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ABSTRACT

The properties of SU3 finite transformations are investigated.
These transformations on the defining three-dimensional complex space
are parameterized in a form employing three factors, two of which are the
Euler parameterization of an SU2 subgroup.

The irreducible representations of the factored parameterization
-are found explicitly. The formula for the volume element is derived,
and the volume element is calculaved for all parameterizations discussed.
The orthogonality relation is verified for the factored parameterization.

Symmetries of the transformation matrices are discussed. A defi-
nition of triality results and a proof that it is additive modulus three
follows. A generalization of G-Parity is presented which reduces cor-
rectly for pions.

Spherical harmonic basis states are derived as a specialization
of the transformation matrix, Differential equations representing the
infinitesimal generators are used to derive the infinitesimal generators
of Biedenharn. These states are found to have symmetries that suggest
their applicability as meson states. One parameter mass formulas for
mesons and for baryons are derived. These results support the sugges-
tion that ;he group parameters have some physical reality in the space
of the eight-dimensional representation.

L

vii



CHAPTER 1

INTRODUCTION

For some time now the group SU3 has been thought to carry the
symmetry of the elementary particles, Since it contains SU2 as a sub-
group, all the results concerning isospin can be incorporated into the
scheme. The group has rank two which allows the introduction of another
quantum number, the hypercharge or strangeness., Each irreducible repre-
sentation (IR) is thought to correspond to a multiplet of particles;
however the elusivenes3 of particles for the three-dimensional and gix-
dimensional representations leads some to believe the actual symmetry

group mizht be SU3/Z3.

Summary of Results for Finite Transformations

Considerable work has been done concerning the infinitesimal
generators of the group. As an alternative mathematical technique, we
wish to investigate the global properties to see if the group parameters
have any physical‘meaning.

A parameterization of all unitary groups was given by Murnaghan
(1962. pp. 7=11). We derive the parameterization used by Nelson (1967)
which is of special interest as it employs two factors which are SU2

transformations in the Euler form.
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Chacon and Moshinsky (1966) derive the IR's in Murnaghan's para-
meterization by extensive use of Weyl reflections. Nelson, using his
parameterization, resﬂricted the representation matrices to a particular
right-hand state, and thus derived a single column of the matrix which
acts as a set of spherical harmonic basis states, Both Nelson and pre-
Qiously Beg and Ruegg (1965) employ differential operators representing
the infinitesimal generators in their derivatiocns. We derive the con-
plete matrix for each IR; the SU2 factors are known and the third factor
is evaluated by employing tensor basis states. By applying a finite
transformation to these tensors the spherical harmonic basis states are
derived,

Weyl (1946) and Murnaghan (1962) discuss the dependence of the
volume element on the class parameters, for integration concerning the
characters of the group. We evaluate the complete dependence of the
volﬁme element on all parameters for Nelson's, Murnaghan's and the more

familiar

parameterizations, ‘

Symmetries of the transformations were investigated and one
result is a natural definition of triality. Baird and Biedenharn (196L)
and Hagan and Macfarlane (196L) prove triality is additive modulus
three. We provide a proof that follows very simply from our definition.

Employing the sphefical harmonic basis states, the infinitesimal

generators derived by Biedenharn (1963) are easily obtained.,



By requiring certain symmetries of the basis states, one-
parameter mass formulas are obtained for mesons and baryons. These are

specializations of the Gell-Mann-Okubo (in Okubo 1962) mass formula.

Review of SU2

To clarify the problem and procedure we first consider the group

Transformations in SU2 can be parameterized using Euler angles,

su2,.
SwJy ~@T: -i¥J - |
D(*‘ﬂ,r): g e e ’ O% o 2 47T (1.1)
oL ¥ £ 47
0ot B &L T
J3 can be diagonalized and since J2 commutes with all Ji, the basis
states of the IR's can be labeled Yim
2 - .y .
J Wim=dli+i) Vi m J specifies the IR (1.2)
T, ujjm = m -\I/Jm m specifies the states within an IR

By considering the Lie algebra of the infinitesimal generatbrs Ji, all

their IR's can be derived,

Finally the representations
J m> (1.3)

However

) f i Ty - -
Dw{“'ﬁ{'” = <mle qgeﬂz’e ¥

-pTa

can in principle be determined by expanding the exponentials,

in practice this is difficult for the non-diagonal matrix
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An alternative method to derive the IR's of SU2 is‘tb reduce the
direct product 2@2Q 2 cose One finds polynomial basis states or
tensor states that transform irreducibly. The SU2 transformation édp]h
is applied to these states to derive the general form of dﬁﬁ;,.

The spherical harmonic basis states are found to be a speciali-

zation of the representations, to a particular right-hand state
- J *
e (, = .Ml_. )
1me B.=) ,’ = Dm(“o»a) ) (loh)

The volume element is

J . d=  dY dB
R («,p.7) SinB 4T HT 2 (1.5)

and the orthogonality relations are derived by Clebsch-Gordan (C.G.)

decomposition of the direct product.

. .
J J
wp ) D N,
ﬁml(-:n‘;f 9 | m, ;‘n:ﬂ, v d R(«,p,y) (1.6)
m'-m.l voe PRI N
=2 LOad 5 -momem) CLLILS S - mim] M')/DJ(-(,F, " d Rep, )
Jmm m e
.- ‘
= C(J‘Jxo‘;-m'mLO)C(J.; J’LOJ'M.'YYIZ 0) = e JIZJS:'W"M" Sm’ m,

In this paper we are guided by the strong analogy that exists
between our parameterization and that for SU2, We follow closely the

same procedure to derive the corresponding results for SU3,



We use the following set of infinitesimal generators.

The basis states are chosen such that 13 and IS

o I,= o

o

(o]

{ T.b: o

[o] ©

0 “

ol - _ L
\ J_,- 3

- o

o )

- I I,= / o o
o o -1 o
(@) [ O O o
o "A.'\ I, = o © o
o (] [¢) 0 /
0 o 6 1 o
[v] (v
{
T o te (I T)= 2 5:;
-2
© V3

are diagonal

in all representations and thus serve to partially'label the states

Y

™

1l

“il

—

I,i‘

o~

€
7 1

Y (%) (1.7)

il

Y o)

LWel) = v w(s)

The eigenvalues (Y, M) of the states within an IR are displayed in

two-dimensional weight diagrams.

The addition of I° = %(112 + I,

2, 132), forms a complete set

of commuting operators which serve to label the states

I* (L) =

L(L+1)P(L)

(1.8)
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We will derive a parameterization factored in a manner analogous

to the SU2 Euler angles and give its explicit form.

where specifies the IR

=) :
(A
Vi L, specify a state in an IR (I, Y,M)

= are the eight parameters

Again, in the explicit determination of the IR we encounter the matrix

-iv I -<
6“”™ (analogous to e°°" ) which is determined by the use of tensor

states.
Choosing Vo, = 0 (I = 0), we derive the spherical harmonic basis

states for SU3, The volume element and orthogonality relations are

derived by a method analogous to that used for SU2.



