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Eine Finite-Volumen Volume-of-Fluid Methode zur Simulation von 

Zweiphasenströmungen in kleinen rechteckigen Kanälen 

 

ZUSAMMENFASSUNG 

Das Thema der vorliegenden Arbeit ist die direkte numerische Simulation der gas-flüssig 

Zweiphasenströmung mit Wärmeübertragung in einem rechteckigen Kanal mit hydraulischem 

Durchmesser im Bereich von 1 mm. Es wird eine neue, auf Volumenmittelung basierende 

Formulierung der Enthalpiegleichung entwickelt. Diese wird im Rechenprogramm  

TURBIT-VOF eingeführt, wobei vorausgesetzt wird, dass beide Flüssigkeiten inkompressibel 

sind. Die numerische Approximation dieser Gleichung verwendet eine genaue Rekonstruktion 

der konvektiven und konduktiven Wärmeflüsse und verringert so Oszillationen, die auf 

Diskontinuitäten an der Phasengrenzfläche zurückzuführen sind.  

Es wird ein neues Konzept für die Modellierung der konvektiven Wärmeübertragung einer 

räumlich periodischen Zweiphasenströmungen in einem Kanal vorgeschlagen, dessen Länge 

sehr viel größer als der hydraulische Durchmesser ist. Das als periodisch voll entwickelte 

Strömung und Wärmeübertragung bezeichnete Konzept nutzt aus, dass bereits in einer 

Entfernung von nur wenigen hydraulischen Durchmessern vom Einlass die Strömung frei von 

Einlass-Effekten ist. Für diese Region kann wegen der räumlichen Periodizität der sich axial 

wiederholenden Strömungsverhältnisse die Analyse der Geschwindigkeits- und 

Temperaturverteilung auf ein einzelnes ”Einheits-Modul” beschränkt werden. Als typisches 

Beispiel für eine räumlich periodische gas-flüssig Zweiphasenströmung wird in dieser Arbeit 

die Schwallströmung in einem kleinen Kanal herangezogen. Es wird numerisch die Strömung 

einer regelmäßigen Folge von gleichmäßig entlang eines Kanal mit quadratischem 

Querschnitt verteilten großen Luftblasen untersucht. Simulationen werden für zwei 

unterschiedliche Werte der Kapillar-Kennzahl durchgeführt. Die Blasenform, die 

Geschwindigkeitsverteilung innerhalb der Blase und im flüssigen Schwall werden analysiert. 

Der Durchmesser der Blase sowie deren absolute und relative Geschwindigkeit werden mit 



experimentellen Daten aus der Literatur verglichen und zeigen eine gute Übereinstimmung. 

Des weiteren werden der konvektive und konduktive Wärmetransport der 

Zweiphasenströmung für den Fall einer vorgegebenen konstanten, gleichförmigen 

Wärmestromdichte an der Kanalwand numerisch untersucht. Dabei werden insbesondere die 

durch das Vorhandensein der Blase hervorgerufenen Änderungen im Temperaturfeld 

analysiert. 



ABSTRACT

The topic of the present thesis is the direct numerical simulation of gas-liquid two-phase

flow in rectangular channels with hydraulic diameter of the order of 1 mm with heat trans-

fer. A new volume-averaged equation for enthalpy is derived and implemented in the finite

volume code TURBIT-VoF for the case when both fluids are considered as incompressible.

The numerical approximation of this equation reduces the oscillations associated with the

discontinuities at the interface using an accurate reconstruction of the convective and con-

ductive heat fluxes.

To model convective heat transfer for a spatially periodic two-phase flow in a channel

with large length-to-hydraulic diameter ratio, a new concept, called periodic fully developed

flow and heat transfer, is proposed. After a few hydraulic diameter away from the channel

inlet the flow characteristics are free from entrance effects. For this region, the identification

of the periodicity characteristics of the flow enables to restrict the analysis of the flow field

and temperature distribution to a single isolated module. As typical example of periodic

gas-liquid two-phase flow, the slug flow in small channels is considered. The flow of a

train of large bubbles uniformly distributed along a channel with square cross-section is

simulated. The bubble shape, the flow structure inside the bubble and in the liquid slug

are analyzed. The bubble diameter, bubble velocity and relative bubble velocity for two

different Capillary numbers are computed and compared with the experimental data from

the literature showing good agreement. The convection and conduction of heat inside the

channel due to a uniform, both axially and perimetrically, heat flux is also considered. The

modification of the temperature field due to the presence of the bubble is analyzed.
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Lower-case Roman
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ℓ characteristic length
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~n unit normal to the interface pointing from fluid 1 to fluid 2
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p pressure

~q heat flux

r body source of internal energy per unit mass

s the entropy

t time

u internal energy per unit mass, velocity component in x-direction

ui surface internal energy density

~v fluid velocity

~vi interface velocity

v velocity component in y-direction

w velocity component in z-direction

~x coordinates vector
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I unity tensor
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Θ reduced temperature

Υ convective heat transfer coefficient
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1. INTRODUCTION

Microfabrication techniques developed within last decades made possible the building of

miniaturized devices with high mixing and heat transfer characteristics [7, 41]. Consisting

of large number of nominally identical flow channels with hydraulic diameter of order

of 1 mm or smaller, these devices are increasingly used in different fields of chemistry

due to their capabilities that are exceeding those of conventional macroscopic systems

[21]. Compact heat exchangers with enhanced heat transfer rates and micro-reactors with

increased specific interfacial areas, compared with classical devices, are only two examples

of industrial applications, where such kind of systems are intended to replace the existing

technologies in order to increase the efficiency. The micro-bubble column reactor [7] for

example can provide for extraordinary high interfacial area per unit volume [15] and thus

allows for high mass transfer rates. Another example is the segmented flow tubular reactor

[22] developed within the bubble tube project that utilizes the intense mixing of the two-

phase flow for production of high-quality powder. The ability to integrate sensors for flow,

temperature, and chemical composition with microfluidic reaction and control components

allow reactions to be performed under more aggressive conditions and with higher yields

than can be achieved with conventional reactors. Also, for future fusion power plants,

small (1 mm wide) rectangular channels are intended to be used for the cooling of the

fusion blankets. These channels form a network with high surface-to-volume ratio capable

to remove efficiently the heat obtained by converting the neutrons energy.

The advantages from increased heat and mass transfer in small dimensions have been

demonstrated with model gas, liquid, and multiphase systems [7, 21]. While for single

phase flows1the term ”small” is defined based on the diffusive mixing length, which ranges

from about 20 µm up to a few hundreds microns, for gas-liquid flows it is customary to

call micro-channels those channels having the hydraulic diameter (Dh) smaller or equal

to the Laplace length λ =
√

σ/(g∆ρ), to distinguish them from large channels. This

1 Inhere, single phase flows refers to fluid flows for which the components are miscible fluids (there is
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characteristic length gives the order of magnitude of the wavelength of the interfacial wave

in Taylor instability. The latter type of instability is known to govern important hydrody-

namic processes such as bubble or droplet breakup in pool boiling or large channel flows.

When Dh ≤ λ the flow confinement makes some of the Taylor instability-driven processes

to be entirely irrelevant. Thus, the surface tension effects become more important than

buoyancy, which leads to insensitivity of two-phase hydrodynamics to channel orientation,

and in non-stratified two-phase flow patterns [11, 52]. For many gas-liquid flows of prac-

tical interest (e.g. air-water flows) the Laplace length is of the order of 1 mm. Since

buoyancy is no longer dominating the dynamics of the two-phase system, the experimen-

tal data obtained for micro-channels show poor agrement with the relevant flow regime

transition models which were deduced for large channels [11, 52]. This is the motivation

for an increasing number of analytical [29, 30, 56] and experimental studies devoted to the

two-phase flow in single narrow tubes [43, 51, 52] and in channels with triangular [51, 52]

or rectangular [48, 49] cross-section.

When the hydraulic diameter of the channel is very small, measurement techniques that

are well established in macro-channels encounter serious difficulties. In micro-channels only

non-intrusive measurement techniques can be used and the results are usually limited to

visualization of the bubble shape and measurement of integral data such as the flow rates

of both phases and the axial pressure drop. This is along the main objectives of many

experimental studies, namely to develop engineering correlations for pressure-drop [51]

and heat transfer. However, there is currently no measurement method available that can

provide full information on the three-dimensional local velocity field of both phases in the

entire micro-channel.

A numerical treatment of this kind of problems may allow a better knowledge of local

phenomena since the complete 3D velocity or temperature field is available (in the limit of

grid resolution). In the literature there are several numerical approaches concerning heat

and mass transfer problems in two-phase systems. The solidification of melting has been

simulated by Knoll, Kothe and Lally [28]. Impact and solidification of thin droplets on a flat

stainless steel plate has been studied by Psandideh–Fard et al. [34]. Wohak [57] and Wohak

and Beer [58] simulated the direct–contact evaporation of a drop rising in a hot liquid

using algorithms with poor interface reconstruction. The motion of single and multiple gas

no interface), while two-phase flows denotes the flow of two immiscible fluids which are separated by a
distinct interface.
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bubbles in an otherwise stationary liquid contained in a closed right vertical cylinder is

investigated by Chen et al. [2] using a Volume-of-Fluid (VOF) method which incorporates

the surface tension stresses. The fluids are incompressible and immiscible. The effects

of mass and heat transfer are taken in account when evaporation is considered. Recently,

Davidson and Rudman [4] developed a new VOF-based method for calculating heat transfer

or mass transfer of species within and between fluids with deforming interfaces. All these

numerical methods have been designed for large systems where the flow is buoyancy-driven.

For two–phase flows in small channels there are no specific numerical methods up to now,

most of the data being obtained from experimental work.

The objective of this study is to define a method that enables the direct numerical

simulation (DNS) of 3D gas-liquid flows in rectangular small channels when heat or mass

transfer are considered. In our approach, it is assumed that the heat/mass transfer across

the interface is only due to conduction or diffusion, and no phase change occurs. This

is an oversimplification of the complex phenomena characterizing the heat transfer in a

compact heat exchanger where bubbles are usually generated due to vaporization of the

liquid. This process, in small channels, is strongly influenced by the confinement of the

flow and it is not well understood up to now [26], therefore, we concentrate our attention

only on the modifications of the heat transfer characteristics due to the presence of bubbles

in the liquid flow. This type of problem is also relevant for chemical processing where the

mixing of different species determines the efficiency of the chemical reactor. This includes

applications like micro bubble column [7, 15] and the monolith froth reactor [27]. Since in

this cases the mass transfer is the relevant process, one can use the formal analogy between

heat and mass transfer to simulate this. This analogy is valid under the conditions of no

dissipation, low mass/heat flux and constant fluids properties [3]. Here, only microchannels

with diameters of the order of 1 mm and with long length-to-hydraulic diameter ratios are

considered. Throughout this dissertation it is referred to this category of microchannels

as small channels to differentiate them from those channels with diameters of order of

microns. Since the characteristic dimension is much larger than the molecular mean free

path, for small channels, the equations of the continuum model can be used.

For simulating heat transfer, the implementation of an energy equation into an existing

code (TURBIT-VoF) is considered. This code was developed by Sabisch [38] for isothermal

flows with incompressible phases. Single bubble simulations were performed for a wide

variety of regimes from spherical to ellipsoidal up to wobbling bubbles. Also, bubble swarm
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flow were simulated using five ellipsoidal bubbles. All these simulations were performed

for flow parameters corresponding to large channels, i.e. buoyancy was the main force

accelerating the bubbles. The code is using a VOF method for tracking the interface. The

main advantage of this method compared with other methods (level set, front tracking) is

mass conservation.

This dissertation is structured as follows: in the next chapter the governing equations for

mass, momentum and energy are deduced. The formulation is as general as possible. The

simplified equations for incompressible fluids will be discussed. In chapter 3 the numerical

method for the energy equation will be described. In chapter 4 a new concept of periodic

fully developed two-phase flow will be introduced to describe the flow and heat transfer

of a steady periodic two-phase flow in a channel with large length-to-hydraulic diameter

ratio. The application of this concept for slug flow in a square channel is presented. Both

adiabatic and convective heat transfer flows are simulated. Chapter 5 summarizes and

concludes this work by highlighting possible directions for future research.



2. GOVERNING EQUATIONS FOR A MULTI-PHASE SYSTEM

In the literature, several models are currently used to describe the thermodynamics of a

multi-phase system. Kataoka [24] has used characteristic functions of each phase in order

to define the physical variables of two–phase flow as field quantities. In addition, the source

terms at the interface are defined in terms of local instant interfacial area concentration.

Based on these field quantities, the local instant field equations of mass, momentum and

total energy conservation of two–phase flow has been derived. This local instant formu-

lation form the basis for different formulations using various types of averaging. Unverdi

and Tryggvason [54, 55] have used this kind of formulation in order to describe the flu-

ids dynamics for two–phase flows in conjunction with an interface tracking method. This

single field representation is equivalent to the local instant formulation of Ishii [20] and

Delhaye [5]. The latter deduced the local instant equations for each fluid and the local

instant jump conditions at the interface starting from the balance laws for mass momentum

and energy. Sabisch [38] and Wörner et al. [60] derived a new volume-averaged formulation

for the mass and momentum equations. These equations, called the VA-VOF equations,

are suitable for numerical simulations of dynamic interface evolutions with the Volume-of-

Fluid (VOF) method, where the boundary layer at the interface is not fully resolved by

the grid.

In this chapter, the same procedure as in Sabisch [38] and Wörner et al. [60] it is used

to derive the volume-averaged energy equation. First, a volume-averaged set of equations

for each fluid ϕ is deduced. Then, these equations and the local instant jump conditions

are used to write a single set of equations for the volume averaged values of the variables.

For an easy reference the mass and momentum equations are also presented.

2.1 Volume-averaged equations

Let us consider two Newtonian and homogenous fluids, each fluid residing in a distinct

domain Ωϕ, ϕ = 1, 2 such that the control volume Ω = Ω1(t) ∪ Ω2(t) is fix and has a
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rigid boundary (∂Ω). We assume that the size of Ω is large enough so that the interface

separating the two fluids can be considered as thin and massless.

2.1.1 Phase volume averaged equations

In the bulk region of each component, the local mass, momentum and energy governing

equations are:

continuity equation

∂ρϕ

∂t
+ ∇ · (ρϕ~vϕ) = 0 (2.1a)

momentum equation

∂ρϕ~vϕ

∂t
+ ∇ · (ρϕ~vϕ~vϕ) = −∇pϕ + ρϕ

~bϕ + ∇ · τϕ (2.1b)

energy equation

∂ρϕhϕ

∂t
+ ∇ · ρϕhϕ~vϕ = −∇ · ~qϕ +

(

∂pϕ

∂t
+~vϕ · ∇pϕ

)

+ τϕ : ∇~vϕ + ρrϕ. (2.1c)

For the energy equation the enthalpy formulation is used because the convection of en-

thalpy, and not internal energy, is balanced by the heat conduction and viscous dissipa-

tion [33, 9].

Since the physical quantities are not defined over the entire control volume, in order to

write the volume-averaged equations corresponding to each phase, one has to define a set

of field quantities. This can be done by defining a characteristic function for each phase ϕ:

Xϕ(~x, t) =







1 , ~x ∈ Ωϕ(t),

0 , otherwise.
(2.2)

One then multiplies the physical quantities (generically noted as Ψ) with the characteristic

function of each phase. The new set of variables XϕΨ can be regarded as field quantities

[24]. The phase volume averaging operator for a general scalar or vector quantity, Ψ, over
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the domain Ω is defined as

〈Ψ〉ϕ =
1

V

∫

Ω

ΨXϕ(~x, t) dV (2.3)

where, V is the volume of Ω. Since Ω is not deformable V is constant in time. Applying

this averaging operator to the equations for mass, momentum and energy (enthalpy), and

using the Gauss and Leibnitz rules [6], one has:

∂

∂t
〈ρ〉ϕ + ∇ · 〈ρ~v〉ϕ = −

1

V

∫

Si(~x,t)

ṁϕ dS (2.4a)

for the mass conservation, where, Si(~x, t) is the interface in Ω, ṁϕ = ~nϕ · (~vϕi − ~vi)ρϕi

is the local loss of fluid ϕ per unit area of Si and per unit time, and ~vi and ~vϕi are the

velocity of the interface and the velocity of the fluid ϕ at the interface, respectively; the

unit normal vector (~nϕ) at the interface Si is taken to point outside the volume Ωϕ. The

volume averaged momentum equation for the phase ϕ is

∂

∂t
〈ρ~v〉ϕ + ∇ · 〈ρ~v~v〉ϕ = −∇〈p〉ϕ + 〈ρ~b〉ϕ + ∇ · 〈τ 〉ϕ

−
1

V

∫

Si(~x,t)

[ṁϕ~vϕi − ~nϕ · Tϕi] dS (2.4b)

where Tϕi = −pϕiI + τϕi is the stress tensor of the phase ϕ at the interface, and

∂

∂t
〈ρh〉ϕ + ∇ · 〈ρh~v〉ϕ = −∇ · 〈q〉ϕ +

(

∂

∂t
〈p〉ϕ + 〈~v · ∇p〉ϕ

)

+ 〈τ : ∇~v〉ϕ + 〈ρr〉ϕ

−
1

V

∫

Si(~x,t)

[ṁϕhϕi + ~nϕ ·~vipϕi + ~nϕ · ~qϕi] dS. (2.4c)

is the volume-averaged enthalpy equation, respectively.

2.1.2 Local jump conditions

In order to evaluate the source terms which give the influence of the interface on the bulk

flow of each component, one should introduce the jump conditions at the interface. Since

the interface is considered as a massless thin surface separating two fluids, the local instant

jump conditions at the interface are [5, 20, 24, 6, 10]:



8 Governing equations for a multi-phase system

Mass:
∑

ϕ=1,2

~nϕ · (~vϕi −~vi)ρϕi = ṁ1 + ṁ2 = 0 (2.5a)

Momentum:
∑

ϕ=1,2

{ṁϕ~vϕi − Tϕi · ~nϕ} + ~mσ
i = 0 (2.5b)

where

~mσ
i = σκ~n + ∇iσ (2.5c)

is the traction associated with interfacial surface tension, σ is the surface tension coefficient,

κ is twice the mean curvature of the interface, ~n is the normal unit vector to Si pointing

from fluid 1 to fluid 2, and ∇i is the gradient in the surface coordinates. It is also useful

to project this relation on normal and tangential directions to the interface:

ṁ1(~v1i −~v2i) · ~n − (τ 1i − τ 2i) : ~n~n + (p1i − p2i) = −σκ (2.5d)

ṁ1(~v1i −~v2i) ·~t − (τ 1i − τ 2i) : ~n~t = −∇iσ ·~t (2.5e)

where, ~t is an unit vector tangent to Si.

For the enthalpy the jump condition [5, 10] is:

diui

dt
+ ui∇i ·~vi =

∑

ϕ=1,2

{

ṁϕ

(

hϕi +
1

2
v2

ϕi −~vϕi ·~vi

)

− (τϕi · ~nϕ) · (~vϕi −~vi) + ~nϕ · ~qϕi

}

(2.5f)

=
∑

ϕ=1,2

{

ṁϕ(hϕi +
1

2
v2

ϕi) − (~nϕ · τϕi) ·~vϕi + pϕi~vi · ~nϕ + ~nϕ · ~qϕi

}

+ ~mσ
i ·~vi.

where ui is the interfacial internal energy density, di/dt is the material derivative in the

interface, hϕi is the enthalpy of the fluid ϕ and ~qϕi is the heat flux at the interface Si. The

l.h.s. of (2.5f) represents the increasing rate of interfacial energy per unit interfacial area.

