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After we derive the Serre system of equations of water wave theory from a generalized17

variational principle, we present some of its structural properties. We also propose a robust18

and accurate finite volume scheme to solve these equations in one horizontal dimension. The19

numerical discretization is validated by comparisons with analytical and experimental data20

or other numerical solutions obtained by a highly accurate pseudo-spectral method.21
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1 Introduction24

The full water wave problem consisting of the Euler equations with a free surface is still25

very difficult to study theoretically and even numerically. Consequently, the water wave26

theory has always been developed through the derivation, analysis and comprehension of27

various approximate models (see the historical review of Craik [24] for more information).28

For this reason, a plethora of approximate models have been derived under various29

physical assumptions. In this family, the Serre equations have a particular place and30

are the subject of the present study. The Serre equations can be derived from the Euler31

equations, contrary to the Boussinesq systems or the shallow water system, without the32

small amplitude or the hydrostatic assumptions respectively.33

The Serre equations are named after François Serre, an engineer at École Nationale des34

Ponts et Chaussées, who derived this model for the first time in 1953 in his prominent paper35

entitled ‘Contribution à l’étude des écoulements permanents et variables dans les canaux’36

(see [59]). Later, these equations were independently rediscovered by Su and Gardner [64]37

and Green et al. [38]. The extension of the Serre equations for general uneven bathymetries38
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was derived by Seabra-Santos et al. [58]. In the Soviet literature these equations were39

known as the Zheleznyak–Pelinovsky model [75]. For some generalizations and new results40

we refer to recent studies by Barthélémy [7], Dias and Milewski [25] and Carter and41

Cienfuegos [12].42

A variety of numerical methods have been applied to discretize dispersive wave models43

and, more specifically, the Serre equations. A pseudo-spectral method was applied in44

[25], an implicit finite difference scheme in [7, 53] and a compact higher order scheme45

in [16,17]. Some Galerkin and finite element-type methods have been successfully applied46

to Boussinesq-type equations [3, 4, 27, 54]. A finite difference discretization based on an47

integral formulation was proposed by Bona and Chen [10].48

Recently, efficient high-order explicit or implicit–explicit finite volume schemes for49

dispersive wave equations have been developed [15, 33]. The robustness of the proposed50

numerical schemes also allowed simulating the run-up of long waves on a beach with high51

accuracy [33]. The present study is a further extension of the finite volume method to52

the practically important case of the Serre equations. We also develop a pseudo-spectral53

Fourier-type method to validate the proposed finite volume scheme. In all cases where the54

spectral method is applicable, it outperforms the finite volumes. However, the former is55

applicable only to smooth solutions in periodic domains, while the area of applicability56

of the latter is much broader, including dispersive shocks (or undular bores) [34], non-57

periodic domains etc.58

The present paper is organized as follows. In Section 2 we provide a derivation of the59

Serre equations from a relaxed Lagrangian principle and discuss some structural properties60

of the governing equations. The rationale on the employed finite volume scheme are given61

in Section 3. A very accurate pseudo-spectral method for the numerical solution of the62

Serre equations is presented in Section 4. In Section 5, we present convergence tests and63

numerical experiments validating the model and the numerical schemes. Finally, Section64

6 contains the main conclusions.65

2 Mathematical model66

Consider an ideal incompressible fluid of constant density ρ. The vertical projection of67

the fluid domain Ω is a subset of �2. The horizontal independent variables are denoted68

by x = (x1, x2) and the upward vertical one by y. The origin of the Cartesian coordinate69

system is chosen such that the surface y = 0 corresponds to the still water level. The70

fluid is bounded below by an impermeable bottom at y = −d(x, t) and above by the free71

surface located at y = η(x, t). We assume that the total depth h(x, t) ≡ d(x, t) + η(x, t)72

remains positive h(x, t) � h0 > 0 at all times t. The sketch of the physical domain is shown73

in Figure 1.74

Remark 1 We make the classical assumption that the free surface is a graph y = η(x, t)75

of a single-valued function. This means that in practice we exclude some interest-76

ing phenomena, (e.g. wave breaking) which are out of the scope of this modelling77

paradigm.78
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Figure 1. (Colour online) Sketch of the physical domain.

Assuming that the flow is incompressible and irrotational, following are the governing79

equations of the classical water wave problem [44, 49, 63, 71]:80

∇
2φ + ∂

2
y φ = 0 − d(x, t) � y � η(x, t), (2.1)

∂tη + (∇φ) · (∇η) − ∂y φ = 0 y = η(x, t), (2.2)

∂tφ + 1
2

|∇φ|2 + 1
2
(∂yφ)2 + g η = 0 y = η(x, t), (2.3)

dt + (∇d) · (∇φ) + ∂y φ = 0 y = −d(x, t), (2.4)

with φ being the velocity potential (by definition, the irrotational velocity field (u, v) =81

(∇φ, ∂yφ)), g is the acceleration due to the gravity force and ∇ = (∂x1
, ∂x2

) denotes the82

gradient operator in horizontal Cartesian coordinates and |∇φ|2 ≡ (∇φ) · (∇φ).83

The incompressibility condition leads to the Laplace equation for φ. The main difficulty84

of the water wave problem lies on the nonlinear free surface boundary conditions and85

that the free surface shape is unknown. Equations (2.2) and (2.4) express the free-86

surface kinematic condition and bottom impermeability respectively, whereas the dynamic87

condition (2.3) expresses the free surface isobarity.88

The water wave problem possesses several variational structures [11, 47, 55, 70, 73]. In89

the present study, we will focus mainly on the Lagrangian variational formalism, but not90

exclusively. The surface gravity wave equations (2.1)–(2.4) can be derived by minimizing91

the following functional proposed by Luke [47]:92

L =

∫ t2

t1

∫

Ω

L ρ d2x dt, L = −
∫ η

−d

[
g y + ∂t φ + 1

2 (∇φ)2 + 1
2 (∂y φ)2

]
dy. (2.5)