CHAPTER 2
PARAMETERIZATION OF GROUP TRANSFORMATIONS

Nelson (1967) uses the following parameterization:

5Ty <AfI, LBIL urT, -wly I, 8T, X1
U(:‘):e_, ez.le e‘_,e ‘le;i z.netj . (21)

The following is a derivation of this parameterization.
Transformations in SU3 map 2 — Z' where Z and Z' are vectors
in three-dimensional complex space such that the norm of Z' equals the

norm of Z. We set 272 =272 = 1.

Beg and Ruegg (1965) show that Z and Z' can be parameterized as
follows:

“9
@ «cos o oL ¢ L 2T
Z = @;% ‘os o £ < =
Sin e cos ¢ 0L 6 2 & (2.2)
N ' . v i
e ne sing °oL ¢ ¢

(Z' with primed variables.) We now show that a solution for (<.pB, ¢' )

exists such that

o
1, Z = E§¢3 cos ¢ (2.3)

CoaA

e ! fin 4)“



is in SU3.

The equatieons

*-fl(oc‘*r y'-24)
e COS ﬁ-’

L~ y+2d,) ’
S Ih% ces 6

S

2

€ smme sing

are satisfied by

and by defining

Cos

&

Cos ¢" = sink

a(='-3")
&

'—1:.('<‘+¥') '
<a§-§_~

'
Sl)‘\éz_'

S(='-y'-2 4
S;qﬂ' sinEe Cos¢g =O

2

_:_'(.('-4- ¥ 42 d‘)

' o
Co;[j-_- Sine cos ¢= € cos ¢

- e

Sin d)l'
-{(Q"bt.)
. b, + da
*(d).;- P )

e
= coT © SeC\?
Cos 6 + C"f%’ Sin @

e_-_—:-' '-v)

S$in i

A0+ pY)
e;( cas%’

<4,

cos ¢

o

(2.14)

(2.5a)

(2.50)

(2.5¢)

(2.6a)

(2.6b)

(2.6c)



We define
-,:)?(13'*{—.—'-]]:,) "JVI,
—Ti; = e Toe , (2.7)

T3 is in SU3.
Therefore if 2.p — P, (2.7a)

e = e oL P < 3T

Vo= 3 - ¢ o< v < I (2.70)

O

then T .2 = o (2.8)

Now consider T2 defined as T,' with unprimed variables, obut the
same ranges. T2 is the most general special unitary matrix with (1) in
the (3,3) position. Let U be a general matrix of SU3, From equation

2.8 and since the matrices are unitary, we have

W, W, , o |
-_/' —l — ' == h
_rg ’2 U - Uy, Uy i B —]: (2.9a)
o o ]
Th f yg=T7T.TT°1"' . 2.9b
erefore 2 2137, it (2,9b)
e '’ can be absorbed into e ° * by a redefinition of ¥ .
Noting that
g ~iwly il
e I, e =1,

(2.10)
Il

and another redefinition of ¥ and oé to absorb e ’ would allow the

replacement of I_ by I . Also an interchange of the role of the first
and second components of Z would allow the replacement of I6 or 17 by

In or 15' We choose Ih to be consistent with Nelson's work (1967).
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We therefore arrive at the final form.

Doeur - “E Ly gl i8I, y1, v, oI, &L L FI
(z)= e e e e e e e e (2.11)

oL <Ly L 4T o Lp'LT 0L P L 3T

where these are the minimum ranges of the parameters. Other parameter-

izations are discuésed in the appendix (Appendix A).



CHAPTER 3
EXPLICIT DETERMINATION OF THE TRANSFORMATION MATRICES

We now seek to generalize our result for the defining three-
dimensional representation to all IR's. In what follows we shall use the
integers (A,M ) to denote an IR (Baird and Biedenharn, 1963), and
(I, Y, M) to denote a state within the IR, The symbols (A, 4 ) will be
suppressed unless needed. |

From the commutation rules, it follows that an SU2 subalgebra
exists, composed of Il’ 12, and I . Hence the basis states are chosen

3
such that

. L 1
I'=1 -1 +1; |, 1, and T, (3.1a)

-42;'11 ";'gI II iry

> D («ﬁ 7 Syy S (3.1b)

ISR ry
Ml e ) = ,
: & Syy Sir Sy (3.1c)

Now consider a weight diagram (Figure 1) which displays the

basis states according to the (Y, M) values and consider

&Tm T

11



Fig. 1. Weight Diagram for Derivation of the Representations

T and T2' cornect states in the same horizontal lire, while

connects states on the diagonal shown. This gives a relation between

Mitt gnd M'Y,

t

MYz Mz (Y-Y) .

Surmarizing the above

1y iy ALY I T ~iv L,y
<M ‘D(:‘)l"'\'> = Ze DM;-«I,\qﬂ,a’) MY"l e * N?:'>

One notices that the undetermined ma‘brix<fmr' ‘

D l(.(l‘ ‘F" ")

LT a

¢ lmm > plays

12

(3.2)

& role analogous to d':(’&)" of SU2. In SU2, the d:n(ﬁ\), matrix is deter-

B3

mined by applying e

to a suitable pelynomial basis state represen-

tation. A search for basis states in SU3 led to a paper by Mukunda am

Pandit (1965). Their basis states /" are given in terms of tensors

meeem
~T; N " which transform under the three-dimensional defining repre-

- N

sentation and its complex conjugate.
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U ' .
m, e M) m, ™ wn'c N u€ M, e e My

T D AT AT AT LA S (3.0
N,ere Ny m, ma n, N My e s N

To have the Condon-Shortley phase conventicn hold for the T and
V SU2 subgroups, a change in basis is made. We define new bases '\VC

such that for the complex conjugate three-dimensional representation

v o= - YV, =2V, WEY] ey

|

-1 © o
— e -
or ‘V = \/\/_w* \/\/: o + o
I°) o +l v
Correspondingly
c 3
Dexty =2 W Dy W™ (3.5b)
) *
JeteI€ oL -
or —e = W[:e W
and I: = W (_I:)W_‘
—d, 7,

Following their notation ! jam, has
. . s ' _ o4
jp *+ my upper 1l's, Jy = my upper 2's, and AA 231 upper 3

j2 -m lower 1l's, :j2 + m2 lover 2's, and M - 2;j2 lower 3's.

