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1 Introduction

Lattice QCD now provides good calculations of a number of quantities relevant for low-

energy particle physics as reviewed in [1]. These need several extrapolations, in the quark

masses, in the lattice spacing, in the lattice size and in lattice artefacts. Chiral Perturbation

Theory (ChPT) [2–4] provides guidance for all of these extrapolations. In particular, it

can be used to estimate the corrections due to the finite lattice size. This was introduced

by Gasser and Leutwyler in [5–7]. This is an alternative method compared to the one

introduced by Lüscher [8] where the leading finite size corrections can be derived using the

scattering amplitude.

In this paper we will restrict ourselves to the p-regime with mπL ≫ 1. We will not do

the all order integration over the zero mode as is necessary in the so-called ǫ-regime [5–7].

The finite volume corrections to the mass and decay constant in the equal mass case to

one-loop order were calculated in these original papers. Since then, there have been many

studies of finite size effects at one-loop order in ChPT, in particular the masses and decay

constants to that order were derived in [9] and [10].

In infinite volume the ChPT expressions for masses and decay constants are known for

all relevant cases and including a number of extensions as e.g. partially quenched ChPT to

two-loop order. This is reviewed in [11]. There exist a few two-loop calculations at finite
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volume in ChPT. The mass in two-flavour ChPT was studied in [12] and the quark-anti

quark vacuum expectation value in three-flavour ChPT in [13], the latter can be extended

to the ǫ-regime [14].

The main purpose of this paper is to provide the two-loop finite volume expressions in

two and three-flavour ChPT for the masses and decay constants. The extension to partially

quenched ChPT is planned for future work. The main reason this was not done earlier

is the complexity of the sunset integral at finite volume. The needed integrals have been

recently worked out in [15]. We will use their expressions extensively. Our expressions

are valid in the frame with ~p = 0, often called the center-of-mass frame. In the so-called

moving frames or with twisted boundary conditions there will be additional terms.

Some preliminary numerical results were reported in [16]. We find the typical e−mπL

behaviour for most quantities as expected. The corrections for the pion mass and decay

constant are significant at the present lattice size and precision in lattice QCD calculations.

The corrections for the kaon decay constant are needed but are not quite as large. The kaon

mass has corrections below 1% and the corrections for the eta mass and decay constant

turn out to be negligible at present precision. These results are in qualitative agreement

with the earlier work.

We give a short list of references for ChPT and discuss some small points in section 2.

The definitions of the integrals we use and how they relate to the results in [15] is given

in section 3. The next section contains our first major results. The full finite volume

correction to the pion mass and decay constant to two-loop order in ChPT. Section 5

contains the results for the three-flavour case for pion, kaon and eta for both the mass and

decay constant but the large two-loop order formulas are collected in the appendices. The

detailed numerical discussion of our results is in section 6.

2 Chiral Perturbation Theory

An introduction to ChPT can be found in [17, 18] and in the two-loop review [11]. The

lowest order and p4-Lagrangian can be found in [3] and [4] for the two and three flavour case

respectively. The order p6 Lagrangian is given in [19]. We use the standard renormalization

scheme in ChPT. The needed part for the finite volume integrals is discussed in section 3.

An extensive discussion of the scheme can be found in [20] and [21]. An important comment

is that the LECs do not depend on the volume [7].

We prefer to designate orders by the p-counting order at which the diagram appears.

Thus we refer to order p2, order p4 or one-loop order and order p6 or two-loop order and

include in the terminology one- or two-loop order also the diagrams with fewer loops but

the same order in p-counting.

We present the formulas here in terms of the physical infinite volume masses and

decay constants.

3 Comments on the finite volume integrals

The loop integrals at finite volume at one-loop are well known. The difference with infinite

volume is that there is a sum over discrete momenta in every direction with a finite size
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rather than a continuous integral. The use of the Poisson summation formula allows to

identify the infinite volume part and the finite volume corrections. The remainder can

be done in two ways. For one-loop tadpole integrals the first one was introduced in the

original work [5–7] and one remains with a sum over Bessel functions, that for large ML

converges fast. The other method can be found in [9] and one remains with an integral over

a Jacobi theta function, this method can be used for small and medium ML as well. The

extensions to other one-loop integrals can be done in both cases by combining propagators

with Feynman parameters. The first method was extended to the equal mass two-loop

sunset integral in [12]. The general mass case was then done in both methods in [15]. The

methods are explained in detail in [15] for both the one and two-loop case. Note that here

we use Minkowski notation for the integrals.