In a recent study, Clamond and Dutykh [20] proposed using Luke’s Lagrangian (2.5) in93

the following relaxed form:94

L = (ηt + µ̃ · ∇η − ν̃) φ̃ + (dt + µ̌ · ∇d + ν̌) φ̌ − 1
2 g η

2

+

∫ η

−d

[
µ · u − 1

2
u2 + νv − 1

2
v2 + (∇ · µ + νy)φ

]
dy, (2.6)

where {u, v, µ, ν} are the horizontal, vertical velocities and associated Lagrange multipliers95

respectively. The additional variables {µ, ν} (Lagrange multipliers) are called pseudo-96

velocities. The ‘tildes’ and ‘wedges’ denote, respectively, a quantity computed at the free97
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surface y = η(x, t) and at the bottom y = −d(x, t). We shall also denote below with ‘bars’98

the quantities averaged over the water depth.99

While the original Lagrangian (2.5) incorporates only two variables (η and φ), the100

relaxed Lagrangian density (2.6) involves six variables {η, φ, u, v, µ, ν}. These additional101

degrees of freedom provide us with more flexibility in constructing various approximations.102

For more details, explanations and examples we refer to [20].103

2.1 Derivation of the Serre equations104

Now we illustrate the practical use of the variational principle (2.6) on an example105

borrowed from [20]. First of all, we choose a simple shallow water ansatz, which is106

a zeroth-order polynomial in y for φ and for u, and a first-order one for v, i.e. we107

approximate flows that are nearly uniform along the vertical direction108

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ (y + d) (η + d)−1 ṽ(x, t). (2.7)

We have also to introduce suitable ansatz for the Lagrange multiplier µ and ν109

µ ≈ µ̄(x, t), ν ≈ (y + d) (η + d)−1 ν̃(x, t).

In the remainder of this paper, we will assume for simplicity the bottom to be flat110

d(x, t) = d = Cst (the application of this method to uneven bottoms can be found111

in [30, 31], for example). With this ansatz the Lagrangian density (2.6) becomes112

L = (ηt + µ̄ · ∇η) φ̄ − 1
2 g η

2

+ (η + d)
[

µ̄ · ū − 1
2

ū2 + 1
3
ν̃ ṽ − 1

6
ṽ2 + φ̄∇ · µ̄

]
. (2.8)

Finally, we impose a constraint of the free surface impermeability, i.e.113

ν̃ = ηt + µ̄ · ∇η.

After substituting the last relation into the Lagrangian density (2.8), the Euler–Lagrange114

equations and some algebra lead to the following equations:115

ht + ∇ · [ h ū ] = 0, (2.9)

ūt + 1
2

∇|ū|2 + g ∇h + 1
3
h−1

∇[ h2 γ̃ ] = (ū · ∇h) ∇(h∇ · ū)

− [ ū · ∇(h∇ · ū) ] ∇h, (2.10)

where we eliminated φ̄, µ̄ and ṽ and where116

γ̃ ≡ ṽt + ū · ∇ṽ = h
{
(∇ · ū)2 − ∇ · ūt − ū · ∇ [ ∇ · ū ]

}
(2.11)

is the fluid vertical acceleration at the free surface. The vertical velocity at the free surface117

ṽ can be expressed in terms of other variables as well, i.e.118

ṽ =
ηt + (∇φ̄) · (∇η)

1 + 1
3
|∇η|2 .
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In two dimensions (one horizontal dimension) the sum of two terms on the right-119

hand side of (2.10) vanishes and the system (2.9)–(2.10) reduces to the classical Serre120

equations [59].121

Remark 2 In [20] it is explained why equations (2.9) and (2.10) cannot be obtained from122

the classical Luke’s Lagrangian. One of the main reasons is that the horizontal velocity ū123

does not derive from the potential φ̄ using a simple gradient operation. Thus, a relaxed124

form of the Lagrangian density (2.6) is necessary for the variational derivation of the125

Serre equations (2.9), (2.10) (see also [42] and [50]).126

Remark 3 In some applications in coastal engineering it is required to estimate the loading127

exerted by water waves onto vertical structures [22]. The pressure can be computed in128

the framework of the Serre equations as well. For the first time these quantities were129

computed in the pioneering paper by Zheleznyak [74]. Here for simplicity we provide the130

expressions in two space dimensions, which were derived in [74]. The pressure distribution131

inside the fluid column being given by132

P(x, y, t)

ρgd
=

η − y

d
+

1

2

[(
h

d

)2

−
(

1 +
y

d

)2
]

γ̃ d

g h
,

one can compute the force F exerted on a vertical wall:133

F(x, t)

ρgd2
=

∫ η

−d

P
ρgd2

dy =

(
1

2
+

γ̃

3 g

)(
h

d

)2

.

Finally, the tilting moment M relative to the sea bed is given by the following formula:134

M(x, t)

ρgd3
=

∫ η

−d

P
ρgd3

(y + d) dy =

(
1

6
+

γ̃

8 g

)(
h

d

)3

.

2.1.1 Generalized Serre equations135

A further generalization of the Serre equations can be obtained if we modify slightly the136

shallow water ansatz (2.7) following again the ideas from [20]:137

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈
[
y + d

η + d

]λ

ṽ(x, t).

