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Abstract

Since it relies on a geometrical rather than a variational framework, many find the finite volume method (FVM)

more intuitive than the finite element method (FEM). We show that the FVM allows one to interpret the stress inside

a tetrahedron as a simple “multidimensional force” pushing on each face. Moreover, this interpretation leads to

a heuristic method for calculating the force on each node, which is as simple to implement and comprehend as

masses and springs. In the finite volume spirit, we also present a geometric rather than interpolating function

definition of strain. We use the FVM and a quasi-incompressible, transversely isotropic, hyperelastic constitutive

model to simulate contracting muscle tissue. B-spline solids are used to model fiber directions, and the muscle

activation levels are derived from key frame animations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation; I.3.5 [Com-

puter Graphics]: Physically based modeling

1. Introduction

The pioneering work of Lasseter18 on applying the principles

of traditional animation to computer graphics emphasizes

squash and stretch, timing, anticipation, follow through,

arcs, and secondary action which all appeal to the use of

physics based animation techniques. A variety of authors

have worked to incorporate ideas such as these into their an-

imations, e.g. Neff and Fiume24 incorporated tension and re-

laxation into the animation of an articulated skeleton. More-

over, when considering the difficulties, such as collapsing

elbows19, associated with applying free form deformations28

or related techniques to shape animation, one draws the con-

clusion that physics based simulation of muscle and fatty

tissue should be the ultimate goal. Unfortunately, progress

toward this goal has been rather slow due to the high cost of

FEM and the poor quality of volumetric mass-spring mod-

els.

Significant effort has been placed into accelerating FEM

calculations including recent approaches that precompute

and cache various quantities23, modal analysis16, and ap-

proximations to local rotations22. In spite of significant effort

into alternative (and related) methods for the robust simula-

tion of deformable bodies, FVM has been largely ignored.

Two aspects of FVM make it attractive. First, it has a firm

basis in geometry as opposed to the FEM variational setting.

This not only increases the level of intuition and the sim-

plicity of implementation, but also increases the likelihood

of aggressive (but robust) optimization and control. Second,

there is a large community of researchers using these meth-

ods to model solid materials subject to very high deforma-

tions. For example, Caramana and Shashkov5 used the FVM

with subcell pressures to eliminate the artificial hour-glass

type motions that can arise in materials with strongly diag-

onally dominant stress tensors, such as incompressible bio-

logical materials.

FEM has many attractive features that make it appealing

to the engineering community, e.g. a solid theoretical frame-

work for proving theorems and the ability to extend it to

higher order accuracy. However, in graphics, visual realism

is more important than the convergence rate, and thus the

focus is on simulating a large number of cheap first order

accurate elements rather than fewer more expensive higher

order accurate elements. In fact, the same can be said for

many engineering applications where quasi-static and other
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approximations may be made degrading the accuracy but al-

lowing for the simulation of more elements.

We are particularly interested in the simulation of both

active and passive muscle tissue. Biological tissues typi-

cally undergo large nonlinear deformations, and thus they

create a stringent test for any simulation method. More-

over, they tend to have complex material models with quasi-

incompressibility, transverse anisotropy, hyperelasticity and

both active and passive components. In this paper, we use a

state of the art constitutive model, B-spline solids to repre-

sent fiber directions, and derive muscle activations from key

frame animation.

2. Related Work

Terzopoulos et al.31, 30 simulated deformable materials in-

cluding the effects of elasticity, viscoelasticity, plasticity and

fracture. Although they mentioned that either finite differ-

ences or FEM could be used, they seemed to prefer a finite

difference discretization. Subsequently, Gourret et al.12 ad-

vocated FEM for simulating a human hand grasping a ball,

and since then a number of authors have used the FEM to

simulate volumetric deformable materials.

Chen and Zeltzer6 used FEM, brick elements, and the con-

stitutive model of Zajac35 to simulate a few muscles includ-

ing a human bicep. Due to computational limitations at the

time, very few elements were used in the simulation. Wil-

helms and Van Gelder34 built an entire model of a monkey

using deformed cylinders as muscle models. Their muscles

were not simulated but instead deformed passively as the re-

sult of joint motions. Scheepers et al.27 carried out similar

work developing a number of different muscle models that

change shape based on the positions of the joints. They em-

phasized that a plausible tendon model was needed to pro-

duce the characteristic bulging that results from muscle con-

traction. A recent trend is to use FEM to simulate muscle

data from the visible human data set36, 14.

