Finite Type Transcendental Entire Functions Whose Buried Points Set Contains Unbounded Positive Real Interval

Feng Guo

Department of Mathematics, China University Mining \& Technology, Beijing, China
Email: sdsxguofeng@163.com
Received 4 March 2014; revised 4 April 2014; accepted 9 April 2014
Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Let $f_{\mu}(z)=z \cdot e^{p(z)+\mu}$ with $p(z)$ being real coefficient polynomial and it's leading coefficient be positive, $\mu \in \mathbb{R}^{+}$, when $p(z)$ and μ satisfy two certain conditions, buried point set of $f_{\mu}(z)$ contains unbounded positive real interval.

Keywords

Transcendental Entire Functions, Julia Set, Buried Points Set, Real Interval

1. Introduction and Main Result

Let $f(z)$ be an entire function on the complex plane \mathbb{C}. Define the iterated sequence $\left\{f^{n}\right\}$ of f as

$$
f^{0}=z, \quad f^{n+1}(z)=f \circ f^{n}(z) \quad(n=0,1,2, \cdots)
$$

\mathbb{C} can be divided into two sets:

$$
F(f)=\left\{z \mid\left\{f^{n}\right\} \text { is normal at } z\right\}, \quad J(f)=\mathbb{C} \backslash F(f)
$$

$F(f)$ is called Fatou set, which is open and contains at most countably many components. $J(f)$ is called Julia set, and it's closed and perfect. The fundamental theory of complex dynamical system can refer to [1]-[4].

For an entire function f, let $\mathcal{S}=\left\{f\right.$ is entire function $\mid \operatorname{sing}\left(f^{-1}\right)$ is a finite set $\}$, with $\operatorname{sing}\left(f^{-1}\right)$ be the set of singular value. If f is not a smooth covering map over any neighborhood of α, then α is a singular
value. If $f \in \mathcal{S}$, we call f is finite type entire function. The basic properties of the type entire function can refer to [5].
I.N. Baker has first structured the transcendental entire function whose Julia set is \mathbb{C} (See [6]):

Theorem A:

For a certain real value $\mu, \quad f_{\mu}=\mathrm{ze}^{z+\mu}$ has the whole complex plane for its Julia set.
Notice the set $\left\{\mu \in \mathbb{R}^{+}: J\left(f_{\mu}(z)\right)=\mathbb{C}, f_{\mu}=z \mathrm{e}^{z+\mu}\right\}$. Baker's result show that the set is nonempty; Jang, C.M. proved that this set contains infinitely many elements in [7]; Qiao, J. proved that the set is unbounded in [8]. What's more, Qiao has researched the buried sets in [9], which contains unbounded positive real interval:

Theorem B:

If $\mu \in[0,+\infty)$ for $f_{\mu}=z \mathrm{e}^{z+\mu}$ and $J\left(f_{\mu}(z)\right) \neq \mathbb{C}$, then \mathbb{R}^{+}belongs to the set of buried points.
Here we study the function $f_{\mu}(z)=z \cdot \mathrm{e}^{p(z)+\mu}$ with $p(z)$ is real coefficient polynomial and it's leading coefficient is positive, expend the function in Theorem B:

Theorem 1 Let $f_{\mu}(z)=z \cdot \mathrm{e}^{p(z)+\mu}, \quad p(z)$ is real coefficient polynomial and it's leading coefficient is positive, the zeros of $z p^{\prime}(z)+1=0$ are $\left\{a_{k} \mid k=1, \cdots, d\right\}$ which are real, unbounded positive real interval $L=(c,+\infty) \cap \mathbb{R}^{+}$with $c=\max _{1 \leq k \leq d}\left\{a_{k}\right\} . J\left(f_{\mu}(z)\right) \neq \mathbb{C}$ and μ satisfy:
(1) $p(z)+\mu>0\left(z \in \mathbb{R}^{+} \bigcup\{0\}\right)$;
(2) $x_{\mu} p^{\prime}\left(x_{\mu}\right) \in(-\infty,-2) \cup(0,+\infty)$ with x_{μ} is real zeros of $p(z)+\mu=0$.

Then L belongs to the set of buried points set.
Remark: Qiao has given the example that satisfy the condition of Theorem B in [9], then the example show that the function satisfy conditions in Theorem 1 is nonempty.

2. Proof of Theorem 1

Lemma 1 Let $f(z)$ be an entire funcion of finite type. Then each Fatou component is eventually periodic, and $F(f)$ has only finitely many periodic compinents. They are attractive domains, superattractive domains, parabolic domains or Siegel discs.