We need the relation

Min

I N ge . un . . s '
™ —Na(l'Y) ZC(J‘ S I ymm, M) N,(J,mmm, J;anl) l ij1n:L (3.6a)

M, My



and the inverse relation

-{ -1

sz =[N'(i‘m.i.mxﬂ };C(J,J;I;m,mM}M(J.LI)[N;(I,Y)J piv - (3.60)

N R ARTACE BRI Y () (3.60)
r "Ji
: B Al Al
N, (6. g,m,) = {_(J.*m')!(J‘-M-)I(l-Z W) HdrmD s -m) ) (w2001 ] (3.64)
N, (i D)= (2Lt (A=), e, =I) (=3, +3,-1)! 3
LU (J_rJ,-I)‘,(i,rJ‘fI*l)l(k‘lil).'('ﬂ-li.)!] (3260
I_. , - L
o 2Ir)l (Ar M) *
N3(IY) T T acam - uf)u (3.61)
}( 3 ".L*_‘C-r])l( «I‘-—H)’
A ¢ )

where ( 2,4 ) denote the IR..
For low-dimensional representations or the important special case

where I' = M' = O, the transformation of interest

. 372
- cos v o] ca $in ¢ (3°7 )
-H/J.,,
€ - o | )

~L$inv o cos V[

can be applied directly to these tensors. Empleoying the standard phase

convention,



—C

15
¢ Ay ™M m
Ay = L™ T = AT ) (3.70)

To illustrate the procedure, the results for the eight-dimensional
IR is worked out. The numbering of the states is shown on the weight

diagram (Figure 2).

o™
~

Fig. 2. Eight-dimensional Weight Diagram

Using this notation, the equations are

=T [2>=TE =T 4D AT
s>= T 1e>=fET) {1>=T! [e>=T
The inverse relation yields

T =ml6> + %4> (3.80)

T;:—_‘/'Z"lé> + l/"'f-“‘f‘>,,

We now apply the transformation to the statel»l;> .
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-..VJ.A,I ‘>‘:—. T, . 3 R —
e SV LSy L - sinY !l + Cos'yv ) 3 ~« I/thoSu]

g (3.9)

= Casllll ! >“;’§- Siny co;ulq >-~',/j;:-— Sinv cosvl [J>- Sinty ‘ g >

The summary of transformations of all the states in the eight-dimensional

IR follcws.,



Cosv

- E Sy eesy

~as5iny

(2

- ’2_517”’ oV

QH’\‘V

cos Vv

~a Siny

£ sy ceo
v SNy tesy

3{(1 + costv)

J3
ey Sin V¥V

-

ST MY ces v

- Siny

oSV -

-«@ Siny eV \

'E Sy

“FsmWircostV

3
“a [/; SV (cs ¥

-l Siny

Cos V

-4.
vz Sl oSy

‘SIY“V \

v }/;‘SMVLOSV

Ces*y /

(3.10)

LT
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A general result for all IR's would be very difficult with this

method. An easier way presents itself by noting that

&—'I— -a = \
2 ke I ezIL _ I (3.11)

<IMY!Q‘.~VL {IMY>: CJMI(;y) SYY' Srt o (3.12)
Therefore we have only to d;termine matrices of the type
Gal e F LD
- (3.13)

Ty | --vL, 'y~ _ <r\,' - I I \Ly I; LY ST Loy
Gl D=2 Ghe ™ M 6r, d 5, il TR,
o B i

<

We first note that for the states obltained by the transformation

e = TR 2y) D (3.1ka)

> T E) D (3.11s0)

follow from the commutation rules. This impliecs that all states obtained
from this transformation acting on a state, belong to the same point on

the weight diagram.
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s ERY .
Also MM:‘{;’?’-‘_%‘ , Y, = _%’+M (3.15)
Y'me

. . . N :
. ) I’/ \\ (6)
Y . S C
’ A}
)/ﬂ [:1_3.-_-./,’-’ _____ Co o e ccfm == ) - Y
(b;\\‘ , (2) < M-\'
v ae
™
7
Fig. 3. Weight Diagram for Derivation of the €' Factor

Transformations of this type map voints into points along lines (6) on

the weight diagram.
(=)

and

VLA;

A EOS 2.

The explicit form of this matrix can be found by applyin

transforrmation to the tensor basis states,

21 x Y, .z
’ bﬁa>gl.pl (J(l’/) %‘;JY<P."\Y\Q L

Therefore from Figure 3 we see that the sun over

( 2 ) above can be replaced by a single sum over I

. (3.16
i

®

z th

For the three-dimensional

representation and its complex cenjugate, tﬁe following come from the

standard phase convention,

)



: [4
llgl(' 4'1;1-0. 20

e : [ o o e - ! o o
. ol
o o o o - (3.17)
Q P (o] (% A o
5, m,
These affect the tensors.T}jml in the following way. Each

upper 2 and 3 is replaced by 13 and i2 respectively. Iach lower 2

and 3 is replaced by -i3 and -i2 respectively.,

Jom, A5 mML M+ My T-;(A-zi.«m.),g(zq,fm,-a) (3.18)

TJ;M,_>(":) (-'I':)

F(Mo= S, ), L (<35, m, wu)

—

Using the previous relations connecting the states XZif and

tensors, we finally obtain

’ N z It"‘ > /\'Jtmm" m, M"Jm‘nf ",

[<Y« : 1+ { — . . : ‘ o N -~ °

mat € I >—§(~) (=) CM i IommM) X (3.19)
™, m,

C ( L=, L (=i am,), I 73 (3a™7 e, =), (-3, em, v M), Md) X

NJ. (—‘i()‘ -3 m‘) Y é("" - jJYd'n—' W‘L)) \:N3 (I.‘,Y.,‘-ﬂ .

This completes the explicit form of the transformaticr mairices,.

It is interesting to note the connection between these finites
group transformations and the Weyl refléctions, which lie outside the
group. In the interesting case of reflections and transformations across

the vertical, the operations are:
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- .
W= Jjo | o en'—l': o i o el*ﬂllz °© s o (3.20)
f L] © *a o o iy I ¢
0 o | o o i © c /
+# AT ¢ = EI°
W= o 1o e o . o\ Q s Jo 31 o
| v v +2 o oj + o 0}
c v o 0 o ‘/ o o j

A successive application of the grdéup operation followed by the
Weyl reflection leaves the tensors unchanged except for a phase factor.

These product operators are therefore diagonal and mzy be of physical

. i I_;
interest. Using the symbols X; to denote the operation e ‘ and
applying these operators to the tensors we have

W _,i‘. =, Iy 21 M-I-'}_:?‘-()-M) - ‘f (3 2-)
X, V., = (i) (-1) Vo e
o r - Y 1
o~ IY LM /""‘-L‘—,:"'ECRM) _Iv
Woxs Vi = (-0 ) Y .
For the eight-dimensional representation A = A« = 1, and for
the pion states I = 1. Therefore
i b 1o ~71 e .
\,\/X' 1_}7M = - ¥, pions (3.22)

i

W Xf ’\I/A" - (_,)M vV ll“;’ pions .
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Since the VWeyl reflection is related to charge conjugation and
the group operations to isospin rotations, the product operations are
-3

related to G-Parity. In fact WXl may be a generalization of G-Parity

as it reduces to the desired form for pions.



CHAPTER 4
SPHERICAL HARMONIC BASIS STATES

For the group SU2, the spherical harmonic basis states were
. o : . D80
obtained by specializing to the right-hand state m' = 0 in b/, tp20%
In this way the dependence on Y was eliminated. Comparing this to

SU3 we have

Dw?.;nlgy) . <Jml e—-.‘.-<73 éﬁﬁfz e-A'YT: \J O>/ (L.1e)

= <J:m\.éj’.‘j; C:‘.p : 1‘) O> for SU2.,

. P - " T _ BT vy o, T .t ot .
“ 1y | “als A% AL -ATIL sAvhe gL LB o
D —Cale ™ e e e e e T & Moy
7ty Sl <35 - 8T, -I4EI, -Avi, .
—\m!€ e e e lr“‘> Fer SU 3,

From the close analogy to SU2, we see that the choice of I = 0
for the left-hand state eliminates three variables,

We now derive the explicit form of this matrix. Using the weight
diagram (Figure L), starting with the right-hand state, we see this

state is connected to states on the line marked L,

23
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P [ . » .
Y M (2) Yy M
Vo m o v = e o o o) .- ---/-'
Y :
: ) . ,)’{4)

Yo M=o

M
Weight Diagram for Derivation of Spherical Harmonic Stztes

Figo )-10

The left-hand state is connected to states on the horizontal line and

therefore

(L.22)

A (4.2b)

formation

- -PY _ I ~v 1L
KPLY: e D?ﬁﬁﬁ) 4@%4 e ’
MoL(Y-Y.)

