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Abstract

Two cell-centered finite difference schemes on Voronoi meshes are de-
rived and investigated. Stability and error estimates in a discrete H!-
norm for both symmetric and nonsymmetric problems, including convec-
tion dominated, are proven. The theoretical results are illustrated with
several numerical experiments.
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1 Introduction

In this paper we construct cell-centered finite volume difference schemes on
Voronoi meshes for the following boundary value problem:

Find a function u(x) that satisfies the differential equation and the boundary
condition:

Lu(x) = f(x) in Q (1a)
u(x)=0 ondQ (1b)
where
Lu = V.(—a(x)Vu+ b(x)u).

The domain Q is a open subset of R, d = 2 or 3.
We counsistently use the notion of flux q defined below in (2a). We can
rewrite the equation (1la) in the “Aux” form

q=—aVu+ bu, (2a)
Va=f. (2b)

Note that we can write the equation (2b) as

| (amas= [ rax (3)
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using Gauss formulae for sufficiently smooth subdomains V' C €.

The common approach of all finite volume methods is to approximate the
integral of the normal component of the flux q and the source/sink function f
on a set of finite (control) volumes Vi, i =1,... ,n

(q.n)ds ~ Z gij » / fdx = ¢,
7oV JER() Vi

and the equations (3) on V; are replaced by the discrete equations

FES(5)
where the discrete fluxes ¢;; are related to the approximation of v in some way.

This approach is very natural for many applications, as heat transfer, fluid
flow in porous media, etc., where the differential problem (1) is derived from a
conservation law in an integral form for the flux q like (3) and a constitutive
relation between the flux q and the scalar variable u like (2a) is imposed.

Under some assumptions (see §2) the solution of the problem (1) satisfies
an appropriate stability estimate, the maximum principle, and the operator £
(or the corresponding bilinear form) is coercive. We would like to construct a
family of stable (even for very small diffusion) numerical methods that inherit
such properties as conservation, symmetry (the case b = 0), maximum principle
and coercivity in some discrete form. Moreover, we want our discretizations to
work for general domains and general grids introduced into them.

It is natural to ask whether a finite volume method with good approximation
properties that satisfies all conditions stated above can exist. We still do not
know the answer of this question. Kershaw [17] has shown with simple argument
that there is no nine point finite difference scheme on distorted quadrilateral
meshes for the diffusion problem (b = 0) that produces symmetric positive
definite monotone matrix and has truncation error of second order. Recall
that stability and truncation error of second order would imply second order
convergence, but this is not a necessary condition (cf. [36], [18] and [23]).

Mixed finite element methods are conservative and have good approximation
properties and this is the reason they are very active area of research. Russell
et. al. [27] have proposed a conservative control volume mixed method that
produces a nonsymmetric matrix for a symmetric differential problem. Thomas
has developed mixed finite volume methods [34, 35] that also generates a non-
symmetric matrix. Recently Arbogast, Wheeler and Yotov [2] have generalized
the results in [38] for diffusion problems with tensor coefficients and have de-
rived and analyzed new cell-centered finite volume difference schemes. We still
do not know when or even whether these methods are monotone. The research
in this direction has just begun [21].

Finite volume element methods are conservative, but not monotone in gen-
eral [24, 7, 30]. Conservative finite volume difference methods on triangular
meshes are well defined and monotone under quite restrictive conditions (acute-
angled triangles [37, 15] , or constant coefficients [13]). Interesting results have



been reported for quadrilateral vertex-centered finite volume difference schemes
[25, 22, 33, 31]. but the consistent theory for such meshes is still not available.

We derive two schemes, central difference scheme (CDS) for symmetric or
diffusion dominated problems and upwind difference scheme (UDS) for convec-
tion dominated problems and show that they are stable and first order accurate.
These finite difference schemes are monotone (CDS only for symmetric prob-
lems), have the flexibility and the accuracy of the linear finite elements on
simplexes (theoretically shown first order in a discrete H'-norm and computa-
tionally observed second order in L?-norm) and in addition they are conserva-
tive. Grids (Voronoi meshes) are not totally arbitrary, but general enough to
cover all practical problems. The restriction on the grids seems quite natural
since the discretization of the Laplacian with linear finite elements is monotone
if and only if the triangulation is Delauney [16] - dual to a Voronoi mesh in a
graph-theoretical sense.