In order to increase the computational efficiency, a num-

ber or authors have been investigating adaptive simulation.

Debunne et al.8 used a finite difference method with an oc-

tree for adaptive resolution. This was later improved us-

ing a finite volume integration technique to approximate the

Laplacian and the gradient of the divergence operators.10We

take a very different approach, using FVM to directly com-

pute the stress based force on the nodes achieving a rather

simple and intuitive method that trivially extends to arbitrary

constitutive models. Debunne et al.9 used FEM with a mu-

tiresolution hierarchy of tetrahedral meshes, and Grinspun et

al.13 refined basis functions instead of elements.

3. Geometric Calculation of Strain

A deformable object is characterized by a time dependent

map φ from undeformed material coordinates X to deformed

spatial coordinates x. We use a tetrahedron mesh and as-

sume that the deformation is piecewise linear, which implies

φ(X) = FX+b in each tetrahedron. The Green strain is de-
fined as G= 1/2

(

FTF− I
)

.

For simplicity, consider two spatial dimensions where

each element is a triangle. Figure 1 depicts a mapping φ from

a triangle in material coordinates to the resulting triangle in

spatial coordinates. We define edge vectors for each triangle

Figure 1: Undeformed and deformed triangle edges.
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(
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in order to emphasize that we are simply measuring the

change in the dot products of each edge with itself and the

other edge.

In three spatial dimensions, Dm and Ds are 3×3 matrices
with columns equal to the edge vectors of the tetrahedra, and

DTmGDm is a measure of the difference between the dot prod-

ucts of each edge with itself and the other two edges. Note

that D−1m can be be precomputed and stored for efficiency.

4. Finite Volume Method

FVM provides a simple and geometrically intuitive way of

integrating the equations of motion, with an interpretation

that rivals the simplicity of mass-spring systems. However,

unlike masses and springs, an arbitrary constitutive model

can be incorporated into FVM.
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In the deformed configuration, consider dividing up the

continuum into a number of discrete regions each surround-

ing a particular node. Figure 2 depicts two nodes each sur-

rounded by a region. Suppose that we wish to determine the

Figure 2: FVM integration regions.

force on the node xi surrounded by the region Ω. Ignoring

body forces for brevity, the force can be calculated as

fi =
D

Dt

∫
Ω

ρvdx=
∮

∂Ω

tdS=
∮

∂Ω

σndS

where ρ is the density, v is the velocity, and t is the surface

traction on ∂Ω. The last equality comes from the definition

of the Cauchy stress σn= t.

Evaluation of the boundary integral requires integrating

over the two segments interior to each incident triangle. Fig-

ure 3 (left) depicts one of these incident triangles along with

interior segments labeled ∂Ω
1
and ∂Ω

2
. Since σ is constant

Figure 3: Integration over a triangle.

in each triangle and the integral of the local unit normal over

any closed region is identically zero (from the divergence

theorem), we have∮
∂Ω
1

σndS+
∮

∂Ω
2

σndS+
∮

∂T
1

σndS+
∮

∂T
2

σndS= 0

where ∂T
1
and ∂T

2
are depicted in the figure. More impor-

tantly, we have∮
∂Ω
1

σndS+
∮

∂Ω
2

σndS= −
∮

∂T
1

σndS−
∮

∂T
2

σndS

indicating that the integral of σn over ∂Ω
1
and ∂Ω

2
can be

replaced by the integral of−σn over ∂T
1
and ∂T

2
. That is, for

each triangle, we can integrate over the portions of its edges

incident to xi instead of the two interior edges ∂Ω
1
and ∂Ω

2
.

Moreover, even if ∂Ω
1
and ∂Ω

2
are replaced by an arbitrary

path inside the triangle, see figure 3 (right), we can replace

the integral over this region with the integral over ∂T
1
and

∂T
2
.