In the following we consider for simplicity the two-dimensional (2D) case and put µ = u138

and ν = v together with the constraint ṽ = ηt + ũηx (free-surface impermeability). Thus,139

the Lagrangian density (2.6) becomes140

L = ( ht + [ h ū ]x) φ̃ − 1
2
g η2 + 1

2
h ū2 + 1

2
β h ( ηt + ū ηx )2 , (2.12)
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where β = (2λ + 1)−1. After some algebra, the Euler–Lagrange equations lead to the141

following equations:142

ht + [ h ū ]x = 0, (2.13)

ūt + ū ūx + g hx + β h−1 [ h2 γ̃ ]x = 0, (2.14)

where γ̃ is defined as above (2.11). If β = 1
3

(or, equivalently, λ = 1), the classical Serre143

equations (2.9), (2.10) are recovered.144

Using equations (2.13) and (2.14) one can show that the following relations hold145

[ h ū ]t +
[
h ū2 + 1

2
g h2 + β h2 γ̃

]

x
= 0,

146

[ ū − β h−1(h3ūx)x ]t +
[

1
2
ū2 + g h − 1

2
h2 ū2

x − β ūh−1 (h3ūx)x
]

x
= 0,

147

[ h ū − β (h3ūx)x ]t +
[
h ū2 + 1

2
g h2 − 2 β h3 ū2

x − β h3 ū ūxx − h2 hx ū ūx
]

x
= 0, (2.15)

148
[

1
2 h ū

2 + 1
2 β h3 ū2

x + 1
2 g h

2
]

t
+

[ (
1
2 ū

2 + 1
2 β h2 ū2

x + g h + β h γ̃
)
h ū

]

x
= 0.

Physically, these relations represent conservations of the momentum, quantity q̄ = ū −149

β h−1(h3ūx)x, its flux q̃ := h ū − β (h3ūx)x and the total energy respectively. Moreover,150

the Serre equations are invariant under the Galilean transformation. This property is151

naturally inherited from the full water wave problem, since our ansatz does not destroy152

this symmetry [8] and the derivation is made according to variational principles.153

Equations (2.13)–(2.14) admit a (2π/k)-periodic cnoidal travelling wave solution154

ū =
c η

d + η
, (2.16)

η = a
dn2

(
1
2
�(x − ct)|m

)
− E/K

1 − E/K
= a − H sn2

(
1
2
�(x − ct)|m

)
, (2.17)

where dn and sn are the Jacobian elliptic functions with parameter m (0 � m � 1), and155

where K = K(m) and E = E(m) are the complete elliptic integrals of the first and second156

kind respectively [1]. The wave parameters are given by the relations157

k =
π �

2K
, H =

maK

K − E
, (�d)2 =

g H

mβ c2
, (2.18)

m =
g H (d + a) (d + a − H)

g (d + a)2 (d + a − H) − d2 c2
. (2.19)

However, in the present study, we are interested in the classical solitary wave solution,158

which is recovered in the limiting case m → 1159

η = a sech2 1
2
�(x − ct), ū =

c η

d + η
, c2 = g(d + a), (�d)2 =

a

β(d + a)
. (2.20)

For illustrative purposes, a solitary wave along with a cnoidal wave of the same amplitude160

a = 0.05 is depicted in Figure 2.161
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Figure 2. Two exact solutions to the Serre equations. The solitary wave amplitude is equal to
a = 0.05. For the cnoidal wave, parameters m and a are equal to 0.99 and 0.05 respectively. Other
cnoidal wave parameters are deduced from relations (2.18) and (2.19).

Using the exact solitary wave solution (2.20) we can assess the accuracy of the Serre162

equations (with β = 1
3
) by making comparisons with corresponding solutions to the163

original full Euler equations. The procedure we use to construct travelling wave solu-164

tions to the Euler equations is described in [18]. The Matlab script used to generate165

these profiles (up to machine precision) can be freely downloaded from the File Ex-166

change server [19]. The results of comparison for several values of the speed parameter167

c are presented in Figure 3. We can see that solitary waves to the Serre equations ap-168

proximate fairly well with the full Euler solutions approximately up to the amplitude169

a/d = 1
2
. We note that similar conclusions were obtained in a previous study by Li et al.170

[46].171

2.2 Invariants of the Serre equations172

Henceforth we consider only the 2D case. As pointed out by Li [45], the classical Serre173

equations possess a non-canonical Hamiltonian structure which can be easily generalized174

for the model (2.13), (2.14)175
(
ht
q̃t

)

= � ·

(
δH / δq̃

δH / δh

)

,

where the Hamiltonian functional H and the symplectic operator � are defined as176

H = 1
2

∫

�

[
h ū2 + β h3 ū2

x + g η2
]

dx, � = −
[

hx 0

q̃x + q̃∂x h∂x

]

.

The variable q̃ is defined by177

q̃ ≡ h ū − β [ h3 ūx ]x.

The conservation of the quantity q̃ was established in equation (2.15).178
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Figure 3. Comparison of solitary wave solutions to the Serre and full Euler equations.