On the other hand, the r.h.s. represents the total energy flux by convection, heat flux into

the interface and the work exerted on the interface by pressure, stress and interfacial force.
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2.1.3 Volume-averaged single-field equations

The equations (2.4a), (2.4b), (2.4c) represent two sets of equations coupled via jump con-

ditions (2.5a), (2.5b), (2.5f) describing the thermodynamics of the two phases. In order to

obtain only one set of equations for the whole volume Ω one should sum up these sets of

equations and use the jump conditions to evaluate the terms at the interface. Applying

this technique one gets:

Mass balance equation:

∂

∂t

∑

ϕ=1,2

〈ρ〉ϕ + ∇ ·
∑

ϕ=1,2

〈ρ~v〉ϕ = 0 (2.6a)

Momentum balance equation:

∂

∂t

∑

ϕ=1,2

〈ρ~v〉ϕ + ∇ ·
∑

ϕ=1,2

〈ρ~v~v〉ϕ = −∇
∑

ϕ=1,2

〈p〉ϕ + ∇ ·
∑

ϕ=1,2

〈τ 〉ϕ +
∑

ϕ=1,2

〈ρ~b〉ϕ

+
1

V

∫

Si(~x,t)

(σκ~n + ∇iσ) dS
(2.6b)

Enthalpy equation:

∂

∂t

∑

ϕ=1,2

〈ρh〉ϕ + ∇ ·
∑

ϕ=1,2

〈ρh~v〉ϕ = −∇ ·
∑

ϕ=1,2

〈~q〉ϕ +

(

∂

∂t

∑

ϕ=1,2

〈p〉ϕ +
∑

ϕ=1,2

〈~v · ∇p〉ϕ

)

+
∑

ϕ=1,2

〈τ : ∇~v〉ϕ +
∑

ϕ=1,2

〈ρr〉ϕ +
1

V

∫

Si(~x,t)

∑

ϕ=1,2

[

1

2
ṁϕv

2
ϕi −~vϕi · τϕi · ~nϕ

]

dS

−
1

V

∫

Si(~x,t)

[

diui

dt
+ ui∇s ·~vi − (σκ~n + ∇iσ) ·~vi

]

dS

(2.6c)

The contributions to the energy equation from the interface stretching are usually small

compared with the latent heat and have been neglected [20, 23].

At this point it is useful to introduce so called ”conserved” variables (see Drew & Pass-

man [6]) to characterize each phase, and the mean quantities to characterize the properties
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of the mixture in the volume Ω, respectively. If one defines the volume fraction of the

phase ϕ as

αϕ =
1

V

∫

V

Xϕ(~x, t) dv =
Vϕ

V
(2.7)

then, the ”conserved” variables for each phase ϕ, and the corresponding mean values, are

defined as:

density

ρϕ =
〈ρ〉ϕ
αϕ

; ρm(~xC , t) =
∑

ϕ=1,2

〈ρ〉ϕ =
∑

ϕ=1,2

αϕρ
ϕ (2.8a)

velocity

~v
ϕ

=
〈ρ~v〉ϕ
αϕρ

ϕ ; ~vm(~xC , t) =

∑

ϕ=1,2

〈ρ~v〉ϕ

∑

ϕ=1,2

〈ρ〉ϕ
(2.8b)

enthalpy

h
ϕ

=
〈ρh〉ϕ
αϕρ

ϕ ; hm(~xC , t) =

2
∑

ϕ=1

〈ρh〉ϕ

∑

ϕ=1,2

〈ρ〉ϕ
(2.8c)

Note that for the velocity and enthalpy the mass–averages (or Favré averages) are used

instead of component–weighted averages. This type of averaging is useful when compress-

ibility effects are important.

The variables representing the averaged effects of the molecular fluxes are the stress

T
ϕ

=
〈T〉ϕ
αϕ

; Tm(~xC , t) =
∑

ϕ=1,2

〈T〉ϕ (2.8d)
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or, in terms of pressure and viscous stress

pϕ =
〈p〉ϕ
αϕ

; pm(~xC , t) =
∑

ϕ=1,2

〈p〉ϕ =
∑

ϕ=1,2

αϕp
ϕ; (2.8e)

τ
ϕ =

〈τ 〉ϕ
αϕ

; τm(~xC , t) =
∑

ϕ=1,2

〈τ 〉ϕ =
∑

ϕ=1,2

αkτ
ϕ (2.8f)

and the heat flux

~q
ϕ

=
〈~q〉ϕ
αϕ

; ~qm(~xC , t) =
∑

ϕ=1,2

αϕ~q
ϕ
. (2.8g)

where ~xC is a characteristic point of the volume Ω. The way in which the mean variables

are defined suggests that ~xC is the position of the center of mass corresponding to the

volume Ω. However, the center of mass moves in time due to the variation of the volume

fractions. Usually the geometric center of the control volume V is taken to be a good

approximation.

Using these notations the equations for the mean values are:

• Continuity equation:
∂ρm

∂t
+ ∇ · ρm~vm = 0 (2.9a)

• Momentum equation:

∂ρm~vm

∂t
+ ∇ · 〈ρ~v~v〉 = −∇pm + ∇ · τm + ρm

~b +
1

V

∫

Si(~x,t

(σκ~n + ∇iσ) dS (2.9b)

• Enthalpy equation

∂

∂t
ρmhm + ∇ · 〈ρh~v〉 = −∇ · ~qm +

(

∂pm

∂t
+ 〈~v · ∇p〉

)

+ 〈τ : ∇~v〉 + 〈ρr〉

+
1

V

∫

Si(~x,t)

(σκ~n + ∇iσ) ·~vi dS +
1

V

∫

Si(~x,t)

∑

ϕ=1,2

[

1

2
ṁϕ|~vϕi|

2 −~vϕi · τϕi · ~nϕ

]

dS (2.9c)
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where

〈Ψ〉 =
∑

ϕ=1,2

〈Ψ〉ϕ (2.10)

is the total averaging operator corresponding to the volume Ω. In [6] and [60] the convective

terms are also written using the the mean values. This procedure generates supplemental

terms in the momentum and enthalpy equation: ”drift” terms which depend on the relative

velocity of the center of mass of one phase to center of mass of the other (~vr = ~v
1
−~v

2
), and

fluctuations terms which are related to phenomena that have characteristic scales smaller

than the numerically resolved scale (see [38]). For now, we use the compact formulation

because it allows us a simpler formulation. Further analysis will be done in the next chapter

(3) when the numerical method will be discussed.

In the equations (2.9b) and (2.9c) one considers that the body forces ~b are constant

over the whole computational domain. This assumption is valid for most of gas-liquid

two-phase flow applications where the gravity is the only body force.

2.1.4 Interface constitutive laws

Until this point we did not gave any relation for the entropy either made any assumption

regarding the entropy production at the interface. Introducing the interface temperature

Ti one could write an entropy inequality at the interface (Ishii [20]):

Ti∆i ≥ 0 (2.11a)

Ti∆i =
∑

ϕ=1,2

ṁϕ

[

uϕi − sϕiTi +
1

2
|~vϕi −~vi|

2 +
pϕi

ρϕi

]

−~nϕ ·τϕi · (~vϕi −~vi)+~nϕ ·~qϕi

(

1 −
Ti

Tϕi

)

(2.11b)

where ∆i is the entropy production at the interface.

In general, the interfacial jump conditions from 2.1.2 do not constitute sufficient con-

ditions to define the problem uniquely [20]. They should be supplemented by interfacial

constitutive laws which satisfy the restriction imposed by the entropy inequality (2.11b).

These relations will restrict the kinematical, dynamical and thermal behavior of the two

phases.

For a two–phase system in which there is no entropy production at the interface (re-
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versible transfer at the interface) Ishii [20] deduced the following conditions:

Thermal: T1i − T2i = 0

Mechanical: p1i − p2i = −κσ − ṁ2
1

(

1

ρ1i

−
1

ρ2i

)

+ (τnn,1i − τnn,2i)

Phase change: g1i − g2i =
ṁ2

1

2

(

1

ρ1i

−
1

ρ2i

)

+

(

τnn,1i

ρ1i

−
τnn,2i

ρ2i

)

where, gϕi, ϕ = 1, 2 are the Gibbs free energy at the interface and τnn,ϕi is the normal

component of the viscous stress tensor:

τnn,ϕi = τϕi : ~n~n, ϕ = 1, 2

The first condition represents the thermal equilibrium condition at the interface. This

thermal boundary condition sets the energy level of the interface and is consistent with

the assumption of the existence of the equation of state at the interface. In reality, the dis-

continuity of the temperature at the interface exists and can be estimated from the kinetic

theories. However, its value is very small in comparison with the absolute temperature for

most of the materials [20] (exception – liquid metals). In [18] a condition of thermody-

namic equilibrium is used so that the saturation temperature is uniquely determined by

the pressure through the Clapeyron relation. In this case the temperature will be discon-

tinuous since the pressure of the gas and liquid are different. Huang and Joseph [17] used

both the thermal and thermodynamic equilibrium conditions to study the instability of a

liquid below its vapor. They have observed that the results of the stability analysis do not

depend strongly on the choice of the conditions for the temperature at the interface in the

case of water and water vapor.

The second condition is identical with (2.5d) and expresses the momentum jump condi-

tion in the normal direction under the condition of no–slip, that is the tangential velocity

is continuous at the interface. This assumption is valid for most of the physical problems

with two possible exceptions: flow of rarefied gases and motion of a contact line over a solid

surface [16]. For a static interface this condition reduces to: p2i−p1i = κσ. This condition,

under standard conditions, can be simplified neglecting the normal stresses which are very

small comparing with the pressure terms. The same argument can be applied to the third

condition, since the order of magnitude of the term ρϕigϕi is pϕi.



14 Governing equations for a multi-phase system

Since in the field equations the Gibbs free energy does not appear explicitly, it is

desirable to transform the variable gϕi into other variables using an equation of state. This

equation of state is strongly related to each type problem that is simulated.

2.2 Volume fraction advection equation

In order to complete the set of equations we need an equation for the volume fraction.

Generally, the advection of the volume fraction f is governed by:

∂f

∂t
+~vΣ · ∇f =

∫

Si

~vi · ~n dS (2.12)

where ~vΣ is a smooth velocity field that matches the interface velocity ~vi at the interface

Si. If there is no expansion at the interface and the fluids are incompressible, ~vΣ could be

the fluid velocity (Tryggvason [53]). For the general case one should compute the interface

velocity in order to advect the fraction of volume. From (2.5a) one has:

~n ·~vi(ρ1i − ρ2i) = ~n · (ρ1i~v1i − ρ2i~v2i) (2.13)

Introducing the averaged values for velocity and density (2.8a), (2.8b) one has:

~n ·~vi(ρ
1 − ρ2) + ~n ·~vi(δ1iρ− δ2iρ) = ~n · (ρ1~v

1
− ρ2~v

2
)

+ ~n · (ρ1δ1i~v − ρ2δ2i~v) + ~n · (δ1iρ~v
1
− δ2iρ~v

2
) + ~n · (δ1iρδ1i~v − δ2iρδ2i~v) (2.14)

where, δϕiρ and δϕi~v with ϕ = 1, 2 are the deviations from the averaged values of the density

and velocity at the interface. If the control volume V is small enough it is reasonable to

suppose that these deviations are much smaller than the averaged values (at least one order

of magnitude). Keeping only the first order terms one has:

~n ·~vi(ρ
1 − ρ2) = ~n · (ρ1~v

1
− ρ2~v

2
) (2.15)

This equation gives a relation between the normal component of the interface velocity ~vi

and the local momentum fluxes over the interface. The tangential component is still an

unknown quantity. It only appears in the dissipation term of the entropy inequality and it

is usually taken to be equal with the tangential component of the velocity in the no–slip



2.3 Incompressible fluids: homogenous model 15

hypothesis introduced by Ishii [20]. Note that if the fluids have the same density (ρ1 = ρ2)

the interface velocity can not be determined except for the case when there is no phase

change at the interface. In this situation ṁ1 = ṁ2 = 0 and the interface moves with

the same velocity as the two fluids. Hereafter we assume that ρ1 6= ρ2 if not mentioned

otherwise.

Equation (2.15) can be written using the mean velocity and mean density:

~n ·~vi = ~n ·~vm +
ρ1ρ2

ρm(ρ1 − ρ2)
~n · (~v

1
−~v

2
) (2.16)

2.3 Incompressible fluids: homogenous model

In most of the applications for two-phase flows with technical relevance the fluids can be

considered as incompressible. This means that the averaged density, or viscosity, of phase

ϕ over the domain Ωϕ is constant, i.e. ρϕ = ρϕ. However, ρm depends on the volume

fractions of each phase and it is not constant. Therefore, the momentum equation (2.9b)

and the enthalpy equation (2.9c) can not be simplified as for the single phase equations.

To see what are the implications of this assumption on the continuity equation (2.9a)

and on the advection equation of the volume fraction one has to rewrite these equations

in a form similar to the single phase case using the fact that the densities of the fluids are

constant. Thus, for each phase ϕ the velocity field is solenoidal, that is:

∇ ·~vϕ = 0. (2.17)

If, we apply the same procedure as before (〈~v〉ϕ = ~v
ϕ

for the incompressible case) the

continuity equation for the incompressible fluids becomes:

∇ ·
[

f~v
1
+ (1 − f)~v

2
]

= −
1

V

∫

Si

(~v1i −~v2i) · ~n dS , (2.18)

where the notation f is used instead of α1 and (1− f) instead of α2. Starting from (2.4a)
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two equations for volume fraction can be deduced:

∂f

∂t
+ ∇ · (f~v

1
) =

ρ2

ρ1 − ρ2

1

V

∫

Si

(~v1i −~v2i) · ~n dS (2.19a)

∂f

∂t
−∇ ·

[

(1 − f)~v
2
]

=
ρ1

ρ1 − ρ2

1

V

∫

Si

(~v1i −~v2i) · ~n dS (2.19b)

Note that (2.18) can also be obtained by subtracting (2.19b) from (2.19a). Introducing the

mixture velocity one has:

∇ · ~vm = ∇ ·

[

f(1 − f)
ρ1 − ρ2

ρm

(~v
1
−~v

2
)

]

−
1

V

∫

Si

(~v1i − ~v2i) · ~n dS (2.20)

from (2.18) and summing up (2.19a) and (2.19b)

∂f

∂t
+ ∇ · (f~vm) =

1

2

ρ1 + ρ2

ρ1 − ρ2

1

V

∫

Si

(~v1i −~v2i) · ~n dS

+
1

2
∇ ·

[

~vm − f(1 − f)
ρ1 + ρ2

ρm

(~v
1
−~v

2
)

]

(2.21)

From (2.20) one can see that even when no phase change at the interface occurs the

mean velocity field is not solenoidal. Also the volume fraction advection equation is more

complicated as compared with standard VOF method [31, 28]. However, the supplemental

term
1

2
∇ ·

[

~vm − f(1 − f)
ρ1 + ρ2

ρm

(~v
1
−~v

2
)

]

becomes important only when the volume fraction f is of the same order of magnitude as

1/(1 + ρ2/ρ1).

For the case when there is no phase change at the interface, (2.20) can be written as:

∇ ·

[

f(1 − f)
1

ρm

(~v
1
−~v

2
)

]

=
1

ρ1 − ρ2

∇ ·~vm (2.22)

Replacing in (2.21) the liquid volume fraction advection equation (2.21) is:

∂f

∂t
+ ∇ · (f~vm) = −

Γρ

1 − Γρ

∇ ·~vm (2.23)
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where, Γρ = ρ2/ρ1. Thus, for incompressible flows without mass transfer choosing the

advection equation for volume fraction to be:

∂f

∂t
+ ∇ · (f~vm) = 0 (2.24a)

is consistent with the approximation of a divergence–free mean velocity field

∇ ·~vm = 0 (2.24b)

The question is in which conditions the mean velocity field ~vm can be approximated as

solenoidal. From (2.22) one can see that (2.24b) requires the averaged velocities ~v
1

and ~v
2

are equal. When there is no mass transfer due to phase change across the interface the

velocity field is continuous and, if the control volume is very small the divergence of the

mean velocity can be approximated to be zero. Thus, a divergence–free condition for the

mean velocity field is recovered. In [60] this approximation is called homogenous model.

Further on we suppose that the condition for a solenoidal velocity field are always met, if

not specified otherwise.

2.4 Dimensionless equations

The equations (2.9a), (2.9b) and (2.9c) are considering the effects of all the mechanical and

thermal phenomena disregarding the different orders of magnitude of the terms describing

those phenomena. In order to emphasize the order of magnitude of different terms it is

useful to consider the dimensionless form of the equations. Let ℓ∗, v∗, ρ∗ and T ∗ be the

characteristic values for the length, velocity, density and temperature, respectively. Since

the temperature is variable we need to introduce characteristic values also for thermal

conductivity (λ∗), viscosity (µ∗) and surface tension (σ∗). All these reference values are in-

dicated using a star as superscript. With these values one can deduce further characteristic

parameters:

• characteristic time scale (t∗): t∗ = ℓ∗/v∗;

• characteristic pressure (p∗): for the liquid phase pressure ρ∗(v∗)2 is a reasonable choice

for problems where the dynamic effects are more important then buoyancy effects.
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At the interface the pressure in the gas phase (inside of the bubble) is related to the

liquid pressure via the jump condition (2.5d). Assuming that no phase change occurs

p2i − p1i = σκ+ (τ 2i − τ 1i) : ~n~n

and, therefore, the order of magnitude of the pressure in the gas phase near the

interface p2i is

p2i ∝ ρ∗(v∗)2

(

1 +
1

We
+

1

Re

)

(2.25)

where

Re =
ρ∗v∗ℓ∗

µ∗
is the Reynolds number (2.26)

We =
ρ∗(v∗)2ℓ∗

σ∗
is the Weber number (2.27)

Then, for the mixture pressure in a volume containing both fluids one has

pm ∝ ρ∗(v∗)2

[

1 + (1 − f)

(

1

We
+

1

Re

)]

(2.28)

This relation shows that pm has the same order of magnitude as ρ∗(v∗)2 if We > 1 and

Re > 1. For a more detailed discussion regarding other effects and their influence on

the pressure jump see Sadhal et al. [40] (pg. 19–20).