2 )

We can evaluate the last factor by applying this trans

to the tensor basis states. From equation 3.6a we have

, 2
r (hemal) | (L.3)

oY, \
l0> “(ATIM*_J;‘ ‘f'l)l(;';\_;’ﬂ'%*l)!‘} Ta o

.

—_— O

The effect of this transformation on | o o follows from equation

3.hL:
z (L)

TZ:—>; (:\J(‘U -isiny) (cosuj\ t( ~SMV) (‘"5") T m=8), 4 (=)
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—dy

.
Each | w, is a linear combination of basis states as shown by

the inverse relations, equation 3.6b. We therefore take the projection

- IY
of each tensor occurring in the sum ontc the basis states VoM

Also note that M' =m; +m, = L(t + s -4) gives a relation

that reduces the double sum to a single one.

In T: ‘; there are X upper and s lower 3's. Each upper

3 contributes a -2/3 to Y and each lower 3 a +2/3,

We now have
]

S : , 2 -l
Gl e = [ty o] 3 0aae) »

M sl -t ) .
1 (L.3)
SAM 2T AMrMoT -2t -zM'fzt[ : .
(simv) (cesv) -<) ! (-t,—_ =, M f;_t‘ , M -'j_')] x
e i - . ' . Pt -
Cly, -w=% I3 3, m-3 M) N (§,-1-2,T)
Using the explicit formula for C(j,j.I.m.m_m)
127512
- L
C(L cwiet 105 mt pr)s (21.1) Tl (-aM'=rT)! I 2 (L.€)
ot I T M M) T (e )]
and making the substitution ¢t = % + M' + I we have
4
<1'Y‘ ~vIy oy [ QI (=M -IV (e =T (mr M e Tl (A= M T2)1 ]
M| € |o>-‘|~ (Ar1) (A7) J X
2(8*1) L+ D) {2 L) racr )
{-.) (sinv) (cosv)
SUQIvie) (A-M =1-2) (M ru-T-8)]
T LN £ M (Le7)
= G (Ar)s Csev 2

L(m=a M 2T ), S (aad 2 =21 - )
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The basis states are therefore

oy o~ tarent ¥ 1(xemri) (1-0)
’HJM = (kf!)? (Mrl)'xL csev 9(“//;'”. 0} (2w)
! ,;,;(;-M) flm-2r3YriIe3) L (m-2r3y-(T-3)

Nelson (1957) derived these functions by constructing differen-

tial operators representing the infinitesimal generators. With the

following substitutions these results agree to within a phase factor,

AN —m M —n Y —» MU
f =5

B —r =, Y —s

< — Ly

Perhaps mention should be made here concerning the ninth operator

found by Nelson.

() J .‘-)._. . . .
D = % 5y T = Y in ow. notation (4.9a)
DU = oL p LY ]
-\i M - 73 ()‘M)W M i : (L.59)

The triality of a representation is N -44 mod, 3, so this

operator is closely related to it. We shall have more to say about.

triality in Chapter 6,



CHAPTER 5
VOLUME ELEMENT

For finite groups if F(Ai) is a function of the group elements

A,, then
i

D FA) = D FsA) (5.2)
Ace G A eG

where B is any element of the group. This relation can be extended to

infinite groups where

/% ; /q /X the Greek letters represent the
({(W«))= (o) <) group parameters

We want /l—:(d) Fre) de = /F(Y{o’,-«))/’m) de « The grou: integral is
G G

then lefi-invariant.
The following is a brief summary of derivations by Smirncv (1961)

and Murnaghan (1938). If
Ay = Ay A

then

: - PR
6_/}:”) FLYyy 4¥ = /t'(hﬁ«)) 7:3 F(Y(a‘,-«)) de . , (5.2)
G

27
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We therefore require that

‘%1 PlYoo) = Fl=) . (5.3)

Trnerefore we must find a /A such that this relation is satisfied.

. — 24 '
Define S‘-‘ K (A (V"), A (‘_‘)) = 5—:)\ . (C)Joh)
\
Now 1et A= Am Ay = Ay A Ao (5.5
1) Xn‘ :) i," t-) 51 . ) 7
From T T 35 e using the summation convention  (5.6)
P K J 13

we have S‘M(A(.e)/’-\m'),/%u)) =5.; (A(m,/‘\(é)) Sm (A (&), AM)' (5.7)

tet Ary =1 and Apy= A<y s

Tnerefore S (AmA o, I)= S, (Ag, A) S, (A, T (5.8)
Define f",(,.x) = I S (A H),I)’ (5.9)

and taking determinants above, we arrive at the desired relation:

Py (5.10)

f("‘) = IJ"‘R

Also in equation 5.8 setting A(B) = A(x"') and noting that

SU(I,,A(*)):S,;“, implies l S(I;I)iz ’ , we have

oE

Peay = S (A, A . (5.10)

(3

p =
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Because of the complexity of relations involving <the group
parameters, this form is too difficult to evaluate. However from

A(Q)A(d) = A(¥(w <) ), taking derivatives with respect to = and setting

Ay = A (=),

YAy QANa) DY,
Aoy o=z 7 57, T (5.12a)
becones
)A(—d —_ _.)__ I. — T
A (~<> J =< T e L_ L= e (5.12b)

Since the Ij‘s are linearly independent over the rezl field, the

expansion is unique and therefore

Fr<y = ¢ \C~J 64)] where C is an arbitrary (5.13)
constant to be determined
later.

Up to this point we have discussed only left-invariance. How-
ever if the group is compact (the range of parameters is closed and
vounded), the left-invariant integral is also right-invariant.

For SU3 the volume element is dstermined from

~ J_ T —
T(a‘) 4. l(:) = C,;J(_c-_l)I:, Pty = C‘Cﬂ- ()| . (5.1)

This procedure now requires the evaluation of an eight-by-eight
determinant. Fortunately, this can be reduced to a four-by-four deter-

minant in the following manner,
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For the parameterization

_ LT, g1, ABI rT, uvie 44T, ‘
fewy=C e e e e e e (5.15)

we define D(P =) such that T(¢) = D(r=<)V,

(3

(5.16)

- {i =1
D — R - 3
(f)y= € ¢ is diagonal.