According to [45], one-parameter symmetry groups of the Serre equations include179

the space translation (x + ε, t, h, u), the time translation (x, t + ε, h, u), the Galilean boost180

(x + εt, t, h, u + ε) and the scaling eε(eεx, t, eεh, u). Using the first three symmetry groups181

and the symplectic operator �, one may recover the following invariants:182

Q =

∫

�

η q̃

d + η
dx, H,

∫

�

[ t q̃ − x η ] dx. (2.21)

Obviously, equation (2.13) leads to an invariant closely related to the mass conservation183

property
∫

�
η dx. The scaling does not yield any conserved quantity with respect to the184

symplectic operator �. Below we are going to use extensively the generalized energy185

H and the generalized momentum Q conservation to assess the accuracy of numerical186

schemes in addition to the exact analytical solution (2.20).187
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3 Finite volume scheme and numerical results188

In the present study we propose a finite volume discretization procedure [5, 6] for the189

Serre equations (2.13), (2.14) that we rewrite here as190

ht + [ h u ]x = 0, (3.1)

ut +
[

1
2
u2 + g h

]

x
= β h−1

[
h3 (uxt + u uxx − u 2

x )
]

x
, (3.2)

where the overbars have been omitted for brevity. (In this section, overbars denote191

quantities averaged over a cell as explained below.)192

We begin our presentation by the discretization of the hyperbolic part of the equations193

(which are simply the classical Saint–Venant equations) and then discuss the treatment of194

dispersive terms. The Serre equations can be formally put under the quasi-linear form195

V t + [ F (V ) ]x = S(V ), (3.3)

where V and F (V ) are the conservative variables and the advective flux function respect-196

ively,197

V ≡
(
h

u

)

, F (V ) ≡
(

h u
1
2
u2 + g h

)

.

The source term S(V ) denotes the right-hand side of (3.1) and (3.2) and thus also depends198

on space and time derivatives of V . The Jacobian of the advective flux F (V ) can be easily199

computed200

�(V ) =
∂ F (V )

∂V
=

[
u h

g u

]

.

The Jacobian �(V ) has two distinctive eigenvalues,201

λ± = u ± cs, cs ≡
√

gh.

The corresponding right and left eigenvectors are provided here202

� =

[
h −h

cs cs

]

, � = �
−1 =

1

2

[
h−1 c−1

s

−h−1 c−1
s

]

.

We consider a partition of the real line � into cells (or finite volumes) Ci = [xi− 1
2
, xi+ 1

2
]203

with cell centres xi = 1
2
(xi− 1

2
+ xi+ 1

2
) (i ∈ �). Let ∆xi denotes the length of the cell Ci. In204

the sequel we will consider only uniform partitions with ∆xi = ∆x, ∀i ∈ �. We would like205

to approximate the solution V (x, t) by discrete values. In order to do so, we introduce the206

cell average of V on the cell Ci (denoted with an overbar), i.e.207

V̄ i(t) ≡
(
h̄i(t) , ūi(t)

)
=

1

∆x

∫

Ci

V (x, t) dx.

A simple integration of (3.3) over the cell Ci leads the following exact relation:208

d V̄

dt
+

1

∆x

[

F (V (xi+ 1
2
, t)) − F (V (xi− 1

2
, t))

]

=
1

∆x

∫

Ci

S(V ) dx ≡ S̄ i.
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Since the discrete solution is discontinuous at cell interfaces xi+ 1
2

(i ∈ �), we replace the209

flux at the cell faces by the so-called numerical flux function210

F (V (xi± 1
2
, t)) ≈ Fi± 1

2
(V̄ L

i± 1
2
, V̄ R

i± 1
2
),

where V̄
L,R

i± 1
2

denotes the reconstructions of the conservative variables V̄ from left and211

right sides of each cell interface (the reconstruction procedure employed in the present212

study will be described below). Consequently, the semi-discrete scheme takes the form213

d V̄ i

dt
+

1

∆x

[

Fi+ 1
2

− Fi− 1
2

]

= S̄ i. (3.4)

In order to discretize the advective flux F (V ), we use the FVCF scheme [36, 37]:214

F(V ,W ) =
F (V ) + F (W )

2
− �(V ,W ) ·

F (W ) − F (V )

2
.

The first part of the numerical flux is centred, the second part is the upwinding introduced215

through the Jacobian sign-matrix �(V ,W ) defined as216

�(V ,W ) = sign
[
�

(
1
2 (V + W )

)]
, sign(�) = � · diag(s+, s−) · �,

where s± ≡ sign(λ±). After some simple algebraic computations, one can find217

� =
1

2

[
s+ + s− (h/cs) (s+ − s−)

(g/cs) (s+ − s−) s+ + s−

]

,

the sign-matrix � being evaluated at the average state of left and right values.218

3.1 High-order reconstruction219

In order to obtain a higher order scheme in space, we need to replace the piecewise220

constant data by a piecewise polynomial representation. This goal is achieved by the221

various so-called reconstruction procedures such as MUSCL TVD [43,66,67], UNO [40],222

ENO [39], WENO [72] and many others. In our previous study on the Boussinesq-type223

equations [32], the UNO2 scheme showed good performance with small dissipation in224

realistic propagation and run-up simulations. Consequently, we retain this scheme for the225

discretization of the advective flux in the Serre equations.226

Remark 4 In TVD schemes, the numerical operator is required (by definition) not to227

increase the total variation of the numerical solution at each time step. It follows that the228

value of an isolated maximum may only decrease in time which is not a good property for229

the simulation of coherent structures such as solitary waves. The non-oscillatory UNO2230

scheme, employed in our study, is only required to diminish the number of local extrema231

in the numerical solution. Unlike TVD schemes, UNO schemes are not constrained to232

damp the values of each local extremum at every time step.233
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The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-parabolic234

interpolant Q(x) to a piecewise smooth function V (x) (see [40] for more details). On each235

segment containing the face xi+ 1
2

∈ [xi, xi+1], the function Q(x) = qi+ 1
2
(x) is locally a236

quadratic polynomial and wherever v(x) is smooth we have237

Q(x) − V (x) = 0 + O(∆x3),
d Q

dx
(x ± 0) − d V

dx
= 0 + O(∆x2).