We choose an arbitrary path inside the triangles that con-

nects the midpoints of the two edges incident on xi. Then

the surface integrals are simply equal to −σn
1
e
1
/2 and

−σn
2
e
2
/2 where e

1
and e

2
are the edge lengths of the trian-

gles. Thus, the force on node xi is updated via

fi+ = − 1

2
σ

(

e
1
n
1
+ e
2
n
2

)

.

In three spatial dimensions, given an arbitrary stress σ,

regardless of the method in which it was obtained, we ob-

tain the FVM force on the nodes in the following fashion.

Loop through each tetrahedron interpreting −σ as the out-

ward pushing “ multidimensional force”. For each face, mul-

tiply by the outward unit normal to calculate the traction on

that face. Then multiply by the area to find the force on that

face, and simply redistribute one third of that force to each

of the incident nodes. Thus, each tetrahedron will have three

faces that contribute to the force on each of its nodes, e.g.

the force on node xi is updated via

fi+ = − 1

3
σ

(

a
1
n
1
+a
2
n
2
+a
3
n
3

)

.

Note that the cross product of two edges is twice the area of

a face times the normal, so we can simply add one sixth of

−σ times the cross product to each of the three nodes.

4.1. Piola-Kirchhoff Stress

Often, application of a constitutive model will result in a

second Piola-Kirchoff stress, S, which can be converted to

a Cauchy stress via σ = J−1FSFT where J = det(F). Using
this equality and the identity an= JF−TAN, we can write

fi+ = − 1

3
P

(

A
1
N
1
+A
2
N
2
+A
3
N
3

)

where P= FS is the first Piola-Kirchhoff stress tensor, the Ai
are the areas of the undeformed tetrahedron faces incident to

Xi and the Ni are the normals to those undeformed faces.

Since the Ai and Ni do not change during the computa-

tion, we can precompute and store these quantities. Then

the force contribution to each node can be computed as

gi = Pbi, where the bi are precomputed and the force on
each node is updated with fi+ = gi. Moreover, we can save
9 multiplications by computing g

0
= −(g

1
+ g
2
+ g
3
) in-

stead of g
0

= Pb
0
. We can compactly express the compu-

tation of the other gi as G = PBm where G = (g
1
,g
2
,g
3
)

and Bm = (b
1
,b
2
,b
3
). Thus, given an arbitrary stress S in

a tetrahedron, the force contribution to all four nodes can

be computed with two matrix multiplications and 6 addi-

tions for a total of 54 multiplications and 42 additions. A

similar expression can be obtained for the Cauchy stress,

G = σBs where Bs is computed using deformed (instead

of undeformed) quantities. Unfortunately, Bs cannot be pre-

computed since it depends on the deformed configuration.

c© The Eurographics Association 2003.



Teran et al. / FVM for Skeletal Muscle

4.2. Comparison with FEM

Using constant strain tetrahedra, linear basis functions Ni,

etc., an Eulerian FEM derivation2 leads to a force contribu-

tion of

gi =
∫
tet

σ∇Ni
T dv.

A few straightforward calculations lead to

G=
∫
tet

σD−Ts dv= σD−Ts v= σB̂s

using our compact notation. Here, v is the volume of the de-

formed tetrahedron and B̂s = vD
−T
s .

Now considerDTs Bs from the FVM formulation. Since the

rows of DTs are edge vectors and the columns of Bs are each

the sum of three cross-products of edges divided by 6, we

obtain a number of terms that are triple products of edges di-

vided by 6. Each of these terms is equal to either 0 or±v, and
the final result is DTs Bs = vI. That is, Bs = vD

−T
s = B̂s, and

in this case of constant strain tetrahedra, linear basis func-

tions, etc., FVM and FEM are identical methods. Although

this equivalence is not true in general, this simple case is

used by a number of authors26, 23 and in this case FVM pro-

vides an intuitive geometric interpretation of FEM.