Finite volume methods on Voronoi meshes are widely used in the engineering
practice, especially for reservoir simulations [12, 26]. Our theory justifies their
use and generalizes previous results for triangular meshes [37, 15].

The rest of the paper is organized in the following way. The properties of
the continuous problem (1) are discussed in §2. The grids and control volumes
are introduced in §3. In Section 4 we describe the discretization schemes and
show that they satisfy the discrete maximum principle and the discrete operator
is coercive. We prove the stability and error estimates in §5 and illustrate our
theoretical results with a few numerical experiments gathered in Section 6.

2 Properties of the continuous problem

Here we write the precise form of the properties of the problem (1) and its
solution mention above. We use the standard notation for Sobolev spaces [1]:

W™P(Q) = {u € LP(Q) : D € LP(Q), for 0 < |a| <m}.

The norm in WP (Q) is denoted ||.||m p,o and defined by

1/p
lullmpe=| D> IID"ulfg . 1<p<oo,
0<]a|<m
el 0.0 = oﬁnlﬁjgcm [D%ul| .2 5 p=00

and W™2(Q2) = H™(2). The dual space H () of H}(£) is equipped with
the norm

lufl-10 = sup [<uw.o>]
vEHL () llv]l1,2
v#0

We also use spaces H* () with real index s > 0 with norm defined in a counsistent

way (cf. [20], [1]).



We assume that the coefficients of the equation (1a) satisfy the conditions
group for convenience in the following assumption.

Assumption 1 Let the coefficient a(z) € L=(2) and b € (W‘jl/zJ““’oo(SZ))2 )
a > 0 be such that

(1) alz)>ag >0, (5a)
(i) V.b>0. (5b)

Under the Asqumption 1, the problem (1) has a unique weak solution
u € H}(Q) for fe H- (_d) and u satisfies the the stability estimate

[ellie < Cillfll-1a- (CP1)
The operator L is coercive in H}(Q), i.e.,
(Lo, v) > C'2||1J||iQ Yo e Hy(Q), (CP2)

where

(Lu,v) = / aVuVuvdx — /(b,Vv)u.dX.
Ja

JQ

Theorem 1 (Maximum principle) Let the function u € H'(S)) satisfies the
inequality (Lu,v) > 0Vv € CH(Q),v > 0 and the Assumption 1 be fulfilled.
Then if u(z) > k on 09

>
ebTSGI(IZlf uw(z) > min(0, k).

We can write the maximum principle in slightly simplified and schematical way
as

uw>0ondQ, Lu>0in Q implies v >01in Q. (CP3)

And finally we say that we have conservation property if for any connected
volume V = U2, V; the following relation holds:

/wq, dé_Z/ q.n dé_ /fdx_/fdx oy

We use the abbreviations (CP) to denote continuous property.

3 Grids, control volumes and discrete norms

We suppose that a grid @ = {x;}_;, x; = (#i1,... ,%i4) is introduced in the
domain Q and also € is partition into convex open polygons {V;}2 ;. called
control (finite) volumes, with the properties

0= V ViﬂVjZV) and ViﬂVjZ’)’ij:i#]'s

-

=1



where ;; is an interval in 2-D and convex polygon in 3-D. We denote the interior
grid points with w, i.e., w = WNQ and the grid points on 02 with dw. The grid
w and the control volumes {V;}?_; are chosen in a such way that inside every V;
there is only one point x; from w. Later we will discuss how we can construct
V; given x; and vice versa.

We use the standard symbols

h; = diam(V;), h =maxh;.

Functions defined for x € w are called grid functions. To emphasize their
dependence of the triangulation we use the subscript h,
We use the notations:

m(A) = / dx, A is a measurable set of R™, m =1,2,3,
A

4 1/2
d(X, Y) = [Z(Jz - yi)Z] ) d(X, Q) = }}lelg d(X, Y) s

=1
Y@i)={j:j#iand V, NV, £0}.