V= Direy lz)
The volume element is unaffected by a unitary, similarity

transformation. The proof is as follows:

Ve LV = G VIV = Sy Wp Ly

(5.17)

V is unitary
s' -
Since VIJ,V is hermitian and the set { Ik} is a basis for three-by-

three traceless hermitian matrices, therefore

vV L; V' = ik Ly where 351 is real. (5.18)

'
= 2 2., we have

Also since the Ik‘s are linearly independent and tr Iin

26s; =t LL =tr VLV VIV (5.19)

=1tr &, &I, I, = 2 Qi G %

and \C‘w'z

Therefore . .
Qig Cig = &.; = %
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Therefore

Coy (=) C(“; = 1T JC<; k)

(5.20)

so the volume element is unaffected except for a constant.

Now making use of this, we have

—_— L - -1 J
\/[ [ ey =, (f)]\/ = D (r,«) = Dr<) For «i=p, (5.21a)

2V
5%V Forw. % £« . (5.21b)

We will order the determinant in the following way:

order 1 2 3 L4 5 6 7 8
Columns: By Ii I, 1,1, 1,I1,1,1I I,
Rows: By I o< 4 v =" gy

Equation 5.2la yields: (A) /5 in the (1,1) position with the remainder

o
k4

the row all zeros.
(B) ’f in the (2,2) position with the remainder
of the row all zeros.
By the rules of determinunt operations, the remainder of the
“irst and second columns can be set equal to zero. These elements can
be set equal to one by moving the constant factor outside the determinant.
From equation 5.21b, we have
(4) ‘f in the (3,4) position, the remainder of the row

all zeros,



(8)-£snp in the (L,3) position, and -£ ces 5 in the

(L4,2) position, the remainder of the row is zeros.

LA
~

s . -4 EI:. m-
Note: This follows from @ *7'T, z(psp5I,+ 9nBL)E
These two results clear their respective columns and give a con~
stant factor with sinf thus reducing the eight-by~eight to a four-by-

“our cdeterminant. The evaluation of this determinant is tedious but

straigntforward yielding

Fe)= C sinp sinp' <im (2y) sin“v . (5.22)

By explicit calculation, we find that the volume elemenv is

unaffected by the replacement of Ih by I, I , o I in the parameter-
57 6 7

ization.

The volume elexment is arbitrary in regards to the coeflicient.
This constant is usually chosen such that Jrf”EQ di=y= | . Ve also

R

wish the volume element corresponding to the SU2 parts of the parameter-

jzation to have the correct form for SU2., We therefore want

20 4T W oui moan

b dat de (:-2?
////////C sinf3 sinp' sin(2v) Sin? Vdpf’l;fd-zf ,,'_{(dM)j—'.’.—; —i.T e

o o o v

Therefore C =1.

v P da IR dY yéx'da dy j
Frayd ey = sinp Siap' sin(avy sV 3T 9w 2 Wwlis 2 37 (5.2)

The volume element for other parameterizations is given in

Appendix B,



CHAPTER 6
SYMMETRIES AND THE ORTHOGONALITY RELATIONS

Considei' the transformation

ryl "‘fj'It ""'f'rl 'y’ _ -APY e M
<M‘ ¢ e’ M‘> - ¢ - gzj‘ gYY' SMM, (é.1)

Tzble 1 lists this transformation evaluated at various wvalues

of (72 =),

Table 1, Finite Transformations Resulting in Scalar ieatrices

Dimension
!
P oL (3) (t) (%)
i
o) o i I L
S L3
1] “
T i |l e 1 ’ I
i A “ ln
2T o ! ¢ L Ce 7 I I
. AFT AEw .
The three matrices (I, e I, e I) are mepped onto the

identity in the eight-dimensional representation. There is a three-to-
one homomorphism from the group SU3 to the group represented by the eignt-
dimensional representation, SU3/Z3.

Also we see from the above table and equation 6.1 that

e i5Te “ 3
}DV v (PT'ITIOL'O')..IT,o(A') = e s D V(PI‘('“/") ) (0.2)
.V v, v,

ho Simt (T +2H)
whare e J 1 = e (

33
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o

where . represents all other parameters and (t) is an integer from

the set {0, 1, 2}.

This provides a convenient way to define (t), the triality of a

representation. It

I=0 M=o Y.=

The representations

reduces to the standard definition, since when
Z (#-2)  and therefore T = A-i  mod 3

can be classified according to the value of (t). In

the decomposition of direct products we find

[)/‘ _-<:—'([4. - ) M M1 ( My M A
i —‘V%I/’V V" Vl' V' !Dyl' v, DVL‘VL \ v, Va v (6'3>
W TV T2
implies that
Jiwt < AT, gt .o
e’ = a7 e - 2 (.4)
Therefore, for the triality we find t = %, + t, mod 3. (6.2)

A11 representations of the group SU3/Z3 have triality zero.

‘  Jivy v, ipy s .
The matrix <3;;\€ ' Lﬁ) plays a role similar to d (8)

in SU2., TFrom the commutation rules we have

T I

Therefore e —

Iy

3 l e—,iu sz ltr‘q‘f _ .

2<M+M')<LJ\ e;qu 'L‘Y'> (&.%¢)

~M
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The orthogonality relations are derived using a procedure similar
to the one outlined in the introduction for SU2., A problem in phases
arises in connection with the D appearing in the orthogonality relation.
The standard C.G. coefficients for SU3 are for S DS = D® rather than

D% where

(6.7)

t is triality (Carruthers

1966, pp. L6-LT).

Usinz the C.G. coefficients to reduce the direct product, we have

| (6.6)

! MI* My _ ',,TT(M,‘*‘M,"%I"‘;‘*%'C') M‘* Ha 'L(y. " My My DMY
i (f) ("ﬁ’ - e "V| yz v -y V. v’ fc_,:)
A A Hyv'y ' ) v

v, =(z1,,-7,-M) .
We now show that

f » ‘ M= | for the one- (6.9)
D Tt Peaygie) = § ~ . dimensional repre-

RV A ovo oyo | sentation.

We have from equations 3.2 and 3.3 and using the result from SU:
wnich is

I
. C
/J?V\/«.ﬁ,\’) d Rexp,y) = o1o0 gmo SM;O (6,20)
R My '

together with equation L.8

-, 4 (6.11)
M -
- s . o ¢ -~V.L"

%Dv‘(y_) Pezy desy = Ox 4 dyvo SIo é,wo SI'OK(J ‘G

? o

oo
o > §mlW)s.h11/c’u(2V)
A= M

¢
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Zut from previous results on spherical harmonic basis states, eguation
L.7, we have
oof -ﬂVI‘rlo o> ! ?\f—- 6.1
o = —— o12
<0 € 0y (A+r1) Sunv A (zu) ( )
and * (6.13)
/ Arg art 'i'.
&_L«.l-tj) Siny sin(ay) cl(zy) = CJ()_V) fzy) Sin(av) deav)
e 1 T2 i3
= bx0 .
Therefore /[”£>fjé) e (€.1L)
vy pig) oie) = 5/"‘/'l ¢
e use this result in integrating eguation 6.8.
. . 1
w“wt i (MY Y o) [ A (6.15)
D) 2 5] 3
Digy Dz praydesy= e )
s v, A ~v, v, ol{-v' v, 0o