The tadpole integrals A and Aµν are defined via

{

A(m2), Aµν(m
2)
}

=
1

i

∫

V

ddr

(2π)d
{1, rµrν}
(r2 −m2)

. (3.1)

The B0 tadpole integrals are defined similarly with a doubled propagator, alternatively

as the derivative w.r.t. m2 of the A-tadpoles. The subscript V on the integral indicates

that the integral is a discrete sum over the three spatial components and an integral over

the remainder. At finite volume, there are more Lorentz-structures possible. We define

the tensor tµν as the spatial part of the Minkowski metric gµν , to express these. For the

center-of-mass (cms) case this is sufficient. The needed functions for Aµν are

Aµν(m
2) = gµνA22(m

2) + tµνA23(m
2) . (3.2)

In infinite volume A22 can be rewritten in terms of A. At finite volume, the relation is

dA22(m
2) + 3A23(m

2) = m2A(m2) . (3.3)

This is used to remove A22 from our expressions. In addition we do an expansion in ǫ with

d = 4− 2ǫ via

A(m2) = λ0
m2

16π2
+A(m2) +AV (m2) + ǫ

(

Aǫ(m2) +AV ǫ(m2)
)

+ · · · . (3.4)

with λ0 =
1
ǫ +log(4π)+1−γ and similarly for the other one-loop integrals. λ0 corresponds

to the usual MS variant used in ChPT. Doing the renormalization introduces a subtraction

point dependence which corresponds to using for A(m2) and B
0
(m2)

A(m2) =
−m2

16π2
log

m2

µ2
, B

0
(m2) =

−1

16π2

(

log
m2

µ2
+ 1

)

. (3.5)

The sunset integrals are defined as

{

H,Hµ, H
s
µ, Hµν , H

rs
µν , H

ss
µν

}

(m2
1,m

2
2,m

2
3, p) =

1

i2

∫

V

ddr

(2π)d
dds

(2π)d
{1, rµ, sµ, rµrν , rµsν , sµsν}

(

r2 −m2
1

) (

s2 −m2
2

) (

(r + s− p)2 −m2
3

) . (3.6)
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The subscript V again indicates that the spatial dimensions are a discrete sum rather

than an integral. The conventions correspond to those in infinite volume of [22]. The

interchange r,m2
1 ↔ s,m2

2 shows that Hs
µ, H

ss
µν are related directly to Hr

µ, H
rr
µν . Hrs

µν can

also be related to Hµν using the trick shown in [22] which remains valid at finite volume

in the cms frame [15].

In the cms frame we define the functions1

Hµ = pµH1 (3.7)

Hµν = pµpνH21 + gµνH22 + tµνH27 .

The arguments of all functions in the cms frame are (m2
1,m

2
2,m

2
3, p

2). These functions

satisfy the relations, valid in finite volume [15],

H1(m
2
1,m

2
2,m

2
3, p

2) +H1(m
2
2,m

2
3,m

2
1, p

2) +H1(m
2
3,m

2
1,m

2
2, p

2) = H(m2
1,m

2
2,m

2
3, p

2) ,

p2H21 + dH22 + 3H27 −m2
1H = A(m2

2)A(m
2
3) . (3.8)

The arguments of the sunset functions in the second relation are all (m2
1,m

2
2,m

2
3, p

2). These

relations have been used to remove H22 from the final result and simplify the expres-

sions somewhat.

We now split the functions in an infinite volume part H̃i and a finite volume correction

H̃V
i with Hi = H̃i+H̃V

i . The infinite volume part was derived in [22]. For the finite volume

parts we define

H̃V =
λ0

16π2

(

AV (m2
1) +AV (m2

2) +AV (m2
3)
)

+
1

16π2

(

AV ǫ(m2
1) +AV ǫ(m2

2) +AV ǫ(m2
3)
)

+HV ,

H̃V
1 =

λ0

16π2

1

2

(

AV (m2
2) +AV (m2

3)
)

+
1

16π2

1

2

(

AV ǫ(m2
2) +AV ǫ(m2

3)
)

+HV
1 ,

H̃V
21 =

λ0

16π2

1

3

(

AV (m2
2) +AV (m2

3)
)