Given the grid functions up(x), va(x), © € @ we define the following discrete
inner products and norms:

(up,vp) = Z m(V;)up(xi)on(xi) ||Uh||§w = (up, up);

X;Ew
5 1 un(xi) —un(x)\°
lunliw = 3 > mlvij)d(wi, ;) <—(dz(x, X.3( ’
X;€w jen(i) R
The discrete H'—norm is defined by
llunllf o = lJunlld o + lunli . -

We also need the negative norm:

funll 1.0 = sup L)
.
' v #0 ||Uh

|1,w '

We consider Voronoi control volumes, i.e., the control volume V; is the set
of points in Q closest to x;. It is easy to see that these control volumes are
convex polygons. By construction the interval with end points x; and x; is
perpendicular to ;; and the plane where +;; lies intersects this interval in the
middle point denoted with x;;. Voronoi volumes are easily constructed from the
mesh w. We refer for discussion of geometrical properties of Voronoi volumes to
the survey papers by Aurenhammer [3] and Fortune [10]. We show a fragment
of Voronoi triangulation on Fig. 1. We will call such grids Voronoi cell-centered
grids.

ot



Figure 1: Voronoi triangulation

The planar Voronoi triangulation and the Delaunay triangulation are dual in
a graph-theoretical sense. Delaunay triangulation consists from triangles with
properties that the circumscribed circle of each triangle does not contain vertices
of any other triangles. Given Delaunay triangulation, i.e., a grid @ it is easy
to construct Voronoi volumes. We note that the Delaunay triangulation is one
of the most popular in computational mesh generation [11] especially for finite
element computations because of its optimal properties [5, 32].

As an example of a mesh generated from the control volumes we consider
circumscribed triangulations, i.e., there exists a circumscribed circle around each
control volume and the center of the circle is inside the control volume. The
grid consists of the centers of the circumscribed circles. A fragment of such
triangulation is depicted on Fig. 2. Circumscribed triangulations are difficult
to construct in general domains €2 and we will not consider such meshes, but we
like to note that the theory presented in this paper cover also such triangulatons.

Given n points in R% d = 2, 3 we can construct a Voronoi cell-centered
mesh. This includes many “pathological” cases. In order to develop reasonable
theory we impose some regularity conditions on the mesh. The sign ~ is used
to simplify the notation and a ~ b means that there are two positive constants
C7 and C5 independent from « and b such that Cia < b < Csa.

Assumption 2 (FV regular triangulations) We say that a cell centered tri-
angulation {V;}1_| is finite volume regular if every control volume satisfies

m(V;) ~ he, (6a)
d(zg,zj) ~hy, k=iorj, (6b)
d(zij,vij) ~he k=1 orj. (6c)

Remark 1 (6a) is the standard assumption for quasi-uniform finite element
meshes (cf. Ciarlet [8, p. 132]). The second assumption (6b) is assumed in



Figure 2: Circumscribed triangulation

order to prevent two points to be too close and eventual extra ill-conditioning
of the discrete scheme resulting from this. In finite element triangulations this
means all angles are bounded from below with @ > 0. The third assumption (6¢)
guarantees that x;; is not too far from v;; and is necessary for the approximation
properties of the methods (see the discussion in Lemma 3). The last assumption
means in finite element context that all angles are bounded from above with
m — . For finite element triangulations in 2-D (6a) implies (6b) and (6¢). We
do not know whether this is also true for Voronoi cell-centered meshes. Note
that we consider both 2 and 3-D meshes.

4 Discretization schemes

In this section we define the expressions of the discrete fluxes g;; through the
values of the approximation uy, of the continuous solution v. When these expres-
sions are substituted into the equations (4) we get a system of linear equations

,Chuh = ¢ (7)

We will investigate the properties of the discrete operator £;, and compare them
to the properties of L.
We approximate the scaled by m(V;) equation (3)

1 ’ 1
m '/Bw(—aVu—i—bu,n) ds = M/x;, flz)dx. (8)

w = —a(x)Vu(x) and v =b(x)u(x).

Denote
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Figure 3: General control volume V;

Splitting 0V; = Ujex(;)vij (see Fig. 3) the left-hand side of this identity is
written in the form:

ﬁ [/av (w,n)ds + -/BV, (v.m) d*] =

m(lvi) {Z / (w,n)ds + Z / (V,n)ds} (9)

JjES(3) 7 Vid jeES(4) ¥ Tii
We split the approximation of the balance equation (9) in two parts

Lpup = ,Cglz)uh + E;Ll)uh (10)

where L;LZ) is the part arising from the approximation of the second derivatives,

1) . . . . . ..
and EEL’ comes from the approximation of the first derivatives. We have the
expressions

ﬁf)lth = Z Wij, Ti€w, (11)
JEX(4)

Lluy = 3 vy, micw.
JEX(4)

In these formulas w;; and v;; are some approximations of the corresponding
integrals f%j(w, n)ds and f%j (v,n)ds. Now, in order to complete the finite
difference scheme we have to express the approximate fluxes w;; and v;; by the
approximate values up(x) of the solution u(x) at the grid points.



