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Abstract

We perform a calculation in one-loop chiral perturbation theory of the two-pion matrix elements and correlation functions of
anI = 0 scalar operator, in finite and infinite volumes for both full and quenched QCD. We show that major difficulties arise in
the quenched theory due to the lack of unitarity. Similar problems are expected for quenched lattice calculations ofK → ππ

amplitudes with�I = 1/2. Our results raise the important question of whether it is consistent to studyK → ππ amplitudes
beyond leading order in chiral perturbation theory in quenched or partially quenched QCD.
 2002 Elsevier Science B.V. All rights reserved.

PACS: 11.15.Ha; 12.38.Gc; 12.15.Ff

1. Introduction

A precise quantitative evaluation of weak non-leptonic amplitudes in kaon decays is an enormous challenge
for lattice QCD. Although it has been demonstrated that such a calculation is possible, in principle, a number of
major practical difficulties must first be overcome. These difficulties are related to the construction of finite matrix
elements of renormalized operators from the lattice bare ones and to the extraction of physical amplitudes, including
final state interaction phases, from Euclidean correlation functions. For the latter problem, it has been demonstrated
that it would be possible in principle to obtain the physical amplitudes by performing unquenched simulations with
physical quark masses on lattice volumes large enough to have discretization errors and finite size effects under
control [1,2]. At present, however, it is not possible to perform unquenched simulations on such large volumes
and therefore a certain number of approximations are necessary. One of the main approximations (in addition to
quenching) consists in working with unphysical quark masses and/or external meson momenta, and estimating the
physical amplitudes by extrapolating to the physical point. A key element of our strategy in evaluatingK → ππ

matrix elements is the use of Chiral Perturbation Theory (χPT) at next-to-leading order (NLO) [3]. In a recent
paper [4], we have presented the relevant formulae for�I = 3/2 transitions on finite and infinite volumes, in the
full theory and in the quenched approximation. Our results show explicitly that all corrections which vanish as
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inverse powers of the volume can be eliminated by using the methods introduced in Refs. [1,2].1 The remaining
finite volume corrections are exponentially small (ofO(e−mL)). At the NLO inχPT this is true also in the quenched
approximation.

In this Letter we present the results obtained at NLO inχPT for matrix elements with anI = 0 two-pion
final state. We study these matrix elements in order to illustrate the main features present in�I = 1/2 K → ππ

transitions in quenched QCD. For these decays, the lack of unitarity of the quenched theory leads to a number of
problems which need to be solved in order to understand the volume dependence and to extract the amplitudes.
The main consequences of quenching, due to the lack of unitarity, can be summarized as follows:

• the final state interaction phase is not universal, since it depends on the operator used to create the two-pion
state. This is not surprising, since the basis of Watson’s theorem is unitarity;

• the Lüscher quantization condition [6] for the two-pion energy levels in a finite volume does not hold;
• a related consequence is that the Lellouch–Lüscher (LL) relation between the absolute value of the physical

amplitudes and the finite volume matrix elements [1,2] is no longer valid. It is, therefore, not possible to take
the infinite volume limit at constant physics, namely, with a fixed value ofW ;

• whereas it is normally possible to extract the lattice amplitudes by constructing suitable time-independent
ratios of correlation functions, this procedure fails in the quenched theory as explained in Section 2.2. In
particular, the time dependence of correlation functions corresponding to different operators which create the
same external state is not the same;

• in addition to the usual exponential dependence on the time intervals, the presence of the double pole
corresponding to the incompleteη′ propagator generates, at one-loop order inχPT, terms in the Euclidean
correlation functions which depend linearly, quadratically or cubically on the time [7]. Unlike the corrections
which shift the two-pion energy in a finite volume [4], these terms do not exponentiate and may cause practical
problems in the extraction of the finite volume matrix elements. A related problem is the appearance, at fixedL,
of corrections linear or cubic inL [7,8].

The last problem can be overcome by working in partially quenched QCD, where theη′ is heavy and decouples
from the light Goldstone boson sector. All the problems originating from the lack of unitarity (denoted as
the unitarity problem in the following) would, however, remain the same. Unitarity is recovered from partially
quenched QCD only in the limit when the number of sea and valence quarks is equal and their masses are equal.
This corresponds to full QCD.