• characteristic enthalpy (h∗): h∗ = CpT
∗;

Using these characteristic values the dimensionless variables are:

Length x̃i = xi/ℓ
∗, i = 1, 2, 3

Velocity ~̃v = ~v/v∗

Time t̃ = t/t∗ = tv∗/ℓ∗

Enthalpy h̃ = h/h∗

Density ρ̃ = ρ/ρ∗

Heat flux ~̃q = ~qℓ∗/(λ∗T ∗)

Pressure p̃ = p/(ρ∗(v∗)2)

Dynamic viscosity µ̃ = µ/µ∗

Surface tension σ̃ = σ/σ∗
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Viscous stress tensor τ̃ = (ℓ∗/µ∗v∗)τ

Volume Ṽ = V/(ℓ∗)3

Interface surface S̃i = Si/(ℓ
∗)2

Interface curvature κ̃ = κ/ℓ∗

The equations for the dimensionless variables are:

∂ρ̃m

∂t̃
+ ∇̃ · ρ̃m~̃vm = 0 (2.29)

∂ρ̃m~̃vm

∂t̃
+ ∇̃ · 〈ρ̃~̃v~̃v〉 = −

p∗

ρ∗(v∗)2
∇̃p̃m +

µ∗

ρ∗v∗ℓ∗
∇̃ · τ̃m +

ℓ∗

(v∗)2
ρ̃m~g

+
σ∗

ρ∗(v∗)2ℓ∗
1

Ṽ

∫

S̃i

(

σ̃κ̃~n + ∇̃iσ̃
)

dS (2.30)

∂ρ̃mh̃m

∂t̃
+ ∇̃ · 〈ρ̃h̃~̃v〉 = −

λ∗T ∗

ρ∗h∗v∗ℓ∗
∇̃ · ~̃qm +

ℓ∗r∗

h∗v∗
ρ̃mr̃ +

p∗

ρ∗h∗

(

∂p̃m

∂t̃
+ 〈~̃v · ∇̃p̃〉

)

+
µ∗v∗

ρ∗h∗ℓ∗
〈τ̃ : ∇̃~̃v〉 −

µ∗v∗

ρ∗h∗ℓ∗
1

Ṽ

∫

S̃i

2
∑

ϕ=1

~̃vϕi · τ̃ϕi · ~nϕ dS

+
σ∗

ρ∗h∗ℓ∗
1

Ṽ

∫

S̃i

(σ̃κ̃~n + ∇̃iσ̃) · ~̃vi dS +
(v∗)2

h∗
1

Ṽ

∫

S̃i

2
∑

ϕ=1

1

2
˜̇mϕ|~̃vϕi|

2 dS (2.31)

where, the general body force ~b was replaced by the gravity ~g. For simplicity, we drop the

tilde notation for the dimensionless variables and introduce the dimensionless numbers:

Fr =
ℓ∗g

(v∗)2
is the Froude number (2.32)

Pr =
Cpµ

∗

λ∗
is the Prandtl number (2.33)

Pe = PrRe =
ρ∗Cpv

∗ℓ∗

λ∗
is the Peclet number (2.34)
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then the dimensionless equations are:

∂ρ

∂t
+ ∇ · ρ~vm = 0 (2.35a)

∂ρm~vm

∂t
+ ∇ · 〈ρ~v~v〉 = −∇pm +

1

Re
∇ · τm +

1

Fr
ρm

~g

g
+

1

We

1

V

∫

S̃i

(σκ~n + ∇iσ) dS (2.35b)

∂ρmhm

∂t
+ ∇ · 〈ρh~v〉 = −

1

Pe
∇ · ~qm +

ℓ∗r∗

h∗v∗
ρmr

+
(v∗)2

h∗







(

∂pm

∂t
+ 〈~v · ∇p〉

)

+
1

V

∫

S̃i

2
∑

ϕ=1

1

2
ṁϕ|~vϕi|

2 dS







+
(v∗)2

h∗
1

Re






〈τ : ∇~v〉 −

1

Ṽ

∫

S̃i

2
∑

ϕ=1

~vϕi · τϕi · ~nϕ dS







+
(v∗)2

h∗
1

We

1

V

∫

S̃i

(σκ~n + ∇iσ) ·~vi dS (2.35c)

2.4.1 Dimensionless equations for incompressible flows

In the enthalpy equation ṁk has been considered to be of the same order as ρ∗v∗. With this

assumption the term giving the influence of the kinetic energy transfer at the interface has

the same order of magnitude as the work term. For incompressible and weakly compressible

flows, (v∗)2/h∗ is small and the terms having this order can be neglected. Thus, the

dimensionless equations for an incompressible two-phase flow are:

∇ ·~vm = 0 (2.36a)

∂ρm~vm

∂t
+∇·〈ρ~v~v〉 = −∇Pm +

1

Re
∇·τm − (1−f)

Eo

We

~g

g
+

1

We

1

V

∫

S̃i

(σκ~n + ∇iσ) dS (2.36b)

∂ρmhm

∂t
+ ∇ · 〈ρh~v〉 = −

1

Pe
∇ · ~qm +

ℓ∗r∗

h∗v∗
ρmr (2.36c)
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while the volume fraction advection equation is:

∂f

∂t
+ ∇ · (f~vm) = 0 (2.36d)

In (2.36b) we take advantage of the incompressibility of the fluids and introduce the re-

duced pressure field P defined as the pressure field from which we subtract the hydrostatic

pressure of the continuous phase:

Pm = pm −
1

Fr

ρ1

ρ∗
~g

g
·~x (2.37)

Thus, in the momentum equation (2.36b) the buoyancy term (1 − f)Eo
We

~g
g appears. The

Eötvös number

Eo = (ρ1 − ρ2)
g(ℓ∗)2

σ∗
(2.38)

is the square of the ratio between characteristic length and Laplace constant (neutral

interfacial wavelength predicted by the Taylor stability analysis).

2.4.2 Dimensionless jump conditions

For incompressible two-phase flow without phase change the interface jump conditions for

momentum are:

(p1i − p2i) −
1

Re
(τ 1i − τ 2i) : ~n~n = −

1

We
σκ (2.39)

1

Re
(τ 1i − τ 2i) : ~n~t =

1

We
∇iσ ·~t (2.40)

while, for the energy the jump condition (2.5f) reduces to

(~q1i − ~q2i) · ~n = 0 (2.41)

which states that when no phase change occurs at the interface the normal component of

the heat flux is continuous.





3. NUMERICAL METHOD

In the previous chapter the volume-averaged equations for the mass, momentum and en-

thalpy were introduced. For incompressible adiabatic flows, Sabisch [38] and Sabisch et

al. [39] developed a new numerical method, which combines the Volume-of-Fluid interface

tracking technique with the solution of the dimensionless equations (2.36a) and (2.36b)

using a projection method. A third order Runge-Kutta scheme approximate the time

evolution while a finite volume formulation on a staggered grid is used for the spatial

discretization of the momentum equation. For the interface reconstruction, a new piece-

wise linear algorithm (EPIRA) was developed. This method is used to simulate single gas

bubbles [39] or swarm of bubbles [38] rising in a plane channel due to the buoyancy effects.

To simulate problems where the heat/mass transfer are important, one has also to

solve the energy equation (2.36c). In this chapter, an extension of the original method

from Sabisch [38] is introduced for the case of non-adiabatic flows without phase change

at the interface. Under the assumption of constant fluids properties (see Chapter 4) the

momentum equation is independent of the energy equation and can be solved before com-

puting the enthalpy (temperature) field. Therefore, further on, the velocity field is assumed

to be known for all time steps.

This chapter is structured as follows: first, the numerical treatment of the enthalpy

equation (2.36c) will be discussed. Verification of the method for single phase forced

convection in a rectangular channel will be presented. The method will also be tested for

single phase natural convection of liquid metals and of air in a rectangular, respectively

square, box.

3.1 Numerical procedure

The idea is to apply the volume averaged equation (2.36c) for each volume cell of the

computational domain. Let us consider that our computational domain is discretized in

IM× JM× KM cells, each one having the dimensions ∆x, ∆y and ∆zk. The grid is supposed
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to be equidistant in x and y-directions and, only the cell dimension in z may vary. For a

computational cell (i, j, k) the enthalpy equation is:

∂ρi,j,khi,j,k

∂t
+ [∇ · 〈ρh~v〉]i,j,k = −

1

Pe
[∇ · 〈~q〉]i,j,k (3.1)

This equation expresses the time evolution of the volume-averaged value of the enthalpy

hi,j,k corresponding to the cell (i, j, k), taking in account the heat fluxes across the cell

boundaries. The numerical approximation of the convective and conductive terms will be

introduced in section 3.1.1 and 3.1.2, respectively. The time integration and time-step

criteria will be discussed in section 3.1.3.

3.1.1 Convective term approximation

The convective term in (3.1) can be written as the sum of enthalpy fluxes over the control

volume boundary (cell faces):

[∇ · 〈ρh~v〉]i,j,k =
∑

ℓ

Sℓ

Vi,j,k

1

Sℓ

∫

Sℓ

ρh~v · ~nℓ dS , (3.2)

where Sℓ are the faces of a centered cell Vi,j,k and ~nℓ is its normal vector pointing outside

the domain. These fluxes have to be constructed using the volume-averaged values of the

enthalpy hi,j,k corresponding to the mesh cell (i, j, k) and the discrete velocity obtained

from the numerical integration of the momentum equation.

Let us consider the face Si,j,k+ 1

2

and evaluate the enthalpy convective flux through this

face. Using the fact that the fluids are incompressible and supposing that the heat capacity

Cp of each fluid is constant one has

1

Si,j,k+ 1

2

∫

S
i,j,k+1

2

ρhw dS = fS
i,j,k+ 1

2

ρ1Cp,1

∫

S1

i,j,k+1
2

Tw dS + (1 − fS
i,j,k+ 1

2

)ρ2Cp,2

∫

S2

i,j,k+1
2

Tw dS

(3.3)

where, w is the velocity component in z-direction, and fS
i,j,k+ 1

2

is the fraction of the face

Si,j,k+ 1

2

occupied by the fluid 1

fS
i,j,k+ 1

2

=
S1

i,j,k+ 1

2

Si,j,k+ 1

2

(3.4)
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This part is designated by S1
i,j,k+ 1

2

while the part of the face inside the other fluid is S2
i,j,k+ 1

2

.

On the face Si,j,k+ 1

2

, the fluids are assumed in thermal equilibrium [25], that is

1

S1
i,j,k+ 1

2

∫

S1

i,j,k+1
2

T dS =
1

S2
i,j,k+ 1

2

∫

S2

i,j,k+1
2

T dS = Ti,j,k+ 1

2

(3.5)

Thus, the temperature for each phase is T = Ti,j,k+ 1

2

+ T ′ where T ′ is the local deviation

from the mean value Ti,j,k+ 1

2

. For the velocities let

1

S1
i,j,k+ 1

2

∫

S1

i,j,k+1
2

w dS = w1
i,j,k+ 1

2

(3.6a)

1

S2
i,j,k+ 1

2

∫

S2

i,j,k+1
2

w dS = w2
i,j,k+ 1

2

(3.6b)

be the surface averaged values corresponding to each phase. Similar to the temperature

field, the velocity can be expressed as

w1 = w1
i,j,k+ 1

2

+ w′
1 (3.7a)

w2 = w2
i,j,k+ 1

2

+ w′
2 (3.7b)

Introducing in (3.3) one gets:

1

Si,j,k+ 1

2

∫

S
i,j,k+1

2

ρhw dS =
[

fS
i,j,k+ 1

2

ρ1Cp,1w
1
i,j,k+ 1

2

+ (1 − fS
i,j,k+ 1

2

)ρ2Cp,2w
2
1,j,k+ 1

2

]

Ti,j,k+ 1

2

+ fS
i,j,k+ 1

2

ρ1Cp,1

∫

S1

i,j,k+1
2

T ′
1w

′
1 dS + (1 − fS

i,j,k+ 1

2

)ρ2Cp,2

∫

S2

i,j,k+1
2

T ′
2w

′
2 dS (3.8a)

The second term in r.h.s. expresses the contribution of the local spatial fluctuations of the

temperature and velocity to the convective heat flux. This term depends on the size of the

grid used in the computations and becomes vanishing small with decreasing mesh size. In

the literature [42] they are called Sub-Grid Scale (SGS) terms; they express phenomena

having characteristic length smaller than the grid size and for coarse grids they have to be
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computed using appropriate models. In this study we are concerned with Direct Numerical

Simulation of a two-phase flow and we implicitly suppose that the grid is fine enough so

that SGS terms are smaller than the error of the numerical scheme and will be ignored.

The first term in r.h.s. represents the resolved part of the enthalpy convective flux, and it

is expressed in terms of surface averages of temperature and velocities. If wS
i,j,k+ 1

2

denotes

the face mixture velocity, then

1

Si,j,k+ 1

2

∫

S
i,j,k+1

2

ρhw dS ≃
[

fS
i,j,k+ 1

2

ρ1Cp,1 + (1 − fS
i,j,k+ 1

2

)ρ2Cp,2

]

wS
i,j,k+ 1

2

Ti,j,k+ 1

2

−
fS

i,j,k+ 1

2

ρ1(1 − fS
i,j,k+ 1

2

)ρ2
[

fS
i,j,k+ 1

2

ρ1 + (1 − fS
i,j,k+ 1

2

)ρ2

](Cp,1 − Cp,2)(w
1
i,j,k+ 1

2

− w2
1,j,k+ 1

2

)Ti,j,k+ 1

2

(3.8b)

Since the equations (2.36a, 2.36b, 2.36c) were derived under the assumption that, inside a

cell, both phases move with the same velocity (homogenous model), the last term in (3.8b)

vanishes. Thus, the enthalpy convective flux through the face Si,j,k+ 1

2

can be approximated

by
1

Si,j,k+ 1

2

∫

S
i,j,k+1

2

ρhw dS ≃ (ρCp)i,j,k+ 1

2

wS
i,j,k+ 1

2

Ti,j,k+ 1

2

(3.8c)

with,

(ρCp)i,j,k+ 1

2

= fS
i,j,k+ 1

2

ρ1Cp,1 + (1 − fS
i,j,k+ 1

2

)ρ2Cp,2 (3.9)

In the formulas above the velocity wi,j,k+ 1

2

can be approximated with a precision up to sec-

ond order by the staggered volume mixture velocity wi,j,k+ 1

2

available from the integration

of the Navier-Stokes equations. For the other quantities (fS
i,j,k+ 1

2

, Ti,j,k+ 1

2

) supplementary

assumptions have to be made.

The cell face temperature Ti,j,k+ 1

2

can be evaluated using a piecewise linear reconstruc-

tion between the values in the cells (i, j, k) and (i, j, k + 1). Thus

Ti,j,k+ 1

2

≃
Ti,j,k∆zk+1 + Ti,j,k+1∆zk

∆zk + ∆zk+1

+ O(δ2) (3.10)

where, δ = 1

2
(∆zk + ∆zk+1) is the distance between cells centers, and

Ti,j,k =
ρi,j,khi,j,k

fi,j,kρ1Cp,1 + (1 − f)ρ2Cp,2

(3.11)
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is the mixture temperature in the cell (i, j, k). This approximation is second order accu-

rate when the grid is equidistant. The same approximation is used for variable grid size

because, while only first order accurate, it is consistent with treatment of the continuity

equation. Because it is usually associated with the centered difference schemes for convec-

tive terms further on it will be referred as the centered difference approximation (CD) of

the temperature.

An other possibility is to use either Ti,j,k or Ti,j,k+1 depending on the sign of the velocity

wi,j,k+ 1

2

:

wi,j,k+ 1

2

Ti,j,k+ 1

2

≃
wi,j,k+ 1

2

+ |wi,j,k+ 1

2

|

2
Ti,j,k +

wi,j,k+ 1

2

− |wi,j,k+ 1

2

|

2
Ti,j,k+1 + O(δ) (3.12)

This approximation, also called upwind (UW) scheme, is only first order accurate. However,

for problems with discontinuities it does not introduce new maxima or minima that were

not already present in the solution avoiding the Gibbs phenomena associated with centered

difference-type schemes.

For the face surface fraction fS
i,j,k+ 1

2

one might try to compute these fractions using the

interface reconstruction procedure in the staggered cells. This implies three new recon-

struction steps, one for each space direction, which will increase the computational costs.

An alternative way is to use the volume fractions fi,j,k+ 1

2

instead, the same as it is done for

the convective terms in the momentum equation. This solution, while simple and not ex-

pensive from computational point of view, generates numerical oscillations at the interface

between the fluids (see Appendix B). The amplitude of this oscillations increases in time

making the numerical scheme instable. Using smaller time steps reduces the amplification

rate but it does not remove the instability1. This happens when either CD or UW scheme

is used and no significant difference in the oscillations magnitude or growth rate have been

observed. This phenomena is present also for the velocity but, in that case, no increase of

the oscillations has been observed. This might be due to a balancing effect of the projection

step which has the tendency to compensate the velocity fluctuations by a corresponding

fluctuation of the pressure gradient.

To avoid such problems while keeping the computational costs at a reasonable level

1 The oscillations are present and grow unbounded when a time step as small as 10−5 is used. For
TURBIT-VoF code this value is considered to be the lowest value for which the results of the numerical
simulation are not influenced by the numerical noise.
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one can use the available interface reconstruction and compute, for each face of the cell,

the corresponding surface fractions. For each face two surface fractions will be computed:

f+
i,j,k+ 1

2

corresponding to the cell (i, j, k) and f−

i,j,k+ 1

2

for (i, j, k + 1) when the face Si,j,k+ 1

2

is considered. From this two values one is selected depending on the sign of the velocity

at that face:

fS
i,j,k+ 1

2

=







f+
i,j,k+ 1

2

if wi,j,k+ 1

2

≥ 0

f−

i,j,k+ 1

2

if wi,j,k+ 1

2

< 0
(3.13)

We call this an upwind procedure for the surface fractions. Using this approximation im-

proves the results in the sense that the oscillation of the temperature field at the interface

between the fluids are bounded when the CD scheme is used. A damping of this oscil-

lation and a smoother solution can be obtained if the temperature at the cell faces are

approximated using the UW scheme due to the numerical diffusion associated with the

scheme.

Replacing (3.10) in (3.2) the CD numerical enthalpy convective term is approximated

by

[∇ · 〈ρh~v〉]i,j,k ≃
1

∆zk

[

(ρCp)i,j,k+ 1

2

wi,j,k+ 1

2

Ti,j,k∆zk+1 + Ti,j,k+1∆zk

∆zk + ∆zk+1

−(ρCp)i,j,k− 1

2

wi,j,k− 1

2

Ti,j,k∆zk−1 + Ti,j,k−1∆zk

∆zk + ∆zk−1

]

+ TCDx + TCDy (3.14)

where, TCDx and TCDy are the numerical approximations of the convective fluxes in x

and y, respectively. The formula for UW approximation of the convective term is

[∇ · 〈ρh~v〉]i,j,k ≃
1

∆zk

[

(ρCp)i,j,k+ 1

2

(

wi,j,k+ 1

2

+ |wi,j,k+ 1

2

|

2
Ti,j,k +

wi,j,k+ 1

2

− |wi,j,k+ 1

2

|

2
Ti,j,k+1

)

−(ρCp)i,j,k− 1

2

(

wi,j,k− 1

2

− |wi,j,k− 1

2

|

2
Ti,j,k +

wi,j,k− 1

2

+ |wi,j,k− 1

2

|

2
Ti,j,k−1

)]

+ TUWx + TUWy (3.15)

where, TUWx and TUWy are the corresponding terms in x− and, respectively y−direction.

In TURBIT-VoF both methods are implemented. While the first one (CD) has the
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advantage that is a second order scheme and gives better results in the bulk region of

each fluid, the second one (UW) avoids the oscillations of the temperature at the interface

between the fluids.

3.1.2 Conductive term approximation

For the conductive term in (3.1) we use the same approximation strategy. First, we write

this term as the sum of the heat fluxes through the cell faces:

−
1

Pe
[∇ · 〈~q〉]i,j,k = −

1

Pe

∑

ℓ

Sℓ

Vi,j,k

1

Sℓ

∫

Sℓ

~q · ~n dS

where, Sℓ are the faces of the control volume. Using the Fourier law for heat flux one has:

−
1

Pe
[∇ · 〈~q〉]i,j,k =

1

Pe

∑

ℓ

Sℓ

Vi,j,k

1

Sℓ

∫

Sℓ

λ
∂T

∂n

∣

∣

∣

∣

ℓ

dS (3.16)

For the face Si,j,k+ 1

2

the corresponding term from the sum can be written as:

1

Si,j,k+ 1

2

∫

S
i,j,k+ 1

2

λ
∂T

∂z
dS = fS

i,j,k+ 1

2

λ1

∫

S1

i,j,k+ 1

2

∂T

∂z
dS + (1 − fS

i,j,k+ 1

2

)λ2

∫

S2

i,j,k+ 1

2

∂T

∂z
dS (3.17)

Computing the mixture (equivalent) thermal conductivity as

λS
i,j,k+ 1

2

= fS
i,j,k+ 1

2

λ1 + (1 − fS
i,j,k+ 1

2

)λ2

and approximating the temperature derivative using the values at the center of the two

neighboring cells seems to be the straightforward procedure to compute the heat flux over

the face Si,j,k+ 1

2

. This simple approach leads to rather incorrect implications in some cases

and can not handle the abrupt changes of conductivity at the interface as it was proved by

Patankar [35]. The main point in developing the alternative to this approximation is that

not the local value of conductivity at the face concerns us primarily but rather to obtain

a good representation of the heat flux across the volume.