We denote by ;; an approximation of the integral fy_(b, n)ds with the
’ L)

properties:
(1) Bij+Bii=0. (12a)
(i1)  1B:i] < Cm(yij)lbllajz+a,cen (12b)
(#i1) / (b,n) ds — f; ;| < Chd+“|b|d/2+a,x’ﬂ , (12¢)
Y Yij

where C is a positive constant and « > 0. Similar conditions for 8 are used by
Baba and Tabata in constructing upwind finite element methods for parabolic
problems [4].

We consider some examples of quadrature formulas that satisfy conditions
(12). Let ;; be an interval with end points @; and a; and a middle point
a12. The following well known quadrature formulas (2-D triangulations) clearly
satisfy the conditions (12)

Bi; = (b.n)(a12) m(vys;),

iy = 205 () ) + (b))

For triangular and rectangular faces +;; (3-D triangulations) the quadrature
formulae

Bij = (b,n)(@pary) m(7ij)

fulfills (12) with apg, the barycenter of v;;.
We consider the following approximations.

4.1 Central difference scheme (CDS)

We call this scheme “central” because of the analogy of E;Ll) and a central
difference approximation of the first derivatives. The approximate fluxes are

defined by:

m(%ij) . [uny — ungi
Wig\X) == ki : 13
w J(X) 111(‘/;‘) J d(iLquL]) : ( 3‘])
Bij  [dlej wij) d(w, wij)
i\ = Uhi = j 131
vij (x) m(V;) | d(zi, x;) Uh,i + d(:ﬂ.i,wj)uh’] (13b)

where

is the harmonic average of diffusion coefficient.



An application of the discrete maximum principle shows that CDS is stable
if the following inequalities are satisfied

3’/ 7 d TiyTij
P; = max 28] ) (i, ij)
i@ m(yig) ki

<1, z;=1,...,n. (14)

In some application P; is called a local (cell) Peclet number (cf. [14], [28]).
Note that the quantity |5; ;|/ m(v;;) does not depend upon h and therefore the
inequalities (14) are satisfied ouly for sufficiently small h.

We will deduce the properties of CDS using the tools developed for UDS.

4.2 Upwind difference scheme (UDS)

One of the ways to find stable finite difference approximation for convection-
diffusion boundary value problem is to use upwind approximation for the first
derivatives. In this case, £2) is defined as in CDS and the terms v; 5 in £
are approximated in the following way:

vi g = B juni + By jun.; (15a)

where /3;" ; and f; ; are defined via the formulas

gr o= L B +1Pis) g = L Bii—1Pisl)
Mmoo T e (g,
The definition of the discrete fluxes w;; and v;; (13), (15) imply that
wi; = —wj; and v = —vj;. (16)

We can easily show using (16) that the discrete flux through the boundary of
any connected volume V such that V = U2, V; and V; are control volumes,
equals to the sum of sources/sinks

v v

Sowi=d Y ai=) ¢ (DP4)
ov ) =1

=1 jex (4
which is the discrete conservation law corresponding to (CP4). We use the
abbreviations (DP) to denote discrete property.

In order to investigate the properties of the UDS we need the following
auxiliary result.

Proposition 1 Let b(z) € (W/2H(Q))4 o > 0 and there exists a positive
constant By such that

/ (b(z),n)ds > Bom(V) (17)
J OV

10



for any volume V C Q with Lipschitz—continuous boundary 0V = Ujesi)vij-
Suppose that 3; ; satisfies the condition (12c). Then there exists hy such that
for h € (0,hg) the following inequality holds:

Z Bij > com(V), (18)
JEX(4)

where ¢y = Bo — O(hY).

Proof: It follows from the FV regularity of the control volume V and the
condition (12¢). O
We replace the condition (5a) of Assumption 1 with the stronger one.

Assumption 3 b(z) € (W¥/2+=(Q))" o> 0 and V.b(z)) > fo > 0
for almost every x € 2.