+
1

16π2

1

3

(

AV ǫ(m2
2) +AV ǫ(m2

3)
)

+HV
21 ,

H̃V
27 =

λ0

16π2

(

AV
23(m

2
1) +

1

3
A23(m

2
2) +

1

3
AV

23(m
2
3)

)

+
1

16π2

(

AV ǫ
23 (m

2
1) +

1

3
AV ǫ

23 (m
2
2) +

1

3
AV ǫ

23 (m
2
3)

)

+HV
27 , (3.9)

Note that the finite parts are defined slightly different compared to the infinite volume

definition in [22]. Here we have pulled out the extra parts with AV ǫ. These functions

cancel in the final result. We will also use the derivatives w.r.t. p2 of the sunset integrals.

These we denote with and extra prime, HV ′

i ≡ (∂/∂p2)HV
i .

The functions HV
i can be computed with the methods of [15]. They correspond to

adding the parts labeled with G and H in section 4.3 and the part of section 4.4 in [15].

We have in addition added the derivatives w.r.t. p2 for all the integrals and checked the

analytical results with numerical differentiation.

1In the cms frame we have that tµν = gµν − pµpν/p
2 but the given separation appears naturally in the

calculation [15]. It also avoids singularities in the limit p → 0.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1. The Feynman diagrams needed for the mass calculation. A dot indicates a vertex of

order p2, a filled box of order p4 and an open box of order p6.

For all cases discussed we have done checks that both methods, via Bessel or Jacobi

theta functions, give the same results.

4 Two-flavour results

The diagrams needed to obtain the mass are shown in figure 1. We write the result for the

mass at finite volume in the form

mV 2
π = m2

π +∆Vm2
π , ∆Vm2

π = ∆Vm2(4)
π +∆Vm2(6)

π . (4.1)

m2
π and Fπ denote the infinite volume physical pion mass and decay constant. We have

reproduced the expression for the infinite volume mass derived in [23–25]. The extra parts

due to the finite volume are

F 2
π∆

Vm2(4)
π = −1

2
m2

πA
V (m2

π) ,

F 4
π∆

Vm2(6)
π = m4

πA
V (m2

π)
(

− lr4 + 5 lr3 + 8 lr2 + 14 lr1

)

+m2
πA

V
23(m

2
π)

(

− 12 lr2 − 6 lr1

)

+AV (m2
π)

(

13/12
1

16π2
m4

π − 7/4A(m2
π)m

2
π

)

+AV (m2
π)

2
(

− 3/8m2
π

)

+AV (m2
π)B

0V (m2
π)

(

1/4m4
π

)

+HV (m2
π,m

2
π,m

2
π,m

2
π)

(

5/6m4
π

)

+HV
21(m

2
π,m

2
π,m

2
π,m

2
π)

(

3m4
π

)

+HV
27(m

2
π,m

2
π,m

2
π,m

2
π)

(

− 3m2
π

)

. (4.2)

∆Vm
2(4)
π agrees with the results of [5]. The comparison of ∆V m

2(6)
π with the result in [12] is

not quite so simple. The reason is that the splitting in parts has been done very differently

there and here. However, we agree on the sunset part, (44) in [12] and on the part that has

lri multiplying finite volume integrals in (38) in [12]. The latter was first derived in [26].

Both their and our result are independent of the subtraction scale.
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The pion decay constant is defined by

〈0|ūγµγ5d|π−(p)〉 =
√
2iFπpµ . (4.3)

It can be computed by the diagrams of figure 1 where the outgoing meson is replaced by an

insertion of the axial current. The diagrams needed for wave-function renormalization are

the same as those for the mass. The calculation proceeds along the same lines as above.

We reproduce the known infinite volume results of [23–25]. The decay constant at finite

volume we write as

F V
π = Fπ +∆VFπ , ∆VFπ = ∆VF (4)

π +∆VF (6)
π . (4.4)

The results are:

Fπ∆
VF (4)

π = AV (m2
π) ,

F 3
π∆

VF (6)
π = +AV (m2

π)m
2
π

(

3/2 lr4 − 4 lr2 − 7 lr1

)

+AV
23(m

2
π)

(

6 lr2 + 3 lr1

)

+AV (m2
π)

(

− 1/3
1

16π2
m2

π + 1/2A(m2
π)

)

+AV (m2
π)B

0V (m2
π)

(

− 1/2m2
π

)