Let us consider that two neighboring cells one having the center in P and the other one

in N are filled with two different fluids with thermal conductivities λP , λN (see Fig. 3.1).
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S
i,j,k+1/2

/2

NP

∆ ∆ zz
k k+1/2

Fig. 3.1: Distances associated with the face Si,j,k+ 1

2

The interface separating the two fluids is supposed to be rigid and without any thermal

resistance. A steady one-dimensional analysis (without sources) leads to:

qi,j,k+ 1

2

=
TP − TN

∆zk

2λP

+
∆zk+1

2λN

(3.18)

Introducing the effective heat conductivity for the face Si,j,k+ 1

2

as

λi,j,k+ 1

2

=
∆zk + ∆zk+1

∆zk

λP

+
∆zk+1

λN

(3.19)

the heat flux through this surface can be written in a form similar to the single phase case

as:

qi,j,k+ 1

2

= λi,j,k+ 1

2

TP − TN

zN − zP

(3.20)

In our simple example the grid fits the interface, i.e. all the cells are single phase cells.

This is usually the case when a moving mesh method is used. For the VOF methods, near

the interface the computational cell usually contain both fluids. However, the enthalpy

(temperature) in each cell is defined as the mixture enthalpy (temperature) therefore we

can treat each cell as it is filled with a single fluid with the same properties as the mixture.

The heat flux at the face between two cells is then computed using (3.20).
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To summarize, the procedure to compute the heat flux at a face between two cells P

and N is:

• First, the mixture heat conductivities corresponding to each cell are computed:

λP = fPλ1 + (1 − fP )λ2 (3.21)

λN = fNλ1 + (1 − fN)λ2 (3.22)

• Then, the temperature corresponding to each cell is obtained from the mixture en-

thalpy;

• Finally, the heat flux is computed using (3.20).

3.1.3 Time integration and time-step criteria

To approximate numerically the time derivative in (3.1) we use a third order Runge-Kutta

scheme, the same that it is used for the integration of the momentum equation (see [38]).

Thus, if hn
i,j,k is the value of the enthalpy of the cell (i, j, k) at time-step n, the value at

next time-step n+ 1 corresponding to the same cell is computed as follows:

ρn+1
i,j,kh

(1)
i,j,k = (ρh)n

i,j,k + ∆tL(ρn,~vn, hn)

ρn+1
i,j,kh

(2)
i,j,k =

3

4
(ρh)n

i,j,k +
1

4
ρ

(n+1)
i,j,k h

(1)
i,j,k +

1

4
∆tL(ρn+1,~vn+1, h(1))

ρn+1
i,j,kh

n+1
i,j,k =

1

3
(ρh)n

i,j,k +
2

3
ρ

(n+1)
i,j,k h

(2)
i,j,k +

2

3
∆tL(ρn+1,~vn+1, h(2)) (3.23)

where h
(1)
i,j,k and h

(2)
i,j,k are intermediate values of the enthalpy, ∆t is the integration time-step

∆t = tn+1 − tn

and L is the numerical approximation of the convective and conductive heat fluxes:

L = − [∇ · 〈ρh~v〉]i,j,k −
1

Pe
[∇ · 〈~q〉]i,j,k

which has been described in previous two sections. This method belongs to the class of

TVD (total variation diminishing) high order Runge-Kutta methods developed in [46] and

further in [12].
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To find the restriction for the time step ∆t let us assume that a first order Euler forward

time stepping is used:

φn+1 = φn + ∆tL(φn) (3.24)

where, φ = ρh. This time discretization is stable in a certain norm if

‖ φn+1 ‖≤‖ φn ‖ (3.25)

under a suitable restriction on the time step:

∆t ≤ ∆t0 (3.26)

In the case of higher order Runge-Kutta methods, in order to satisfy the same stability

condition (3.25), the time step has to satisfy the following restriction:

∆t ≤ c∆t0 (3.27)

where c is termed the CFL coefficient for the high order time discretization and depends

on the coefficients in the Runge-Kutta scheme. For (3.23) it has been demonstrated [46]

that

c = 1

This means that TVD high order time discretization defined above maintains the stability,

in whatever norm, of the Euler forward first order time stepping. For a multi-dimensional

scalar equation like the energy equation (3.1) the maximum norm stability should be

used [12, 45].

If the convective term is approximated using CD scheme (3.14) the equation (3.24) can

be written as

φn+1
i,j,k − φn

i,j,k = ∆t(Ai+1,j,kφ
n
i+1,j,k + An

i,j+1,kφ
n
i,j+1,k + Ai,j,k+1φ

n
i,j,k+1)

− ∆tAi,j,kφ
n
i,j,k

+ ∆t(Ai−1,j,kφ
n
i−1,j,k + An

i,j−1,kφ
n
i,j−1,k + Ai,j,k+1φ

n
i,j,k−1) (3.28)



3.1 Numerical procedure 33

where,

Ai,j,k+1 = −
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2∆z

(ρCp)
n
i,j,k− 1

2
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2

+
1

Pe
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2

(ρCp)n
i,j,k−1

The coefficients for φn
i,j±1,k and φn

i,j,k±1 have similar expressions and can be obtained mod-

ifying the indices accordingly. For simplicity, in the formula above we have assumed that

the grid is uniform in each directions. To find ∆t0 one can use a Von Neumann analysis

for (3.24) and enforce the stability condition (3.25). However, this procedure is rather

complicated and requires to compute the eigenvalues of an amplification matrix that is

constructed using the coefficients above. From a practical point of view we need a simple

relation to define the maximum time step. For this we use the positive coefficients rule

introduced by Patankar [35] which states that in (3.28) all the coefficients of the terms cor-

responding to the same time step should have the same sign. Assuming that the velocities

are all positive one has

1 − ∆tAi,j,k ≥ 0 (3.29)

1

Pe

1

∆z2

λn
i,j,k+ 1

2

(ρCp)n
i,j,k+1

≥
1

2∆z

(ρCp)
n
i,j,k+ 1

2

(ρCp)n
i,j,k+1

wn
i,j,k+ 1

2

(3.30)

and two other inequalities similar to (3.30) corresponding to x− and y−directions. The

second inequality (3.30) expresses a restriction on the numerical scheme itself, that is, it

defines the maximum Peclet number that can be simulated when the convective flux is

approximated using the CD scheme (3.14) and the heat conduction is computed using
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(3.20):

Pe ≤ 2
λn

i,j,k+ 1

2

(ρCp)n
i,j,k+ 1

2

wn
i,j,k+ 1

2

∆z
(3.31)

Assuming that fluids properties are constant we retrieve the restriction found by Patankar [35]

for a convection-diffusion single-phase flow.

The first condition (3.29) expresses a CFL-like condition and defines the time step limit

as:

∆t ≤ min
i,j,k

1

| Ai,j,k |
(3.32)

As for the previous condition, if one assumes constant fluid properties and using the dis-

crete continuity equation for incompressible flows, the time step restriction for a diffusion

equation is retrieved:

∆t ≤ Pe
ρCp∆

2

6λ

where, the grid is supposed to have uniform mesh size (∆) in all three spatial directions.

When the convective heat fluxes are approximated using the UW scheme the same

procedure to determine the time step restriction applies and a condition similar to (3.32) is

obtained. The factor Ai,j,k, when UW is used, has the following contribution corresponding

to z−direction:

1

2∆z

(ρCp)
n
i,j,k+ 1

2

(wn
i,j,k+ 1

2

+ |wn
i,j,k+ 1

2

|) − (ρCp)
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2
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|)
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2

+ λn
i,j,k− 1

2

(ρCp)n
i,j,k

The main difference between the two cases is that, for UW scheme, there is no restriction

for the Pe number. This is a consequence of the fact that, when the velocity is positive the

term

Ai,j,k+ 1

2

= −
1

2∆z

(ρCp)
n
i,j,k+ 1

2

(wn
i,j,k+ 1

2

− |wn
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2

|)

(ρCp)n
i,j,k

+
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Pe

1
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2

(ρCp)n
i,j,k

=
1

Pe

1

∆z2

λn
i,j,k+ 1

2

(ρCp)n
i,j,k

does not depend on the velocity field and is always positive.

For our simulations, since we do not know a priori the local velocities and phase distri-
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bution, we consider the initial time step as

∆t0 = CDTKOR · min

(

Pe
(ρCp)1∆

2

6λ1

, Pe
(ρCp)2∆

2

6λ2

)

(3.33)

where, CDTKOR is a safety factor. In our simulations CDTKOR = 0.8.

3.2 Verification for single-phase flow

To verify the validity of the numerical approximations introduced in section (3.1.1) and

(3.1.2) simulations are performed for a fully developed flow with heat transfer in a rect-

angular channel and for natural convection in a rectangular 2D box with heated vertical

walls. In this section all the simulations were done for single phase flows considering fluids

with different properties. The two-phase results will be presented in the next chapter.

3.2.1 Flow in a channel with rectangular cross-section

To verify the numerical approximation of the convective terms we simulate the flow of a fluid

along a horizontal straight channel with rectangular cross-section. The fluid properties are

assumed to be constant along the channel and do not vary with the temperature. Also, the

hight of the channel is assumed to be small and, therefore, the gravitational effects can be

neglected. In Fig. 3.2 the channel geometry and the orientation of the coordinates system

X

Flow
Y

Z

Fig. 3.2: Channel geometry and coordinate system. The channel has walls in x- and z-direction,
while the fluid flows in positive y-direction.
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is presented. The channel has walls in x- and z-direction and let Lx and, respectively Lz,

be the distance between the walls. The fluid flows in y-direction. The length of the channel

is L. This length is related to the characteristic length of the flow in stream-wise direction.

Hydrodynamic considerations

For a single phase flow in a channel with constant cross-section the flow is said to be fully

developed if the velocity cross-section profile does not change in stream-wise direction:

∂~v

∂y
= 0. (3.34)

A direct consequence of (3.34) is that the cross-section averaged pressure has a linear

variation in stream-wise direction:

d

dy

Lx
∫

0

Lz
∫

0

p dxdz =

Lz
∫

0

(

µ
∂v

∂x

∣

∣

∣

∣

Lx,z

− µ
∂v

∂x

∣

∣

∣

∣

0,z

)

dz +

Lx
∫

0

(

µ
∂v

∂z

∣

∣

∣

∣

x,Lz

− µ
∂v

∂z

∣

∣

∣

∣

x,0

)

dx = β

(3.35)

where, β is the pressure drop, and is a constant of the flow. Let us define the reduced

pressure field as:

P (x, z) = p(x, y, z) − βy (3.36)

which is uniform in stream-wise direction.

For fully developed laminar flows u = w = 0 and the reduced pressure is constant

in every cross-section (P = 0). The velocity profile can be determined exactly using an

analogy with the stress function of the theory of elasticity [32]:

v(x, z) =
4

π3
(−β) Re

1

α2

∞
∑

n=1,3,...

(−1)(n−1)/2

n3

(

1 −
cosh(nπ(z − 0.5)α)

cosh(nπ
2
α)

)

cos(nπ(x− 0.5)α)

(3.37)

where α = Lz/Lx is the channel aspect ratio. The relation (3.37) is written in dimensionless

form, with mean velocity (vm) as reference velocity

vm =
1

ρLxLz

Lx
∫

0

Lz
∫

0

ρv dxdz (3.38)
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Fig. 3.3: Velocity profiles for square channel for three cross-section positions: z = 0.0125 (circle),
0.2375 (triangle-up), 0.4875 (triangle-down); the computed values are shown as symbols
while the continuous lines are the exact solution.

while the distance between the walls in z-direction is chosen as reference length (Lz = 1).

The pressure gradient β is given in terms of mean velocity (vm) by

vm = 1 =
1

12
(−β) Re

1

α2

[

1 −
192

π5

1

α

∞
∑

n=1,3,...

1

n5
tanh

(nπ

2
α
)

]

(3.39)

In Fig. 3.4 and 3.3 we present the comparison between computed velocity profiles and

the exact solution. The computations have been performed for two channel geometries: a

rectangular channel with an aspect ratio α = 0.5 and a square channel (α = 1). The mesh

grid used to discretize the domain has 80 × 40 cells per cross-section for the rectangular

channel and 40× 40 for the square one. In stream-wise direction the channel has the same

length as its width in z-direction in both cases. Near the wall, the computed velocity is

larger than the exact solution with ε ≈ 13% in the cells at the corners of the channel and

is only ε ≈ 2% larger at midpoints of each side. Away from the wall the error is smaller

then 1%. All the simulations were done for Re = 100.
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(b)

Fig. 3.4: Velocity profiles for rectangular channel: (a) x-profiles: x = 0.0125 (circle),
0.4875 (triangle-up), 0.9875 (triangle-down); (b) z-profiles: z = 0.0125 (circle),
0.2375 (triangle-up), 0.4875 (triangle-down) ; the computed values are shown as symbols
while the continuous lines are the exact solution.
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Thermally developed single phase flow

The existence of convection heat transfer between the walls and the fluid dictates that the

fluid temperature is changing in stream-wise direction. This means that one can not use

directly the same approach as for the hydrodynamic case; instead of using the temperature

field one can characterize such kind of flows using the internal heat transfer coefficient2:

h = q/(Tw − Tm) (3.40)

where, q is the local wall heat flux, Tw is the local wall temperature and

Tm =
1

LxLzρvmCp

Lx
∫

0

Lz
∫

0

ρvCpT dxdz (3.41)

is the mixed mean fluid temperature (also referred to as mass-averaged temperature, bulk

fluid temperature, or mixing-cup temperature).

The flow is called thermally developed if the heat transfer coefficient is independent of

the stream-wise coordinate. There are four types of thermal boundary conditions that are

compatible with the existence of a thermally developed regime [47]:

(a) axial uniform wall temperature3, Tw = constant;

(b) axial uniform wall heat flux4, q = constant;

(c) exponential variation of the wall heat flux q = exp(αy);

(d) convective heat transfer from external surface of the duct to a fluid environment with

heat transfer coefficient he and temperature T∞, both of which are uniform.

It has been proved [47] that (a), (b) and (d) boundary conditions are, in fact, special case

of (d) and can be treated in a similar manner. We will consider here only the case of axial

uniform heat flux.

2 It is also called convective conductance.
3 Constant surface temperature occurs in applications such as evaporators, condensers, and, in fact,

any heat exchanger where one fluid has a very much higher capacity rate than the other (capacity rate =
product of mass flow rate and specific heat of fluid).

4 Constant heat rate problems arise in a number of situations: electric resistance heating, radiant
heating, nuclear heating, and in counterflow heat exchangers when the fluid capacity rates are the same.
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The usual way to describe a thermally developed flow is to define a dimensionless

temperature difference:

ϑ(x, y, z) =
T (x, y, z) − Tref (y)

Tm(y) − Tref (y)
(3.42)

which for thermally developed flows is constant in stream-wise direction:

∂ϑ

∂y
= 0 (3.43)

While the definition (3.42) is simple, the difficulty is choosing the reference temperature

Tref . For problems with uniform or perimetrical uniform wall temperature condition the

wall temperature is taken as Tref . When the wall temperature is not constant, a perimet-

rical averaged temperature is used.

However, for axially uniform wall heat flux an alternate method is available. For such

cases the thermally developed regime is characterized by ∂T/∂y = θ = constant [36]. Thus,

the temperature field can be subdivided into two components:

T (x, y, z) = θy + Θ(x, z) (3.44)

where, the reduced temperature field Θ is uniform in stream-wise direction. It can be easily

shown that

θ =
1

Pe

Q

Cpṁ
(3.45)

where, ṁ is the mass flow rate

ṁ =
1

LxLz

Lx
∫

0

Lz
∫

0

ρv dxdz (3.46)

and Q is the rate of heat addition:
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1

LxLz
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)

dx.





(3.47)

Both, the mass flow rate and the rate of heat addition are constants of the flow and, thus,

θ is also constant.

This new formulation has the advantage that the reference temperature can be chosen
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independently of the perimetric variation of the wall temperature. Also, this method can

be easily extended to stream-wise periodic wall heat fluxes or two-phase flows.

Replacing (3.44) in (2.36c) and assuming that the control volume V is vanishing small,

one has:
∂ρCpΘ

∂t
+ ∇ · (ρCpΘ~v) + ρCpθv = −

1

Pe
∇ · ~q +

ℓ∗r∗

h∗v∗
ρr (3.48)

where, v is the stream-wise velocity component. Note that the influence of the wall heating

along the channel on the local reduced temperature profile is given by the supplemental

term ρCpθv which is a source term. Since it does not depend on Θ the same numerical

approximation as for (3.1) applies.

For convective heat transfer in rectangular channels there are no analytical solutions

for the temperature profile. To characterize the heat transfer, in technical applications,

the ratio of the convective conductance h and the molecular thermal conductance λ/Dh

(Dh is the hydraulic diameter), i.e. the Nusselt number (Nu), is used:

Nu =
DhQ

λ

Cp

(hw,m − hm)

(3.49)

where, hm is the fluid bulk enthalpy and hw,m is the peripheral mean fluid enthalpy at the

wall

hw,m =
1

2(Lx + Lz)





Lx
∫

0

(h(x, y, 0) + h(x, y, Lz) dx+

Lz
∫

0

(h(0, y, z) + h(Lx, y, z)) dz





(3.50)

In Table 3.1 we compare the Nu number computed using TURBIT-VoF numerical code and

the values reported in [44]. The computations have been done for air (Pr = 0.71) for

two types of cross-sections: a square (aspect ratio α = Lz/Lx = 1) and a rectangular

cross-section (α = 0.5). In both cases, two grids have been used: a coarse one with the

mesh cell width ∆ = Lz/20 and one with ∆ = Lz/40. An other computation has been

performed using water (Pr = 7) instead of air to verify the code behavior for larger Pr

numbers. This computation has been done only for the square channel and the finer grid.

For all the simulations uniform wall heat flux is considered, both in stream-wise direction
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α = 1 α = 0.5
mesh cell Nu T ∗

w,max T ∗
w,min Nu T ∗

w,max T ∗
w,min

air Pr = 0.71
1/20 3.11 1.3546 0.77 3.0323 1.4716 0.4992
1/40 3.0928 1.376 0.769 3.0224 1.4868 0.4992

water Pr = 7
1/40 3.093 1.3767 0.7695 – – –

Shah and London [44]
– 3.091 1.39 0.769 3.017 1.50 0.499

Tab. 3.1: Comparison for Nu, T ∗
w,max and T ∗

w,min between the values computed with TURBIT-VoF

and those given by Shah and London [44] for two different aspect ratios and mesh
sizes; uniform wall heat flux is considered, both in stream-wise direction and around
the channel

and around the channel5. The error for the computed Nu number is smaller than 0.6 %

for all the cases that have been considered. The largest error corresponds to the case when

the fluid was air and the coarse grid has been used. For the finer grid the error decreases

to 0.06 %. The wall temperature distribution around the duct periphery is not uniform

and a normalized maximum and minimum wall temperatures are define as follows [44]:

T ∗
w,max =

Tw,max − Tc

Tw,m − Tc

(3.51a)

T ∗
w,min =

Tw,min − Tc

Tw,m − Tc

(3.51b)

where Tc is the fluid temperature at the duct centerline. The maximum temperature

occurs at the corners and the minimum temperature occurs on the midpoint of the long

side. They give useful information for the proper design of the hot and cold regions of

the duct. The computed values for this normalized temperatures are also given in Table

3.1. When compared with the values reported in the literature the error of the computed

T ∗
w,min is smaller than 0.1%, while for T ∗

w,max the largest error is 2.5%.