Lemma 2 Let $f(z)$ be a transcendental entire function, D be a component of $F(f)$. If D is an attractive, a superattractive or a parabolic periodic domain, then the cycle of D contains at least one singularity of f^{-1}; if D is a Siegel disc, then the forward orbits of the singularities of f^{-1} are dense on ∂D.

Lemma 3 Let $f(z)$ be transcendental entire function of finite type. Then $f^{n}(z) \nrightarrow \infty(n \rightarrow \infty)$ for $z \in F(f)$.
Proof of Theorem 1: The singularities of f_{μ}^{-1} are 0 and $f_{\mu}\left(a_{k}\right) \in \mathbb{R}(1 \leq k \leq d)$, then $\left\{f_{\mu}^{n}\left(a_{k}\right)\right\}_{n=1}^{\infty} \in \mathbb{R}(1 \leq k \leq d)$ if $J\left(f_{\mu}(z)\right) \neq \mathbb{C}$, so from Lemma $2 F\left(f_{\mu}\right)$ have no Siegel disc and from Lemma 1, the periodic component of $F\left(f_{\mu}\right)$ only be attractive, superattractive or parabolic. $f_{\mu}(0)=0$ and from $p(z)+\mu>0\left(z \in \mathbb{R}^{+}\right)$we can have $f_{\mu}^{\prime}(0)=\mathrm{e}^{p(0)+\mu}>1$, then 0 is a repelling fixed point, from Lemma 1 and 2, $F\left(f_{\mu}\right)$ has at most d cycles of periodic components $\left\{D_{j}^{k}\right\}_{j=1}^{p_{k}-1}\left(1 \leq k \leq d, p_{k} \in \mathbb{N}\right)$:

$$
\forall 1 \leq k \leq d, \quad f_{\mu}\left(D_{j}^{k}\right)=D_{j+1}^{k} \quad\left(j=0,1,2, \cdots, p_{k}-2\right), \quad f_{\mu}\left(D_{p_{k}-1}^{k}\right)=D_{0}^{k}
$$

such that $f_{\mu}\left(a_{k}\right) \in \bigcup_{j=0}^{p_{k}-1} D_{j}^{k}$ and there exist $\left\{x_{k} \in \mathbb{R}(1 \leq k \leq d)\right\}$ such that

$$
* f_{\mu}^{n p_{k}+1}\left(a_{k}\right) \rightarrow x_{k} \quad(n \rightarrow \infty)
$$

Here we first proof $L=(c, \infty) \cap \mathbb{R}^{+}$belong to $J\left(f_{\mu}\right)$. If there exist $t \in(c, \infty) \cap \mathbb{R}^{+}$and $t \in F\left(f_{\mu}\right)$, then t is contained in a component of $F\left(f_{\mu}\right)$ and from above we have that there exist $m \in \mathbb{N}, a \in\left\{a_{k} \mid k=1, \cdots, d\right\}$, a cycle of component $\left\{D_{j}\right\}_{j=1}^{p}$ with $p \in\left\{p_{k} \mid k=1, \cdots, d\right\}$ and $x_{0} \in\left\{x_{k} \mid k=1, \cdots, d\right\}$ such that $f_{\mu}^{m}(t)$ and $f_{\mu}(a)$ are in the same domain D_{j}, from * we have that $f_{\mu}^{m+n p}(t) \rightarrow x_{0}(n \rightarrow \infty)$. However,
$p(z)+\mu>0\left(z \in \mathbb{R}^{+}\right)$means $f_{\mu}(z)>z$ when $z \in \mathbb{R}^{+}, f_{\mu}^{\prime}(z)>0$ when $z \in(c, \infty) \bigcap \mathbb{R}^{+}$, then
$\left\{f_{\mu}^{n}(z)\right\}_{n=1}^{\infty} \in L$ is montone increasing sequence, by the relation

$$
f_{\mu}^{n+1}(z)=f_{\mu}^{n}(z) \exp \left(p\left(f_{\mu}^{n}(z)\right)+\mu\right)
$$