Also, Q(x) should be non-oscillatory in the sense that the number of its local extrema238

does not exceed that of V (x). Since qi+ 1
2
(xi) = V̄ i and qi+ 1

2
(xi+1) = V̄ i+1, it can be written239

in the form240

qi+ 1
2
(x) = V̄ i + di+ 1

2
{V } × x − xi

∆x
+ 1

2 Di+ 1
2
{V } × (x − xi)(x − xi+1)

∆x2
,

where di+ 1
2
{V } ≡ V̄ i+1 − V̄ i and Di+ 1

2
V is closely related to the second derivative of the241

interpolant since Di+ 1
2
{V } = ∆x2 q′′

i+ 1
2

(x). The polynomial qi+ 1
2
(x) is chosen to be the least242

oscillatory between two candidates interpolating V (x) at (xi−1, xi, xi+1) and (xi, xi+1, xi+2).243

This requirement leads to the following choice of Di+ 1
2
{V } ≡ minmod

(
Di{V },Di+1{V }

)
244

with245

Di{V } = V̄ i+1 − 2 V̄ i + V̄ i−1, Di+1{V } = V̄ i+2 − 2 V̄ i+1 + V̄ i,

and where minmod(x, y) is the usual minmod function defined as246

minmod(x, y) ≡ 1
2
[ sign(x) + sign(y) ] × min(|x|, |y|).

To achieve the second-order O(∆x2) accuracy, it is sufficient to consider piecewise linear247

reconstructions in each cell. Let L(x) denote this approximately reconstructed function,248

which can be written in this form249

L(x) = V̄ i + S i × x − xi

∆x
, x ∈ [xi− 1

2
, xi+ 1

2
].

In order to L(x) be a non-oscillatory approximation, we use the parabolic interpolation250

Q(x) constructed below to estimate the slopes S i within each cell251

S i = ∆x × minmod

(
d Q

dx
(xi − 0),

d Q

dx
(xi + 0)

)

.

In other words, the solution is reconstructed on the cells, while the solution gradient is252

estimated on the dual mesh as it is often performed in more modern schemes [5, 6]. A253

brief summary of the UNO2 reconstruction can be also found in [32, 33].254

3.2 Treatment of dispersive terms255

In this section we explain how we treat the dispersive terms of Serre equations (3.1)a (3.2).256

We begin the exposition by discussing the space discretization and then propose a way to257

remove the intrinsic stiffness of dispersion by partial implicitation.258
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For the sake of simplicity, we split the dispersive terms into three parts:259

	(V ) ≡ β h−1
[
h3 uxt

]

x
, 
1(V ) ≡ β h−1

[
h3 u uxx

]

x
, 
2(V ) ≡ β h−1

[
h3 u 2

x

]

x
.

We propose the following approximations in space (which are all of the second-order260

O(∆x2) to be consistent with UNO2 advective flux discretization presented above)261

	i(V̄ ) = β h̄
−1
i

h̄
3
i+1 (ūxt)i+1 − h̄

3
i−1 (ūxt)i−1

2∆x

=
β h̄

−1
i

2∆x

[

h̄
3
i+1

(ūt)i+2 − (ūt)i
2∆x

− h̄
3
i−1

(ūt)i − (ūt)i−2

2∆x

]

=
β h̄

−1
i

4∆x2

[

h̄
3
i+1 (ūt)i+2 − (h̄

3
i+1 + h̄

3
i−1) (ūt)i + h̄

3
i−1 (ūt)i−2

]

.

The last relation can be rewritten in a shorthand form if we introduce the matrix 	(V̄ )262

such that the ith component of the product 	(V̄ ) · V̄ t gives exactly the expression 	i(V̄ ).263

In a similar way we discretize the other dispersive terms without giving here the264

intermediate steps,265


1i(V̄ ) =
β h̄

−1
i

2∆x3

[

h̄
3
i+1 ūi+1 (ūi+2 − 2ūi+1 + ūi) − h̄

3
i−1 ūi−1 (ūi − 2ūi−1 + ūi−2)

]

,


2i(V̄ ) =
βh̄

−1
i

8∆x3

[

h̄
3
i+1 (ūi+2 − ūi)

2 − h̄
3
i−1 (ūi − ūi−2)

2
]

.

In a more general non-periodic case, asymmetric finite differences should be used near266

the boundaries. If we denote by � the identity matrix, we can rewrite the semi-discrete267

scheme (3.4) by expanding the right-hand side S i268

d h̄

dt
+

1

∆x

[

F(1)
+ (V̄ ) − F(1)

− (V̄ )
]

= 0, (3.5)

(� − 	) · d ū

dt
+

1

∆x

[

F(2)
+ (V̄ ) − F(2)

− (V̄ )
]

= 
(V̄ ) · ū, (3.6)

where F(1,2)
± (V̄ ) are the two components of the advective numerical flux vector F at the269

right (+) and left (−) faces correspondingly and 
(V̄ ) ≡ 
1(V̄ ) − 
2(V̄ ).270

Finally, in order to obtain the semi-discrete scheme, one has to solve a linear system271

to find explicitly the time derivative dū/dt. A mathematical study of the resulting matrix272

� − 	 is not straightforward to perform. However, in our numerical tests we have never273

experienced any difficulties to invert it.274

3.3 Temporal scheme275

We rewrite the inverted semi-discrete scheme (3.5)–(3.6) as a system of ordinary differential276

equations (ODEs):277

∂t w = L(w, t), w(0) = w0.