3.2.2 Natural convection

In the previous section we considered a case for which the convective effects dominate the

fluid flow and the flow was stationary. To verify the numerical scheme for a situation when

5 In [44] they are identified as H2 boundary conditions.
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the heat conduction is more important and the flow is time-dependent we simulate the

natural convection in a 2D box with heated vertical walls. The fluid density is assumed to

be constant in the unsteady and convective terms, and is treated as temperature-dependent

only in the buoyancy term. This is called the Boussinesq approximation. One usually

assumes that the density varies linearly with temperature:

(ρ− ρ0)g = −ρ0gβ(T − T 0) (3.52)

where, β is the coefficient of volumetric expansion and ρ0 is the density value at the

reference temperature T 0. This approximation introduces errors of order of 1% if the

temperature differences are below e.g. 2◦ for water and 15◦ for air [8, 13].

Since the density in the gravitational term is no longer constant one has to redefine the

reduced pressure (2.37) by replacing ρ1 with its value at the reference temperature:

Pm = pm −
1

Fr

ρ0
1

ρ∗
~g

g
·~x (3.53)

The buoyancy term in (2.36b) becomes then

− (1− f)
Eo

We

~g

g
=

1

ρ∗(v∗)2

[

f(ρ1 − ρ0
1)g + (1 − f)(ρ2 − ρ0

2)g
] ~g

g
− (1− f)

(ρ0
1 − ρ0

2)g

ρ∗(v∗)2

~g

g
(3.54)

Using the Boussinesq approximation for each phase the formula above becomes:

− (1 − f)
Eo

We

~g

g
= −

Gr

Re
2

[

f
ρ0

1

ρ∗
β1

β∗
+ (1 − f)

ρ0
2

ρ∗
β2

β∗

]

T − T 0

∆T ∗

~g

g
− (1 − f)

Eo
0

We

~g

g
(3.55)

where

Gr =
Ra

Pr
is the Grashof number (3.56)

Ra = gβ∗∆T ∗(ℓ∗)3
(ρ∗)2C∗

p

µ∗λ∗
is the Rayleigh number (3.57)

and ∆T ∗ is the characteristic temperature difference. For natural convection this is the

difference between the temperature of the warm wall and the temperature of the cold wall.
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Dimensionless temperature and temperature computation

The mixture enthalpy in an interface cell is:

hm =
1

ρm

[fρ1Cp,1T1 + (1 − f)ρ2Cp,2T2] (3.58)

Assuming that in the cell the phases are in thermal equilibrium T1 = T2 = Tm, the mixture

temperature in the corresponding cell is:

T = Tm =
ρmhm

[fρ1Cp,1 + (1 − f)ρ2Cp,2]
(3.59)

If one takes C∗
p = Cp,1 and ρ∗ = ρ1, then

T − T 0

∆T ∗
=

ρ

(

hm

C∗
pT

0
− 1

)

[

f + (1 − f)
ρ2

ρ1

Cp,2

Cp,1

]

T 0

∆T ∗
+

(1 − f)
ρ2

ρ1

(

1 −
Cp,2

Cp,1

)

[

f + (1 − f)
ρ2

ρ1

Cp,2

Cp,1

]

T 0

∆T ∗

where, ρ = ρm/ρ
∗ is the dimensionless mean density. Further, if one chooses

h =
hm − C∗

pT
0

C∗
p∆T ∗

as dimensionless enthalpy the dimensionless temperature is defined as:

T − T 0

∆T ∗
=

ρh
[

f + (1 − f)
ρ2

ρ1

Cp,2

Cp,1

] +

(1 − f)
ρ2

ρ1

(

1 −
Cp,2

Cp,1

)

[

f + (1 − f)
ρ2

ρ1

Cp,2

Cp,1

]

T 0

∆T ∗
(3.60)

Now, let us see how this can be used to evaluate the buoyancy terms in the momentum

equation when a projection method is used to enforce the divergence-free condition. Since

a staggered grid is used for each velocity component a different control volume is used.

This means that for each velocity component the buoyancy term from (3.55) has to be

evaluated in a different control volume. Let us consider the case of the z-direction velocity
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Fig. 3.5: Geometry of the benchmark problem; at z = 1 and z = H one has adiabatic walls.

component corresponding to the cell (i, j, k). The corresponding buoyancy term is:

−
Gr

Re
2

[

fi,j,k+ 1

2

ρ0
1

ρ∗
β1

β∗
+ (1 − fi,j,k+ 1

2

)
ρ0

2

ρ∗
β2

β∗

]

Ti,j,k+ 1

2

− T 0

∆T ∗

~g

g
+ (1 − fi,j,k+ 1

2

)
Eo

We

~g

g
(3.61)

where, Ti,j,k+ 1

2

is the temperature corresponding to the staggered cell (i, j, k+ 1

2
). Since the

enthalpy is computed for the centered cells one has to approximate the temperature value

for the staggered cells. To do this one can use the temperature values Ti,j,k and Ti,j,k+1

computed using (3.59). If we consider a linear variation of the temperature field between

the two cells, the temperature value corresponding to the staggered cell is:

Ti,j,k+ 1

2

=
Ti,j,k∆zk+1 + Ti,j,k+1∆zk

∆zk+1 + ∆zk

(3.62)

which corresponds to the dimensionless temperature:

Ti,j,k+ 1

2

− T 0

∆T ∗
=

1

2

(

Ti,j,k − T 0

∆T ∗
+
Ti,j,k+1 − T 0

∆T ∗

)

(3.63)

where, (Ti,j,k − Tref )/∆Tref is evaluated using (3.60).

Liquid metal test case

For the verification of the time integration scheme and of the conductive terms we consider,

first, the oscillatory natural convection of a low-Prandtl-number fluid subject to buoyancy

forces in a long horizontal cavity whose vertical walls are maintained at constant (different)

temperatures: T1 and T2. The domain has an aspect ratio H/L = 4 and is assumed to be

infinite in y-direction (Fig. 3.5). The horizontal walls bounding the domain in z-direction

are considered as adiabatic walls.
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Fig. 3.6: Time variation of the maximum value of the horizontal velocity component Umax in the
test section.

Experiments performed by Hart [14] and Hurle et al. [19] establish that the buoyancy-

driven flow, which appears as soon as T1 6= T2, becomes oscillatory beyond a certain critical

value of the Grashof number, which is defined using ∆T ∗ = T2−T1 as reference temperature

difference.

In Fig. 3.6, the time dependence of the maximum value of the horizontal velocity in

the test section for a oscillatory convection at Gr = 40000 is shown. The value of the

Prandtl number is Pr = 0.015. Two different grids have been used: one with 100 × 32

equidistant cells and an other with 160 × 32 cells which are equidistant in x-directions

and non-equidistant in z-direction. Using a non-equidistant grid enables us to solve with

a higher precision the laminar layer near the wall. To emulate a 2D computation, in the

direction perpendicular on the flow plane (y) 4 mesh cells have been considered in both

simulations. In order to reach faster the limit cycle of the instability the computations for

the finer grid are started from an interpolated velocity and temperature fields obtained for

the coarser grid.

In the literature there are no experiments available for this Gr and Pr numbers. To verify

our computations we use the numerical results from Behnia and de Vahl Davis [1] which
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Grid Umax f

equidistant grid 100 × 32 0.9546 21.62
non-equidistant grid 160 × 32 0.9634 21.81

Behnia & de Vahl Davis [1] 321 × 81 1.093 21.76

Tab. 3.2: Oscillatory convection: maximum value of the horizontal velocity in the test section
and oscillations frequency and comparison with reference values

z

θ

T

x

2
T1

g

x

T

g

T1

2

θ

z

Fig. 3.7: Natural convection of air in tilted square cavities

used a 321× 81 computational grid for their simulations. In Table 3.2 the reference values

from [1] for maximum of the horizontal velocity in the test section and oscillations frequency

are compared with the results obtained using our numerical method. For both grids,

equidistant and non-equidistant, the values of Umax are with 13% and 11%, respectively,

lower than the reference value. However, for grid refinement Umax has the correct trend.

In the case of flow oscillation frequencies, the values obtained using our method match

the reference values within an error of 0.6% for the equidistant grid and 0.2% for the

non-equidistant grid.

Natural convection of air in a square enclosure

The second test case considers the natural convection of air (Pr = 0.71) in a 2D square

enclosure. Same as for the previous case, two opposite walls are maintained at constant

temperatures T1 and T2 and the other two walls are adiabatic. Two different situations

are considered: in the first one the heated walls are parallel with the vertical direction

while, in the second case, they make an angle of 45◦ with the vertical (see Fig. 3.7). In

both cases Ra = 1.01 × 105 and the temperature difference is ∆T ∗ = 10 K. The cold wall
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temperature is considered as reference temperature T 0 = T1 = 303 K. The computation

domain is discretized in 32× 4× 32 uniform cells. For a grid refinement study a finer grid

with 64 × 4 × 64 cells is used.

The overall heat transfer across the cavity can be represented by a Nusselt number

defined by

Nu =

−

H
∫

0

(

λ
∂T

∂x

)

w

dz

λ∆T ∗

where the wall heat flux (λ ∂T/∂x)w is computed either at the cold wall (w = 1) or the hot

wall (w = 2). There are several correlations in the literature for the natural convection of air

in tilted cavities. For the case when the heated walls are vertical Zhong, Yang and Lloyd [62]

proposed the following correlation

Nu(90◦) =
Ra

0.322

8 +

(

α2

α1

)0.84 (3.64)

where, α1 and α2 are the thermal diffusivity of the air at the cold and, respectively, the hot

wall. Since we use the Boussinesq approximation this ratio is equal to unity. This formula

is valid for a Rayleigh number in the interval

Ralim = 780

(

1 +
∆T ∗

T 0

)2.7

≤ Ra ≤ 106

where, the lower limit is equal to Ralim = 851.5. For the case when the cavity is tilted with

an angle of θ = 135◦ to the horizontal Zhong, Lloyd and Yang [61] proposed the following

relation for the Nusselt number:

Nu(θ) = Nu(180◦) +
2

π
(π − θ)(Nu(90◦) − Nu(180◦)) sin θ (3.65)

where Nu(180◦) is the Nusselt number for pure convection. This correlation is valid for

104 ≤ Ra ≤ 106 ,
∆T ∗

T 0
≤ 2.0

In Table 3.3 the computed Nusselt numbers are compared with those given by the
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Nu θ = 90◦ θ = 135◦

32 × 4 × 32 4.77 2.079
64 × 4 × 64 4.65 2.097

literature [62, 61] 4.52 2.24

Tab. 3.3: Nusselt number for natural convection of air in tilted cavities

empirical correlations (3.64) and (3.65). In the case of vertical heated walls (θ = 90◦) the

Nusselt number obtained from the numerical simulation is with ε = 5.5% larger than the

one obtained using (3.64). Refining the grid reduces the difference to only ε = 2.9%. When

the cavity is tilted with θ = 135◦ a lower value for the Nusselt number than the one given

by (3.65) is obtained. For the coarse grid (32 × 4 × 32) the difference between these two

values is ε = 7.2% while, in the case of finer grid the difference is reduced to ε = 6.4%.





4. SMALL CHANNELS TWO-PHASE FLOWS

For small channels the length is typically much larger than the hydraulic diameter therefore,

one can identify a region along the channel where there is no influence of the entrance

effects. If the flow itself has an intrinsic periodicity, a characteristic flow cell can be

defined. This flow cell has the same length as the periodicity length of the flow and fully

characterizes the flow in its steady state. Experimentally, this fluid cell is the domain

where the observations are done either following it in its movement along the channel (e.g.

with a mounted camera) or considering a fixed volume with the same dimensions as the

fluid cell. For numerical simulation the second approach is more convenient since it can be

reproduced using periodic boundary conditions.

In real life applications periodic steady flows are often used when the process needs to be

controlled as it is the case in chemical processing. Slug flow in small channels is an example

of a two-phase flow regime with increased heat and mass transfer rates compared to single-

phase. This type of flow, also referred as bubble-train flow [48, 49], consists of trains of long

bubbles separated by liquid slugs. The bubbles occupy most of the channel cross-section

while the liquid slugs are free of smaller bubbles [52]. Breakage and coalescence of bubbles

is largely absent. Due to the dominance of the surface tension effects the walls are always

wetted and a thin liquid layer separates the gas from the channel walls.

In this chapter, a new method to describe a steady periodic two-phase flow is presented.

Throughout the chapter, the steady slug (bubble-train) flow is considered as the prototype

of the periodic two-phase flow in small channels. The liquid will be referred as fluid 1 or

continuous phase, while the gas will represent the fluid 2 or dispersed phase.

Throughout this chapter it is assumed that the temperature variations are not large

enough to determine a change in fluids properties along the channel. The first consequence

of this assumption is that the momentum equation it is not coupled with the energy

equation and can be treated separately. First, the case of an adiabatic flow is considered

and a new concept called periodic fully developed regime is introduced. The convective heat
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(a) (b)

Fig. 4.1: Slug flow in a circular (a) and triangular (b) channel. Reproduced from [52]

transfer problem when a axially periodic heat flux is imposed as wall boundary condition

will be discussed next.

4.1 Periodic fully developed flow

For two-phase flows, a fully developed regime, as defined by (3.34), is possible to be iden-

tified only for annular flows. In small channels, the velocity profiles strongly depend on

the gas distribution along the channel. However, for bubble-train regime, far from the en-

trance region, there is a uniform distribution of the bubbles along the channel, i.e. bubbles

have the same shape and the liquid slugs separating the bubbles have the same length

(see Fig. 4.1). For such situations, one can identify a cell (of length L) which characterizes

the flow (Fig. 4.2). It is said that the flow is periodic fully developed if the density1and

the velocity field are periodic in stream-wise direction:

ρ(x, y, z) = ρ(x, y + L, z) = ρ(x, y + 2L, z) = . . .

~v(x, y, z) = ~v(x, y + L, z) = ~v(x, y + 2L, z) = . . . (4.1)

Since the velocity and the density/viscosity and theirs derivatives are periodic it can be

shown that the pressure gradient is also periodic. If β is the pressure drop along the

1 Since the fluids are incompressible the density periodicity implies the same periodicity for the phases
distribution Xϕ.
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Fig. 4.2: Computational domain and initial condition

channel defined as:

β =
1

LxLz

∑

ϕ=1,2

Lx
∫

0

Lz
∫

0

(pϕ(x, y + L, z) − pϕ(x, y, z))Xϕ(x, y, z) dxdz (4.2)

then, integrating the momentum equation (2.36b) over the volume of the characteristic cell

one has:

β =
1

Re

1

L

L
∫

0







Lx
∫

0

[

µ1
∂v

∂z
(x, η, Lz) − µ1

∂v

∂z
(x, η, 0)

]

dx

+

Lz
∫

0

[

µ1
∂v

∂x
(Lx, η, z) − µ1

∂v

∂x
(0, η, z)

]

dz







dη (4.3)

In the previous formula we use the fact that all four channel walls are wetted and no

contact line appears. This means that the surface tension integral is zero. One can see
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that β is constant and is equal to the wall friction per unit length. The reduced pressure

Pϕ(x, y, z) = pϕ(x, y, z) − βy , ϕ = 1, 2 (4.4)

is then periodic in stream-wise direction, same as the density or the velocity. Also, since the

pressure drop is constant, the reduced pressure field satisfies the interface jump condition

(2.39):

P1i − P2i = −
1

We
σκ+

1

Re
(τ 1i − τ 2i) : ~n~n (4.5)

This means that, instead of simulation the entire flow, it is enough to compute the

flow inside this characteristic domain. For the rest of the channel (except the entrance

region) the density and velocity field can be found using the periodicity property while the

pressure field is computed using (4.4).

When the gravity is considered we have to combine (2.37) and (4.4). The reduced

pressure field is in this case:

Pϕ(x, y, z) = pϕ(x, y, z) −
1

Fr

ρ1

ρ∗
~g

g
·~x − βy , ϕ = 1, 2 (4.6)

The jump condition (4.5) holds also for this case.

4.1.1 Pressure Gradient Correction

In the original version of the computer code TURBIT-VoF it was assumed that when inside

a computational cell we have both fluids (interface cell) they share the same pressure.

This assumption works well as long as the pressure jump at the interface is small. This

is generally the case for large, deformable bubbles in large channels for which TURBIT-VoF

was developed. When the bubble size diminishes, the interface curvature increases which

results in an increase of the pressure jump at the interface. In dimensionless form, this

corresponds to a decrease of the bubble Weber number. In large channels, an air bubble of

1 mm diameter in water can be considered as spherical and, its movement can be described

using simple models. For this kind of bubbles there is no need to perform an interface

tracking and reconstruction. If we consider, now, a similar bubble in a small channel,

the bubble shape is strongly influenced by the presence of the channel walls and has to

be treated as being ”large” and deformable. The pressure jump at the interface is of the

same order of magnitude as for the large channels but in this case the interface dynamics
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has to be solved numerically. Using the original model for the pressure implemented in

TURBIT-VoF can result in a smeared pressure gradient at the interface.

In this section we propose an improved model to account for the pressure jump at

the interface. For easy reference, the numerical algorithm used in TURBIT-VoF will be

summarized, first. Using the notations introduced by Sabisch [38] the equation (2.36b)

can be written as:
∂(ρ~v)

∂t
+ K −D −Q−O = −∇P (4.7)

where, K is the convective term, D is the diffusive term, Q is the body force and O stands

for surface tension force. To compute the velocity field, a projection method is used: first,

an intermediate momentum (velocity) field is computed as:

∂

∂t
(ρ~v)∗ = −K + D + Q (4.8)

where the velocity components are computed on a staggered grid. This velocity field is not

divergence-free, therefore, a Poisson equation for the pressure is solved in order to enforce

the condition of a solenoidal velocity field:

∇ ·

[

1

ρ
∇p

]

= ∇ ·

(

∂~v∗

∂t

)

+ ∇ ·

[

1

ρ
O

]

(4.9)

The pressure equation is approximated numerically as:

∇

[

∆t

ρn+1
∇pn+1

]

= ∇ ·~v∗ + ∇ ·

[

∆t

ρn+1
On+1

]

(4.10)

The superscripts are indicating the time step at which the terms are computed. To ensure

the consistency of the method the pressure is defined on a centered grid.

In all above equations the variables are mean quantities, i.e. they are obtained using

the averaging procedure introduced in Chapter 2. Thus these values are characteristic to

the volume where they are defined and not to a specific point. Using staggered grids may

complicate the problem since different volumes are used to define the velocity components

and the pressure. In the next subsections we will analyze what are the approximations

used in TURBIT-VoF and what are the errors introduced due to these approximations.
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Discrete pressure equation

An important aspect of the numerical method is how the pressure equation is constructed

when a projection method with a staggered grid is used to enforce the divergence–free

condition for the velocity.

