where 0 < � < �, � > 0. System (43) corresponds
to the Gray-Scott cubic autocatalysis model [13] which is
related to two irreversible chemical reactions and exhibits
mixed mode spatiotemporal chaos. Here �, �, 	1, and 	2 are
dimensionless constants, where � corresponds to the rate of
conversion of a component into another, � is the rate of the
process that feeds a component and drains another, and 	�,� = 1, 2, are the di�usion rates. In the context of (1) the

function � is de	ned as � ( �1�2 ) = ( −�1�22+�(1−�1)�1�22−(�+�)�2
) and the (8),

that is, �� = ���� + �(�, �, �), becomes in

(�1�2)� = ( 	1 00 	2 )(�1�2)�� + (�1�22 + 2�2 (�, �) �1�2
+ �22 (�, �) �1 + �1�22 + 2�1 (�, �) �2 (�, �) �2)(−11 )
+ ( −� + � (�) 00 −� − � + � (�) )(�1�2) .

(45)
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Proposition 7. �ere exists a real value function ℎ, continuous
and increasing on the interval (0,∞) such that |�(�, �, �)| ≤ℎ(|�|) for all (�, �, �) in (0, �) × (0,∞) ×R

2.

Proof. �e estimates

������1�22����� ≤ |�|3 ,
����2�2 (�, �) �1�2���� ≤ 2� |�|2 ,������22 (�, �) �1����� ≤ �2 |�| ,������1�22����� ≤ � |�|2 ,

����2�1 (�, �) �2 (�, �) �2���� ≤ 2�2 |�| ,����������(
−� + � (�) 00 −� − � + � (�))(�1�2)

���������� ≤ C |�| ,

(46)

whereC is a constant that depends on �, �, and the function�,
imply that |�(�, �, �)| ≤ √2(|�|3+3�|�|2+3�2|�|)+C|�|.�us,ℎ could be de	ned by ℎ(^) = √2(^3 +3�^2 +3�2s) +C^.

To apply �eorem 4, we observe that for the abstract
problem the extended function given in (23) becomes in

Q (�, Φ) (�) = � (�, �, Φ)
= (Ψ1 (�, �) , Ψ2 (�, �))	 + � (�)Φ (�) , (47)

where

Ψ1 (�, �) = −Φ1 (�)Φ22 (�) − 2Φ1 (�)Φ2 (�) �2 (�, �)
− Φ1 (�) �22 (�, �) − Φ22 (�) �1 (�, �)− 2Φ2 (�) �1 (�, �) �2 (�, �) − �Φ1 (�) ,

Ψ2 (�, �) = Φ1 (�)Φ22 (�) + 2Φ1 (�)Φ2 (�) �2 (�, �)
+ Φ1 (�) �22 (�, �) + Φ22 (�) �1 (�, �)+ 2Φ2 (�) �1 (�, �) �2 (�, �)− (� + �)Φ2 (�) ,

(48)

being Φ = (Φ1, Φ2)	, �(�, �) = (�1(�, �), �2(�, �))	.
Now, forΦ ∈ G2� using (20) and Proposition 7 we obtain

that

‖Q (�, Φ)‖ = OOOO� (⋅, �, Φ)OOOO ≤ ℎ (N ‖Φ‖2�) . (49)

Hence Q maps bounded sets in [0,∞) × G2� into bounded
sets in�.

In order to realize a numerical implementation to illus-
trate themain result, the values for the constants	1,	2, �, and� appearing in system (43)-(44) are chosen as 	1 = 5 × 10−3,

E
(t
)

t

0

5

10

0
50

100 2
4

6 8 10

p
(x)

L2

Figure 1: Synchronization error as function of the time and the
intensity of the perturbation de	ned as ‖�(�)‖�2 .
	2 = 5×10−4, � = 0.028, and � = 0.053, and initial conditions
are given by

�1 (0, �) = sin(6�� ) ,
�2 (0, �) = (�−1000(�−2
/3)2 + �−10(�−
/3)2) sin(6�� ) ,
V1 (0, �) = �−10(�−
/2)2 sin(6�� ) ,
V2 (0, �) = �−10(�−
/2)2 sin(6�� ) .

(50)

In this case the Lipschitz constant �, appearing in (33), is
given by

� = √2N(� (3√2 (N (_ + OOOOΦ0OOOO2�) + �)2 + � + �)2
+ OOOO�OOOO2)1/2 .

(51)

Figure 1 shows a qualitative result of the synchronization
error as function of the time, de	ned as

s (�) = [1� ∫

0

2∑
�=1

(�� (�, �) − V� (�, �))2 	�]1/2 , (52)

and the intensity of the perturbation de	ned as ‖�(�)‖�2 .
�ere, for a 	xed time, the error always is minor compared
with the initial error, consistent with our main result.

6. Concluding Remarks

We present a synchronization scheme of reaction-di�usion
equations connected by a localized one-directional coupling
function and give conditions that ensure the synchronization
at least for a 	nite time. Conditions for synchronization

depend on a sort of coupling intensity given by the �2 norm
of the coupling function.�is norm is related to the intensity
of local perturbation and its spatial extension, suggesting
that this relation can be optimized in order to improve the
synchronization or design of a control scheme.

Finally, althoughwe have proven that the synchronization
occurs in an interval of time, the numerical simulations
suggest that this interval can be extended.
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[9] P. Garćıa, A. Acosta, and H. Leiva, “Synchronization conditions
formaster-slave reaction di�usion systems,”Europhysics Letters,
vol. 88, no. 6, pp. 60006-1–60006-6, 2009.

[10] Z. Xu and W. Jiangsum, “Synchronization of two discrete
Ginzburg-Landau equations using local coupling,” Interna-
tional Journal of Nonlinear Science, vol. 1, no. 1, pp. 19–29, 2006.

[11] R. O. Grigoriev and A. Handel, “Non-normality and the local-
ized control of extended systems,” Physical Review E: Statistical,
Nonlinear, and So� Matter Physics, vol. 66, no. 6, Article ID
067201, pp. 067201/1–067201/4, 2002.

[12] K. Wu and B.-S. Chen, “Synchronization of partial di�erential
systems via di�usion coupling,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 59, no. 11, pp. 2655–2668,
2012.

[13] P. Gray and S. K. Scott, “Sustained oscillations and other exotic
patterns of behavior in isothermal reactions,” �e Journal of
Physical Chemistry, vol. 89, no. 1, pp. 22–32, 1985.

[14] D. Henry, Geometric �eory of Semilinear Parabolic Equations,
vol. 840 of Lecture Notes in Mathematics, Springer, New York,
NY, USA, 1981.

[15] G. R. Sell and Y. You, Dynamics of evolutionary equations, vol.
143 of Applied Mathematical Sciences, Springer, 2002.



Submit your manuscripts at

https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