Remark 2 We can consider the left hand side of (18) as a definition of the
discrete divergence operator. Then the above proposition means that, if the
divergence of the vector b is greater than 3y > 0, the discrete analogy of div(b)
is also positive for sufficiently small h.

First we will prove that the considered scheme is monotone.

Proposition 2 Let the Assumptions 1, 2 and 3 be satisfied, the discrete fluzes
w; j and v; j be defined by the formulas (13a) and (15), respectively, and the
approzimations B; ; fulfill the condition (12c). Then UDS satisfies the discrete
mazimum principle and the corresponding matriz Ly, is an M-matriz.

Proof: Let a;; be the coefficients in front of uy_ ; in the ith equation. Then it
is enough to check the conditions [13]:

L. a;; >0 ai; <0 j#4u

2. a;;+ ZjeE(i) a;; > 0, ie., Ais strictly diagonally dominant.

We have
1.
111(7,,)
azz—n] V) Z [ L’,j+ﬂl]+|/@$,j|:|>0‘
7 jES(
1 [ miw)
2,7 — - kz 7 7,7 07
045 = v [Ty s = sl <
2.

ai; + Z ai,j—m( V) E Bij > co>0.

je3(4) JED(1)



The last inequality follows from the Proposition 1. O

Similarly as (CP3) we can write the discrete maximum principle as

up, > 0 on Ow, Lpu > 0in w implies up > 0in w. (DP3)

Note that to prove Proposition 2 we used only that k;; > 0, the Assumption
3 and (12¢). As a consequence of Proposition 2 we obtain that the problem (7)
has an unique solution. With more elaborated analysis we can prove Proposition
2 using only (6a). For symmetric problems (b = 0) the only condition to have
a monotone scheme is the condition (5a) of Assumption 1.

Now we show that the coercivity of the differential operator £ is inherited
by the discrete operator Ly, i.e., Ly, considered as a matrix is positive definite.

Proposition 3 Let the Assumptions 1, 2 and 3 be satisfied, the discrete fluzes
w;; and v;; be defined by the formulas (13a) and (15), respectively, and the
approzimations (B; ; fulfill the conditions (12). Then the matriz Ly of UDS is a
positive definite and there exists a constant C such that the following inequality
1s true:

(Lry.y) > Cllyll} , - for all y € D° = {y, y}, = 0}. (DP2)
The constant C depends only on the ratio a(z)/b(z)|.

Proof: Let z(z) and y(z) be grid functions from D, Then

(Lry.z) = Z Z m(Vi)w; jzj + Z Z m(V;)v; ;z; (19)

T, €w jERN(4 T, Ew jEX(3
=1+J.

We transform the sums in formulae (19)

- gl

* ijgz

_Z E d %J, ki (i — yilzi — ly5 — yilzi)

T,Cwjen(1

= 52 Z m(vys;)d(zi, z5)k lvi — il [Zj—zi]

1,7 -~
©;€w jES(4) d(zi, zj) d(r,,.,',,)

Using (15) we rewrite J in the following way

J = —Z Y 1B + 18 )yi + (Big — 18i)vs]

r; Cw jER(1)
L~ | |
= 3 Z Z Bigyizi + Z |8i,51(wi — ;) + Z Bijyizi| (20)
T;€w IJEZ( JEB(4 Jex(i) J
= Ji+Ja+Js5.

12



We now transform the second term in (20)

Z Z 1853 \(yi — yj)zi = 7 Z > 1By — yi)(zi — z)
€W jEN(1 ;€W jE3 (1)
and the third term in (20)

Z Z ﬁz,jy]'zz:

TiCw jE3(1)

i,jYi%i + 05,17

s

1
1 i (Yjz — yizg) .

P
P

Finally we get

1 lvj —ws] [z — 2l

Lny, 2) - (i V(i ) s ;=2 st
( ’ 2 26: ZZ: / i) Jd(LL,l‘J) d(z;, xj)

1

5 Z Z /61,] YiZi + — Z Z |/61,J| '_y] '_Zj)

TiCw \jER(4) wEw,ez}(
+7 Z Z Bii(yjzi — yizj) -
r; Cw jER(1)

Letting z = y in the above formula the desired result follows using Proposition
1 and the FV regularity of the control volumes. O If is easy to show that (DP2)
is also satisfied for CDS is the problem (1) is diffusion dominated.