In order to solve numerically the last system of equations, we apply the Bogacki–Shampine278

method [9]. It is a third-order Runge–Kutta scheme with four stages. It has an embedded279
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second-order method which is used to estimate the local error and thus to adapt the280

time step size. Moreover, the Bogacki–Shampine method enjoys the First Same As Last281

(FSAL) property so that it needs three function evaluations per step. This method is also282

implemented in the ode23 function in Matlab [60]. A step of the Bogacki–Shampine283

method is given by284

k1 = L(w(n), tn),

k2 = L(w(n) + 1
2
∆tnk1, tn + 1

2
∆t),

k3 = L(w(n)) + 3
4
∆tnk2, tn + 3

4
∆t),

w(n+1) = w(n) + ∆tn ×
(

2
9
k1 + 1

3
k2 + 4

9
k3

)
,

k4 = L(w(n+1), tn + ∆tn),

w
(n+1)
2 = w(n) + ∆tn ×

(
4
24
k1 + 1

4
k2 + 1

3
k3 + 1

8
k4

)
.

Here w(n) ≈ w(tn), ∆t is the time step and w
(n+1)
2 is the second-order approximation to the285

solution w(tn+1), so the difference between w(n+1) and w
(n+1)
2 gives an estimation of the286

local error. The FSAL property consists in the fact that k4 is equal to k1 in the next time287

step, thus saving one function evaluation.288

If the new time step ∆tn+1 is given by ∆tn+1 = ρn∆tn, then according to the H211b289

digital filter approach [61, 62], the proportionality factor ρn is given by290

ρn =

(
δ

εn

)β1
(

δ

εn−1

)β2

ρ−α
n−1, (3.7)

where εn is a local error estimation at time step tn, δ is the desired tolerance and the291

constants β1, β2 and α are defined as292

α =
1

4
, β1 = β2 =

1

4 p
.

Parameter p is the order of the scheme (p = 3 in our case).293

Remark 5 The adaptive strategy (3.7) can be further improved if we smooth the factor294

ρn before computing the next time step ∆tn+1295

∆tn+1 = ρ̂n ∆tn, ρ̂n = ω(ρn).

The function ω(ρ) is called the time step limiter and should be smooth, monotonically296

increasing and should satisfy the following conditions297

ω(0) < 1, ω(+∞) > 1, ω(1) = 1, ω′(1) = 1.

One possible choice is suggested in [62]:298

ω(ρ) = 1 + κ arctan

(
ρ − 1

κ

)

.

In our computations the parameter κ is set to 1.299
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4 Pseudo-spectral Fourier-type method for the Serre equations300

In this section we describe a pseudo-spectral solver to integrate numerically the Serre301

equations in periodic domains. In spectral methods, it is more convenient to take as302

variables the free surface elevation η(x, t) and the conserved quantity q(x, t)303

ηt + [ (d + η) ū ]x = 0, (4.1)

qt +
[
q u − 1

2
ū2 + g η − 1

2
(d + η)2 ū2

x

]

x
= 0, (4.2)

q − ū + 1
3
(d + η)2ūxx + (d + η)ηxūx = 0. (4.3)

The first two equations (4.1) and (4.2) are of evolution type, while the third one (4.3)304

relates the conserved variable q to the primitive variables: the free surface elevation η and305

the velocity ū. In order to solve relation (4.3) with respect to the velocity ū, we extract the306

linear part as307

ū − 1
3 d

2 ūxx − q = 1
3 (2dη + η2) ūxx + (d + η) ηx ūx
︸ ︷︷ ︸

N(η,ū)

.

Then we apply to the last relation the following fixed point-type iteration in the Fourier308

space309

ˆ̄uj+1 =
q̂

1 + 1
3
(kd)2

+
F {N(η, ūj)}
1 + 1

3
(kd)2

j = 0, 1, 2, . . . , (4.4)

where ψ̂ ≡ F{ψ} denotes the Fourier transform of the quantity ψ. The last iteration310

is repeated until the desired convergence. For example, for moderate amplitude solitary311

waves (≈0.2), the accuracy 10−16 is attained in approximatively 20 iterations if the velocity312

ū0 is initialized from the previous time step. We note that the usual 3/2 rule is applied to313

the nonlinear terms for anti-aliasing [21, 35, 65].314

Remark 6 One can improve the fixed point iteration (4.4) by employing the so-called315

relaxation approach [41]. The relaxed scheme takes the following form:316

ˆ̄uj+1 =

(

q̂

1 + 1
3 (kd)

2
+

F {N(η, ūj)}
1 + 1

3 (kd)
2

)

θ + (1 − θ) ˆ̄uj j = 0, 1, 2, . . . ,

where θ ∈ [0, 1] is a free parameter. We obtained the best convergence rate for θ = 1
2
.317

In order to improve the numerical stability of the time-stepping method, we will318

integrate exactly the linear terms in evolution equations319

ηt + d ūx = −[ η ū ]x,

qt + g ηx =
[

1
2 ū

2 + 1
2 (d + η)2 ū2

x − q u
]

x
.
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Taking the Fourier transform and using relation (4.3) between ū and q, we obtain the320

following system of ODEs:321

η̂t +
ikd

1 + 1
3
(kd)2

q̂ = −ik F{ηū} − ikdF {N(η, ūj)}
1 + 1

3
(kd)2

,

q̂t + ikg η̂ = ik F
{

1
2 ū

2 + 1
2 (d + η)2ū2

x − qu
}
.

