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FINITE TRANSITIVE PERMUTATION GROUPS AND
BIPARTITE VERTEX-TRANSITIVE GRAPHS

CHERYL E. PRAEGER

Celebrating the 100th anniversary of the birth of Reinhold Baer

Abstract. We prove a structure theorem for a class of finite transitive

permutation groups that arises in the study of finite bipartite vertex-
transitive graphs. The class consists of all finite transitive permutation

groups such that each non-trivial normal subgroup has at most two
orbits, and at least one such subgroup is intransitive. The theorem is
analogous to the O’Nan–Scott Theorem for finite primitive permutation

groups, and this in turn is a refinement of the Baer Structure Theorem
for finite primitive groups. An application is given for arc-transitive
graphs.

1. Introduction

By a permutation group on a set Ω we mean a subgroup of the symmetric
group Sym(Ω) of all permutations of Ω. A transitive permutation group G on
a set Ω is primitive if, for α ∈ Ω, the stabiliser Gα is a maximal subgroup of G.
The term primitive can also be used for abstract groups, namely an abstract
group is said to be primitive if it is isomorphic to a primitive permutation
group on some set, or equivalently, G is primitive if it has a maximal subgroup
H such that the core CoreG(H) of H in G is trivial, where CoreG(H) :=⋂
g∈GH

g. In 1957 Reinhold Baer [1] identified three types of (abstract) finite
primitive groups according to the structure of the socle, where the socle soc(G)
of a finite group G is the product of its minimal normal subgroups. This result
of Baer has been called, for example by Förster in [5], the Baer Structure
Theorem for primitive groups. It shows that, for a finite primitive group G,
exactly one of the following holds.

(I) soc(G) is an abelian minimal normal subgroup of G;
(II) soc(G) is a non-abelian minimal normal subgroup of G;
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(III) soc(G) is a direct product of two (isomorphic) non-abelian minimal
normal subgroups of G.

Twenty years after Baer’s paper [1] appeared, his result was refined inde-
pendently by L. L. Scott and M. E. O’Nan into what is now called the O’Nan–
Scott Theorem; see [13]. The framework it provides has proved to be the most
useful modern method for identifying the possible structures of finite primitive
permutation groups and is now used routinely for their analysis. For many
families of point-transitive combinatorial objects, it is possible to describe the
objects in terms of the sub–family of point–primitive objects, and in these
cases the O’Nan–Scott Theorem has proved a powerful analytical tool. An
especially successful example of this is the study of finite distance–transitive
graphs, where this approach has led to an almost complete classification of
the finite primitive distance–transitive graphs; see [6], [14].

However in some applications, for example to 2-arc-transitive graphs, it
is not possible to relate a typical object in the family with a point-primitive
object and so the theory of primitive groups cannot be used. Fortunately some
of these families can be studied using quasiprimitive permutation groups. A
permutation group G ≤ Sym(Ω) is quasiprimitive if each non-trivial normal
subgroup N is transitive, or equivalently if G = NGα for each such N (where
α ∈ Ω). If G is primitive then Gα is maximal in G and Gα contains no non-
trivial normal subgroup N since CoreG(Gα) = 1, and therefore G = NGα for
each such N . Thus each primitive group is quasiprimitive, but the converse
is not true since each transitive permutation representation of a non-abelian
simple group is quasiprimitive. Finite quasiprimitive permutation groups have
been described by a theorem similar to the O’Nan–Scott Theorem in [11], and
played a central role in elucidating the structure of finite non-bipartite 2-arc-
transitive graphs. They are well-suited for studying families of combinatorial
objects that are closed under a quotient operation; see [12]. Further discussion
of the family of 2-arc transitive graphs will be given in Section 4.

In studies of vertex– and edge–transitive graphs, the bipartite graphs have
always been far more difficult to handle than the non-bipartite ones. A graph
Γ is bipartite if its vertex set Ω can be partitioned into two parts, say ∆,∆′,
in such a way that every edge of Γ joins a vertex of ∆ to a vertex of ∆′. If G is
a vertex-transitive group of automorphisms of a connected bipartite graph Γ
then G preserves the bipartition {∆,∆′} and the set of elements of G that fix
∆ and ∆′ setwise forms a normal subgroup G+ of G of index 2; moreover, if Γ
is connected then the bipartition {∆,∆′} is uniquely determined by Γ. This
means in particular that, provided Γ has more than two vertices, then G is not
quasiprimitive on vertices. In Section 4 we discuss results from [8] that show
in particular that each finite bipartite 2-arc transitive graph Γ is a normal
cover of a bipartite graph admitting a group that is both 2-arc transitive and
bi-quasiprimitive on vertices.
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By a bi-quasiprimitive permutation group G on Ω we mean a subgroup
G ≤ Sym(Ω) that is not quasiprimitive and has the property that each non-
trivial normal subgroup has at most two orbits. The main result of this
paper, Theorem 1.1, is a structure theorem for finite bi-quasiprimitive groups
similar to the Baer Structure Theorem for primitive groups. A study of bi-
quasiprimitive 2-arc transitive automorphism groups was begun in [10]. We
believe that the analysis in this paper of the finite bi-quasiprimitive groups,
as permutation groups, will lead to a better understanding of bipartite 2-arc
transitive graphs and also of other families of bipartite graphs. In particular
we believe that it will shed light on the Weiss Conjecture for locally-primitive
graphs (see Section 4).