5 Stability and error estimates

The stability of problem (7) is a simple consequence of the positive definiteness
of the matrix L. Namely, we prove the following lemma.

Lemma 1 Let the Assumptions 2 and 3 be satisfied. Then for UDS the fol-
lowing a priori estimate is valid:

||“’h||1,w S C”¢’||—1,w: (DPl)

where uy, is the discrete solution and ¢ is the right-hand side of (7). The constant
C in this estimate does not depend on h or ¢.

The error analysis presented here is done in the general framework of the meth-
ods developed in [29] and [9]. We consider only the case when a(z) = 1. Let

2(z) =up(z) —u(z), v €w

13



be the error of the finite difference method. Substituting u, = 2z + w in (7) we
obtain

Lrz=¢—Lpu=1). (21)

Then using (7)—(15) we transform ¢ in the following form

Ly
— (W,n)ds—u’i,j]

jezz:m V) /%‘-f
+ Z

We define the local truncation error in the following way:

Vij

m( / (v,n)ds — 'vi’j] = b1+ P2 = i

1 " V;
Nij = / (w,n)ds — m(Vs) w;j, (22a)
m(7i;) Yij m(7ij)
1 f
M j = (v,n)ds — m(V,-) Vi - (22b)

First we consider the term (¢2, z). By the definition of the discrete inner product
and ¢z ; we have

(p2,2) = lel(m)¢2,izi

T;Ew

[“J ;]
Z Z w,n) ds—l_m(%j)kud(x—” % .
T; €W jEX(1) v Yis I

We can regroup the terms (we call this nonuniform summation by parts) to get

(42.2) = %ZZE;) { [ [ v+ %} =
/ (w,n) +Hl(7'z‘)7\"iw] Z}
Jji ! (@, x;) !
= _% Z Z (](T,.Tj)m(%J)
1 , 3 m(V;) w. [z — 2]
[m(m /W(W“n) m(7;;) J] (i, 25)

- _%Z Z d(z;, ;) (’m)nu%-

_|_

14



By the Cauchy—Schwartz inequality follows

1/2 1/
2
I DOD RTATERNT I DU LA
T, €w jEN(4) T;Ew jEX(7) J
< nllllzlle-

Here for convenience we denote with ||n]|.,. the first sum above.
Likewise

(#1,2) < |lullwll2ll1e-

Summarizing these results and using Proposition 3 we obtain the following
main result.

Lemma 2 Let the Assumptions 1, 2 and 3 be satisfied. The error z(z) =
up(z) —u(z), © € w of UDS satisfies the a priori estimate
12110 < C (Il + llpllce) (23)

where the components 1;; and p;; of the local truncation error are defined
by (22) with approzimate fluzes w; ; and v;; determined by (13a), (15). The
constant C in this estimate does not depend on h or z.

In order to use the estimate (23) of Lemma 2 we have to bound the corresponding
norms of the local truncation error components 7; ; and pu; ; defined by (22).
These estimates are provided in the lemmas given below.

Cousider one fixed face v;; and the prism ¢;; with two faces through z; and
other faces are parallel to the straight line (z;, ;) and go through the boundary
of 7;;. Note that v;; is a convex polygon by construction.

Lemma 3 Let the solution of the problem (1) be H?-regular, % < s, and the
component of the local truncation error n; ; be defined by (22a) with the approz-
imate fluz w;; determined by (13a). Then the following estimate holds:

. 3
[7:,5] < C/7,°7d/271|11,|5,0ij ' 5 <s<2. (24)

Proof: Consider the component 7; ;(«) for the UDS. Then
Vi 1
M (u) = _mb) Wi, + — / (W.n)ds
m(yi;) 7 m(yig) Sy

_ [uj —us] 1 / @db

d(z;,z;)  m(yiy)

First we assuine that z;; € 7;;. Using the iinbedding of Sobolev spaces H*(§2) —
C™(Q), . = s—d/2 >0 and H*() < HX(y;5), x =s—1/2> 1 (cf. [1]) we

15



conclude that n(u) is a bounded linear functional in H*(e;;), 3/2 < s. It is easy
to check that 7; j(v) vanishes if u is a polynomial of first degree. Therefore, by
the Bramble-Hilbert lemma argument [6] we get that

3
i, (w)] < Clz,sfd/271|'u,|sﬁcij 3 <s<2. (25)