The next step consists in introducing the vector of dimensionless variables in the Fourier322

space V̂ ≡ (ikη̂, iωq̂/g), where ω2 = gk2d/[1 + 1
3
(kd)2] is the dispersion relation of the323

linearized Serre equations. With unscaled variables in vectorial form, the last system324

becomes325

V̂ t + L · V̂ = N(V̂ ), L ≡
[

0 iω

iω 0

]

.

On the right-hand side, we put all the nonlinear terms326

N(V̂ ) =

(

k2 F{ηū} + dk2 F {N(η, ūj)} /(1 + 1
3
(kd)2)

−(kω/g) F
{

1
2
ū2 + 1

2
(d + η)2ū2

x − qu
}

)

.

In order to integrate the linear terms, we make a last change of variables [35, 51]:327

Ŵ t = e(t−t0)L · N
{

e−(t−t0)L · Ŵ
}

, Ŵ (t) ≡ e(t−t0)L · V̂ (t), Ŵ (t0) = V̂ (t0).

Finally, the last system of ODEs is discretized in time by Verner’s embedded adaptive328

9(8) Runge–Kutta scheme [68]. The time step is chosen adaptively using the so-called329

H211b digital filter [61,62] to meet some prescribed error tolerance (generally of the same330

order of the fixed point iteration (4.4) precision). Since the numerical scheme is implicit331

in the velocity variable ū, the resulting time step ∆t is generally of the order of the spatial332

discretization O(∆x).333

5 Numerical results334

In this section we present some numerical results using the finite volume scheme described335

hereinabove. First we validate the discretization and check the convergence of the scheme336

using an analytical solution. Then we demonstrate the ability of the scheme to simulate337

the practically important solitary wave interaction problem. Throughout this section we338

consider the initial value problem with periodic boundary conditions unless a special339

remark is made.340

5.1 Convergence test and invariants preservation341

Consider the Serre equations (3.1), (3.2) posed in the periodic domain [−40, 40]. We342

solve numerically the initial-periodic boundary value problem with an exact solitary wave343

solution (2.20) posed as an initial condition. Then this specific initial disturbance will be344

translated in space with known celerity under the system dynamics. This particular class345

of solutions plays an important role in water wave theory [28, 29] and it will allow us to346



16 D. Dutykh et al.

Table 1. Values of various parameters used in convergence tests

Undisturbed water depth: d 1
Gravity acceleration: g 1
Solitary wave amplitude: a 0.05
Final simulation time: T 2
Free parameter: β 1/3
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Figure 4. Convergence of the numerical solution in the L∞ norm computed using the finite
volume method.

assess the accuracy of the proposed scheme. The values of the various physical parameters347

used in the simulation are given in Table 1.348

The error is measured using the discrete L∞ norm for various successively refined349

discretizations. The result is shown on Figure 4. As anticipated, the finite volume scheme350

(black solid line with circles) shows a fairly good second-order convergence (with estimated351

slope ≈1.99). During all numerical tests, the mass conservation was satisfied with accuracy352

of the order of ≈10−14. This impressive result is due to excellent local conservative353

properties of the finite volume method. We also investigate the numerical behaviour of354

the scheme with respect to the less obvious invariants H and Q defined in (2.21). These355

invariants can be computed exactly for solitary waves. However, we do not provide them356

to avoid cumbersome expressions. For the solitary wave with parameters given in Table 1,357
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Figure 5. Hamiltonian and generalized momentum conservation convergence computed using
the finite volume and spectral methods under the mesh refinement. The conserved quantities are
measured at the final simulation time.

the generalized energy and momentum are given by the following expressions:358

H0 =
21

√
7

100
+

7
√

3

10
log

√
21 − 1√
21 + 1

≈ 0.0178098463,

Q0 =
62

√
15

225
+

2
√

35

5
log

√
21 − 1√
21 + 1

≈ 0.017548002.

These values are used to measure the error on these quantities at the end of the simulation.359

Convergence of this error under the mesh refinement is shown on Figure 5. One can observe360

a slight super-convergence phenomenon of the finite volume scheme. This effect is due361

to the special nature of the solution we use to measure the convergence. This solution is362

only translated under the system dynamics. For more general initial conditions we expect363

a fair theoretical second-order convergence for the finite volume scheme. As anticipated,364

the pseudo-spectral scheme shows the exponential error decay.365

5.2 Solitary wave interaction366

Solitary wave interactions are an important phenomenon in nonlinear dispersive waves367

which have been studied by numerical and analytical methods and results have been368

compared with experimental evidence. They also often serve as one of the most robust369

nonlinear benchmark test cases for numerical methods. We mention only a few works370

among the existing literature. For example, in [23, 48, 56] solitary wave interactions371

were studied experimentally. The head-on collision of solitary waves was studied in the372

framework of the full Euler equations in [14, 23]. Studies of solitary waves in various373

approximate models can be found in [2, 26, 32, 33, 46]. To our knowledge, solitary wave374

collisions for the Serre equations were studied numerically for the first time by Seabra-375

Santos [57] in the PhD thesis. Finally, there are also a few studies devoted to simulations376

with the full Euler equations [23, 35, 46].377
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Figure 6. Head-on collision of two equal solitary waves simulated with the finite volume scheme.