For a finite bi-quasiprimitive permutation group G on Ω, there is at least
one non-trivial intransitive normal subgroup N (since G is not quasiprimitive)
and N must therefore have two orbits, say ∆,∆′. Each element of G either
fixes these two orbits or interchanges them. Thus the elements of G that fix
∆,∆′ setwise form a subgroup G+ of index 2, and G+ induces a transitive
permutation group H on ∆. By the embedding theorem for permutation
groups, G is conjugate in Sym(Ω) to a subgroup of the wreath product H oS2 =
(H×H)·S2. The set Ω may be identified with ∆×{1, 2} such that, for (y1, y2)
in the base group H ×H, and (12) ∈ S2,

(δ, i)(y1,y2) = (δyi , i) and (δ, i)(12) = (δ, i(12))

for all (δ, i) ∈ Ω. With this identification of Ω the parts of the bipartition are
{(δ, i) | δ ∈ ∆} for i = 1, 2. Theorem 1.1 identifies various distinct possibilities
for soc(G).

The statement uses the following notation. Let M be a group. For each
ϕ ∈ Aut(M), Diagϕ(M×M) denotes the full diagonal subgroup {(x, xϕ) |x ∈
M} of M ×M (and we write the identity automorphism as 1). There is a
natural embedding of M into Sym(M) with elements of M acting by right
multiplication. This subgroup, which we identify with M , is regular in the
sense that only the identity element fixes a point. The normaliser of this
subgroup M in Sym(M) is called the holomorph Hol(M) of M and is the
semidirect product M · Aut(M) with elements of Aut(M) acting naturally.
The centraliser C(M) of M in Sym(M) consists of the elements of M acting
by left multiplication. It is a subgroup isomorphic to M , C(M)∩M = Z(M),
and Aut(M) ∩ (C(M)M) = Inn(M) consists of the inner automorphisms
ιy : x 7→ y−1xy induced by the elements y ∈M .

Theorem 1.1. Let G be a bi-quasiprimitive permutation group on a finite
set Ω, let G+ be a subgroup of G of index 2 with two orbits ∆,∆′ in Ω, and
let H be the permutation group induced by G+ on ∆. Then, replacing G by a
conjugate in Sym(Ω) if necessary, G ≤ H o S2, G \ G+ contains an element
g = (x, 1)(12), for some x ∈ H, and one of the following holds.
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(a) H is quasiprimitive and one of:
(i) G = 〈G+, g〉 and G+ = Diagϕ(H × H), where ϕ ∈ Aut(H),

ϕ2 = ιx. Moreover g centralises G+ if and only if |Ω| = 4 and
G = Z4 or Z2 × Z2.

(ii) soc(G) = soc(H)× soc(H).
(iii) soc(H) = C(M) × M ≤ H ≤ Hol(M), where M,C(M) are

isomorphic non-abelian, regular minimal normal subgroups of
H, and soc(G) = (C(M) × C(M)) × Diagϕ(M × M) where
ϕ ∈ Aut(M) and ϕ2 is the restriction of ιx to M .

(b) H is not quasiprimitive, but has a unique transitive minimal normal
subgroup M , M is non-abelian and soc(G) = M ×M .

(c) H is not quasiprimitive, G+ = Diagϕ(H × H), where ϕ ∈ Aut(H),
ϕ2 = ιx; there exists an intransitive minimal normal subgroup R of
H such that Rϕ 6= R, M := R × Rϕ is a transitive normal subgroup
of H, and N := Diagϕ(M ×M) is a minimal normal subgroup of G;
and one of:
(i) soc(G) = N .
(ii) soc(G) = N × N̄ , where N, N̄ are isomorphic non-abelian mini-

mal normal subgroups of G, and N̄ = Diagϕ(M̄ × M̄); M,M̄ are
isomorphic regular normal subgroups of H, soc(H) = M × M̄ ≤
H ≤ Hol(M), and M̄ = R̄ × R̄ϕ for an intransitive minimal
normal subgroup R̄ ∼= R.

Moreover there are examples in each of the cases.

Remarks 1.1.

(1) The subgroup G+ is the unique subgroup of G of index 2 except for
the case where |Ω| = 4 and G = Z2 × Z2 in part (a)(i).

(2) In part (a)(iii) the group H is a primitive subgroup of Hol(M), while
in part (c)(ii), the subgroup H of Hol(M) has four minimal normal
subgroups.

(3) Groups H occurring in part (b) are called innately transitive permu-
tation groups, and have been studied in [2].

We give in Section 2 examples of finite bi-quasiprimitive groups for each
of the parts of Theorem 1.1, and in Section 3 we prove that each finite bi-
quasiprimitive group satisfies the conditions of exactly one of the parts, thus
completing the proof of Theorem 1.1. In Section 4 we explain how each finite
arc-transitive bipartite graph is a multi-cover of a graph admitting a group
of automorphisms that is both transitive on arcs and bi-quasiprimitive on
vertices. Here, by an arc we mean an ordered pair of vertices that are joined
by an edge. One family of arc-transitive, vertex bi-quasiprimitive graphs is
the family comprising the complete bipartite graphs Kn,n for which each part
of the bipartition has size n and each vertex of one part is joined to each
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vertex of the other part. The full automorphism group Sn o S2 of Kn,n is
bi-quasiprimitive of type (a)(ii), and for certain values of n there are arc-
transitive, bi-quasiprimitive subgroups of Sn o S2 of types (a)(iii) or (b). For
graphs other than Kn,n, all arc-transitive, vertex bi-quasiprimitive groups
must be of the other types.

Theorem 1.2. Let Γ be a finite connected bipartite graph and suppose
that G ≤ Aut(Γ) is arc-transitive and vertex bi-quasiprimitive. Then either
Γ = Kn,n for some n, or G satisfies part (a)(i) or (c) of Theorem 1.1.

Proof. Suppose that Γ 6= Kn,n and let α ∈ ∆. Then the set of vertices
adjacent to α is a proper subset of ∆′ and it follows that Gα is not transitive
on ∆′. Thus G is of type (a)(i) or (c) of Theorem 1.1. �

The paper [10] contains an investigation along the lines of Theorem 1.2 in
the special case where G is in addition 2-arc transitive, and in particular the
first result Theorem 2.1 of [10] follows immediately from Theorem 1.2. We dis-
cuss the results of [10] in more detail in Section 4. In [7] a larger class of graphs,
the locally-quasiprimitive graphs, were investigated also from this point of
view. In that paper the need for a better understanding of bi-quasiprimitive
groups was highlighted, and Theorem 1.1 essentially solves Problem 6.2 of
that paper. The extra structural details for bi-quasiprimitive groups given
in Theorem 1.1 should increase our understanding of bi-quasiprimitive 2-arc
transitive graphs and other bipartite edge-transitive graphs.