In view of the difficulties listed above, it may be questioned whether it is possible to obtainK → ππ decay
amplitudes beyond leading order inχPT in quenched or partially quenched QCD. In the absence of a solution to
the problems encountered and discussed in this Letter, we would be limited to extracting the effective couplings
(the low-energy constants) corresponding to the operators in the weak Hamiltonian at lowest order in the chiral
expansion fromK → π matrix elements computed in lattice simulations. The absence of unitarity is intrinsic to
quenched and partially quenched QCD, and we do not have a solution to the unitarity problem. Nevertheless it is
tempting to speculate whether there might not be a possible pragmatic way to proceed, in spite of the failure of
Watson’s theorem. Indeed the key point is that, in the quenched case, the two-pion state is no longer an eigenstate
of the strong interaction Hamiltonian. The eigenstates of the Hamiltonian would be, formally, linear combinations
of physical pions and unphysical mesons composed of the pseudo-fermion fields. The latter, however, have the
wrong spin-statistic properties and for this reason unitarity breaks down. We speculate that it might be possible to
recover a variation of Watson’s theorem, and of the LL formula in finite volumes, by a suitable reinterpretation of
the quenched theory, for example, by using the replica method of Ref. [5], working in the basis of Hamiltonian

1 The infinite-volume limit,L→ ∞ (whereL is the length of each spatial dimension of the lattice), is to be taken at fixed physics, i.e., at
fixed two-pion energyW .
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eigenstates. However, we stress that this is only a speculation and we will report on the conclusions of our
investigations of this important question in a future paper.

Since all the major difficulties arising from theunitarity problem depend only on the quantum numbers of
the operators and final state, for the sake of illustration we discuss in this Letter matrix elements of the form
〈ππ |S|0〉, whereS is a scalar and isoscalar operator which can annihilate the two-pion state. We also discuss the
properties of the correlation functions from which such matrix elements are obtained. The discussion can readily
be extended toK → ππ matrix elements of�I = 1/2 operators of the effective weak Hamiltonian [9]. The
results for the�I = 1/2 amplitudes in one loopχPT on finite and infinite volumes, in the full theory and in the
quenched approximation, will be presented in a forthcoming publication [10]. In our calculation we have used
the formulation of the quenched chiral Lagrangian introduced in Ref. [11], using the conventions and notation
presented in Section 3 of Ref. [4]. The scalar operator is defined by

(1)S = tr
[
Σ +Σ†],

in the full theory and as

(2)Sq =
∑
i=1,3

[
Σq +Σq†]

ii
,

in the quenched theory, where the trace (sum) is taken over the indices of the chiral groupSU(3)L ⊗ SU(3)R
(graded groupSU(3|3)L ⊗ SU(3|3)R). In the quenched case the fieldΣq is the graded extension of the standard
fieldΣ of the full theory.

The main results of our calculations are presented in Appendices A–D, which contain the following:

(1) the NLO expression for the matrix element of the scalar operator in full QCD and in infinite volume,
〈π+π−|S|0〉. This is given in Eq. (A.2);

(2) the expression for the corresponding quantity in the quenched theory〈π+π−|Sq |0〉, presented in Eq. (B.2);
(3) the NLO result for the correlation function〈0|π+

−�q(t1)π
−
�q (t2)S(0)|0〉 in a finite volume and in full QCD. This

is given in Eq. (C.1);
(4) the corresponding correlation function in the quenched theory,〈0|π+

−�q(t1)π
−
�q (t2)S

q(0)|0〉, presented in
Eq. (D.1).

In the aboveS(0) ≡ S(�x = 0, t = 0) with the corresponding definition ofSq(0). The expressions for the matrix
elements are given in Minkowski space, whereas those for the correlation functions are presented in Euclidean
space. In the correlation functions we have used the following definition for the Fourier transform of the fields

(3)π�q(t)=
∫
d3x π(�x, t)ei �q·�x.

The correlation functions depend on the choice oft1 andt2. In this Letter, for purposes of illustration, we present
the results for the two casest1 = t2 andt1 � t2.

In Section 2 we discuss the physical interpretation of the expressions obtained at one-loop inχPT for the
different cases and the implications for the relation between finite volume Euclidean correlation functions and
physical amplitudes (including final state interaction phases) [1,2]. The relevant expressions and the technical
details can be found in the appendices.

2. Discussion of the one-loop calculations

In this section, we discuss the extraction of the physical amplitudes from finite-volume Euclidean correlation
functions, using the results obtained in one-loopχPT. We first consider the unquenched case, where we explicitly
check the validity of LL relation [1,2], derived using general properties of quantum mechanics and field theory.
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2.1. Extraction of the physical amplitude from the scalar correlation function in full QCD

We begin our discussion from the correlation function of the scalar operator with two pion fields, in the full
theory at finite volume,〈0|π+

−�q(t1)π
−
�q (t2)S(0)|0〉. The tree-level and one-loop diagrams are shown in Figs. 1(t)

and (z), (a) and (b). Final state interactions, and consequently power-like finite volume corrections, are only
given by the diagram in Fig. 1(b).2 The NLO expression for the correlation function is given in Eq. (C.1). The
corresponding Minkowski amplitude in infinite volume is given in Eq. (A.2). In this case we denote the contribution
of the diagrams in Figs. 1(z), (a) and (b) byIz, Ia andIb, respectively, and define the relative one-loop correction to
the infinite volume amplitude asA∞ = 1/(4πf )2(Iz + Ia + Ib), see Eqs. (A.2) and (A.3). Final state interactions
are encoded in the functionA(m) introduced in Eq. (A.4).