we have $f_{\mu}^{n}(z) \rightarrow+\infty\left(z \in L \cap F\left(f_{\mu}\right) ; n \rightarrow \infty\right)$ which give a contradiction to Lemma 3.
Then we will proof that $L=(c, \infty) \bigcap \mathbb{R}^{+}$belongs to the set of buried points. If there exist a point $a_{0} \in(c, \infty) \cap \mathbb{R}^{+}$and a_{0} is on the boundary of a component of $F\left(f_{\mu}\right)$, from the discussion above, we know there exist some $N \in \mathbb{N}$, a cycle of component $\left\{D_{j}\right\}_{j=1}^{p} \in\left\{D_{j}^{k}\right\}_{j=1}^{p_{k}-1}(1 \leq k \leq d)$ with $p \in\left\{p_{k} \mid k=1, \cdots, d\right\}$ such that when $n>N$,

$$
f_{\mu}^{n}\left(a_{0}\right) \in \bigcup_{j=0}^{p-1} \partial D_{j} \quad(n=1,2,3, \cdots)
$$

and there exist $x_{0} \in\left\{x_{k} \in \mathbb{R}(1 \leq k \leq d)\right\}$ and some $a \in\left\{a_{k} \mid k=1, \cdots, d\right\}, \quad a \in\left\{D_{j}\right\}_{j=1}^{p}$ such that
$f^{n p+1}(a) \rightarrow x_{0}(n \rightarrow \infty)$. $f_{\mu}^{n p+1}(a) \rightarrow x_{0}(n \rightarrow \infty)$.
Let $a_{n}=f_{\mu}^{n}\left(a_{0}\right)(n=1,2,3, \cdots)$, it's easy to have that $a_{n} \in \mathbb{R}^{+}$and $a_{n+1}>a_{n}(n=1,2, \cdots), a_{n} \rightarrow \infty(n \rightarrow \infty)$. Without the loss of generality, we can let $n>N, a_{n p+j} \in \partial D(j=0,1,2, \cdots, p-1)$.

Here we prove $a_{n p+j}(n=1,2,3, \cdots)$ are all in the same connected component of ∂D_{j}.If not, there exist $a_{k p+j}, a_{s p+j}(k<s)$ and two different component of ∂D_{j} called α_{1} and α_{2} such that

$$
a_{k p+j} \in \alpha_{1}, a_{s p+j} \in \alpha_{2}
$$

We can make curve ω, such that α_{1} and α_{2} belong to different components of $\mathbb{C} \backslash \omega$, then α_{1} and α_{2} belong to different components of $J\left(f_{\mu}\right)$, that gives a contradiction to $\left[a_{k p+j}, a_{s p+j}\right] \subset J\left(f_{\mu}\right)$.

Let $\delta_{n} \subset \partial D_{j}$ be an bounded continuum containing $a_{n p+j}$ and $a_{(n+1) p+j}$, we will prove that $\left[a_{n p+j}, a_{(n+1) p+j}\right] \subset \delta_{n}$. If not, δ_{n} and $\left[a_{n p+j}, a_{(n+1) p+j}\right]$ can form a bounded domain and $J\left(f_{\mu}\right)$ have no interior point, therefore $F\left(f_{\mu}\right)$ have to have a bounded domain, notice that $\left\{a_{n}\right\}_{n=1}^{\infty}$, let $\lim _{n \rightarrow \infty} a_{n}=A$, due to $a_{n+1}=a_{n} \mathrm{e}^{p\left(a_{n}\right)+\mu}$, then $A=A \mathrm{e}^{p(A)+\mu}$, notice that $a_{n}, A \in \mathbb{R}^{+}$and $p(z)+\mu>0$ when $z \in \mathbb{R}^{+}$therefore $A=0, \infty$, from $a_{n} \in \mathbb{R}^{+}$we have $A=+\infty$. That means D_{j} is a unbounded component, however any component of $F\left(f_{\mu}\right)$ have to turn into cycle $\left\{D_{j}\right\}_{j=0}^{p-1}$ from Lemma 1, therefore the components of $F\left(f_{\mu}\right)$ are all unbounded, it's contradiction. What's more, we can have that

$$
\begin{gathered}
\bigcup_{n=N}^{\infty}\left[a_{n p+j}, a_{(n+1) p+j}\right] \subset \partial D_{j} \quad(j=1,2,3, \cdots, p-1) \\
{\left[a_{N p+j}, \infty\right] \subset \partial D_{j} \quad(j=1,2,3, \cdots, p-1)}
\end{gathered}
$$

that means $\left[a_{N_{0}}, \infty\right]$ is the common boundary of $D_{0}, D_{1}, \cdots, D_{p-1}$ with $N_{0}=N p+p-1$. The common boundary is at most of two domains, therefore $p \leq 2$. Here we divide two cases to discuss:

Case 1: $p=1 . \quad f_{\mu}(a) \in \bigcup_{j=0}^{p-1} D_{j}$ is $f_{\mu}(a) \in D_{0}$. Considering

$$
f_{\mu}^{n+1}(a)=f_{\mu}^{n}(a) \mathrm{e}^{p\left(f_{\mu}^{n}(a)\right)+\mu}
$$

and * we have

$$
x_{0}=\lim _{n \rightarrow \infty} f_{\mu}^{n+1}(a)=0 \text { or } x_{0} \text { are the zeros of } p(z)+\mu=2 k \pi i \quad(k=0, \pm 1, \pm 2, \cdots)
$$

Notice $a \in \mathbb{R}$, then $x_{0} \in \mathbb{R}$, we only need to consider 0 and the real zeros of $p(z)+\mu=0$, from Lemma 2
x_{0} is an attractive, superattractive, or rational indifferent fixed point, but from conditions (1) and (2) in Theorem 1, 0 and x_{0} are repelling fixed point, it's a contradiction.

Case 2: $\quad p=2$. Without the loss of generality, we take D_{0} be the component above $\left[a_{N_{0}},+\infty\right)$ and D_{1} be the component under $\left[a_{N_{0}},+\infty\right)$, for $r \in\left[a_{N_{0}},+\infty\right)$ with r is large enough, take a sequence $\left\{z_{n}\right\}_{n=1}^{\infty} \in D_{0} \cap\{z \mid \operatorname{Im} z>0\}$ such that $z_{n} \rightarrow r(n \rightarrow \infty)$.

Let $z_{n}=r_{n} \mathrm{e}^{i \theta_{n}}$ with $r_{n}>0, \theta_{n} \in\left(0, \frac{\pi}{2}\right)$, then

$$
f_{\mu}\left(z_{n}\right)=r_{n} \mathrm{e}^{i \theta_{n}} \mathrm{e}^{p\left(r_{n} i \theta_{n}\right)+\mu}
$$

We can suppose that $p(z)=c_{n} z^{d}+\cdots+c_{1} z+c_{0}$, then we have

$$
\operatorname{Im} p\left(r_{n} \mathrm{e}^{i \theta_{n}}\right)=c_{n} r_{n}^{d} \sin \left(\theta_{n} d\right)+\cdots+c_{1} r_{n} \sin \left(\theta_{n}\right)>\left(c_{n} r_{n}^{d}+\cdots+c_{1} r_{n}\right) \sin \theta_{n}=p\left(r_{n}\right) \sin \theta_{n}
$$

Notice that $p(z)+\mu>0\left(z \in \mathbb{R}^{+} \bigcup\{0\}\right)$ and we can easily deduce that $\operatorname{Im} p\left(r_{n} \mathrm{e}^{i \theta_{n}}\right)>p\left(r_{n}\right) \sin \theta_{n}>0$ and $f_{\mu}\left(z_{n}\right)$ belong to the above half plane when n and r is large enough, but it contradicts that $f_{\mu}\left(z_{n}\right) \in D_{1}$. The proof is complete.

Acknowledgements

Author thanks professor Jianyong Qiao and Yuhua Li for their discussions and suggestions.

References

[1] Eremenko, A.E. and Lyubich, M.Yu (.1990) The Dynamics of Analytic Transformations. Leningrad Mathematical Journal, 1, 563.
[2] Beardon, A.F. (1991) Iteration of Rational Functions. Springer, Berlin. http://dx.doi.org/10.1007/978-1-4612-4422-6
[3] Milnor, J. (2006) Dynamics in One Complex Variable. 3rd Edition, Princeton University Press, Princeton and Oxford.
[4] Qiao, J. (2010) Complex Dynamics on Renormalization Transformations. Science Press, Beijing. (in Chinese)
[5] Morosawa, S., Nishimura, Y., Taniguchi, M. and Ueda, T. (2000) Holomorphic Dynamics, Cambridge University Press.
[6] Baker, I.N. (1970) Limit Functions and Sets of Non-Normality in Iteration Theory. Annales Academiae Scientiarum Fennicae. Series A 1, Mathematica, 467, 1-11.
[7] Jang, C.M. (1992) Julia Set of the Function $z \exp (z+\mu)$. Tohoku Mathematical Journal, 44, 271-277.
[8] Qiao, J. (1994) The Set of the Mapping $z \rightarrow \exp (z+\mu)$. Chinese Science Bulletin, 39, 529.
[9] Qiao, J. (1995) The Buried Points on the Julia Sets of Rational and Entire Functions. Science in China Series A, 38, 1409-1419.