D−Ts is the cofactor matrix of DTs divided by the determi-

nant, and since DTs is a matrix of edge vectors, its determi-

nant is a triple product equal to 6v. That is, B̂s = vD
−T
s com-

putes the volume twice even though it cancels out resulting

in a cofactor matrix times 1/6. Thus, Bs can be computed
with 27 multiplications and 21 additions, for a total of 54

multiplications and 45 additions to compute the force con-

tributions using the Cauchy stress. Although, this is 3 more

additions than the second Piola-Kirchhoff stress case, we do

not need to store the 9 numbers in Bm at each node.

Muller et al.23 point out that a typical FEM calculation

such as in O’Brien and Hodgins26 requires about 288 mul-

tiplications. Instead, they use QR-factorization, loop un-

rolling, and the precomputation and storage of 45 numbers

per tetrahedron to reduce the amount of calculation to a

level close to our 54 multiplications. However, in the second

Piola-Kirchhoff stress case that they consider, we only need

to store 9 numbers per tetrahedron (as opposed to 45). More-

over, in the Cauchy stress case that they do not consider, it

is not clear that their optimizations could be applied with-

out an expensive calculation to transform back to a second

Piola-Kirchhoff stress. On the other hand, using the geomet-

ric intuition we gained from FVM that led to the cancellation

of v (that other authors have not noted26, 23), we once again

need only 54 multiplications and this time do not need to

precompute and and store any extra information at all.

4.3. Time Stepping

When using a mixed explicit/implicit approach to time

integration3, 4 treating the elastic stress explicitly and the

damping stress implicitly, one only needs the forces (i.e. no

force Jacobians) for implementation because most damping

models are linear (including Rayleigh damping15). This time

stepping scheme is attractive as it does not suffer from the

artificial numerical viscosity created by fully implicit time

integration of both position and velocity, while still allow-

ing one to disregard the strict time step restriction imposed

by the damping forces. The time step restriction for explicit

time integration of the damping forces is proportional to the

minimum tetrahedron edge length squared, whereas explicit

time integration of the position only (with implicit integra-

tion of the damping) results in a much less stringent restric-

tion proportional to the minimum edge length to the first

power4.

4.4. Example

In order to illustrate the FVM technique, we simulate a

bouncing torus using simple isotropic linear elasticity to cal-

culate the stress. The results are shown in figure 4.

5. Constitutive Model for Muscle

Muscle tissue has a highly complex material behavior—it is

a nonlinear, incompressible, anisotropic, hyperelastic mate-

rial. This section details the constitutive model used to cal-

culate the stress exerted by a volume element given a mea-

sure of the material deformation. We use a state-of-the-art

constitutive model that includes a hyperelastic component,

a quasi-incompressible component, and a transversely iso-

topic component.

Muscle is a hyperelastic material meaning that it is a

soft elastic material that undergoes large deformations. To

model a hyperelastic material, a scalar function W (G) is
defined to represent the strain energy at each point in the

tissue as a function of the strain. The second Piola Kirch-

hoff stress in a hyperelastic material is related to the strain

by S = ∂W/∂G. The combined structure of connective tis-

sue, water, and fibers in muscle can be modeled as a fiber-

reinforced composite with a strain energy that has the form

W
(

I
1
, I
2
,λ,ao,α

)

= F
1

(

I
1
, I
2

)

+U (J)+F
2
(λ,α)

where I
1
and I

2
are deviatoric isotropic invariants of the

strain, λ is a strain invariant associated with transverse

isotropy (it equals the deviatoric stretch along the fiber di-

rection), ao is the fiber direction, and α represents the level

of activation in the tissue. F
1
is the isotropic term,U(J) is the

term associated with incompressibility, and F
2
represents the

active and passive muscle fiber response. This strain energy

function is based on Weiss et al.33, with some modifications

to represent active and passive muscle properties.

A reasonable form for F
1
is a Mooney-Rivlin rubber-like

model21 because of muscle’s soft, nonlinear behavior. We

use F
1

(

I
1
, I
2

)

= AI
1
+BI

2
where A and B are material con-
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stants, I
1
= tr(C) and I

2
= 1/2((tr(C))2− tr((C)2)), where

C= J−2/3FTF.