2. Examples of bi-quasiprimitive groups

In this section we give several constructions of finite bi-quasiprimitive per-
mutation groups to demonstrate that each of the cases in Theorem 1.1 can
arise. We label the examples according to the case in the main theorem. We
shall construct bi-quasiprimitive subgroups G of H o S2, where H is a transi-
tive permutation group on ∆ and H o S2 = (H ×H) · S2 acts as in Section 1
on Ω = ∆×{1, 2}. For each group G, the subgroup G+ := G∩B will project
onto each of the direct factors H of B. Note that in order to show that G is
bi-quasiprimitive it is sufficient to prove that every minimal normal subgroup
of G has at most two orbits in Ω.

Example (a)(i). Let H be a quasiprimitive permutation group on a set
∆, and let ϕ ∈ Aut(H) such that ϕ 6= 1 and ϕ2 is an inner automorphism ιx
of H, for some x ∈ H. Then the subgroup G = 〈Diagϕ(H ×H), (x, 1)(12)〉 of
H o S2 is bi-quasiprimitive as in part (i).

Proof. Let G+ = Diagϕ(H × H). Then G+ is normal in G of index 2,
and each minimal normal subgroup of G contained in G+ is of the form N =
Diagϕ(M×M) for some normal subgroup M of H. Since H is quasiprimitive,



466 CHERYL E. PRAEGER

M is transitive on ∆ and so N has two orbits in Ω. If N were a minimal normal
subgroup of G and N 6≤ G+, then N ∩G+ = 1 by minimality, and so N ∼= Z2

and G = G+ × N . Now N is generated by (y, yϕ)g = (yx, yϕ)(12) for some
y ∈ H. A straightforward computation shows that such an element centralises
G+ if and only if ϕ = 1, which is not the case. Thus every minimal normal
subgroup of G has two orbits. �

If in Example (a)(i) we were to take ϕ = 1 then x ∈ Z(H) and (x, 1)(12)
would centralise G+. The only possibility for H that leads to a bi-quasipri-
mitive group G in this case is H = S2 on ∆ = {1, 2}, giving G = Z4 if x 6= 1
or G = Z2 × Z2 if x = 1 (see Lemma 3.1).

Example (a)(ii). Let H be a quasiprimitive permutation group on a set
∆, and take G = H o S2. Then it is easy to check that G is bi-quasiprimitive
as in part (a)(ii).

Example (a)(iii). Let H = Hol(M) = M · Aut(M) acting on ∆ = M ,
where M = T k for some non-abelian simple group T and k ≥ 1. Let ϕ ∈
Aut(M) and set x := ϕ2 ∈ Aut(M) < H and C(M) := CH(M). Let G+ =
(C(M)×C(M)) Diagϕ(H×H) (where we take conjugation by ϕ ∈ Aut(M) <
H as the corresponding inner automorphism of H), g = (x, 1)(12), and G =
〈G+, g〉. Then G is bi-quasiprimitive as in part (a)(iii).

Proof. The element g normalises Diagϕ(H ×H) and hence normalises G+.
Also g2 = (x, x) = (x, xϕ) ∈ Diagϕ(H ×H), so |G : G+| = 2. All the condi-
tions of part (a)(iii) hold for G. We just have to show it is bi-quasiprimitive.
If N were a minimal normal subgroup of G not contained in G+, then as in
the proof of Example (a)(i), G = G+×N ∼= G+×Z2, but no element of G\G+

centralises G+. Thus if N is a minimal normal subgroup of G then N ≤ G+,
and hence N ≤ G∩ (soc(H)× soc(H)) = (C(M)×C(M))×Diagϕ(M ×M).
It follows that N is C(M)×C(M) or Diagϕ(M ×M), each of which has two
orbits in Ω. �

It is rather more difficult to provide examples for part (b). We give one
small example to show that this case does arise.

Example (b). Let H = S×A where S = S5 and A = 〈a〉 ∼= Z2, acting by
right multiplication on the set ∆ of 20 right cosets of K := 〈(123), (12), (45)a〉
(where here the permutations refer to elements of S). Let M = A5, let
b ∈ S \M be an element of order 2, and let g be the element (12) in the
top group S2 of H o S2. Then the subgroup G = 〈M × M, (a, b), g〉 is bi-
quasiprimitive as in part (b).

Proof. Since M ∩ K = 〈(123)〉, M is transitive on ∆. Thus H has a
unique transitive minimal normal subgroup M that is non-abelian, and also
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an intransitive normal subgroup A, so H is not quasiprimitive. Now G+ :=
G∩ (H ×H) = 〈M ×M, (a, b), (b, a)〉. The projection of G+ onto each direct
factor H is 〈M,a, b〉 = H, and G/(M ×M) ∼= D8. It is easy to check that
M×M has trivial centraliser in G. Now M×M is a minimal normal subgroup
of G and has two orbits in Ω. Since M ×M has trivial centraliser it follows
that soc(G) = M ×M , so G is bi-quasiprimitive as in (b). �

It is clear how to generalise this example to any instance of an almost simple
permutation group S with transitive socle of index 2 such that a point sta-
biliser Sδ fixes 2 points, or equivalently |NS(Sδ) : Sδ| = 2. For the remaining
cases of Theorem 1.1 we give again a reasonably general construction.