Discretizing separately the momentum equation (4.8) and the Poisson equation (4.9)

for the pressure might produce a violation of the consistency of the divergence operator

with the gradient operator (Ferziger & Perić [8]). To avoid this we will derive the equation

for the pressure from the discretized momentum and continuity equations. Using the same

notation as in previous section, the semidiscretized form of the momentum equation (4.7)

in the x -direction is:

∂

∂t
(ρu)i+ 1

2
,j,k + Lx

i+ 1

2
,j,k − Ox

i+ 1

2
,j,k = −

1

Vi+ 1

2







∫

Sx
i+1,j,k

p dS −

∫

Sx
i,j,k

p dS






(4.11)

where,

Lx
i+ 1

2
,j,k = Kx

i+ 1

2
,j,k −Dx

i+ 1

2
,j,k −Qx

i+ 1

2
,j,k (4.12)

and

ρi+ 1

2
,j,k = fi+ 1

2
,j,kρ1 + (1 − fi+ 1

2
,j,k)ρ2 (4.13)

For the construction of the discrete gradient we take in account that the differential equa-

tion (4.7) is written for volume average values of the variables. The surface integrals can

be written as:
∫

Sx
i,j,k

p dS =
[

fx
i,j,kp̄

(1)
i,j,k + (1 − fx

i,j,k)p̄
(2)
i,j,k

]

∆yj∆zk (4.14)

where, p̄
(1)
i,j,k and p̄

(2)
i,j,k are the surface averaged values of the pressure in the fluid 1 and 2,

and fx
i,j,k is the surface fraction of the surface Sx

i,j,k which is inside the fluid 1. Following the

same integration strategy as in TURBIT-VoF we are computing first a provisional solution

(ρ~v)∗ of the momentum at time (n + 1)∆t. This is done using an explicit scheme. The
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relation between the momentum at time (n+ 1)∆t and the approximate momentum is:

(ρu)n+1
i+ 1

2
,j,k

= (ρu)∗i+ 1

2
,j,k + Ox

i+ 1

2
,j,k −

∆t

Vi+ 1

2
,j,k







∫

Sx
i+1,j,k

p dS −

∫

Sx
i,j,k

p dS






(4.15)

Next, we need to ensure the divergence–free condition for the velocity field at next time

step ~vn+1. At this point it is useful to define the intermediate velocity field in terms of

momentum fields:

(ρu)n+1
i+ 1

2
,j,k

= ρn+1
i+ 1

2
,j,k

(u)n+1
i+ 1

2
,j,k
, (4.16)

(ρu)∗i+ 1

2
,j,k = ρn+1

i+ 1

2
,j,k

(u)∗i+ 1

2
,j,k (4.17)

Thus, using a central difference scheme for the divergence operator an approximate pressure

equation for the node (i, j, k) can be constructed:

∇h ·

(

∆t

ρ
∇hpi,j,k

)

= ∇h ·~v∗ + ∇h ·

[

∆t

ρ
O

]

(4.18a)

where,

∇h ·

(

∆t

ρ
∇hpi,j,k

)

= A
(1)
i,j,kp

(1)
i,j,k + A

(2)
i,j,kp

(2)
i,j,k

+ A
(1)
i+1,j,kp

(1)
i+1,j,k + A

(2)
i+1,j,kp

(2)
i+1,j,k + A

(1)
i−1,j,kp

(1)
i−1,j,k + A

(2)
i−1,j,kp

(2)
i−1,j,k

+ A
(1)
i,j+1,kp

(1)
i,j+1,k + A

(2)
i,j+1,kp

(2)
i,j+1,k + A

(1)
i,j−1,kp

(1)
i,j−1,k + A

(2)
i,j−1,kp

(2)
i,j−1,k

+ A
(1)
i,j,k+1p

(1)
i,j,k+1 + A

(2)
i,j,k+1p

(2)
i,j,k+1 + A

(1)
i,j,k−1p

(1)
i,j,k−1 + A

(2)
i,j,k−1p

(2)
i,j,k−1 (4.18b)

and

A
(1)
i+1,j,k =

∆t

h2

1

ρi+ 1

2
,j,k

fx
i+1,j,kA

(2)
i+1,j,k =

∆t

h2

1

ρi+ 1

2
,j,k

(1 − fx
i+1,j,k) (4.18c)

A
(1)
i−1,j,k =

∆t

h2

1

ρi− 1

2
,j,k

fx
i−1,j,kA

(2)
i−1,j,k =

∆t

h2

1

ρi− 1

2
,j,k

(1fx
i−1,j,k) (4.18d)
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A
(1)
i,j,k = −

∆t

h2

[(

1

ρi+ 1

2
,j,k

+
1

ρi− 1

2
,j,k

)

fx
i,j,k +

(

1

ρi,j+ 1

2
,k

+
1

ρi,j− 1

2
,k

)

f y
i,j,k

+

(

1

ρi,j,k+ 1

2

+
1

ρi,j,k− 1

2

)

f z
i,j,k

]

(4.18e)

A
(2)
i,j,k = −

∆t

h2

[(

1

ρi+ 1

2
,j,k

+
1

ρi− 1

2
,j,k

)

(1 − fx
i,j,k) (4.18f)

+

(

1

ρi,j+ 1

2
,k

+
1

ρi,j− 1

2
,k

)

(1 − f y
i,j,k) +

(

1

ρi,j,k+ 1

2

+
1

ρi,j,k− 1

2

)

(1 − f z
i,j,k)

]

The other coefficients can be obtained replacing the corresponding indices. For the coeffi-

cients expressions a mesh with constant grid width in each direction has been considered

(∆x = ∆y = ∆z = h). This was made just for an easier presentation and is not an

restriction of the method.

The first observation regarding the structure of the approximate Laplacian is that the

surface fractions are involved and not the volume fractions. This feature rises two main

problems: first, the surface fractions depend on the surface orientation and we can not

define a mean pressure in the volume centered in (i, j, k) as pm = fp̄(1) + (1 − f)p̄(2),

and, second, the pressures p̄(1) and p̄(2) are surface averages and not volume averages.

The last problem can be avoided using pressure volume averages p̄1
i,j,k and p̄2

i,j,k instead

of surface averages. This approximation is consistent with the approximations made in

chapter 2 when the general equations were obtained. However, this will not entirely solve

our problems because we still need two values for the pressure at each grid cell.

In TURBIT-VoF a mean value for the pressure is defined on the control volume centered

in P(i, j, k) and is used for both faces. This is the same as assuming that fx
i,j,k = f y

i,j,k =

f z
i,j,k = fi,j,k or that the local deviations of the pressure from the mean value, which are

usually ignored, balance the effect of unequal splitting of the faces. This might be true in

cells where the fraction of volume f is around 0.5 and the interface splits the cell in two

equal parts but does not hold if the interface is parallel with one of the cell faces. In such

cases, the corresponding surface fraction will be either 0 or 1 depending on which fluid is

the center of the cell, while the volume fraction 0 < fi,j,k < 1. This wrong estimation of

the coefficients in the pressure equation results in a smeared pressure jump at the interface

which affects the computed velocity in the cells containing both fluids.

A solution to this problem is proposed by Popinet and Zaleski [37]. They use a
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Fig. 4.3: The location of the interface relative to the pressure nodes

”pressure–gradient correction” in order to take in account this effect. They approximate

the face integrals using the nearest pressure nodes. Thus only one value for the pressure is

needed at each grid point. Let write the relation (4.14) in a form similar to the formulation

from [37] (see fig. 4.3):

• if the center of the cell (i, j, k) is inside fluid 1:

∫

Sx
i,j,k

p dS = ∆yi,j,k∆zi,j,k

[

p(1) + (1 − fx
i,j,k)(p

(2) − p(1))
]

(4.19a)

• or, if the center of the cell is inside the fluid 2:

∫

Sx
i,j,k

p dS = ∆yi,j,k∆zi,j,k

[

p(2) + fx
i,j,k(p

(1) − p(2))
]

(4.19b)

We can see that approximating p(1) and p(2) with the averaged values of the pressure (p1

and p2) we get an equation for the averaged values of pressure instead an equation for

mean value of the pressure pm.
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The above relations are considered as a correction to the standard centered estimate.

This leads to a discretization of the Poisson equation in the form:

∇h · ∇h(p(n+1) + I[p(n+1)]) = ∇h · v∗ (4.20)

where, I[p(n+1)] is the pressure gradient correction defined as:

Ii,j,k[p] = ∆yi,j,k∆zi,j,k(1 − fx
i,j,k)(p

2 − p1) (4.21a)

if P(i, j, k) is inside fluid 1, and

Ii,j,k[p] = ∆yi,j,k∆zi,j,kf
x
i,j,k(p

1 − p2) (4.21b)

if P(i, j, k) is inside fluid 2; ∇h is the discrete operator The matrix of the linear system

associated to the equation (4.20) has a structure which depends strongly on the way the

pressure gradient correction is constructed. This means that the nonzero terms appearing

in the matrix are no longer arranged in diagonals and the faster numerical algorithms

developed for this kind of matrices can not be used. For a projection method solving the

system associated to the pressure equation is the most computational demanding part of

the algorithm therefore it is useful to find an approximation of (4.20) which recovers the

diagonal structure of the matrix. Popinet and Zaleski [37] considered the pressure gradient

correction as a source term in the momentum balance equation. Using the pressure at

time-step (n) to compute this correction, the approximate pressure equation is:

∇h · ∇hp(n+1) = ∇h · v∗ −∇h · ∇hI[p(n)] (4.22)

We still need to evaluate p1 − p2. In 2D this can be done very easy. Popinet and

Zaleski [37] used the pressure of the closest point and I[p] is expressed in terms of pi, pi+1,

pi−1. In 3D this procedure needs some modifications because we have three neighboring

values (pi,j+1,k, pi,j,k+1, pi,j+1,k+1 or pi,j+1,k, pi,j,k+1, pi,j+1,k+1) for the unknown pressure. In

this case we have two options:

• compute p1 − p2 taking the unknown pressure from the closest grid point which is in

the same fluid; or,

• compute p1 − p2 using a pressure jump model.



4.1 Periodic fully developed flow 61

Inhere we consider the first approach since its implementation is straightforward.

4.1.2 Bubble-train flow in a channel of square cross-section

To verify the method described above we consider the case of a bubble-train flow in a

channel with square cross-section (Lx = Lz = 1). The periodicity length L is taken the

same as the width of the channel. Thus, our fluid cell is a cube having the dimensions

1 × 1 × 1. In Fig. 4.2 the coordinate system and a sketch of the computational domain is

presented. The computational domain is discretized by 643 uniform mesh cells. The flow

is in y-direction while in the other two directions walls bound the domain where no-slip

boundary conditions are used. The presence and influence of the neighboring unit cells is

simulated using periodic boundary conditions in stream-wise direction.

The simulation is started from an initially spherical bubble with diameter d = 0.858;

this corresponds to an overall void fraction of ε = 33%. To determine a specific overall

flow rate a constant pressure drop is imposed in stream-wise direction. After a transient,

the simulation results in a fully developed regime with steady bubble shape and constant

gas (J2) and liquid (J1) flow rates.

ε ρ2/ρ1 µ2/µ1 Re Eo −β J1/J J2/J
BT1 33% 1/81 1/260 1.35 1.065 27 0.806 1.89
BT2 33% 1/78 1/25 75.88 1.347 0.2 1.04 1.10

Tab. 4.1: Simulation parameters for bubble-train flow. The Re and Eö numbers are computed
using the bubble diameter and bubble velocity as reference length, and velocity, respec-
tively.

We performed simulations for two different cases (Table 4.1). The fluids properties cor-

respond to an experiment where the flow of air bubbles in silicone oil of different viscosities

in a square channel is investigated [48]. In order to increase the computational efficiency,

in the numerical simulation the gas density and viscosity is chosen 10 times higher than in

the experiment [48]. Since we are interested only on the fully developed regime modifying

the density and viscosity ratio has no influence on the final results [59].

The first case (BT1) simulates a flow for which the kinematic viscosity of the continuous

phase (liquid) is three times larger than for the dispersed phase (gas). This results in a

relatively thick liquid layer near the wall while the bubble remains axisymmetric. After

a very short transient (t = 0.12) the liquid reaches a constant flow rate while for the gas
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Fig. 4.4: Time evolution of the dimensionless liquid (J1) and gas (J2) superficial velocities

flow rate it takes longer to reach the steady regime. At t = 0.6 the slope of the bubble

velocity increase in time is only 0.04 and we assumed that it has reached its final velocity

(Fig. 4.4).

In the second case (BT2) the liquid is taken to be less viscous than in the first case,

therefore it takes more time to reach a steady bubble shape and bubble velocity. For times

larger than t = 1.0 the liquid and gas superficial velocities increase very slowly in time.

The slope is smaller than 0.03 and therefore we assume that the fully developed regime has

been reached. The bubble diameter becomes larger than in the (BT1) case and almost fills

the channel width. Since the liquid film in the axial planes becomes very thin the liquid

is pushed to the corners of the channel and it is strongly accelerated. This results in a

stronger mixing both in the liquid slug and inside the bubble. The flow inside the bubble

for the two cases is compared in Fig. 4.5. For that, we consider the referential linked to

the bubble center of mass and insert massless particles into the flow at different position

inside the bubble. Since the flow is steady and the bubbles move with constant speed there

is no need to take in to account acceleration effects. For (BT1) the gas inside the bubble

forms a single annular vortex (Fig. 4.5.a) while in (BT2) a second vortex appears at the

rear side of the bubble (Fig. 4.5.b). The presence of the second vortex can be explained by

a breakage of the symmetry of the flow inside the bubble due to higher Re number. The
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geometry of the channel and the fact that the walls are close to the bubble interface have

also an influence on the movement of particles inside the bubble. In the cross-section, the

thickness of the liquid film surrounding the bubble varies along each channel side. This

results in a azimuthal movement of the particles inside the bubble (see Fig. 4.5.c and .d).

The mixing in azimuthal direction is more intense for BT2 case which has a higher Re

number and a thinner liquid film while in BT1 case the flow is almost axisymmetric.

The mixing characteristics of the flow inside the bubble is of great interest in chemical

processing where the bubbles are used as micro-reactors in which the precipitation reagents

are thoroughly mixed avoiding the heterogeneous reaction conditions in classical large

batch reactors. For the heat exchangers, the structure of the flow inside the liquid is more

important. In Fig. 4.6 the flow in the liquid layer between the bubble and the walls and

in the liquid slug is presented. Again, a referential linked to the bubble is used. The

massless particles are inserted in front of the bubble (y = 1). At the corner of the channel

the particles have a rectilinear trajectory and their velocity is almost constant along the

channel. Close to the bubble, particles are accelerated as they approach the cross-section

where the bubble has the larger diameter, and then decelerate, some of the particles being

captured in the vortex behind the bubble in (BT2). For the (BT1) case the acceleration

of the particles near the bubble is less important than for (BT2) and the particles are not

trapped in the liquid slug. For the (BT2) case, the presence of the second vortex inside the

bubble generates also two vortices in the liquid slug: one close to the rear side of the bubble

that is coupled with the vortex at the bottom of the bubble, and a second one coupled

with the vortex at the top of the next bubble. In both cases the Eo number is close to

unity, that means that the Laplace constant and the channel hydraulic diameter (Dh) have

the same order of magnitude. For a air-water system this corresponds to a channel having

a width around 1 mm.

In order to assess our numerical code we compare the results with the experimental data

obtained by Thulasidas et al. [48] (Fig. 4.7). They measured the bubble diameter and the

bubble velocity for a bubble-train flow in a square channel with a hydraulic diameter of

2mm. From the measured values they compute the dimensionless bubble diameter DB/Dh,

dimensionless bubble velocity UB/J , and the relative bubble velocity W = (UB − vls)/UB,

where J = J1 + J2 is the total superficial velocity and vls is the liquid slug velocity. They

plot their results as a function of the Capillary number of the flow which is defined as the
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(a) (b)

(c) (d)

Fig. 4.5: Visualization of the flow structure inside the bubble for the BT1 case (a, c) and BT2
case (b, d): front view (a, b); top view (c, d). Massless particles were inserted inside the
bubble and advected by the velocity field, in a referential linked to the bubble center of
mass.
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(a) (b)

(c) (d)

Fig. 4.6: Visualization of the flow structure in the liquid for the BT1 case (a, c) and BT2 case
(b, d): front view (a, b); lateral view (c, d). A referential linked to the bubble center
of mass is used. The massless particles are inserted in the top of the computational
domain and they move along the current lines of the flow.
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(a)

(b)

(c)

Fig. 4.7: Comparison of the computed values (Table II) with experimental data from Thulasidas
et al. [48]: (a) dimensionless bubble diameter; (b) dimensionless bubble velocity; (c)
relative bubble velocity. Reproduced from [48]
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ratio between the magnitude of viscous effects in the liquid and the capillary effects:

Ca =
µ∗v∗

σ∗
, (4.23)

where the bubble final velocity is used as reference velocity. The values of these parameters

obtained from the numerical simulations are given in Table 4.2.

Ca DB/Dh UB/J W
BT1 0.205 0.812 1.80 0.445
BT2 0.043 0.919 1.55 0.355

Tab. 4.2: Computed Capillary number, dimensionless bubble diameter, bubble velocity and rel-
ative bubble velocity.

For the dimensionless bubble diameter (Fig. 4.7.a) the computed values are slightly

smaller than the measured values. This difference can be explained by the fact that in

experiments the bubbles have the length several times the channel width and the diameter

is measured in the cylindrical part while in our computations the bubbles are much shorter

and can not develop into an elongated Taylor bubble. For the bubble velocity (Fig. 4.7.b)

and relative bubble velocity (Fig. 4.7.c) we have a better agreement, the computed values

being in the range of the measured data.

4.2 Periodic fully developed heat transfer

In the previous section the channel walls were assumed to be adiabatic and there are

no heat sources in the domain. Thus, both fluids have the same constant temperature.

In many applications of interest, heat is introduced or removed from the system either

by heating/cooling the walls or due to chemical reactions. This results in a nonuniform

temperature field which depends on the flow structure and the heat conductivities of each

fluid. Except for the special case of the annular flow, the gas distribution varies along the

channel and the definition of a fully developed heat transfer as it was introduced in section

3.2.1 can not be used. However, when the fluid flow is periodic and the heating conditions

are also periodic, one can extend the concept of fully developed heat transfer and reduce

the analysis of the temperature field to an isolated module, in the same way as it is done

for the velocity and pressure field.
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In this section, the case of an axially periodic wall heat flux will be considered:

λ
∂T

∂n

∣

∣

∣

∣

wall

= q (4.24)

which has the same periodicity length (L) as the flow through the channel

q(x, y, z) = q(x, y + L, z) = q(x, y + 2L, z) = . . . (4.25)

Since the flow is supposed to be (hydrodynamic) periodic developed the velocity and the

pressure field are subject to the conditions and relations from section 4.1.

The fact that the wall heat flux ~q has the same periodicity length as the flow means that

the temperature profiles for y, y+L, . . . have the same slope at the wall. Thus, the periodic

thermally developed regime for prescribed, modularly repeating wall heat transfer can be

visualized by considering temperature profiles at a succession of stream-wise positions y,

(y+L), (y+2L), . . . . These profiles will have identical shape and, for the case of heating,

will be displaced one above the other by the same distance:

Tϕ(x, y+L, z)−Tϕ(x, y, z) = Tϕ(x, y+L, z)−Tϕ(x, y+ 2L, z) = . . . ϕ = 1, 2 (4.26a)

Similar to the single phase situation, let us define

θϕ(x, y, z) =
Tϕ(x, y + L, z) − Tϕ(x, y, z)

L
ϕ = 1, 2 (4.26b)

and subdivide the temperature field in two components:

Tϕ(x, y, z; t) = yθϕ(x, y, z; t) + Θϕ(x, y, z; t) ϕ = 1, 2 (4.26c)

Further on we will refer to θ as linear temperature coefficient and to Θ as the reduced

temperature field. For now, θ is assumed to vary both spatially and in time, and it is

defined separately for each fluid ϕ.