The incompressibility term, U(J), assumes the strain
energy function takes an uncoupled form by separating

the dilitational (volumetric) and deviatoric (non-volumetric)

responses29, 33. U (J) = Kln(J)2 represents the dilitational
response where J is the relative volume (= 1 for strict in-
compressibility) and the degree of incompressibility can be

controlled by the magnitude of the bulk “volumetric” modu-

lus K.

The muscle fiber term F
2
must take into account the mus-

cle fiber direction ao, the deviatoric stretch in the along-

fiber direction λ, the nonlinear stress-stretch relationship in

muscle, and the activation level. The tension produced in

a fiber is directed along the vector tangent to the fiber di-

rection (therefore, muscle is much stiffer in the fiber direc-

tion than in the plane perpendicular to the fiber direction).

The relationship between the stress in the muscle and the

fiber stretch has been established using single-fiber experi-

ments and then normalized to represent any muscle fiber35.

We define the first derivative of F
2
with respect to λ such

that a non-linear stress-stretch relationship in the fiber direc-

tion follows these known behaviors for muscle fibers and

can be scaled by the activation level (see figure 5). Pas-

sive muscle fibers resist tension and follow an exponential

relationship, where the slack length occurs when the fiber

stretch, λ, is equal to one. The stretch in the fiber direction

is calculated by λ =
√

(aoCao), and the muscle term F2 is
a function of the stretch and the activation level (see figure

5): F
2
(λ,α) = αFactive (λ) +Fpassive (λ). A similar passive

behavior is used to model the material response in the ten-

dons by using stiffer material constants and a zero activation

level.

Based on the final form for W, the stress in the tissue is:

σ = pI+ 2

J

(

(

W
1
+ I
1
W
2

)

B−W
2
B2+W

λ
λ2a⊗a

)

− 2

3J

(

W
1
I
1
+2W

2
I
2
+W

λ
λ2

)

I

where B = J−2/3FFT , Wi = ∂W/∂Ii, a = J−1/3Fao/λ, and

p=K∂U/∂J. The model describes the stress-strain relation-

ship of the material for a given fiber direction and activation

level.

6. B-spline Fiber Representation

Muscle tissue fiber arrangements vary in complexity from

being relatively parallel and uniform to exhibiting several

distinct regions of fiber directions. In Ng-Thow-Hing and

Fiume25, volumetric B-spline solid models were used to suc-

cessfully capture detailed fiber architecture of actual mus-

cle specimens. In our work, we use B-spline solids to solve

the problem of assigning fiber directions to individual tetra-

hedrons of our muscle simulation meshes by querying the

B-spline solid’s local fiber direction at a spatial point corre-

sponding to the centroid of a tetrahedron. As the fibers of-

ten vary in direction within a B-spline solid, this permits the

modeling of a nonuniform distribution of fibers within a sin-

gle muscle.

B-spline solids have a volumetric domain and a compact

representation of control points, q
i jk
, weighted by B-spline

basis functions Bu(u),Bv(v),Bw(w):

F(u,v,w) = ∑
i

∑
j
∑
k

Bui (u)B
v
j(v)B

w
k (w)q

i jk

where F is a volumetric vector function mapping the mate-

rial coordinates (u,v,w) to their corresponding spatial coor-
dinates. Taking the partial derivatives of F with respect to

each of the three material coordinates ∂F/∂u, ∂F/∂v, ∂F/∂w

produces three directional vectors. In this manner, a B-spline

solid has an implicit fiber field defined in its domain in each

of its material coordinate directions.

In Ng-Thow-Hing and Fiume25, one of these parameters

always coincided with the local tangent of the muscle fiber

located at the spatial position corresponding to the material

coordinates. The inverse problem of finding the material co-

ordinates for a given spatial point can be solved using numer-

ical root-finding techniques to create a fiber query function

X(x) =
∂F(F−1(x))/∂m

∥

∥∂F(F−1(x))/∂m
∥

∥

with m = {u,v,w} depending on the parameter chosen and
the fiber directions normalized. The function X describes an

operation that first inversely maps the spatial points back to

their corresponding material coordinates (u,v,w) and then
computes the normalized fiber direction at that point.