+HV (m2
π,m

2
π,m

2
π,m

2
π)

(

− 1/2m2
π

)

+HV
27(m

2
π,m

2
π,m

2
π,m

2
π)

(

3/2
)

+HV ′(m2
π,m

2
π,m

2
π,m

2
π)

(

5/12m4
π

)

+HV ′

21 (m
2
π,m

2
π,m

2
π,m

2
π)

(

3/2m4
π

)

+HV ′

27 (m
2
π,m

2
π,m

2
π,m

2
π)

(

− 3/2m2
π

)

. (4.5)

∆VF
(4)
π agrees with the results of [5]. Here there exists no full two-loop calculation but an

evaluation for the case with at most one propagator at finite volume [27]. We agree with

their result for the terms containing lri if the term multiplying B2 in (54) in that paper is

divided by 2. Comparing with the remainder is difficult due to the very different treatment

of the loop integrals.

5 Three-flavour results

The principle of the calculation is exactly the same as before. The diagrams needed for the

mass are shown in figure 1. However, we now need to use the three-flavour Lagrangians

and include the kaons and eta as well. As a result the expressions become much more

cumbersome. Here we use as symbols, mπ, mK and mη as the physical volume pion, kaon

and eta mass at infinite volume. We have rewritten all expressions as an expansion in these

masses and in the physical pion decay constant at infinite volume. Given that the eta mass

to lowest order is given by the Gell-Mann-Okubo relation, there is an inherent ambiguity

in precisely how one writes the result in the combination of kaon and eta masses. The form

of the p6 result given here is to be used together with the form for the p4 expressions given

here as well.

The pion, kaon and eta masses at two-loop order in infinite volume are known, [22],

we have reproduced that result. The finite volume corrections for the masses are given by

mV 2
i = m2

i +∆Vm2
i , ∆Vm2

i = ∆Vm
2(4)
i +∆Vm

2(6)
i , (5.1)

– 6 –
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for i = π,K, η. The p4 results are:

F 2
π∆

Vm2(4)
π = AV (m2

π)
(

− 1/2m2
π

)

+AV (m2
η)

(

1/6m2
π

)

,

F 2
π∆

Vm
2(4)
K = AV (m2

η)
(

− 1/4m2
η − 1/12m2

π

)

,

F 2
π∆

Vm2(4)
η = AV (m2

π)
(

1/2m2
π

)

+AV (m2
K)

(

−m2
η − 1/3m2

π

)

+AV (m2
η)

(

8/9m2
K − 7/18m2

π

)

. (5.2)

These agree with the expressions in [9, 10, 28]. The way in which the corrections are written

is to be in agreement with the way the infinite volume result was written in [22]. The order

p6 expressions are rather large, they can be found in appendix A. The contributions with

at most one pion propagator at finite volume were calculated in [28] for the kaon and eta

in three flavour ChPT, the expression for the pion was done in two-flavour ChPT and

discussed above. We agree with the Lr
i times finite volume part there. The remainder is

difficult to compare due to the different treatment of the integrals.

The decay constants for the mesons are defined similarly to (4.3) via

〈0|ūγµγ5d|π−(p)〉 =
√
2iFπpµ ,

〈0|ūγµγ5s|K−(p)〉 =
√
2iFKpµ ,

〈0| 1√
6

(

ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s
)

|η(p)〉 =
√
2iFηpµ . (5.3)

Note that since we work in the isospin limit, we use the octet axial current to define the

eta decay constant.

We define

F V
i = Fi +∆VFi , ∆VFi = ∆VF

(4)
i +∆VF

(6)
i , (5.4)

for i = π,K, η. The pion, kaon and eta decay constants at two-loop order in infinite

volume are known, [22], we have reproduced that result. Note that we give the corrections

to the decay constants here, not divided by the chiral limit decay constant as in [22]. Note

the correction for the expressions for the infinite volume decay constants described in the

erratum of [29]. The correct expressions can be downloaded from [30]

The order p4 results are

Fπ∆
VF (4)

π = AV (m2
π) +AV (m2

K)
(

1/2
)

,

Fπ∆
VF

(4)
K = AV (m2

π)
(

3/8
)

+AV (m2
K)

(

3/4
)

+AV (m2
η)

(

3/8
)

,

Fπ∆
VF (4)

η = AV (m2
K)

(

3/2
)

. (5.5)

These agree with [9, 10, 28]. The p6 expressions are again rather long and are given in

appendix B. The contributions with at most one-pion propagator at finite volume were

calculated in [28] for the kaon in three flavour ChPT, the expression for the pion was done

in two-flavour ChPT and discussed above. We agree with the Lr
i dependent part if we

multiply the contribution from the term with B2 in (57) in by 1/2. This is the same factor

we needed to get agreement for the two-flavour pion decay constant.