5.2.1 Head-on collision378

Consider the Serre equations posed in the domain [−40, 40] with periodic boundary379

conditions. In the present section, we study the head-on collision (weak interaction) of380

two solitary waves of equal amplitude moving in opposite directions. Initially two solitary381

waves of amplitude a = 0.15 are located at x0 = ±20 (other parameters can be found in382

Table 1). The computational domain is divided into N = 1, 000 intervals (finite volumes383

in 1D) of the uniform length ∆x = 0.08. The time step is chosen to be ∆t ≈ 10−3. The384

process is simulated up to time T = 36. The numerical results are presented in Figure 6.385

As expected, the solitary waves collide quasi-elastically and continue to propagate in386

opposite directions after the interaction. An important diagnostic value is the maximum387

amplitude during the interaction process, sometimes referred to as the run-up. Usually, it388

is larger than the sum of the amplitudes of the two initial solitary waves. In this case, we389

obtain a run-up of 0.3130 > 2a = 0.3.390

In order to validate the finite volume simulation, we performed the same computation391

with the pseudo-spectral method presented briefly in Section 4. We used a fine grid392

of 1, 024 nodes and adaptive time stepping. The overall interaction process is visually393

identical to the finite volume result shown in Figure 6. The run-up value according to the394

spectral method is 0.3127439 showing again the accuracy of our simulation. The small395

inelasticity is evident from the small dispersive wave train emerging after the interaction396

(for example in a slightly different setting described below, see Figure 16, as first found397

numerically and experimentally by Seabra-Santos [57]).398
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Figure 7. Overtaking (or following) collision of two solitary waves simulated with the finite
volume scheme.
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(b) t = 18.6 s

Figure 8. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23].

5.2.2 Overtaking collision399

The second type of solitary wave interaction is the overtaking collision (or strong in-400

teraction) of two solitary waves of different amplitudes moving in the same direction.401

Sometimes this situation is also referred to as the following collision or strong interaction.402

For this case we consider a physical domain [−75, 75] divided into N = 1, 000 equal403

control volumes. The initial data consist of two separated solitary waves of different404
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(a) t = 18.7 s
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Figure 9. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23].

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−2

0

2

4

6

8

10

12

14

16

18

×10
−3

x

η
(x

,t
)

 

 

Simulation

Experimental data

(a) t = 18.92 s
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Figure 10. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23]. Note the difference in vertical scales on the left and right images.

amplitudes moving in the same direction. The solitary wave with larger amplitude moves405

faster and will overtake the smaller wave. This situation was simulated with the finite406

volume scheme and the numerical results are presented in Figure 7. The parameters used407

in this simulation are given in Table 2. The strong interaction is also inelastic with a small408

dispersive tail emerging after the overtaking (see Figure 15 for a zoom).409

5.3 Experimental validation410

In this section we present a comparison between the classical Serre model solved with411

our finite volume scheme and one head-on collision experiment from [23]. This specific412

experiment was already considered in the context of the Boussinesq-type systems [32].413
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Table 2. Values of various parameters used to simulate the overtaking collision

Undisturbed water depth: d 1
Gravity acceleration: g 1
Large solitary wave amplitude: a1 0.6
Initial position: x1 −60
Small solitary wave amplitude: a2 0.1
Initial position: x2 −45
Final simulation time: T 96
Free parameter: β 1/3
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(b) t = 19.1 s

Figure 11. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23].
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(a) t = 19.15 s
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(b) t = 19.19 s

Figure 12. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23].
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(a) t = 19.33 s

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−2

0

2

4

6

8

10

12

14

16

18

×10
−3

x

η
( x

, t
)

 

 

Simulation

Experimental data

(b) t = 19.5 s

Figure 13. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23].
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Figure 14. Head-on collision of two solitary waves of different amplitudes. Comparison with
experimental data [23].

We simulate a portion of the wave tank [−0.9, 2.7] (divided into N = 1, 000 equal414

control volumes) where the interaction process takes place. The initial data consist of415

two solitary waves (of different amplitudes in this case) moving in opposite directions.416

The exact parameters are given in Table 3. Simulation snapshots are presented in Figures417

8–16. The general agreement is very good, validating the Serre equations in the water418

wave theory along with our numerical developments. Figure 16 shows visible dispersive419

oscillations after the interaction process, numerical evidence of the inelastic character of420

solitary waves interactions in the framework of the Serre equations.421
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Table 3. Values of various parameters used to simulate the head-on collision

Undisturbed water depth: d (cm) 5
Gravity acceleration: g (m s

−2) 9.81
Right-going SW amplitude: a1 (cm) 1.077
Initial position of the SW-1: x1 (m) 0.247
Left-going SW amplitude: a1 (cm) 1.195
Initial position of the SW-2: x2 (m) 1.348
Final simulation time: T (s) 20.5
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Figure 15. Dispersive tail after overtaking collision of two solitary waves (strong interaction) at
T = 120.0.

6 Conclusions422

The current study is devoted to the Serre equations stemming from water wave modelling423

[7, 25, 59]. First, we presented a derivation of this model using a relaxed variational424

principle [20]. We then described an implicit–explicit finite volume scheme to discretize425

the equations. The overall theoretical accuracy of the discretization scheme is of second426

order. This conclusion is confirmed by comparisons with an exact solitary wave solution.427

The energy conservation properties of our scheme are also discussed and quantified. In428

order to validate further our numerical scheme, we present a Fourier-type pseudo-spectral429

method. Both numerical methods are compared on solitary wave interaction problems.430
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Figure 16. Dispersive tail after head-on collision of two solitary waves (weak interaction). Small
wavelets between two solitary waves clearly indicate that the collision is inelastic.

The proposed discretization procedure was successfully validated with several numerical431

tests along with experimental data. In contrast with the highly accurate spectral method,432

the finite volume method has the advantage of being robust and generalizable to realistic433

complex situations with variable bathymetry, very steep fronts, dry areas etc. The present434

study should be considered as the first step to further generalisations to 2D Cartesian435

meshes [13, 52, 69].436
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