A result derived by deSwart (1963) for the

generalized for non-zero triality reads

SU3 C.G. coefficients

_ (6.16)
[ A My)‘{’ ‘”"<M.-f%+%‘)(~"-—)é S
{ A A € o ( V. -V -y, )
also Mo My sy KMy AR, Ay where fu ﬁlare .
(u, i u)’f‘,( v, v V) (6417)
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Using these relations we obtain for the vroduct of C.G. coeffi-

‘cients in equation 6.15,

(6.18)
f M5 My I\ AT M B -’—(/ My ,q,)( Ao | M,) —;ﬁ(?’*f*?';*{i«%?«;z,)
‘Vl V. 6] "‘V,. V‘.. (9] - d‘ \ Vi o V. V.-,' (] V:/ e
. ! * I—‘, - I.& x 2
— L C S , ‘f"n(M"M* 2 3 ,tz) .
- dv‘ 0/‘4:/\4; 51/.1/1 V'V, e .
Therefore the final result is
(8.19)

% C C ,
Sy SV, U

d

v,

f s, * L
J Dy Do pradt=)=



CHAPTER 7

INFINITESIMAL GENERATORS

generators was not required,

o~ Sroun
g BIoup

has derived them using puviynvmial basis states. However, usin
integration with the spherical harmcnic basis states offers an alierna-

tive and stiraightforward methed for their calculation. %We will consider

the following three-dimensional infinitesimal generaters:
) _ t‘{"x, \IY
Vs E Z (IH + 4 I5) and we want to find M \\/.: M

Nelson (1967) derives the differential operators D{(I.) corre

ponding to the generators which act on the basis states &

V= T o
D(1.) <l T o = -1 T‘g)[h‘>

-t

“e now use the differential operators of Nelson to find the infiritesimel

generators. We have

D(vey L M= - <IMYl V; Trey ‘.1:9

O

= “ZCMY\ Val i D 4| Tew =2

38
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Taking an inner product with ‘U? M we have by integrating

S5 Divey W ey sy = - G ARV (7.32)

where d = 3(A+ 1)(m+ 1)( A +4 + 2) is the dimension. Therefore

Iy L'y T
< }Vl > —/V D(I,+: Iﬂ!}, Plsy & () o
We wish to calculate the infinitesimal generator V+.

g Nelson's differential equations

< B (7.4)

-3 g
ll_ 7 oS3 Tan Vap +S‘?L1LUTI‘

-y
ez|wi

: B, 2 ‘ :
+ 24 sins CoTw 5 1 Coj%T‘ahV‘\" S‘C’C{f "-’TV)S—V T Cos

)

We now use the following relation from SU2 to eliminaie g .
I3

l T T
PR | -
n o{ (*’)":,/(rﬂ‘/:}(t-mﬂ) Cl (B) 't“(}f‘,; coT R - S/'\)Q) d (p)
m-i m

dB Tmm

and taking the other derivatives we have

o

(7
-2 D(r. s ) WEY = A [{ ) e *
2 (L,,+4J.5>VM = 2 Y*;(M -n TanV ~ 3p —2 McoTy D(«f‘Y }v“f
2 7

";1‘( 'ﬁ()

4 I v
2 (I*M)(I—M-fl) CoTy D {4 p, ¥ D;“‘ﬁ ) } ¢ -Af)( ~1)
-4 M- I;Y'-L<7\-,q> 7

2. 4
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where
2.I i N
Ay i 5T )2 LA rmxi)
P m :(’_)—--_LL')-_ csev d 2w (7.7)
(Ar1)i (mri)d Lim-aw3¥rsri) L(m- Av3Y-bT -7y o
The orthogonality reiations of SU2
'S i / )\
J D D D" L yne LlEudioem M) Oy min) (7.8)
MM, “I-4 M, M = 25, * |
RS RN ARG A, M= My -3 M= M; -%

with
-, Izt v-i
WV give non-zero result
M- L
o pEri
Tirst we consider L M-
PA
Trd ¥V
- d Rtk ~1Y -id A+ 7
- / -~ - { Nd sy = = 9
2 —/4\—711 D(J-.,‘T"J-(,}_H/M J,:/,_)cl‘___) 2 (?M'JL X (70 )

-,
} - A
?.L(Y" ("“‘M)Tar\»/ 2MCV'V1'2(I\’M)C0TV r(YT A(N‘A)-I-E,‘_)\/Colu—'ranu}

Siny cos v

\'/._,—QM"/.) L"' - ] ANTLY
coly

f g Y-l (Izr \l:
-—2\/[1‘\/%1—\1") Z(M A)“l "‘J[ (M‘)‘) fl) "“‘"M‘,\) +J_'f‘__ ¢'L _____,_/_. }

M-7 (21r-2)%

(1- M-rl\ (I-% fa‘(M-/\)*r')‘E . .
(2T -1)(2I+2) Simy Sin (2v) d(2v)

Use has been made of the relation

(7.10)

— <
J/ Clm(z/‘;\) = -2/t m) (E-m'+1) d (av)

w 3 ,r
m -} S)n.’./) Ohiz‘;i

(o,
*2(m coTay -
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f-ied (1$66

A
s L Ly . . .
The coefficient of the ¢ & term is zero. Inbtegration gives

— .

i :
i(1+M>[I+-I~—é(a-n)][‘i(u«m)*%*rl+J[é(zw>-z*-1r'ﬂ = a,. (7.112)
] : (2I+1) (21) J

The inner product withﬁﬂif_r"is evaluated [ollewing the same
<
wrocedure

.
e [T e S (e ] [ (5200 + %—ﬂ[é(l}*ﬂ) - f+1+g

2(T+i) (2 +r) _i

= Q-

(7.11v)

I+t T3

\/+i§'4y>: O"é- ;1{_-;> + G-
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Coordinate representaticnsof the basis states are used to deriv

z mass formuwla. For SU2 the spherical harmonic basis states ere relat:d

1

to the transformation matrices in the following way:
P o] AY
) 2 X ¥ ) a (‘61)
Xm (b)) =V 0% Dm (<.3)

These functions can alsc be derived by construction of ciffer-
ential equations and their sclutions. Following the close analozy i
SU2, we derive basis states for mesons and baryons, and use these to
> 3

find mass formulas.

Meson Mass Formulae

For SU3 Beg and Ruegz (1965), using differential equaticns,

<

constructed basis states., Nelson showed’ later that these states could

be obtained from

~

M _ Iyl =Y A% I, 81, -LET, -avIy oy (5.2
Dyo@)_<r’\ c € é e e lo"> ,
For SU2, restriction of m' to 2m' = O mod.2 would have re-

moved the unwanted half-integral stztes. In SU3, the restriction

3/2 Y, = 0 mod.3 would have eliminatec the unwanted states of non-zerc
o

L2



Also in SU2 a rotation of 27 about the Y-axis followed by a
rotation abous the Z-axis should correspond tc the point (x =0, 5 = 0)
in three-dimensional space,

Tor SU2

Ly eax Ty -l I T a7, o \
A ‘ ] — N i o3
Cimfe™ ™ T imd = Gmf &7 e i (6-22)

me
For SU3
g AT, B B4 I -'rrI T a2y Y
/:y‘ 1].3 A-:I:.,_ A}I3 AT ,'l'r_v s A 1,\))_‘. "‘[;‘IY
v 1€ e e > ‘e e e’ \M'> (3.3v)
= 7? j -
iF I'=uo
This sugeests that if I' is chosen to be zero, the five varame-

; ¥ N 2T 2
~ LY (217%1) *(4) T * Py
= ~tal 0z csca/cl * (v L .
M 2 4 Dy e .
- Efl*f;%-’[‘é )M % . (S'L)

I
—
2

~|
S
3o
~l
*

-

, these functions that arise quite naturzlly from anal-

:3‘
Q
i
[b]
£y
Q
]
{L

gy Lo S5U2 appear to represent meson states. To find if these states
have any physical meaning, we consiruct a mass formula in the usual

manner. Assume that the mass operator transforms as the I = O component
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of the vector operator and a scalar. The expectation value of the mass

correction is as follov

.
TS e

%‘ e -
/\Z/;]Y@) _‘L‘_Z/f(b-_*) @;g:zf(;/)cfu) = Am . (8.5) .