– 7 –
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∆V
m
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mπL
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p6 li
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(a)

 0.0001

 0.001

 0.01

 2  2.5  3  3.5  4

−∆
V
F

π/
F

π

mπL

p4

p6

p6 li
r only

p4+p6

(b)

Figure 2. The relative finite volume corrections for the mass squared and decay constant of the

pion in two-flavour ChPT at a fixed infinite volume pion mass mπ = mπ0 . Shown are the one-loop

or p4 corrections, the full p6 result and the part only dependent on the lri , p
6lri , and the sum of

the p4 and p6 result. mπL = 2, 4 correspond to L ≈ 2.9, 5.8 fm. (a) The pion mass, plotted is

(mV 2

π −m2

π)/m
2

π. (b) The pion decay constant. Plotted is −(FV
π − Fπ)/Fπ.

6 Numerical results

For numerical input we use Fπ = 92.2MeV, mπ = mπ0 = 134.9764MeV, the average

mK with electromagnetic effects removed with the estimate of [31], mK = 494.53MeV,

and mη = 547.30MeV. The values of the low-energy constants, we take from the last

review [32]. We always use a subtraction scale µ = 770MeV.

6.1 Two-flavour results

The lri we use we define via the usual l̄i defined at the scale of the charged pion mass. The

actual values we use are l̄1 = −0.4, l̄2 = 4.3, l̄3 = 3.0, l̄4 = 4.3. The relative finite volume

corrections to m2
π are shown in figure 2(a) as a function of mπL. We have checked that

changing the scale to µ = 500MeV does not change the result, but it does increase the lri
part. The equivalent plot for the relative correction to Fπ is shown in figure 2(b).

We can also perform a study of the corrections at other values of mπ or as a function

of mπ. One of the problems here is what to with the value of Fπ that should be used.

If we use the infinite volume formulas to two-loop order of [25] which are expressed in

the form Fπ/F = f(Fπ,mπ) for another pion mass m̃π we determine the associated value

of the decay constant, F̃π by solving F̃π/Fπ = f(F̃π, m̃π)/f(Fπ,mπ) numerically. The

contribution from the p6 LECs cri we have put to zero. This procedure might differ from

the values of F̃π used in [12]. To compare with their numerical results we have plotted

in figure 3 the equivalent of their figure 5. Namely Rmπ
= mV

π /mπ − 1 where we have

numerically calculated Rmπ
=

√

(m2
π +∆Vm2

π)/m
2
π − 1. The calculated values of Fπ are

90.1, 103.2, 113.8 for mπ = 100, 300, 500MeV. The resulting values of Rmπ
as shown in

figure 3(a) are in reasonable agreement with figure 5 in [12]. There is already a difference

– 8 –
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Figure 3. The relative finite volume corrections for the mass and decay constant of the pion in

two-flavour ChPT at three values of the infinite volume pion mass. (a) Rmπ
= mV

π /mπ − 1. (b)

RFπ
= FV

π /Fπ − 1, plotted is −RFπ
.

at order p4, so we suspect it is simply due to somewhat different values of Fπ. The one-

loop result for RFπ
agrees with figure 2 in [27] with small differences probably due to the

difference in Fπ and the difference in the lri -dependent part. Our result for the p6 result is

somewhat larger.

6.2 Three-flavour results: masses

The values of the low-energy constants, Lr
i and Cr

i , we take from the review [32], in

particular the set labeled BE14 there. In addition, the formulas require the infinite volume

physical masses for the pion, kaon and eta mass as well as the pion decay constant. The

masses and Fπ we use for the physical isospin averaged case are listed at the start of this

section. For changed values of the infinite volume pion and kaon mass, m̃π, m̃K , we proceed

similarly to Fπ for the two-flavour case. We solve self-consistently the set of equations for

m̃η, F̃π, F̃K/F̃π and F̃η/F̃π. For the latter ratios we use the expanded version, similar

to what was done in [32], see eq. (45) in there. The results for a number of input cases

is shown in table 1. The top line is the physical case The resulting output is within the

expected quality of the fit in [32]. The next two lines have the kaon mass tuned to keep

the same value of ms. The value of Fπ can be compared with the result for the two-flavour

case given above.