7. Specifying Activation Levels

We use a variation of an established biomechanics analy-

sis technique known as muscle force distribution7 to find

the activations of redundant sets of muscles about each joint

that they span. Muscle force distribution requires a static in-

verse dynamics analysis first be performed on the articulated

skeleton to estimate the required joint torques to achieve a

static pose. A simple line segment model of muscle is used

to efficiently compute muscle moment arms11, and a quasi-

static approach is used to solve the inverse dynamics by tak-

ing each key pose of an animation and assuming it is in static

equilibrium (velocities and accelerations are zero). This is

a sufficient assumption for relatively slow-moving motions,

but less adequate if limbs are undergoing high accelerations.

A constrained least-squares optimization1 is performed to

minimize the sum of activations squared while enforcing

equality constraints that balance the joint torques computed

from the inverse dynamics analysis with the sum of muscle

torques generated from the muscle forces about that joint.

See figure 6.

Although accurate muscle force models can be used in
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this technique, in practice we used a simpler linear mus-

cle force model: Fm = amF
max
m where the maximum mus-

cle force Fmaxm for muscle m is scaled linearly by its activa-

tion am. This simpler model requires only a single parameter,

Fmaxm , be specified for each muscle corresponding intuitively

to the inherent strength of the muscle, making it easier for

an animator to find a suitable set of muscle force parameters

to generate enough torque in the joints.

8. Simulating Skeletal Muscle

We built tetrahedral meshes (using Molino et al.20) of the bi-

ceps and triceps muscles from visible human data set32. This

mesh was combined with our muscle constitutive model in-

cluding the B-spline fiber directions and muscle activations.

FVM proved to be both efficient and robust on a wide variety

of both isometric and non-isometric simulations. We report

on a sample of these below.

8.1. Isometric Contraction

Figure 7 shows the results of an isometric contraction of both

the biceps brachii and the triceps brachii. The figure on the

left is the relaxed state, while the figure on the right demon-

strates the bulging of muscle bellies under contraction. The

muscle bellies bulge due to stretch in the tendons which have

a passive constitutive model. Multiple heads of both the tri-

ceps and the biceps muscles were included.

8.2. Contraction during Arm Movement

Elbow and shoulder angles were prescribed for a general arm

motion, and the activation levels for the biceps and triceps

were calculated (based on section 7). The muscle deforma-

tions during this motion were significant showing ballistic

follow through motion of the muscle. This motion is exag-

gerated here because there are no surrounding tissues (fascia,

other muscles, skin, etc.) to constrain the motion. See figure

8.

9. Conclusions and Future Work

Biomechanical simulations of human movement currently

assume that muscles contract uniformly by representing

muscles geometrically as a single line of action from origin

to insertion (e.g. Delp and Loan11). This limiting assumption

is largely a result of the computational intensity required by

FEM techniques to model nonlinear three-dimensional soft

materials. Previous three-dimensional FEM muscle models

have been limited—they have been used to simulate a sin-

gle muscle in isolation with highly simplified geometries

(e.g. Johansson17). In light of this, the geometrically intu-

itive FVM formulation should provide valuable insight in the

face of aggressive optimization, approximation and control

currently being sought after in both the graphics and biome-

chanics communities. Already, FVM has motivated our re-

duction of the multiplications needed to put the force on

the nodes from 288 (see Muller et al.23) to 54 per tetrahe-

dron. Moreover, we obtain this reduction while only storing

9 numbers per tetrahedron (as opposed to 45 in Muller et

al.23) in the second Piola-Kirchoff stress case, and without

any storage requirements whatsoever in the Cauchy stress

case.
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Figure 4: Deformable torus simulated with FVM.

Figure 5: Muscle fiber active and passive behavior.

Figure 6: Activations computed from three different poses.

The line segment muscles are color-coded along the spec-

trum of little activation (blue) to full activation (red).

Figure 7: Simulation of isometric contraction. A posterior

(from behind) view of the upper arm shows contraction of

the triceps muscle and the partially occluded biceps muscle

from passive (left) to full activation (right).

Figure 8: Muscle contraction with skeletal motion. Inverse

dynamics calculations were used with the motion sequence

to compute muscle activations. These activations influence

the amount of tension in the muscle during the animation

and hence cause the muscle to deform in a realistic manner.
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