%:L 3 2 (8;6)
A)’)G—-Z:Lil. >D:‘I;*”)’) DI(.,(f,“y)OJR( )/[C’T(ZV) i

n= =4, ik 3,7 + (2} ¢ dv
o v2_ (2T +1) )
= &=(i + : ,

Therefore the mass formula for mesons is

2 'J._1
m=m: + [Y -—(ZI+')_} . (8.7)

This result is independent of the parameterization and could as

bo}
[
-
'-J
oy
]
b
(0]
[$]
o
[¢)
3
(o))

etermined frem the C.G. of SU3, Egquation 8,7 is the

Q
2,
(0]
o]
-1y

ermula which agrees with the experimental determination of the

ition is followed and the square of the masses is used.

Baryon ¥ass Formula

The spherical hazrmeonic basis states were net suitable for

baryons since the relation

- 1y ¥ —_— -
vy o=l

(the 7? is a phase factor)

snould neot hold.
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However with another choice of the right-hand state, this result

can be avoided. Since the eight-dimensional representation is eguiva-

lernt to its complex conjugate we have

C T H~4Y> = &Y T | M> ) (8.8)

we therefore seek a right-hand state where Y ¥ 0 or M % O,

Now if C-Parity was applied to these states in the frollowing
manner

-~
"

G Tl =M™ Tace™ WD | 6

Doy~ -L ES
Fofihay Uy, Uhen

and if the baryon states lz::> are not 1o have definite G-

this requires Y X O,

Therefore we assume the baryon basis states are

= I Tew ]I> (8.10)

The connection to the mass would be

(8.11)

. [-:L‘ M . a
/<IMYi T(%)IZ{;> <io T(:&)]io> <IYI | ey 5§> Pty d (=)
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A1l SU2 C.G. coefficients are 1 here and the results depend only on the

isoscalar factors (See deSwart 1963).

Table 7. Products of C.CG. Coefficients Used in Baryon Mass Formula

- l Al AL
V:' g _L
! 20 2s
Y=o L o
I=1 ~ i
Yz ¢ | "
i:0 | To ¥

| } o
Y=l 20 R

Therefore
y [ 2 o
Al - bl'::{.— ~+ [ L—I(I +() "*‘—Z‘ ‘*‘l:] (O.]Q}

and the mass correction is

am = b[‘v‘I(IH) —mvfyz]- , (8.13)

With b = 18 Mev this result agrees to within 5% with the experimentally

determined baryon masses.



APPENDIX A
THER PARAMETERIZATIONS

Ye now consider two parameterizations, other than the one used
by Nelson, which are of interest.

i H )
e Parameterization

A matrix obeys its characteristic equation. Since the defining

rerresentation is three~dimensional we have for SU3

Lot}

& = Al M H + Ve HY (4.1

2
where 4= S, T, and 5 &7 o and eo¢; are real.
Murnaghan (1962, ppr. 1L-19) shows that all unitary matrices are
lar to a diagonal form by unitery transformation. We will find it

advantageocus to use the diagonal form for derivations that do riot in-

'X, ':28 :(
= -+
— B Ny \
H= / %2 = Y (A.2)
| 7o
1 b ¢ - 2 :—‘(
\ 3 7 z’/
Xo+ X, 4+ X,=0 tr H*= 2

L7
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The characteristic equation is

(%, =) (X —) (K=Y = O . (£.2)
Replacing o by H and using the above results we have

B =H+YI where 7= [H| - (A1)

Taking the trace df each sice ancd meking use of the anticommuta-

tion,

—
t-—
>
S
L
it
w|®

5LJI ‘*2§a45n I, (A.5)
#®

where the dijk's are listed by Carruthers (1966, p. 31).

¥e have
- | i .
T3 te HT = 4 te ZQ;Q; <. I:T.1, , (4.6)
AJK
- .‘- A ~ . “ ’2_ A
= 3 *r Z°<_ “J‘Qh%(lx,fj}lk = 73 ;dijk oy :J. Qk

For the seb {I, H, HZ } to be linearly dependent we must have
a solution for (a,b) such that I + aH + bE® = 0, By multiplying by
I, H, ard H2 and taking the trace each time we find
34+42b=0 2a + 3¥Yb =0 3Ya =1 (0.7)

which requires 27 X2 = . 4 (A.8)
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Since

wiR>
™
|
23
N

the solutions for <:<3 s :43 such that equation A.8 holds, are listed

in the table,

Table 3. Singular Transformations

-~ ~
X ; oy oL
2 _ /3 L
i.<s 7,7 -2
2 2 -1
-2 4 2
~~
4
=3 o |

Note that these solutions correspond to, at least for ore vair,

= x. and thus are the singular matrices of Weyl (19L6).

We 2lso nove that

ST : - (8.9)
.50 :
2
<3 _am
= e I < =
= e‘;%.vl oz 4T
V3
- T - £

for all &, in the set (& , Ry R, Ve They generate the important
abelian subalgebra Z3 of SU3., All matrices similar to these are there-

fore periodic in << with the period V3 T



50
This is not true in general as we now show, Consider eguation

A,1 in diagonal form:

i X,

e T N N WS M\ (=) (4.10)
A‘(‘x
S ! o ox ] fue] = Qe
o X
e WA VRS I RV V(<)
Inverting this result, we have
R § !—73—7'1. .447(,+ X, = Xy "“X“_*_ Xa- X, ""“7‘1
S TR e TR e T TR (h.112)
‘ A"(X| Ak Xy 4\4()—_,]
/"((4)': ]—Cﬂ X (X3-X,) e N (x-x)e +7(,{7(Z-7(,)G _J
' (£.115
] AR X, Aok X, Ao Ay
Vi) = TC-;T‘ [(7(;—7(1)6 + (X,-7;) € + (%x,-%x)€ .
(."\.110)

If the matrix was periodic with period o(; we have for any

integer (n)

;h«xIH

e =T =) (neg) I + Mlnez) H + Vine) H (4.12)