Let us have a look at the pion mass finite volume corrections for the physical case.

The comparison of the two- and three-flavour results are plotted in figure 4(a). The one-

loop result differs only by a very small kaon and eta loop. The difference is not visible

in the figure. The two-loop results are also in very good agreement. The convergence is

quite reasonable.

The equivalent results for the kaon and eta are plotted in figure 5. The one-loop result

for the kaon mass has only an eta loop as can be seen from (5.2). As a result, that part
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mπ mK mη Fπ FK/Fπ Fη/Fπ m̂/m̂phys ms/msphys ms/m̂

134.9764∗ 494.53∗ 545.9 92.2∗ 1.199 1.306 1∗ 1∗ 27.3

100 487.14 540.46 90.4 1.219 1.337 0.547 1.000 49.9

300 549.6 593.73 101.4 1.099 1.154 5.025 1.000 5.43

100 400 446.53 87.3 1.199 1.293 0.518 0.644 33.9

100 495 549.07 90.7 1.219 1.340 0.550 1.037 51.4

300 495 533.00 100.3 1.094 1.138 4.867 0.778 4.36

495 495 495.00 108.0 1 1 12.70 0.465 1

Table 1. The self consistent solution for the infinite volume values of mη, Fπ, FK , Fη and the

output quark mass ratios compared with the physical one. Units for dimensional quantities are in

MeV . The input values for the physical case are starred.
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Figure 4. The finite volume corrections to the pion mass squared at mπ = mπ0 . All other inputs

are given in the text. Plotted is the quantity (mV 2

π − m2

π)/m
2

π. (a) Comparison of the two- and

three-flavour ChPT results. (b) The corrections for the three-flavour case also showing the Lr
i

dependent part.

is very small. The total result is thus essentially coming only from two-loop order. The

eta mass has a negative one-loop finite volume contribution. The pure loop part and the

Lr
i -dependent part of the p

6 contribution are of the expected size. However, there is a very

strong cancellation between the two parts leaving a very small positive correction. The

total finite volume correction for the eta mass in negative.

We can also check how the finite volume correction depends on the different masses. In

figure 6 we have plotted the corrections to the pion mass squared for a number of different

scenarios. In figure 6(a) we look at three cases. The bottom two line are the physical case

labeled with mπ = mπ0 while the top four lines are with mπ = 100MeV. There we have

plotted two cases, mK = 400 and 495MeV. The effect of the change in the pion mass is

quite large while the effect due to the kaon mass change is smaller. The effect of changing

the pion mass can be better seen in figure 6(b) where we kept the kaon mass at 495MeV
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Figure 5. The corrections to the kaon and eta mass squared for the physical case. Plotted is the

quantity (mV 2

i − m2

i )/m
2

i for i = K, η. Shown are the one-loop, the two-loop, the sum and the

two-loop Lr
i dependent part. (a) Kaon, the p4 is so small that p6 and p4 + p6 are indistinguishable.

(b) Eta, note the signs, some parts are negative.
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Figure 6. The finite volume corrections to the pion mass squared for a number of cases listed in

table 1. Plotted is the quantity (mV 2

π −m2

π)/m
2

π. (a) Physical case, bottom two lines, (mπ,mK) =

(100, 495) and (100, 400)MeV. (b) mK = 495MeV and mπ = 100, 300, 495MeV. The size L is given

in units of the physical π0 mass.

while varying the pion mass. The L dependence is given as a function of mπ0L with the

physical π0 mass.

We have plotted the same cases for the finite volume corrections to the kaon mass

squared in figure 7. The one-loop correction for the physical case and mπ,mK =

100, 495MeV is virtually identical. The p4 + p6 is a bit more different for the three cases

as can be seen in figure 7(a). In figure 7(b) we have shown the corrections for a fixed kaon
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Figure 7. The finite volume corrections to the kaon mass squared for a number of cases listed

in table 1.for the physical case. Plotted is the quantity (mV 2

K − m2

K)/m2

K . (a) Physical case and

(mπ,mK) = (100, 495) and (100, 400)MeV. (b) mK = 495MeV and mπ = 100, 300, 495MeV. The

size L is given in units of the physical π0 mass.

mass but three different pion masses. The bottom three lines are the one-loop result while

the top three lines are the full result. Note that, as it should be, the case where the pion

mass and kaon mass are the same the finite volume corrections to the kaon are the same

as for the pion in figure 6(b). This is another small check on our result.