Example (c)(i) and (ii). For i = 1, 2, let Ki be a quasiprimitive permu-
tation group on ∆i such that Z(Ki) = 1 and let Ri be a minimal normal sub-
group. Suppose that there exists an isomorphism σ : K1 → K2 such thatRσ1 =
R2. Note that the actions on the ∆i need not be permutationally isomorphic;
we only assume that the groups Ki are isomorphic as abstract groups. Let
H = K1 ×K2 acting naturally on ∆ = ∆1 ×∆2 by (δ1, δ2)(a1,a2) = (δa1

1 , δa2
2 )

for δi ∈ ∆i, ai ∈ Ki. Let ϕ ∈ Aut(H) be the map ϕ : (a, bσ) 7→ (b, aσ)
for a, b ∈ K1. Then the subgroup G = 〈Diagϕ(H × H), (12)〉 of H o S2 is
bi-quasiprimitive.

Proof. Since ϕ2 = 1, it is easily checked that the element g := (12) of the
top group of H oS2 normalises, but does not centralise, G+ := Diagϕ(H×H).
In fact, G+ has trivial centraliser in G. Thus each minimal normal subgroup
N of G is contained in G+ and hence N = Diagϕ(M ×M) for some normal
subgroup M of H. Now Diagϕ(M × M)g = Diagϕ(Mϕ × Mϕ), and since
Ng = N we require Mϕ = M . Also, if M0 is a normal subgroup of H such that
Mϕ

0 = M0 then Diagϕ(M0 ×M0) is normal in G. Thus the minimal normal
subgroups of G are those subgroups Diagϕ(M ×M) where M is normal in H,
Mϕ = M , and M is minimal with respect to these properties. Let M be such
a subgroup, and let R be a minimal normal subgroup of H contained in M . If
R 6= Rϕ then Rϕ ≤M and R×Rϕ is a normal subgroup of H invariant under
ϕ, so M = R × Rϕ. In the case where R ≤ Ki for some i, we have Rϕ 6= R,
so M = R×Rϕ and M is transitive on ∆, and hence Diagϕ(M ×M) has two
orbits in Ω. For example, the subgroup R = R1 gives rise to a minimal normal
subgroup of this type. Suppose then that R is not contained in K1 or K2. By
the minimality of R, R∩K1 = R∩K2 = 1. However, in order for a subgroup of
this type to be normal in H = K1×K2 it must be contained in Z(K1)×Z(K2),
and this is impossible since Z(Ki) = 1. Thus G is bi-quasiprimitive and is
of type (c). If Ki has a unique minimal normal subgroup then (c)(i) holds,
while if this is not the case then Ki has two isomorphic non-abelian regular
minimal normal subgroups and (c)(ii) holds. �
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3. Proof of Theorem 1.1

Suppose that G,G+,H are as in Theorem 1.1, and that G ≤ H o S2 =
(H × H) · S2 acting naturally on Ω = ∆ × {1, 2}. We shall write the base
group B = H×H as B = H1×H2 when we wish to distinguish the two direct
factors. Note that G+ = B ∩G and by the definition of H, G+ projects onto,
say H1. As G interchanges H1 and H2 while normalising G+, it follows that
G+ projects also onto H2, that is to say, G+ is a subdirect subgroup of B.
Let g ∈ G\G+. Then g = (x, y)(12) for some x, y ∈ H, and since G+ projects
onto H2, multiplying g by an element of G+ if necessary, we may assume that
y = 1, so g = (x, 1)(12). First we consider the exceptional case in which some
element of G \ G+ centralises G+. Note that, since G+ 6= 1, the cardinality
of Ω is at least 4.

Lemma 3.1. Some element of G\G+ centralises G+ if and only if |Ω| = 4
and G = Z4 or Z2 × Z2. In particular Theorem 1.1 (a)(i) holds in this case.

Proof. If |Ω| = 4 and G = Z4 or Z2 × Z2, then g centralises G+. Also
H = S2 is quasiprimitive and Theorem 1.1 (a)(i) holds. Suppose conversely
that g = (x, y)(12) ∈ G \G+ and g centralises G+. Then for each (a, b) ∈ G+

we have
(a, b) = (a, b)g = (a, b)(x,y)(12) = (by, ax).

Thus a = by, b = ax, and since G+ is a subdirect subgroup of B it follows
that G+ = Diagιx(H × H) and xy, yx ∈ Z(H). Now g2 = (xy, yx) ∈ G+ ∩
(Z(H) × Z(H)). Suppose first that g2 = 1. Then N = 〈g〉 ∼= Z2 is a
normal subgroup of G and hence has at most two orbits in Ω. It follows that
|Ω| = 4 and G = N × G+ = Z2 × Z2. Suppose now that g2 6= 1. Then
G+ ∩ (Z(H)×Z(H)) is a nontrivial normal subgroup of G and hence has two
orbits in Ω. In particular Z(H) is transitive on ∆, and as transitive abelian
permutation groups are regular it follows that Z(H) is regular on ∆ and we
may identify ∆ with Z(H) in such a way that, for δ = 1 ∈ ∆, H = Z(H)Hδ

with Hδ acting by conjugation. Since Hδ centralises Z(H) we have that
Hδ = 1 and H = Z(H). It follows that G is abelian and hence regular on Ω.
Let p be a prime divisor of |G+| and M a subgroup of G+ of order p. Since
G is abelian M is normal in G and hence has two orbits in Ω. It follows that
G+ = M . If p were odd then we would have G = Z2p, and G would have
a normal subgroup of order 2 having p > 2 orbits, which is a contradiction.
Hence p = 2, |Ω| = 4, and since g2 6= 1 we have G = Z4. In both of these cases
with |Ω| = 4, H = S2 is quasiprimitive and Theorem 1.1 (a)(i) holds. �

From now on we shall assume that no element of G \ G+ centralises G+,
and in particular, g = (x, 1)(12) does not centralise G+. Our next step is to
study the minimal normal subgroups of G. Let πi denote the projection map
πi : B → Hi and note that Hi = πi(G+) for i = 1, 2.
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Lemma 3.2. Let N be a minimal normal subgroup of G, and let Ni =
N ∩Hi for i = 1, 2.