Is {I, H, Hz} are linearly independent

%(ﬂf-“(;) =) /(/((Y\x.r) = Ny = 0O . (A.12a)
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th~e AN« X, aNxr 7f;
This requires e = e = e = 1 which is only satisfied
when
a1 Xi
Xi = Tneg for A; integer. (A,12b)
This cannot_be satisfied for all (n).
Murnaghan Parameterizatien
Murraghan (1962, pp. 7-1C) shows that the unitary three-
dimensional matrices could be factored in the following form:
U(z):D(Sl Sz(pz)uz(#)z;o;) uz(e’,ai) Ul:’(d"/q—‘) (AQIB)
-T < b T i< I TG <N e s, e
(A.132)
! 0 @ = JTU peTy ST
1 "‘7;
bu(ﬁ,frx):‘ o cosd, -Sing,e
L 2y
AV} U3: - 7 + 2. 8
o sing, e cos ¢, ‘
(4.13b)
-iT, o o .o
Cos &, =Sinp, @ 0\ P el C_;TLIJ
e -
U,z(é.,%‘): Sing, € coso, ©
© © ! (A.13c)
. - 407 ‘
(Ogél % ~Sing € — -‘%V, Ad’,I; A%VJ
U : - € e
FRCRAE o [ o
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(A.138)
AE‘I
€
) 28, R AT
D(bl,é;ld)J):’ e d} _—ﬁ e
~ Y3
¢ For Su3
Therefore for (Ju (e,,o;> , we have
<XYILJ lr?> _ b4
miUate,ayin ) = 611§,y D (7, 26,-e) - (A.1k)

Chacon and Moshinsky (1966) showed how to transform the other
kjé3(¢f7) into[],l(¢,¢g by Weyl reflections and in this way general-

ized this result to all IR's.



APPENDIX B
VOLUME ELEMENT IN OTHER PARAMETERIZATIONS T

e now consider the volume ~lement in two parameterizations,

other than the one used by Nelscon, which are of interest.

ine

e Parameterization

The parameterization of interest is

;xgacI:
U= e < F oLy (3.1)

-~

This problem can be greatly simplified by noting that the den-
X
sity function F=) is a class function. Consider Hp = A
4

Then 21l matrices U =V e °V, where V is a general SU3 transformaticn,
form a class where (¢, Xys %o x3) are the class variables. (Only two
independent variables are required as there are two relaticns on the
x's.)

Ye now show that S (2¢) is invariant under a similarity trans-

férmation and therefore depends only on the class variables.
Ur=) =V Y V (5.2a)
Therefore

Zod .=V Se, 1V (B.2b)

i 3
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<2 2
T™he o< 's are-real and Z°<' Z"(L

P —

£

Therefore

~i= D
J

(B.2¢8)
where ajy is a real orthogonal matrix.
Also 22 = a.; (8.24)
= d
Now
-1
a ] — !
U ) 5l Veg) = Z‘_‘#C_,;j (x') I,
becomes
T - { ot ol ) - -
2 Uey 2Yim 240 = 5 v Ty (B.3)
J a h(.; ()"<b j X . v c
Therefore
Z Cin(z) & I, = Z Coj(e’) Cni I, (B.la)
s K K '
and from the linear independence of the Ik' s
ZCJ‘K (%)Y ;4 = Z‘C‘J ('Y Clg) (B.)Lb)
J J ’
P2 ol = o] = pey (B.5)
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In the volume element calculation, we will evaluate 21l deriva-

tives at U («) in diagonal form:

- J o - . ~
5~(C’,O,°<3)O/O,O,O,a<3) 3:':(0,0,.35,0,0,0,0),45) . (B.9)
A 4
0
and for i % 3,8

3F(-<): JF («) et

o Ha PR o< &
implies
_é’_l - ﬂ(«)‘____ DM 2Vt (3.7)
INalp I g o= l—’ oxi |, T ©
From
—‘%“‘KIK (B’8>
e = Ny L +M(«)Z°<I + Vi) /_°< =-<II

we have from the anticommutation relation equation A.5

5 [hey + 2 < .

= [A<) * 3 Vi) I + M) Z_(;_ Ii + l/(n() Zd;m D(Q:J I,_ (B,9)
For 2% 3,8

J_ I e 2 V(=

DXy - == Ix T ZK vk I (B.10)

Now using the explicit form of ANMx), M(=), V(=) and that
lC\)l = (%A +2% (X, - x,) (B.11)

the indices may be permuted cyclically

aS <Ly
L [
()°'<2 €

(é"dl* é”'>11 =12

(B.12a)

\ ' !
T;Z(M(-:)—-‘\’} V(«\)I = (X, - x)



! A X, A XY n o)
= ‘ol"z (/{,( (q)-—-xz V(.())IQ = o((z.'_xj)(e - e ’)12 x: 4[5 (35.1.20)

| ( A™K, Av(')(,}

:&(M("()"W,l/('w) If:qma e —-—e I,, J= 6,7 (3.120)

A

~ieX,

e
~ad X,

e

Multiplication on the left by é'*b will give all rows

except the third and eighth in the determinant.
These rows are easily determined by setting all other variables
to zero and taking the derivative. Also use is made of [i3, IB] =90 .

e-i(":Is'*'“(eI?) b Aoty Ty 4 g Tp)

— €

L for g=13,2 (B.13)
I~y .

The determinant is the product of three two-by-two determinanis

and is easily evaluated. With the change of notation Yy =Xy

pley= C SInd (Y- V) Sin*t (Ya-¥) st (Y5-Y.)

(V=YY (- Y (Y=Y *E where C is a constant(3.1l)
to be determined by
normalization .

The xi’s sabisfy the characteristic equadion

XiB - Xi - X = O. (B.ls)
Therefore
(B.16)
y. =-A*B_ A-B /23
T
2 2 3 -

. A=LX . [T

x, = - A ; B, A-B ‘/_3 z Y 7

3/Y
Xy = A+ 3B B= T oJE -5

where Y is given by equation A.6.
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Murnaghan Paramsterization

The volume element for the Murnaghan parameterization was also

calculated,

Uty = Dxsiwyy Usy (0 53) Uiy (o0, o) Uie. or) (B, 17)

To facilitate this evaluation we change the basis from {Ik} to

{13, Igs qu} where E . (p X @) has a (1) in the pth row, qth column.

Also define U = D(x, o 5 )V and note that a similarity transformation

of this type will not alter Fl=).

\/C“J‘("—‘) Ifj\/_l = c:i(=)V L; VAR C.il=2)G, 6 I, (3.18)
where fajk[ = | implies lc_”- (g)l =lc,j(z)c<5,.\] . (3.13a)

We therefore evaluate

v[u"g%“u]\/" =D i,;u v (B.19)
D %&’,v" = i1, (3.192)
D j_ug\/" = :1; (2.19%)
qu%, Vi=.e g, +e& 7 Ese (B.19¢)
D_'?‘j’} V' = isin ¢, cos ¢, (GN.O}F_U -+ é'a; E;z) (B.19d)

+ £ Sim” &, {%‘ - [%Iz>
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With the above results the E23, E32, I3, I8 golumns can be
cleared of all but a single non-zero term to reduce the eight-by-eizht
determinant to a four~by-four with a2 factor C sin 24’2.
The evaluation of the remaining four-by-four determinant is
. straightforward and the result is as follows:

- i ot 0
Fe=)=C sina g, Sin1d, sinae, Cost o, C normalization (Bv.2v)
constant
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