We have plotted the same cases once more for the finite volume corrections to the

eta mass squared in figure 8. Here the result is rather variable due to cancellations. In

figure 8(a) the one-loop corrections increase going from the physical case via mπ,mK =

100, 495MeV to mπ,mK = 100, 400MeV. The two-loop corrections are rather small in the

first two cases, due to the cancellations between the pure two-loop and the Lr
i dependent

part. The one-loop correction for the physical case and mπ,mK = 100, 495MeV is virtually

identical. The p4 + p6 is a bit more different for the three cases. In figure 8(b) we have

shown the corrections for a fixed kaon mass but three different pion masses. The bottom

lines are the case with mπ,mK = 495MeV. It agrees with the pion and kaon corrections

for this case. For mπ = 300MeV the correction is negative but goes through zero for

small L due to a cancellation between one-and two-loop results. The p6 correction for

mπ = 100MeV is very small, we again have a large cancellation between the pure two-loop

and the Lr
i dependent part.

We did not compare with the numerical results in [28], since there was a small mistake

in the relevant figures [33].

6.3 Three-flavour results: decay constants

We will use exactly the same input values as in the previous subsection now but for the

decay constants. Note that here in most cases the finite volume correction is negative.
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Figure 8. The finite volume corrections to the eta mass squared for a number of cases listed

in table 1.for the physical case. Plotted is the quantity (mV 2

η − m2

η)/m
2

η. (a) Physical case and

(mπ,mK) = (100, 495) and (100, 400)MeV. Lines are for the one-loop result at the right bottom

physical case, middle (mπ,mK) = (100, 495), top (mπ,mK) = (100, 400). The first two have only

a small change due to p6, while for the last case there is a large cancellation between one and

two-loops. (b) mK = 495MeV and mπ = 100, 300, 495MeV. The size L is given in units of the

physical π0 mass.

The comparison of the two- and three-flavour results for the pion decay constant is

plotted in figure 9(a). The one-loop result differs only by a very small kaon and eta

loop. The difference is not visible in the figure. The two-loop results are also essentially

indistinguishable. The convergence is quite reasonable. The bottom line and top line(s)

are respectively the one-loop and the sum of one- and two-loops. Note that in agreement

with the earlier estimates there is a sizable correction at finite volume even at mπL = 2.

The equivalent results for the kaon and eta are plotted in figure 10. The kaon decay

constant corrections are somewhat smaller than for the pion, but still important for preci-

sion studies. The one-loop result for the eta decay constant has only a kaon loop as can be

seen from (5.2). As a result, that part is very small. The total result comes mainly from

two-loop order. The eta mass has a negative one-loop finite volume contribution. The pure

loop part and the Lr
i -dependent part of the p6 contribution are of the expected size. How-

ever, there is a very strong cancellation between the two parts leaving a very small positive

correction. The total finite volume correction for the eta decay constant is quite small.

We can also check how the finite volume correction depends on the different masses.

In figure 6 we have plotted the corrections to the pion decay constant for several scenarios.

In figure 11(a) we look at three cases. The bottom two lines are the physical case labeled

with mπ = mπ0 while the top four lines are with mπ = 100MeV. There we have plotted

two cases, mK = 400 and 495MeV. The effect of the change in the pion mass is quite large

while the effect due to the kaon mass change is smaller. In figure 11(b) we can see the

effect of only varying the pion mass.
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Figure 9. The finite volume corrections to the pion decay constant at mπ = mπ0 . All other

inputs are given in the text. Plotted is the quantity −(FV
π − Fπ)/Fπ. (a) Comparison of the two-

and three-flavour ChPT results. (b) The corrections for the three-flavour case also showing the Lr
i

dependent part.
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Figure 10. The corrections to the kaon and eta decay constant for the physical case. Plotted is

the quantity −(FV
i − Fi)/Fi for i = K, η. Shown are the one-loop, the two-loop, the sum and the

two-loop Lr
i dependent part. (a) Kaon. (b) Eta.