(a) Then N ⊆ G+, and either N is a minimal normal subgroup of G+, or
N = M ×Mg where both M and Mg are minimal normal subgroups
of G+. In particular soc(G) ⊆ soc(H) × soc(H). Moreover, for any
minimal normal subgroup M of G+ that is not normal in G, M ×Mg

is a minimal normal subgroup of G.
(b) If N1 6= 1, then N1 is a transitive minimal normal subgroup of H1

and N = N1 × N2. Moreover, for any minimal normal subgroup M
of H1 that is contained in G+, M is transitive on ∆ and M ×Mg is
a minimal normal subgroup of G.

Proof. Suppose that N 6≤ G+. Then N ∩ G+ = 1 by the minimality of
N , and hence N centralises G+, contrary to our assumption. Thus N ≤ G+.
Suppose that N is not a minimal normal subgroup of G+ and let M be a
minimal normal subgroup of G+ contained in N . Then Mg 6= M since oth-
erwise M would be normalised by 〈G+, g〉 = G contradicting the minimality
of N . Also Mg is a minimal normal subgroup of G+ since g normalises G+,
and hence M ∩Mg = 1 and M ×Mg is normal in G+. Now Mg ⊂ N since
N is normal in G, and so M ×Mg ≤ N . Also (Mg)g = M since g2 ∈ G+,
and hence M ×Mg is normalised by 〈G+, g〉 = G. Now the minimality of N
implies that N = M ×Mg. It follows that soc(G) ⊆ soc(H)× soc(H).

If M is a minimal normal subgroup of G+ that is not normal in G, then
the argument of the previous paragraph shows that M × Mg is a normal
subgroup of G. If M is a direct product of isomorphic non-abelian simple
groups then G+ is transitive on the simple direct factors of both M and Mg

and hence G is transitive on the simple direct factors of M ×Mg implying
its minimality. If M is elementary abelian then M ×Mg is also elementary
abelian, is irreducible as a G-module, and so is minimal normal in G. Thus
part (a) is proved.

Now suppose that N1 = N ∩ H1 6= 1. Then N1 is a normal subgroup
of G+ properly contained in N . Let M be a minimal normal subgroup of
G+ contained in N1. By the first paragraph of the proof, N = M × Mg.
Now Mg ≤ N2 and it follows that M = N1 and Mg = N2. Since G is
bi-quasiprimitive, it follows that the Ni are transitive on ∆.

Finally suppose that M is a minimal normal subgroup of H1 that is con-
tained in G+. Then Mg ≤ H2 ∩ G and M ×Mg is a normal subgroup of G
contained in G+. The fact that it is a minimal normal subgroup of G fol-
lows as in the second paragraph of the proof. Since G is bi-quasiprimitive, it
follows that M is transitive on ∆. �

As preparation for treating the cases where G+ ∩ H1 6= 1, we make the
following observations. Note that, for a transitive permutation group N on
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∆, |CSym(∆)(N)| is equal to the number of fixed points of Nδ, where δ ∈ ∆;
and CSym(∆)(N) is semiregular, that is, the only element fixing a point is the
identity.

Lemma 3.3. Suppose that a permutation group H on ∆ has transitive
normal subgroups M and N such that M ∩ N = 1. Then both are regular,
Z(N) = Z(M) = 1, and we may identify ∆ with N so that H ≤ Hol(N) and
M = CSym(N)(N) ∼= N . Further if N is a minimal normal subgroup then H
is primitive and soc(H) = N ×M .

Proof. Since N,M are normal and N ∩ M = 1, we have that
M ⊆ CSym(∆)(N) and since M is transitive, |M | ≥ |∆|. It follows that
M = CSym(∆)(N) and both M and N are regular. Thus we may iden-
tify ∆ with N so that H ≤ Hol(N). Also CSym(N)(N) ∼= N and since
N ∩ CSym(N)(N) = Z(N) it follows that Z(N) = Z(M) = 1. Finally if
N is a minimal normal subgroup then, since M = CSym(∆)(N), we have that
soc(H) = N ×M . In particular H has two minimal normal subgroups N and
M , and each is transitive, so H is quasiprimitive. By [11], H is primitive. �

Lemma 3.4. Suppose that M is a normal subgroup of H such that G+ has
a subgroup Diagϕ(M ×M), for some ϕ ∈ Aut(M), that is left invariant by
g = (x, 1)(12). Then the automorphism of M induced by conjugation by x is
ϕ2.

Proof. Each element of Diagϕ(M ×M) is of the form (y, yϕ) where y ∈M ,
and we have (y, yϕ)g = (yϕ, yx). Hence yx = (yϕ)ϕ for all y ∈M , that is the
automorphism of M induced by conjugation by x is equal to ϕ2. �

Now we deal with the case where G+ ∩H1 6= 1.

Lemma 3.5. Suppose that G+∩H1 6= 1. Then one of Theorem 1.1 (a)(ii),
(a)(iii), (b) holds, and in case (a)(iii), H is primitive.

Proof. Let M1 be a minimal normal subgroup of H1 contained in N1 :=
G+ ∩H1 and let M2 = Mg

1 , N2 = G+ ∩H2, so M2 ≤ N2. By Lemma 3.2 (b),
M1 is transitive on ∆ and M1×M2 is a minimal normal subgroup of G. If N1

contained a second minimal normal subgroup L1 of H1 distinct from M1 then
L1 would also be transitive and L1 × Lg1 would be a second minimal normal
subgroup of G. In this case, by Lemma 3.3, H is primitive and soc(H) =
M1 × L1. Also by Lemma 3.2 (a), soc(G) = (M1 × M2) × (L1 × Lg1) =
soc(H)× soc(H), and Theorem 1.1 (a)(ii) holds.