The periodic fully developed heat transfer condition (4.26a) implies that θϕ is periodic

in stream-wise direction (y), that is:

θϕ(x, y, z; t) = θϕ(x, y + L, z; t) = θϕ(x, y + 2L, z; t) = . . . ϕ = 1, 2 (4.27)
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Further, introducing the temperature decomposition (4.26c) in (4.26b) one gets

θϕ(x, y, z; t) =
(y + L)θϕ(x, y + L, z; t) + Θϕ(x, y + L, z; t) − [yθϕ(x, y, z; t) + Θϕ(x, y, z; t)]

L

and, taking in account the periodicity of θ

θϕ(x, y, z; t) = θϕ(x, y, z; t) +
Θϕ(x, y + L, z; t) − Θϕ(x, y, z; t)

L

which implies that the reduced temperature Θk is also periodic:

Θϕ(x, y, z; t) = Θϕ(x, y + L, z; t) = Θϕ(x, y + 2L, z; t) = . . . ϕ = 1, 2 (4.28)

This means that, in case of heat transfer problems subject to (4.26a) the temperature field

can be described using two periodic fields, one that takes in account the overall temperature

variation along the channel (θ) and the other (Θ) giving the temperature distribution due

to the local heating.

4.2.1 Volume-averaged heat convection equation

To derive the volume-averaged equations governing the convective heat transfer for a two-

phase flow one can use directly the equation (2.36c) for the mean enthalpy as it was done

for single phase case in section 3.2.1, or start from the local enthalpy equations for each

phase and apply the averaging technique described in chapter 2. Inhere, the second method

is preferred because it allows us to have a better picture about the contributions of θ and

Θ to the local heat transfer. Thus, for each fluid ϕ, in the bulk region, the heat transfer

and convection is governed by the local enthalpy equation:

∂ρϕhϕ

∂t
+ ∇ · (ρϕhϕ~vϕ) =

1

Pe
∇ · (λϕ∇Tϕ) (4.29)

where the contribution of the pressure work and heat dissipation due to viscous forces in

the energy balance are neglected because the fluids are assumed to be incompressible (see

Section 2.4.1). The energy source term was omitted in (4.29). This has been done for

a simpler presentation and because it does not play any role in the development of the

method provided that it varies periodically along the channel. Using the decomposition
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(4.26c) the previous equation becomes:

∂ρϕCp,ϕΘϕ

∂t
+ ∇ ·

(

ρϕCp,ϕΘϕ~vϕ −
1

Pe
λϕ∇Θϕ

)

= −ρϕvϕθϕ +
2

Pe
λϕ
∂θϕ

∂y

− y

[

∂ρϕCp,ϕθϕ

∂t
+ ∇ ·

(

ρϕCp,ϕθϕ~vϕ −
1

Pe
λϕ∇θϕ

)]

(4.30)

Since all the quantities and the fluid properties in the equation above are periodic in y

with the same periodicity length the last term in (4.30) has to be equal to zero:

∂ρϕCp,ϕθϕ

∂t
+ ∇ ·

(

ρϕCp,ϕθϕ~vϕ −
1

Pe
λϕ∇θϕ

)

= 0 ϕ = 1, 2 (4.31)

This represents the advection-diffusion equation for θϕ. It depends only on the flow char-

acteristics and there is no dependence on the reduced temperature Θϕ.

The equation for the reduced enthalpy Cp,ϕΘϕ is then

∂ρϕCp,ϕΘϕ

∂t
+ ∇ ·

(

ρϕCp,ϕΘϕ~vϕ −
1

Pe
λϕ∇Θϕ

)

= −ρϕCp,ϕvϕθϕ +
2

Pe
λϕ
∂θϕ

∂y
ϕ = 1, 2

(4.32)

Note that compared with the single phase equation (3.48) an additional term due to the

spatial variation of θ appears.

Interface jump conditions

To describe the behavior of the new quantities at the interface, jump conditions has to

be specified. For a two-phase system with reversible heat transfer at the interface the

temperature is continuous over the interface (see 2.1.4), that is:

T1i = T2i (4.33)

Using the definition for the linear temperature coefficient and the fact that the flow is

spatially periodic, it implies that θ is also continuous:

θ1i = θ2i (4.34)
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Introducing the temperature decomposition (4.26c) in (4.33) and using the jump relation

(4.34) the jump condition for the reduced temperature is:

Θ1i = Θ2i (4.35)

which means that both θ and Θ fields are continuous in all the computational domain, the

same as the temperature.

For the heat transfer problems, a second jump condition concerning the interface heat

fluxes exists. Using the Fourier law to express the heat flux, the jump condition (2.41)

becomes

− λ1
∂T

∂n

∣

∣

∣

∣

1i

+ λ2
∂T

∂n

∣

∣

∣

∣

2i

= 0 (4.36a)

Since the flow is periodic it means that if (xi, yi, zi) is a point on the interface separating

the two fluids, the point (xi, yi + L, zi) is also an interface point and the jump condition

(4.36a) applies. Thus, for the linear temperature coefficient one has:

λ1
∂θ1

∂n

∣

∣

∣

∣

(xi,yi,zi)

=
1

L

[

λ1
∂T1

∂n

∣

∣

∣

∣

(xi,yi+L,zi)

− λ1
∂T1

∂n

∣

∣

∣

∣

(xi,yi,zi)

]

=
1

L

[

λ2
∂T2

∂n

∣

∣

∣

∣

(xi,yi+L,zi)

− λ2
∂T2

∂n

∣

∣

∣

∣

(xi,yi,zi)

]

= λ2
∂θ2

∂n

∣

∣

∣

∣

(xi,yi,zi)

(4.36b)

The interface jump condition for the flux of the reduced temperature can be obtained

introducing the decomposition (4.26c) in (4.36a). Using this procedure and taking in

account the jump condition (4.36b) one has:

λ1
∂Θ

∂n

∣

∣

∣

∣

1i

+ λ1θ1i~ey · ~n = λ2
∂Θ

∂n

∣

∣

∣

∣

2i

+ λ2θ2i~ey · ~n (4.36c)

One can see that the flux for θ across the interface is continuous while in the case of the

reduced temperature Θ a supplementary term appears.
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Boundary conditions

In order to have a complete system, the boundary conditions have to be specified. Since the

flow and the heat transfer are fully developed, for stream-wise direction periodic boundary

conditions for both θ and Θ are imposed.

For the other two directions the channel is bounded by straight walls. Using the defi-

nition for θ and the fact that the wall heat flux is periodic one gets:

λ1
∂θ1

∂n

∣

∣

∣

∣

wall

= λ1
∂T1(x, y + L, z)

∂n

∣

∣

∣

∣

wall

− λ
∂T1(x, y, z)

∂n

∣

∣

∣

∣

wall

= q(x, y + L, z) − q(x, y, z) = 0 (4.37)

which means that the linear temperature coefficient obeys an adiabatic wall boundary

condition.

For the reduced temperature, since the walls are parallel to the flow direction, one has:

λ
∂Θ

∂n

∣

∣

∣

∣

wall

= λ
∂T

∂n

∣

∣

∣

∣

wall

− yλ
∂θ

∂n

∣

∣

∣

∣

wall

= q (4.38)

where, n denotes the direction normal to the wall, i.e. either x or z. Note that the

temperature T and the reduced temperature Θ have the same wall boundary condition.

The equation (4.31) together with the boundary conditions (4.37) and the jump rela-

tions (4.34) and (4.36b) indicate that for the linear temperature coefficient one has the

same type of problem as for the temperature in an adiabatic flow, that is θ is constant

both in time and space.

Volume-averaged equation for the reduced temperature

The volume-averaged heat convection equation for the reduced enthalpy can be obtained

applying the averaging operator (2.10) to the local equations (4.32) for a fixed control

volume Ω with rigid boundaries and following the same steps as in Chapter 3 for the

energy equation. Since θ is constant the last term in (4.32) vanishes and the equation is

∂

∂t
〈ρCpΘ〉+∇·

(

〈ρCpΘ~v〉 −
1

Pe
〈λ∇Θ〉

)

= −〈ρCpv〉θ−
1

Pe
(λ1 −λ2)θ

1

V

∫

Si

~ey ·~n dS (4.39)

The last term in (4.39) appears because of the interface heat flux jump condition (4.36c).
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This new equation differs from the enthalpy equation (3.1) only by two source terms

which do not depend on Θ and, therefore, the numerical procedure introduced in Chapter 3

can be used to approximate the l.h.s. of the equation.

Linear temperature coefficient

To find the value of θ one can integrate the equation (4.32) over the entire computational

domain Ω = [0, Lx] × [0, L] × [0, Lz]:

∂

∂t

∑

ϕ=1,2

∫

V

ρϕCp,ϕΘϕXϕ dV +
∑

ϕ=1,2





∫

SL

ρϕCp,ϕΘϕvϕXϕ dS −

∫

S0

ρϕCp,ϕΘϕvϕXϕ dS





−
1

Pe

∑

ϕ=1,2





∫

SL

λϕ
∂Θϕ

∂y
Xϕ dS −

∫

S0

λϕ
∂Θϕ

∂y
Xϕ dS





=
1

Pe

Q

L
− θ

∑

ϕ=1,2

∫

V

ρϕCp,ϕvϕXϕ dV − θ(λ1 − λ2)

∫

Si

~ey · ~n dS (4.40)

where, S0 and SL designate the inflow and, respectively, the outflow cross sections, V is

the volume of Ω, Q is the rate of heat addition through the channel walls given by (3.47),

and Si is the interface separating the two fluids. Since the heat transfer is fully developed

and all the quantities are periodic in stream-wise direction all the terms on the l.h.s. of

the equation are zero. Also, Si can be considered as a closed surface as the bubbles along

the channels have the same shape which means that the last term in the equation cancels

itself. Thus, for θ one has

θ =
1

Pe

Q

L
∑

ϕ=1,2

∫

V

ρϕCp,ϕvϕXϕ dV

(4.41)

Comparing this expression with (3.45) giving the temperature coefficient for the single

phase one can see that they are similar.

4.2.2 Bubble-train flow in a channel with a prescribed axial wall heat flux

Let us apply now the method described above to compute the temperature field corre-

sponding to the bubble-train flow simulated in section 4.1.2 when an uniform heat flux is
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imposed at the channel walls. Inhere, the fully developed regime corresponding to BT2 case

is chosen as base flow.

For this numerical simulation we take a specific heat capacity ratio of Cp,2/Cp,1 = 0.2401

and a thermal conductivity ratio of λ2/λ1 = 0.0451. The Prandtl number for the liquid

is Pr = 2.34 which means that the the gas has Pr = 0.5. These values correspond to an

air-water system at T = 350 K.

The time step used for this numerical computation is ∆t = 10−4, the same as for the

simulation of the adiabatic case. The maximum value given by the time step criteria (3.33)

is ∆t0 = 1.3×10−4. To reduce the oscillations of the solution near the interface an upwind

scheme is preferred to approximate the conductive terms.

At time t = 0 both fluids are assumed to have the same temperature. The fully

developed regime is considered as established when a balance between the heat introduced

into the system due to wall heating and the heat removed due to streamwise convection

occurs. This can be expressed quantitatively by the value of the domain mixture reduced

temperature:

ΘV =

∑

ϕ=1,2

∫ Lx

0

∫ L

0

∫ Lz

0

ρϕCp,ϕΘϕXϕ dx dy dz

∑

ϕ=1,2

∫ Lx

0

∫ L

0

∫ Lz

0

ρϕCp,ϕXϕ dx dy dz

In Figure 4.8 the time variations of the domain mixture reduced temperature and, respec-

tively, mixture temperature are presented. While the last one is almost constant indicating

that the fully developed heat transfer has been reached since its variations being of the

same order of magnitude with the numerical rounding performed in TURBIT-VoF, the vol-

ume mixture temperature

TV =

∑

ϕ=1,2

∫ Lx

0

∫ L

0

∫ Lz

0

ρϕCp,ϕTϕXϕ dx dy dz

∑

ϕ=1,2

∫ Lx

0

∫ L

0

∫ Lz

0

ρϕCp,ϕXϕ dx dy dz

has an oscillatory behavior. This can be explained by the fact that cold bubbles enter the

domain but, as they move along the channel, the gas gets warmer by conduction in the

vicinity of the walls and due to recirculation inside the bubble. As the bubble moves out of

the fluid cell an other cold bubble enters the domain determining a decrease of the overall



4.2 Periodic fully developed heat transfer 75

(a)

6000 8000 10000 12000 14000

0.007

0.008

0.009

0.010

T
V

NTIM

(b)

Fig. 4.8: Time variation of the mixture reduced temperature (a) and mixture temperature (b)
for the entire unit cell.
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temperature of the system.

In Figure 4.9 the structure of the temperature field inside the bubble and in the liquid

slug is visualized. The presence of the gas in the channel modifies the temperature field

corresponding to single phase heat convection simulated in section 3.2.1. The isothermal

lines show that gas has higher temperature in the region where the bubble interface is

closer to the walls. However, moving towards the center of the channel the temperature

decreases slower in the bubble than it does in the liquid phase. Since the heat conductivity

of the gas is lower than the one corresponding to the liquid the only explanation for this

behavior is the strong recirculation inside the bubble (Figure 4.5) which transports the

hotter gas near the interface towards the center of the bubble. For the liquid slug this

mixing effect is smaller and there is a region in the center of the channel where the liquid

remains colder. This can be observed also comparing the temperature field in two cross-

sections, one through the liquid slug (Fig. 4.10(a)) and the other at the position, along

the channel, where the bubble has the largest diameter (Fig. 4.10(b)). In these figures

the temperature isolines are represented using the same number of iso-levels between the

maximum and the minimum temperature. These limits are computed for the whole domain

therefore one can directly correlate the magnitude of the temperature gradient with the

density of the isolines. Thus, in the slug one can identify a region with large temperature

gradients making the transition from the higher temperature in the corners of the channel

to the lower temperature in the central region. In the cross-sections where the bubble is

present the temperature gradients are larger in the liquid layer surrounding the interface

at the corners of the channel. Inside the bubble the gradient is much smaller because of

the heat convection due to inner recirculation.

An other interesting aspect about the transverse temperature distribution is the direc-

tion of the temperature gradients. For the single phase heat convection problem, when the

flow is laminar, the heat transfer is done only by conduction in the direction perpendicular

to the wall. The temperature isolines are, in this case, concentric circles and the tempera-

ture gradient points toward the center of the channel (see Fig. 4.11). For the bubble train

flow, the isolines pattern changes. Because of the lateral movement of the liquid induced

by the passage of the bubbles, a part of the heat from the middle of the wall is transported

towards the channel corners. In the liquid slug (see Fig. 4.10(a)), looking along a diagonal,

the isolines are first concentric arcs with the center in the corner of the channel. Moving

towards the center of the channel, there is a region where the temperature is constant in
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(a) NTIM=11800

(b) NTIM=13400

Fig. 4.9: Temperature field in a longitudinal plane containing the channel axis for two different
instants in time.
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(a) Through the slug slug

(b) Through the bubble

Fig. 4.10: Structure of the temperature field in a transversal plane at NTIM=11400.
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Fig. 4.11: Structure of the temperature field in a transversal plane for a laminar single phase
flow.

the direction perpendicular to the diagonal while, close to the center the isolines form con-

centric circles. The same picture holds in a cross-section through the bubble, the isolines

being slightly deformed due to the presence of the interface (see Fig. 4.10(b)). This pattern

suggests that, compared to the single phase situation, the heat transfer improves in the

middle part of the wall while it diminishes in the corners of the channel. This observation is

confirmed by comparing the normalized maximum and minimum wall temperatures given

by Eq. (3.51) with the corresponding values for the single phase flow. In Figure 4.12

the variation along the channel for T ∗
w,max (Fig. 4.12(a)) and T ∗

w,min (Fig. 4.12(b)) are pre-

sented. Two different time steps were considered: one (NTIM=11400) corresponding to

the moment when the mixture temperature of the unit cell is close to its maximum value

and the other one (NTIM=12600) close to its minimum value. The values of T ∗
w,max and

T ∗
w,min for the single phase are represented with continuous line. From this figures one can

see that the normalized maximum wall temperature, which corresponds to the temperature

in the corner, is always larger in the case of bubble-train flow than when the single phase

flow is considered. For the normalized minimum wall temperature, corresponding to the
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Fig. 4.12: Normalized maximum and minimum wall temperature variation along the channel for
two different time-steps: (+): NTIM=11400; (×): NTIM=12600; continuous line:
single phase flow.



4.2 Periodic fully developed heat transfer 81

(a) NTIM=11400

(b) NTIM=12600

Fig. 4.13: Wall temperature isolines two different time steps.
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temperature in the middle of the wall, the values for bubbly flow are relatively close to the

single phase value in the region of the liquid slug and smaller in rest. For easy reference

the position of the bubble and temperature isolines at the wall are given in Figure 4.13.

Unfortunately, there are no experimental results available in the literature in order to

validate our computations. Because of the small cross-sectional dimensions of the channel

the temperature profiles can not be measured. The available experiments [50] regarding

mass/heat transfer in capillaries study only the dispersion during bubble-train flow by

measuring the concentration or a specific substance (marker) at the outlet. Since the

marker is injected only in one slug the periodicity condition is not fulfilled. To analyze

the characteristics of a periodic fully developed heat/mass transfer an experiment using

infrared temperature measurements should be performed in order to obtain data regarding

the wall temperatures and compare it with the computed wall temperature. Also, Laser

Induced Fluorescence methods could be used to visualize the temperature fields inside the

channel.



5. SUMMARY AND CONCLUSIONS

This work has highlighted the development of a new numerical method to describe the flow

and heat transfer characteristics of a gas-liquid two-phase flow in channels with hydraulic

diameter of the order of 1 mm and its implementation in the computer code TURBIT-VoF.

Particular emphasis have been given to the modeling of steady periodic slug flows in rect-

angular channels with prescribed wall heat flux.

To account for heat transfer an energy equation has been implemented. Using a volume-

averaging method the enthalpy equation for a two-components system have been deduced.

Interfacial source terms for surface tension effects, interphase mass and heat transfer have

also been included. For the case when the components can be considered as incompressible

and there is no phase change at the interface, a simplified energy equation is derived.

The numerical method for the discretization of the energy equation is also discussed.

The volume-averaged form of the equation suggests that a finite volume numerical method

should be used. Due to low influence of buoyancy effects on the flows in small channels, the

momentum equation is supposed to be independent from the energy equation. Therefore,

first the fluids distribution and the velocity field were computed; then the enthalpy distri-

bution was determined. To ensure a better numerical approximation of the pressure jump

at the interface, a new form for the pressure equation was constructed using a procedure

that ensures the consistency between the gradient and divergence discrete operators. For

the energy equation, special care has been taken when the convective term are approxi-

mated. Due to a new upwinding procedure, the instabilities near the interface are avoided.

Tests for the fully developed heat transfer regime for a single phase flow in a rectangular

channel have been performed. Both air and water flows were considered. The computed

Nusselt numbers match well the values available in literature in within an error of 0.6%.

For spatially periodic two-phase flows in small channels a new concept to model con-

vective heat transfer has been introduced. This new concept, called periodic fully developed

flow, is an extension for periodic multiphase flow of a model for single phase flows in chan-
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nels with variable cross-section (see Patankar [36]). Based on the periodical characteristics

of the velocity components and reduced pressure, the flow field analysis can be confined

to a single isolated module. A similar analysis is done for the enthalpy field, but the peri-

odicity conditions are of a different nature. For prescribed stream-wise periodic wall heat

flux the enthalpy itself is periodic, provided that a linear term related to the bulk enthalpy

change is subtracted.

Using this method, the bubble-train flow along a square channel has been simulated.