We have plotted the same cases for the finite volume corrections to the kaon decay

constant in figure 12. In figure 12(a), the bottom two-lines are the physical case. The four

top lines are with mπ = 100MeV, where the smaller kaon mass gives a somewhat larger

correction. In figure 12(b) we have shown the corrections for a fixed kaon mass but three

different pion masses. The bottom three lines are the one-loop result while the top three

lines are the full result. Note that, as it should be, the case where the pion mass and kaon

mass are the same the finite volume corrections to the kaon are the same as for the pion

in figure 11(b). This is another small check on our result.
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Figure 11. The finite volume corrections to the pion decay constant for a number of cases listed

in table 1. Plotted is the quantity −(FV
π − Fπ)/Fπ. (a) Physical case and (mπ,mK) = (100, 495)

and (100, 400)MeV. (b) mK = 495MeV and mπ = 100, 300, 495MeV. The size L is given in units

of the physical π0 mass.
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Figure 12. The finite volume corrections to the kaon decay constant for a number of cases listed

in table 1. Plotted is the quantity −(FV
K − FK)/FK . (a) Physical case and (mπ,mK) = (100, 495)

and (100, 400)MeV. (b) mK = 495MeV and mπ = 100, 300, 495MeV. The size L is given in units

of the physical π0 mass.

We have plotted the same cases once more for the finite volume corrections to the

eta decay constant squared in figure 13. In figure 13(a) the one-loop corrections for the

physical case and mπ,mK = 100, 495MeV are extremely close, since it only depends on

the kaon mass. The p6 corrections for both cases are quite different though. Finally, for

mπ,mK = 100, 400MeV both the one- and two-loop corrections are larger but the total

correction remains fairly small. In figure 13(b) we have shown the corrections for a fixed
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Figure 13. The finite volume corrections to the eta decay constant for a number of cases listed

in table 1. Plotted is the quantity −(FV
η − Fη)/Fη. (a) Physical case and (mπ,mK) = (100, 495)

and (100, 400)MeV. The bottom line is the one-loop result for the physical case and (mπ,mK) =

(100, 495). Others as labeled. (b) mK = 495MeV and mπ = 100, 300, 495MeV. The size L is given

in units of the physical π0 mass.

kaon mass but three different pion masses. The p4 correction is thus identical for the three

cases. The correction for mπ,mK = 495MeV agrees with the pion and kaon corrections

for this case. The total correction remains small for all cases.

We did not compare with the numerical results in [28], since there was a small mistake

in the relevant figures [33].

7 Conclusions

In this paper we calculated the finite volume corrections to two-loop order in ChPT. The

pion mass and decay constant we calculated both in two and three-flavour ChPT. The kaon

and eta mass and decay constant we obtained in three-flavour ChPT. These expressions in

the main text and the appendices are the main result of this work.

We have compared as far as possible with existing work, where we are in agreement

with the known one-loop results and have some disagreements with the existing results at

two-loop order. What we agree on and differ on is discussed in sections 4 and 5. Note that

a full comparison at the analytical level was not possible due to the large differences in the

loop integral treatments.

We have presented numerical results for a number of representative cases. In all cases

the exponential decay e−mπ/L is clearly visible and as expected the numbers are dominated

by the finite volume pion loops. The corrections at order p6 are sometimes large, especially

when the order p4 result did not contain pion loops. We find that the finite volume

corrections are necessary for the pion mass and decay constant as well as the kaon decay

constant. The kaon mass receives corrections at a somewhat lower level while finite volume

corrections for the eta mass and decay constant are at present negligible.
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The numerical work has been done using C++. The programs will be made available

together with the infinite volume results in [34]. The analytical work relied heavily on

FORM [35].

Acknowledgments

We thank Gilberto Colangelo for discussions. This work is supported in part by the Eu-

ropean Community-Research Infrastructure Integrating Activity “Study of Strongly Inter-

acting Matter” (HadronPhysics3, Grant Agreement No. 283286) and the Swedish Research

Council grants 621-2011-5080 and 621-2013-4287.

A Three flavour p
6 expressions for the masses

This appendix lists the order p6 result for the three-flavour ChPT finite volume corrections

to the masses squared at order p6.
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B Three flavour p
6 expressions for the decay constants

This appendix lists the order p6 result for the three-flavour ChPT finite volume corrections

to the decay constants at order p6.
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