Thus we may assume that soc(G) ∩ N1 = M1. If soc(H1) = M1 then
again Theorem 1.1 (a)(ii) holds, so we may assume that soc(Hi) = Mi × Li,
where Li 6= 1 and g interchanges L1 and L2. Recall that M1 is transitive.
If M1 were abelian then it would be regular and self-centralising in Sym(∆).
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However since L1 ≤ CSym(∆)(M1), it follows that M1 is non-abelian. Suppose
that G has a minimal normal subgroup K 6= M1 × M2. By Lemma 3.2,
K × M1 × M2 ≤ soc(H1) × soc(H2) and hence K ≤ L1 × L2. Since G
is bi-quasiprimitive, K has two orbits in Ω and so L1 is transitive on ∆.
By Lemma 3.3, H1 is primitive, M1, L1 are isomorphic non-abelian minimal
normal subgroups and are regular on ∆, M1 = CSym(∆)(L1), and we may
identify ∆ with L1 so that H1 ≤ Hol(L1). Hence π(K) = Li for each i,
and so, identifying L1 = L2 = L, K = Diagϕ(L × L) for some ϕ ∈ Aut(L).
By Lemma 3.4, ϕ2 is the restriction of ιx to L. Clearly K × (M1 ×M2) =
G+ ∩ soc(B), and hence soc(G) = K × (M1 ×M2), and Theorem 1.1 (a)(iii)
holds.

We may now assume that soc(G) = M1 ×M2. If L1 is intransitive, then
Theorem 1.1 (b) holds. So suppose finally that L1 is transitive. Arguing as in
the previous paragraph, H1 is primitive, M1, L1 are isomorphic non-abelian
minimal normal subgroups and are regular on ∆, M1 = CSym(∆)(L1), and
we may identify ∆ with L1 so that H1 ≤ Hol(L1) = L1 · Aut(L1). Since
soc(G) = M1 ×M2 = soc(B)∩G, we have G+/ soc(G) ∼= G+ soc(B)/ soc(B),
which is isomorphic to a subgroup of Out(L1)2. On the other hand, since
πi(G+) = Hi, it follows that G+/ soc(G) has a chief factor isomorphic to
L1. Since L1 = T k for some non-abelian simple group T and k ≥ 1, we
have Out(L1) = Out(T ) o Sk, and no subgroup of Out(L1)2 has a chief factor
isomorphic to T k. Thus this final case does not arise. �

Lemma 3.6. If G+∩H1 = 1, then one of Theorem 1.1 (a)(i), (c)(i), (c)(ii)
holds.

Proof. Identifying H1 = H2 = H, we have G+ = Diagϕ(H ×H) for some
ϕ ∈ Aut(H), and by Lemma 3.4, ϕ2 = ιx. If H is quasiprimitive then
Theorem 1.1 (a)(i) holds. So suppose that H is not quasiprimitive, and let R
be an intransitive minimal normal subgroup of H. Then S = {(y, yϕ) | y ∈ R}
is the corresponding minimal normal subgroup of G+. Since R is intransitive
on ∆, S has more than two orbits in Ω, and hence S is not normal in G. By
Lemma 3.2, Sg ∩S = 1 and N := S ×Sg is a minimal normal subgroup of G.
For (y, yϕ) ∈ S, (y, yϕ)g = (yϕ, yx) = (yϕ, (yϕ)ϕ) and hence Sg is the minimal
normal subgroup of G+ corresponding to Rϕ, whence Rϕ 6= R. Moreover, N
consists of all elements (z, zϕ)(y, yϕ)g = (zyϕ, (zyϕ)ϕ), for y, z ∈ R. Thus
N is the normal subgroup of G+ corresponding to M := R × Rϕ, that is,
N = Diagϕ(M × M). Since N has two orbits in Ω it follows that M is
transitive on ∆. If soc(G) = N then Theorem 1.1 (c)(i) holds.

Suppose then that soc(G) 6= N and let N̄ be a minimal normal subgroup
of G, N̄ 6= N . By Lemma 3.2, N̄ ≤ G+ and N̄ has two orbits in Ω. Thus
M̄ := π1(N̄) and M are two transitive normal subgroups of Hi = H and
M̄ ∩M = 1. By Lemma 3.3, M̄ and M are isomorphic, non-abelian, and
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regular on ∆, soc(H) = M×M̄ ≤ H ≤ Hol(M), and since H is not primitive,
M̄ is not a minimal normal subgroup of H. By Lemma 3.2, soc(G) = N × N̄ ,
and also N̄ = L × Lg where L is a minimal normal subgroup of G+. By the
definition of M̄ , N̄ = Diagϕ(M̄ × M̄) ∼= M̄ and so N̄ is non-abelian. As in
the previous paragraph, since N̄ = L × Lg, we see that M̄ = R̄ × R̄ϕ for an
intransitive minimal normal subgroup R̄ of H, and since M̄ ∼= M we have
R̄ ∼= R and N̄ ∼= N . Thus Theorem 1.1 (c)(ii) holds. �

The proof of Theorem 1.1 follows from Lemmas 3.1, 3.5, 3.6 and the ex-
amples given in Section 2.

4. Quotients and covers of graphs

A graph Γ = (Ω, E) consists of a vertex set Ω and a subset E of unordered
pairs from Ω that we call edges. As in Section 1, an arc is an ordered pair
(α, β) such that {α, β} ∈ E. More generally for s ≥ 1, we define an s-arc in Γ
as a vertex sequence (α0, α1, . . . , αs) such that each (αi, αi+1) is an arc and
αi−1 6= αi+1. We say that Γ is (G, s)-arc transitive if G acts as a group of
automorphisms of Γ and is transitive on s-arcs. If G is both vertex-transitive
and s-arc transitive on a graph Γ, then G is also t-arc transitive for all t ≤ s.