For the adiabatic case, two simulation runs resulting in two different values of the Capillary

number (CaB = 0.205 and CaB = 0.043) are compared. For both cases computed global

flow parameters agree well with available experimental data. The results for the bubble

shape, flow structure within the bubble, and flow structure in the liquid slug are analyzed

in detail. The comparison reveals the important role of the Capillary number as the

main physical control parameter for two-phase flow in small channels. The decrease of the

Capillary number only by a factor of 5 is associated with the thinning of the liquid film, the

appearance of a second vortex in the bubble, the enhancement of non-axisymmetry of the

flow inside the bubble, and the appearance of a vortex in the liquid slug. This corresponds,

on one side, with a better separation of the flows between adjacent slugs (plug effect) while,

on the other side, it intensifies the mixing characteristics in each individual slug.

When an uniform wall heat flux is considered, the temperature distribution inside

the channel could be computed up to an arbitrary constant. Both axial, and transverse

temperature variation could be analyzed, and the changes due to the presence of the gas

bubble could be studied. Thus, in the liquid, an improvement of the heat transfer in the

middle of the channel faces could be observed due to the liquid movements toward the

channel corners where a decrease of the heat transfer characteristics could be seen. Inside

the gas bubbles the strong mixing has the tendency to reduce temperature gradients.

These results show that this new method is a valuable tool for the numerical analysis of

spatially periodic two-phase flows in channels with or without heat transfer. Using global

quantities as input parameters the method allows the reconstruction of the local flow or

temperature field. For low mass fluxes the temperature-mass analogy can be also used to

compute the local concentrations of different species in the channel. Here it is referred

to the chemical substance that are passively transported by the flow. When chemical

reactions take place and new products are generated an extension of the actual version of

the code has to be done in order to account for these phenomena.
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This numerical method is, however, restricted to spatially periodic flows only. This

limitation is quite severe when heat transfer is concerned. When phenomena like phase

change at the interface or exothermal reactions between reactants transported by the flow

occur, the heat exchange depends strongly on local temperature and can not be regarded

as periodic anymore. To extend the applicability of the code for more general cases the

introduction of inflow and outflow boundary conditions is mandatory. The absence of

experiments from the literature, that could be used to validate the results for heat transfer,

represents, also, a sensible point of this work. Therefore future experiments to verify the

numerical results measurements of wall temperature or temperature profiles inside the

channel should be performed.
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Einzelblasen und Blasenschwärmen mit einer Volume of Fluid Methode, Ph.D. thesis,

Universität Karlsruhe (TH), 2000, FZKA 6478. [3, 5, 12, 23, 31, 55, 95]
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Strömungen in Platten- und Ringspaltkanälen und über seine Anwendung zur Un-

tersuchung von Turbulenzmodellen, Ph.D. thesis, Universität Karlsruhe (TH), 1973,

KfK 1854. [25]



Bibliography 91

[43] A. Serizawa, Z. Feng, and Z. Kawar, Two-phase flow in microchannels, Exp. Thermal

Fluid Sci. 26 (2002). [2]

[44] R.K. Shah and A.L. London, Laminar flow forced convection in ducts, Advances in

heat transfer, Academic Press, 1978, Suppliment I. [vii, 41, 42]

[45] C.-W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory

schemes for hyperbolic conservation laws, Report 97–65, ICASE, 1997. [32, 96, 98]

[46] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-

capturing schemes, J. Comput. Phys. 77 (1988), 439–471. [31, 32]

[47] E.M. Sparrow and S.V. Patankar, Relationship among boundary conditions and Nusselt

numbers for thermally developed duct flows, Journal of Heat Transfer 99 (1977), 483–

485, Technical notes. [39]

[48] T.C. Thulasidas, M.A. Abraham, and R.L: Cerro, Bubble-train flow in capillaries of

circular and square cross section, Chem Eng Sci 50 (1995), no. 2, 183–199. [x, 2, 51,

61, 63, 66]

[49] T.C. Thulasidas, M.A. Abraham, and R.L: Cerro, Flow patterns in liquid slugs during

bubble-train flow inside capillaries, Chem Eng Sci 52 (1997), no. 17, 2947–2962. [2,

51]

[50] T.C. Thulasidas, M.A. Abraham, and R.L. Cerro, Dispersion during bubble-train flow

in capillaries, Chem. Eng. Sci. 54 (1999), 61–67. [82]

[51] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, A. LeMouel, and B.N. McCord,

Gas-liquid two-phase flow in microchannels: Part ii: void fraction and pressure drop,

Int J Multiphase Flow 25 (1999), 395–410. [2]

[52] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, and D.L. Sadowski, Gas-liquid

two-phase flow in microchannels: Part I: two-phase flow patterns, Int J Multiphase

Flow 25 (1999), 377–394. [ix, 2, 51, 52]

[53] G. Tryggvason, B. Bunner, O. Ebrat, and W. Tauber, Computations of multiphase

flows by a finite difference/front tracking method. I. Multi–fluid flows, Von Karman

Institute Lecture Notes, Von Karman Institute, Brussels, Belgium, 1998. [14]



92 Bibliography

[54] S.O. Unverdi and G. Tryggvason, A front–tracking method for viscous, incompressible,

multi–fluid flows, J Comp Physics 100 (1991), 25–37. [5]

[55] S.O. Unverdi and G. Tryggvason, Computations of multi-fluid flows, Physica D 60

(1992), 70–83. [5]

[56] P. Woehl and R.L. Cerro, Pressure drop in monolith reactors, Catalysis Today 69

(2001), 171–174. [2]

[57] M.G. Wohak, Numerische Simulation des Verdampfungsvorgangs eines aufsteigenden

Tropfens im Direkt–Kontakt mit einer heißeren, schwereren und nicht mischbaren

Flüssigkeit, Ph.D. thesis, Technische Hochschule Darmstadt, 1996. [2]

[58] M.G. Wohak and H. Beer, Numerical simulation of direct–contact evaporation of a

drop rising in a hot, less volatile immiscible liquid of higher density – posibilities and

limits of the sola–vof/csf algorithm, Numerical Heat Transfer, A 33 (1998), 561–582.

[2]

[59] M. Wörner, The influence of gas-liquid density ratio on shape and rise velocity of an

ellipsoidal bubble: a numerical study by 3D Volume-of-Fluid computations, 1st Inter-

national Berlin Workshop - IBW1 on Transport Phenomena with Moving Boundaries

(Berlin, Germany), 11th − 12th October 2001, pp. 67–84. [61, 95]
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APPENDIX





A. COMPARISON BETWEEN CENTRAL DIFFERENCES AND

WENO-BASED INTEGRATION ALGORITHMS

In the computer code TURBIT-VoF the convection term in the momentum equation can be

approximated either using a second order central differences scheme or a WENO (Weighted

Essentially Non-Oscillatory) scheme (see Sabisch [38]). Since the WENO algorithm is

designed for problems with picewise smooth solutions containing discontinuities, it has

been assumed that using this procedure will reduce the velocity and pressure oscillations

in the vicinity of the interface. Using a third order WENO scheme, Sabisch [38] simulated

the flow of a bubble in a quiescent liquid for various bubble shape regimes. Wörner [59]

successfully performed simulations, for the same type of problem, using central differences

to approximate the convective terms. The later simulations were done without any other

modifications for the TURBIT-VoF code which indicates that there might not be any clear

benefit in using the more complicated WENO algorithm.

In this chapter, comparative tests, for the same problem, using central differences and

WENO approximations are performed. First, we compare the velocity and the momentum

fields computed using both schemes for the advection with constant speed of a discontin-

uous density field. Then, the bubble shapes and positions are compared for the case of a

bubble rising in a quiescent liquid.

For both tests the WENO scheme in TURBIT-VoF has been modified in order to have

a conservative formulation of the convective term. This new algorithm (FV-WENO) is

based on a finite volume formulation in contrast with the original version which was based

on finite differences approximation (FD-WENO) [38].

A.1 Finite Volume-based WENO scheme

If (i+ 1/2, j, k) is a numerical cell in which the momentum equation (2.36b) in x-direction

has to be numerically integrated, for a finite volume formulation, the convective term is
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computed as the sum of the fluxes through the cell faces:

[∇ · 〈ρu~v〉]i+ 1

2
,j,k =

∑

ℓ

Sℓ

Vi+ 1

2
,j,k

1

Sℓ

∫

Sℓ

ρu~v · ~nℓ dS , (A.1)

where Vi+ 1

2
,j,k is the cell volume, Sℓ are the faces of the cell and ~nℓ is the face normal

vector pointing outside the cell. These fluxes which are defined over a surface have to

be computed using the volume (cell) averaged values of the velocity. A WENO method

implies that one has to use a reconstruction procedure to find point values for the velocity,

which are further used to approximate the flux by a q-point Gaussian integration formula.

A fully 3D reconstruction algorithm of third order of precision, or higher, requires a large

amount of data to be stored and can not be implemented in an efficient way [45]. If only a

second order of precision is required (which is acceptable for most of the practical situation

we are interested in) a simpler way to compute the surface integrals can be derived. Using

Taylor series development the flux through the face ℓ can be approximated as:

Fℓ =
1

Sℓ

∫

Sℓ

(ρu)vℓ dS = (ρu)(xℓ, yℓ, zℓ)vℓ(xℓ, yℓ, zℓ) + O(∆2) (A.2)

where, (xℓ, yℓ, zℓ) is the center of the face Sℓ, vℓ = ~v · ~nℓ and ∆ is the maximum value of

the cell length.

The momentum surface-average

ϕℓ =
1

Sℓ

∫

Sℓ

(ρu) dS

approximates (ρu)(xℓ, yℓ, zℓ) up to second order of precision and can be obtained, from the

volume-averaged value [〈ρu〉]i+ 1

2
,j,k, using a 1D WENO reconstruction of the third order in

the direction perpendicular to the face Sℓ. By this procedure two values ϕ±
ℓ are obtained

corresponding to the right and left side reconstructions. Both these values are used when

the flux is computed.

For vℓ(xℓ, yℓ, zℓ) we can not use the WENO reconstruction. The reason is that each

velocity component (and its volume-averaged value) is computed for a different staggered

volume and reconstruction procedure is valid only for points inside the volume where the

averaged value is defined. To make it more clear, let us take a 2D case (see Fig. A.1):
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j+1/2 x
PA B

D C

i i+1/2 i+1

j

j+1

Fig. A.1: 2D view of the computational grid and staggered cell (i + 1/2, j, k) for which the x-
velocity component is computed.

the convective term has to be computed for the staggered cell (i + 1/2, j) (ABCD) and

the averaged values of the velocity components u and v are defined over (i + 1/2, j) and

(i, j + 1/2), respectively. Thus, for the face (AB), the value of velocity component in

y-direction (v) has to be computed in the point P . Using a WENO reconstruction one can

get only 1
∆y

∫ yj+1

yj
v dy. However, this value does not approximate vP up to second order of

precision if P is not the middle of the segment [yj, yj+1]. Also, if the grid is equidistant in

x direction we have two distinct values for the reconstructed ”surface”-average: one from

the left side reconstruction and one from the right side. Contrary to the case for ϕ there

is no suitable criteria to choose between these two values. Thus, in general, for vℓ an other

approximation has to be used. The simplest way is to compute vℓ as the mean value from

the neighboring cells values. For the 2D example above this means

vP =
vi,j+1/2 + vi+1,j+1/2

2
. (A.3)

This approximation has the advantage that if the velocity field used for the reconstruction

is solenoidal, the divergence-free condition will also be valid for the advection field vℓ.

As we have mentioned earlier the WENO reconstruction gives two momentum values

at each cell face. Thus, the numerical flux F̂ℓ is defined by

F̂ℓ = h(ϕ−
ℓ , ϕ

+
ℓ ) (A.4)
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with the values ϕ±
ℓ obtained by the WENO procedure. The two argument function h is a

monotone flux. It satisfies:

• h(a, b) is a Lipschitz continuous function in both arguments;

• h(a, b) is a nondecreasing function in a and a non-increasing function in b;

• h(a, b) is consistent with the physical flux f , that is h(a, a) = f(a).

Further on we give some examples of monotone fluxes taken from [45]. They were intro-

duced for the case of hyperbolic equations. For Finite Volume method Shu [45] proposes:

1. Godunov flux:

h(a, b) =







min
a≤u≤b

F(u) if a ≤ b,

max
b≤u≤a

F(u) if a > b
(A.5a)

2. Engquist-Osher flux:

h(a, b) =

a
∫

0

max(F ′(u), 0) du+

b
∫

0

min(F ′(u), 0) du+ F(0) (A.5b)

3. Lax-Friederichs flux:

h(a, b) =
1

2
[F(a) + F(b) − α(b− a)] (A.5c)

where, α = max
ϕ

|F ′(ϕ)| is a constant. The maximum is taken over the relevant range

of ϕ.

For the Finite Difference Shu is also proposing the Roe-type flux. In order to use this

flux one has to compute the Roe speed:

āi+1 =
F(ϕi+3/2) −F(ϕi+1/2)

ϕi+3/2 − ϕi+1/2

(A.5d)

If the Roe speed is positive the flux is computed using the down-wind cell (i+1/2) otherwise

the up-wind cell is used (i+ 3/2).

For incompressible flow all the above fluxes are equivalent. For reasons related to the

simplicity of programming we choose the Roe flux to compute f .
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Fig. A.2: Test problem geometry
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Fig. A.3: Density profile in y-direction at time
t = 0

A.2 Advection of a discontinuous density field

Let us consider two immiscible fluids having a density ratio Γρ = ρ1/ρ2 = 10 separated

by two interfaces. Both fluids are moving with a constant speed (v = 1) in y -direction

(see Fig. A.2). The computational domain is a cube 1× 1× 1 bordered by two solid walls

(z = 0 and z = 1). In the other two directions periodic boundary conditions are used.

This domain is discretized in 20 × 20 × 20 computational cells. For our tests we set the

viscosity to zero (ν1 = ν2 = 0). The initial density profile in the middle of the channel is

presented in Fig. (A.3)

In order to see how well the modified WENO scheme behaves we look at the velocity

and momentum profile in y-direction after one advection time step, i.e. after a complete

Runge-Kutta time integration. We use for comparison the results obtained using a second

order central difference scheme to approximate the convective terms.

In Fig. A.4 we present the momentum (Fig. A.4(a)) and the velocity (Fig. A.4(b))

profiles in the middle of the channel (z = 0.5) for an integration time step ∆t = 0.1·∆tCFL.

For the momentum the results are similar for all three methods. The WENO methods,

however, give a smaller value for the fluid 1 momentum at the backside interface (y = 0.35)

and a higher value for the fluid 2 momentum at the front-side interface (y = 0.75) than

central differences (CD) scheme. This results in a smaller, respectively a higher value

of the velocity in this two regions. Looking at the velocity profiles we could say that the

WENO method behaves in the same way as the central differences scheme but has a smaller

numerical viscosity.
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0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
 CD

 FD-WENO

 FV-WENO

 exact

(ρv)

y

(a) Momentum profile
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(b) Velocity profile

Fig. A.4: Momentum and velocity profiles in y direction for a time step ∆t = 10−3(= 0.1∆tCFL).
The ”exact” profile was computed as ρv, where ρ is the advected density profile.

A.3 Bubble rising in a quiescent liquid

In the previous test the viscous terms have been neglected in order to analyze the influence

of convective terms approximation on the velocity field. To see how the two algorithms,

CD and FV-WENO, behave in case of a two-phase flow we simulate the rise of a bubble in

a quiescent liquid. The computational domain is bordered in z-direction by two walls while

the flow is periodic in other two directions. The periodicity conditions imply that rows of

bubbles are simulated. To minimize the interaction between two consecutive bubbles the

domain is two times longer, in stream-wise direction, than wide (1 × 2 × 1). An uniform

grid (64× 128× 64) is used to discretize the domain. In both cases the bubble starts from

rest. Initially, it is spherical with a diameter 1/4 from the channel width and its center is

at ~x = (0.5, 0.5, 0.5).

For this test we consider the case when final bubble shape is a dimple ellipsoidal cap.

The bubble Reynolds number is Re = 20 and the Etvös number is Eo = 2000. The liquid

density and viscosity are 80 times larger than those for the gas. In Figure A.5 the bubble

shapes and positions after t = 0.5 are compared. For the central differences method the

left half of the bubble (in blue) is shown while for the FV-WENO scheme the right half is

presented on the same picture. Since the interface reconstruction depends on the size of

the mesh cell (represented in Fig. A.5(b) by a small square) one can conclude that both

numerical algorithms, CD and FV-WENO, give the same result.
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(a)

(b)

Fig. A.5: Bubble shape and position comparison between central differences (left half; blue) and
FV-WENO (right half; yellow) schemes: (a) bottom view; (b) side view (the size of the
mesh cell is indicated by the small square);.





B. CONVECTIVE TERMS APPROXIMATION FOR A TWO-PHASE

SYSTEM

When volume fractions are used to approximate the density in the convective terms oscilla-

tions of the solution appear near the interface. To illustrate this phenomena and to identify

its source, let us consider the simple case of a two-phase system (ρ1/ρ2 = 2) moving with a

constant velocity (U = 1) in direction perpendicular to the interface. Assuming that there

are no heat sources when the thermal equilibrium is achieved the temperature is constant

and has the same value in both fluids (T = 1). The advection equation for the enthalpy is

then:
∂

∂t
〈ρCpT 〉 +

∂

∂x
〈ρCpTU〉 = 0 (B.1)

For simplicity one can take the liquid density ρ1 = 1 and the same specific heat for both

gas and liquid Cp,1 = Cp,2 = 1. The initial configuration is considered so that all the

computational cells up to xi− 1

2

(see Fig. B.1) are filled with liquid (ρ1) and the rest of

them are filled with gas (ρ2). After ∆t = 0.25 the interface has moved in the stream-wise

direction but the temperature field remains unchanged, i.e. T = 1.

The numerical approximation of (B.1) using the centered difference scheme(3.10) for

U

i-1/2

2

0 i 1
i+1/2

ρ

ρ
1

Fig. B.1: Initial configuration (thick solid line) and after ∆t = 0.25 (thick dashed line)
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the convective term and an Euler time evolution scheme is

[f
(n+1)
i ρ1Cp,1 + (1 − f

(n+1)
i )ρ2Cp,2]T

(n+1)
i = [f

(n)
i ρ1Cp,1 + (1 − f

(n)
i )ρ2Cp,2]T

(n)
i

−
∆t

∆x

[

(f
(n)

i+ 1

2

ρ1Cp,1 + (1 − f
(n)

i+ 1

2

)ρ2Cp,2)
T

(n)
i + T

(n)
i+1

2

−(f
(n)

i− 1

2

ρ1Cp,1 + (1 − f
(n)

i− 1

2

)ρ2Cp,2)
T

(n)
i + T

(n)
i−1

2

]

(B.2)

where, fi is the liquid volume fraction corresponding to the centered cell and fi± 1

2

are the

staggered liquid fractions at the faces of the cell. If the volume fractions of the staggered

cells (i± 1

2
) are used to approximate fi± 1

2

, which means that f
(n+1)

i− 1

2

= 0.75 and f
(n+1)

i+ 1

2

= 0,

the computed temperature of the cell (i) at the new time step is

T
(n+1)
i =

(0 + 1 × 0.5) × 1 − 0.25 × (0.5 × 1 − (0.75 + 0.25 × 0.5) × 1)

0.25 + 0.75 × 0.5

= 0.95

If a Runge-Kuta time integration scheme is used, a better approximation of T
(n+1)
i is

obtained but the value still differs from the exact solution. On the other hand, using the

upwind procedure (3.13) described in section 3.1.1 to select the staggered surface fractions

(fi− 1

2

= 1, fi+ 1

2

= 0) the computed temperature for the new time step is

T
(n+1)
i = 1

Similar results are obtained if the velocity sign is changed or the initial position of the

interface is modified.

This simple one-dimensional example shows that, for the convective term, when discon-

tinuities are present an upwind procedure should be used at least for the surface fractions

at the cell faces if an centered difference approximation is required for the temperature.
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