Next we consider the case when z;; is not in v;; for a F'V regular mesh, i.e.,
the Assumption 2 and in particular (6¢) is satisfied. Denote with +y a translation
of v;; such that z;; € . It is easy to see that

/ a—uda—/@dé
M(‘?n vé)n

where m(e;;) < Cm(é;;) and the constant C' does not depend on h or e;;. The
contribution to the error of the term (26) is at most of order h, so we neglect
it. O

< h ol (26)

Lemma 4 Let the solution of the problem (1) be H*-regular, % < s, and the
component of the local truncation error p;; be defined by (22b) with the ap-
prozimate fluz v;; determined by (13b) and (15). Then the following estimate

holds:

Ch*=%2||b|a/24a,000l|tllse;,  for CDS
il < o0 Bei ’ 27
il < { Ch=2||bllaj2tacocllullse,  for UDS, 0
where ;—i <s<2.
Proof: We consider two cases. For UDS suppose 3; ; > 0. Then
(u) . / (b,njud L B (28)
wij(u) = —— ,mjuds — ——0; ju;. ,
J m(vij) Jy,, m(y;;)

After the scaling is performed, the truncation error y; ; (28) simplifies to

poste) = [ (Bonjuds = s
Y.

Denote l1(b, %) = —p; ;(@). We represent [; in the following way:
l1(b,@) = fBi jp1 (@) + c(b, @) + Giq(b),

where the linear functionals p; (), ¢(b) and the bilinear functional ¢(b, @) are
defined by

u) = uU; — . u dS*,
p1(G) =4 ./Wi @
oba) = [ [fi; = (bwlfn - nias,
v Yij

q(b) = [”[ﬁi,j — (b,n)]ds.
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It is easy to see that p; (@) is bounded for @ € H*(&;;) and vanishes for constants.
Using a variation of Bramble-Hilbert lemma argument (see [13]) we get

d
|p1(u)| < Chl_d/2(|u|1,€i,j + hs_l|ﬂ|3~,éi]‘) » 5 <s< 2.

Obviously ¢(b, @) is a bilinear functional bounded for (b, @) € (Wl"x(éij))d X
H*(e;;) and vanishes for r, s polynomials of zero degree, i.e., c(r,a) = 0 for
u € H'(é;;) and ¢(b, s) =0 for b € (W1>°(e;;))%. Then by the bilinear variant
of the Bramble-Hilbert lemma (see [8]) we have

|C(b, u’)| < 0}1‘2_d/2|b|1~,00~€ij

ullfeij'

And finally the linear functional is estimated by the assumption (12c)

lg(b)| < Ch’d+a||b”d/2+a,oo,ﬂ'

Combining the estimates for p(.), ¢(.,.) and ¢(.) we get the first part of (27).
Similarly for CDS we define l5(b, @) = —p; j(@) and

lz(l_)ﬁ 'li) = Bi,jpz(ﬂ) + C(l_), ﬂ) + ’liiq(b) ,

where the linear functional ps(.) is given by the formulae

Yij

() = ot + aja;] —/ uds

and ¢(.) and c(.,.) are the same as above.
p2(@) is bounded for @ € H*(&;;), :Z] < s and vanishes for all polynomials of
first degree. Hence

. d
|p2(u)| < Ch’h_d/2|lu|5:€ij 3 § <s<2.

|

Now we are ready to prove the main result of this section.

Theorem 2 If the solution u(x) of the problem (1) is H*-regular, with 3 < s <
2 and the Assumptions 1, 2 and 3 are satisfied then UDS and CDS (when is
stable) have O(h*~) rate of convergence in the H'— discrete norm, i.e.,

lan =l < CH*ull e
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Proof: In Lemmas 3 and 4 we have proved the estimates for the components
7, and p; ; of the local truncation error. Hence

1/2

9l = | Y m(yij)d(zi.z;) > 0,
T Ew JES(3)
1/2

< C Z hd Z hzs_d_2|u|z,e,j

;W ]GE(Z)

§01h371|u|5’52, E <s< 2.