In [8], [9], quotient graphs of vertex-transitive graphs were studied in an
attempt to find sufficient conditions under which a quotient inherits various
properties such as s-arc transitivity. Quotient graphs are defined for each
partition P of the vertex set of a graph Γ: the quotient graph ΓP = (P, EP)
where {A,B} ∈ EP if and only if there exist at least one α ∈ A and at least one
β ∈ B such that {α, β} is an edge of Γ. Clearly if Γ is connected then also ΓP
is connected. If G ≤ Aut(Γ), then G induces a subgroup GP of ΓP provided P
is G-invariant, that is, for all A ∈ P and g ∈ G, the image Ag = {αg|α ∈ A}
is also in P. In this case, the action of GP on ΓP inherits from G any of
the properties: vertex-transitivity, edge-transitivity, arc-transitivity. Thus if
Γ is connected and G-arc-transitive, then by choosing a maximal G-invariant
vertex-partition P, we obtain a quotient ΓP on which GP is vertex-primitive
as well as arc-transitive. Moreover ΓP is a k-multicover of Γ for some k, that
is, if (A,B) is an arc of ΓP then each vertex of A is adjacent to exactly k
vertices of B. The theory of finite primitive permutation groups can often be
used effectively to study connected G-arc-transitive graphs Γ through their
primitive quotients GP .

However the property of s-arc transitivity, for s ≥ 2, is not in general
inherited by a quotient ΓP modulo a G-invariant partition P, and in fact
such quotients are often far from s-arc transitive. On the other hand, in [8,
Section 1] it was found that s-arc transitivity is inherited by normal quotients
and that each finite (G, s)-arc transitive graph Γ, where s ≥ 2, is a cover (that
is a 1-multicover) of a (G, s)-arc transitive quotient ΓP such that G is also
quasiprimitive or bi-quasiprimitive on the vertices of ΓP . Thus quasiprimitive
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and bi-quasiprimitive s-arc transitive graphs play a central role in elucidating
the structure of finite s-arc transitive graphs. By a normal quotient of a G-arc
transitive graph Γ we mean a quotient ΓP such that P is the set of orbits on
vertices of a normal subgroup of G. It was this discovery that inspired the
development of the theory of finite quasiprimitive groups, and in particular
the quasiprimitive O’Nan-Scott Theorem in [11].

It was shown in [11] that only a few of the possible types of quasiprimitive
groups can act 2-arc transitively, and by Theorem 1.2, if Γ is not a complete
bipartite graph, then a biquasiprimitive 2-arc transitive subgroup of automor-
phisms must be of type (a)(i) or (c) of Theorem 1.1. In [10, Theorem 2.3] it
was shown that, for a bi-quasiprimitive group G of type (a)(i) acting 2-arc
transitively, the quasiprimitive action of G+ on each part of the bipartition
can only be of one of the types possible for a quasiprimitive 2-arc transitive
action. The possibility of bi-quasiprimitive groups G of type (c) acting 2-arc
transitively is rather problematic. Some information about this case is pro-
vided in [9, Theorem 2.1B] and [10, Section 2]. One motivation for proving
Theorem 1.1 was to gain a better understanding of this case, and indeed we
are able to do so in Proposition 4.1.

A likely further application of this theory will be towards a proof of a conjec-
ture made by Richard Weiss [15] in 1978 about finite locally primitive graphs
and a similar conjecture (see [7]) for finite locally-quasiprimitive graphs. A
graph Γ is said to be G-locally-primitive, or G-locally-quasiprimitive, if G ≤
Aut(Γ) and, for each vertex α, the stabiliser Gα induces a primitive or quasi-
primitive action respectively on Γ(α). Each vertex-transitive 2-arc transitive
graph is locally-primitive, and each vertex-transitive locally-primitive graph
is locally-quasiprimitive. The conjectures are that there exist functions f, f ′

such that, for a finite vertex-transitive locally-primitive or locally-quasiprimi-
tive graph of valency v, the number of automorphisms fixing a given vertex is
at most f(v) or f ′(v) respectively. In [4] it was shown that the conjecture for
locally-primitive graphs is true for non-bipartite graphs if and only if it holds
for such graphs with an almost simple automorphism group. We believe that
Theorem 1.1 and Proposition 4.1 will help in attacking these conjectures for
bipartite graphs. The statement of Proposition 4.1 uses the notation of The-
orem 1.1. The assertion in part (b) that Γ is not (G, 2)-arc transitive relies
on the classification of finite almost simple 2-transitive groups and hence on
the finite simple group classification.

Proposition 4.1. Let Γ = (Ω, E) be a finite connected bipartite graph and
suppose that G ≤ Aut(Γ) is locally-quasiprimitive and vertex bi-quasiprimitive
and that Theorem 1.1 (c) holds. Let α ∈ Ω and let Γ(α) denote the set of
vertices adjacent to α.

(a) If G is of type (c)(i), then R,Rϕ are semi-regular on ∆ and soc(G)α
is isomorphic to a (possibly trivial) diagonal subgroup of M = R×Rϕ.
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(b) If G is of type (c)(ii), then Γ is not (G, 2)-arc transitive. Here H ≤
Hol(M) = M · Aut(M) and up to isomorphism we may identify Ω
with M × {1, 2} such that, for (y, i) ∈ Ω, m ∈M , and σ ∈ Aut(M),

(y, i)m =
{

(ym, 1) if i = 1
(ymϕ, 2) if i = 2 and (y, i)σ =

{
(yσ, 1) if i = 1
(yσ

ϕ

, 2) if i = 2.

Moreover, for α = (1, 2), soc(G)α = X × Y where X := Diagϕ(R ×
R) ∼= R is transitive on Γ(α), Y := Diagϕ(Rϕ × Rϕ) ∼= R fixes Γ(α)
pointwise, and for γ = (y, 1) ∈ Γ(α), Xγ = Diagϕ(CR(y)× CR(y)).

Proof. Suppose that G is of type (c)(i), so soc(G) = Diagϕ(M ×M) and
M = R×Rϕ. If M is regular on ∆ then the assertions of (a) hold, so we may
assume that M is not regular. Then G has no non-trivial semiregular normal
subgroups, and the assertions in (a) follow from [10, Theorem 2.1B].

Suppose that G is of type (c)(ii). Then soc(G) = N × N̄ , where N ,
N̄ are isomorphic non-abelian minimal normal subgroups of G, and each is
semiregular on the vertex set Ω with orbits ∆,∆′. Moreover, using the no-
tation of Theorem 1.1, G+ = Diagϕ(H × H), N = Diagϕ(M ×M) ∼= M ,
H ≤ Hol(M) = M ·Aut(M), and we may identify the vertex set Ω of Γ with
M × {1, 2} with the action specified in (b). For α = (1, 2), β = (1, 1) ∈ Ω, we
have soc(G)α = soc(G)β = Diagϕ(Inn(M) × Inn(M)) ∼= M . Thus soc(G)α
acts on M×{1} essentially with the natural action of Inn(M). Also soc(G)α is
a direct product of two isomorphic minimal normal subgroups of Gα, namely
X := Diagϕ(R×R) ∼= R and Y := Diagϕ(Rϕ×Rϕ) ∼= R. Since Γ is connected
it follows that soc(G)α acts non-trivially on the set Γ(α) of vertices adjacent
to α, and since the group G

Γ(α)
α induced on Γ(α) is quasiprimitive, it follows

that each of its minimal normal subgroups in (soc(G)α)Γ(α) is transitive. Let
γ = (y, 1) ∈ Γ(α) ⊆ M × {1} with y = y1y2 ∈ R × Rϕ. Suppose that X
acts nontrivially on Γ(α). Then X does not fix γ, so y1 6= 1 and for some
a ∈ R we have ya1 6= y1 and γ′ := (ya1y2, 1) ∈ Γ(α). However no element of
Y can map γ to γ′ and hence Y cannot act transitively on Γ(α). Thus Y
must fix Γ(α) pointwise, and this implies that Γ(α) ⊆ R × {1}. Moreover
Xγ = Diagϕ(C × C) where C = CR(y1). Suppose now that Y is non-trivial
on Γ(α). Then an analogous argument shows that Γ(α) ⊆ Rφ × {1}, X fixes
Γ(α) pointwise, and Yγ = Diagϕ(C × C) where C = CRϕ(y2). Now the map
ϕ̄ : (y, i) 7→ (yϕ, i), for (y, i) ∈ Ω, is a bijection, fixes α, normalises G+, con-
jugates g = (x, 1)(12) to gϕ̄ = (xϕ, 1)(12), and we have ggϕ = (x, xϕ) ∈ G+.
Thus ϕ̄ ∈ NSym(Ω)(G) and ϕ̄ induces an isomorphism from Γ to a graph for
which X is non-trivial on the vertices adjacent to α.

Finally suppose that Γ is (G, 2)-arc transitive. Then G
Γ(α)
α is 2-transitive

and has socle isomorphic to R. It follows from a result of Burnside (see [16,
Theorem 11.7]) that R is simple. However we have just shown that a point
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stabiliser in this action of R is isomorphic to CR(y1) for some y1 6= 1, and there
is no finite almost simple 2-transitive group with this property; see [3]. �

References

[1] R. Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115–
187.

[2] J. Bamberg and C. E. Praeger, Finite permutation groups with a transitive minimal
normal subgroup, Proc. London Math. Soc. (3), to appear.

[3] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London Math.

Soc. 13 (1981), 1–22.
[4] M. D. Conder, C. H. Li, and C. E. Praeger, On the Weiss conjecture for finite locally

primitive graphs, Proc. Edinburgh Math. Soc. (2) 43 (2000), 129–138.
[5] P. Förster, Projektive Klassen endlicher Gruppen 1, Math. Z. 186 (1984), 149–178.

[6] A. A. Ivanov, Distance-transitive graphs and their classification, Investigations in alge-

braic theory of combinatorial objects, Kluwer Acad. Publ., Dordrecht, 1994, pp. 283–
378.

[7] C. H. Li, C. E. Praeger, A. Venkatesh, and S. Zhou, Finite locally-quasiprimitive
graphs, Discrete Math. 246 (2002), 197–218.

[8] C. E. Praeger, Imprimitive symmetric graphs, Ars Combin. 19 (1985), 149–163.
[9] , On automorphism groups of imprimitive symmetric graphs, Ars Combin. 23

(1987), 207–224.
[10] , On a reduction theorem for finite, bipartite 2-arc-transitive graphs, Australas.

J. Combin. 7 (1993), 21–36.
[11] , An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an

application to 2-arc transitive graphs, J. London Math. Soc. (2) 47 (1993), 227–239.
[12] , Permutation groups and normal subgroups, Proceedings of the International

Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002,
pp. 67–76.

[13] L. L. Scott, Representations in characteristic p, The Santa Cruz Conference on Finite

Groups (Univ. California, Santa Cruz, Calif., 1979), Amer. Math. Soc., Providence,
R.I., 1980, pp. 319–331.

[14] J. van Bon and A. M. Cohen, Prospective classification of distance-transitive graphs,

Combinatorics ’88, Vol. 1 (Ravello, 1988), Mediterranean, Rende, 1991, pp. 25–38.
[15] R. Weiss, s-transitive graphs, Algebraic methods in graph theory, I,II (Szeged, 1978),

Colloq. Math. Soc. János Bolyai, vol. 25, North Holland, Amsterdam, 1978, pp. 827–
847.

[16] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.

Department of Mathematics & Statistics, University of Western Australia, 35

Stirling Highway, Crawley, Western Australia 6009, Australia

E-mail address: praeger@maths.uwa.edu.au