In the same way we show that

1l < CR[bllajatace,allulls.e

when CDS is used, and

||/l'||x,w <C (hs||b||d/2+a,oo,ﬂ||U||.s-,s’z + h|b|l),oo,s’z |U|1,Q)

otherwise. This completes the proof. O

6 Numerical results

In this section we present numerical experiments with several model problems
on a domain €2 - a pentagon with a square hole inside. The coordinates of the
pentagon vertexes are ((0,0), (1,0), (1.6,0), (0.5,2), (=0.6,1)) and the coordi-
nates of the square hole are ((0.15,0.45), (0.85,0.45), (0.85,1.15), (0.15,1.15)).
The domain  is shown on Fig. 4 (with 336 mesh points). We choose such a
domain to illustrate the flexibility of finite volume methods.

The Voronoi meshes are generated using the software product triangle and
Fig. 4is produced by showme. Both products are developed by J. R. Shewchuk
[32]. Triangle is a Delauney triangulator and it provides only the control on the
maximum area of the triangles. We used this option to generate six Delauney
triangulations and their dual Voronoi meshes. Although this approach do not
guarantee formally that the maximum area of Voronoi volumes will decrease
four time on every successive level, we believe that this is true in asymptotic.
The number of nodes increase roughly by four, at least in fourth, fifth and sixth
triangulations. Note that the usual refinement by dividing every triangle into
four equal triangles does not necessarily produce a Delauney triangulation.

The exact solution is chosen to be w = z(1 — z)y(1 — y). The problems are:

Problem 1 (Laplacian)

18



Figure 4: Domain € and mesh points

Problem 2 (Diffusion dominated)
a(z) =142% +4°, by =(z+ 1)y, by=ux+sin(y).
Problem 3 (Convection dominated)
a(r) =102, b1 = (14z cos(a)) cos(ar), by = (1+ysin(a))sin(a), a = 15°.
Problem 4 (Strongly convection dominated)
a(z) =107°, by=1, by=0.

In Table 1 we report the discrete L? and H'-norms of the error and the rate
of convergence 3, i.e. hP. The results for problems 1 and 2 clearly show second
order accuracy in LZ-norm and first order inH'-norm. We observe some fluc-
tuations that can be explained with geometrical irregularities or/and not exact
decreasing of the area in consecutive triangulations mention above. (Compare
with the results reported in [19]).

We point out that our theory for convection dominated case have to be con-
sidered as asymptotic, i.e., for sufficiently small h. Results reported for problems
3 and 4 show first order in L?-norm. For a = 10~2 the rate of convergence in
H'-norm increases with refinement of the mesh. For a = 107° this stage is still
not reached, although the results show that the UDS is stable.

Acknowledgments. The author is grateful to Professor Raytcho Lazarov
from Texas A&M University and Professor John Trangenstein from Duke Uni-
versity for the helpful discussions.
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Table 1: Discrete norms of the error and rate of convergence

N\ problem 1 2 3 4
31 L? | 49471073 | 7.215.1073 | 3.166.1072 | 4.474.1072
g
H' | 2.634.1072 | 3.843.1072 | 1.690.10"! | 2.382.10°!
G
97 L? | 2.266.107% | 2.967.10 | 1.750.1072 | 3.432.10~2
16 1.126 1.282 0.855 0.383
H' | 2.831.1072 | 3.373.1072 | 1.653.10"! | 2.602.10" !
Jé) —0.104 0.188 0.032 —0.527
336 L? | 6.474.107% | 8.178.107* | 1.143.107! | 2.149.1072
16 1.807 1.859 0.615 0.675
H' | 1.265.1072 | 1.420.1072 | 1.587.107! | 2.519.10°!
Jé) 1.162 1.248 0.059 0.047
1202 L? | 1.357.107% | 1.758.10=* | 6.205.1073 | 1.227.102
Jé) 2.254 2.212 0.881 0.808
H' | 7.104.107* | 8.062.10~° | 1.195.107! | 2.163.107!
Jé) 0.832 0.817 0.409 0.220
4643 L? | 3.359.107° | 4.107.10~° | 3.267.1073 | 6.409.1073
16 2.014 2.098 0.925 0.937
H' | 3.511.1073 | 3.992.10=3 | 9.507.10~% | 1.925.1071
Jé) 1.017 1.014 0.324 0.168
18054 L? | 9.434.107% | 1.171.10~° | 1.664.10~2 | 3.317.1073
16 1.832 1.810 0.973 0.950
H' | 1.857.1073 | 2.111.1073 | 6.494.1072 | 1.831.107!
Jé) 0.919 0.919 0.544 0.072
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