In a finite volume the corrections to the amplitude from the diagrams in Figs. 1(z) and (a) (Iz and Ia ,
respectively) are the same as in infinite volume up to exponentially small terms (in the volume) that will be
neglected in the following. The diagram in Fig. 1(b) gives a correction,Ib(t1, t2), which is a function of the time
coordinates of the interpolating operators which annihilate the two pions (the two-pion sink).

At lowest order (obtained by settingIz = Ia = Ib(t1, t2)= 0), the time dependent factor

(4)
e−Et1
2E

e−Et2
2E

,

can be removed by dividing by the two-pion propagator in the free theory, and in this way the required matrix
element can be obtained. In Eq. (4)E is the energy of each of the pions,E = √�q2 +m2

π .
At one-loop order the relevant finite-volume correction to the correlation function of Eq. (C.1) is, therefore,

given byIb(t1, t2) which is presented explicitly in Eq. (C.2). We rewriteIb(t1, t2) asIb(t1, t2)= Re(Ib)+ T (t2)+
R(t1, t2), whereIb is the corresponding infinite-volume one-loop contribution to the matrix element (see Eq. (A.3))
and we now discuss the significance of the termsT andR.

T (t2) contains the one-loop corrections which are multiplied by thecorrect time dependence, exp(−Wt2)
exp(−E(t1 − t2)) (after exponentiation), whereW = 2E +�W and�W is the shift of the two-pion energy due
to interactions in the finite volume [4]. We can readily extract�W from the coefficient oft2 in the expression for

(t) (z)

(a) (b)

Fig. 1. Tree level (t) and one-loopχPT diagrams for the〈π−π+|S|0〉 amplitude and〈0|π−π+S|0〉 correlation function. The grey circle
represents the scalar source while the squares are strong vertices.

2 The evaluation of this diagram forI = 2 final states was explained in some detail in Section 4 of Ref. [4]. We therefore do not present a
description of the calculation forI = 0 final states, but limit the discussion to the implications of the results.
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T (t2) in Eq. (C.4),

(5)�W = − ν

4f 2L3

(
8− m2

π

E2

)
.

It is then straightforward to check that Eq. (5) reproduces the well known result for the scattering lengthaI=0
0 [13].

When the two pions are at rest Eq. (5) gives

(6)W = 2mπ − 4πaI=0
0

mπL3
,

whereaI=0
0 = 7mπ/(16πf 2

π ).
T (t2) also contains the finite volume corrections to:

(1) the matrix element of the scalar operator. These are given by the one-loop component of the LL-factor relating
the infinite-volume and finite-volume amplitudes,M∞ andMV , respectively, (|M∞|2 = LL× |MV |2);

(2) the two-pion sink used to annihilate the pions created by the scalar source. We refer to these asForward Time
Contributions or FTCs. They are presented explicitly in Eq. (C.6).

The FTCs are eliminated by dividing〈0|π+
−�q(t1)π

−
�q (t2)S(0)|0〉 by (the square root of ) a suitableππ correlation

function [4]

(7)Gππ→ππ (t1, t2)≡
∑

�p,�q; | �p|=|�q|, |�q| fixed

〈0|π�q(t1)π−�q(t2)π†
− �p(−t2)π†

�p(−t1)|0〉

= ν
e−2Wt2

(2E)2
L6

(
1+

(
1− 3m2

π

8E2

)
2ν

3f 2EL3

)
, for t1 = t2,

= ν
e−2Wt2−2E(t1−t2)

(2E)2
L6

(
1+

(
1− 3m2

π

8E2

)
ν

3f 2EL3

)
, for t1 � t2.

Note that in the unquenched case the finite-volume energyW appearing in Eq. (7) is, as expected, the same as in

(8)〈0|π+
−�q(t1)π

−
�q (t2)S(0)|0〉 ∝ e−E(t1−t2)e−Wt2,

because we are considering the same final state. As shown below, this is not true in the quenched and in the partially
quenched theories.

FinallyR(t1, t2) corresponds to contributions to the correlation function whose time dependence is governed by
energies different fromW and which therefore can be eliminated by studying this time dependence [4,12]. Since it
is not relevant to our discussion,R(t1, t2) will be neglected in the formulae given in the appendices.

2.2. The scalar correlation function in the quenched theory

In one-loopχPT with I = 2 final states (as, for example, in�I = 3/2K → ππ transitions) we can follow the
path outlined above for full QCD also in the quenched theory. This is not the case, however, when we consider
the infinite-volume amplitude or the finite-volume correlation function of the isosinglet scalar operator with two
pion fields in the quenched theory. The one-loop expression for the amplitude〈π+π−|Sq |0〉 is given in Eq. (B.2)
and for the correlation function〈0|π+

−�q(t1)π
−
�q (t2)S

q(0)|0〉 in Eq. (D.1). In this case, even in infinite volume there
are severe difficulties, for example, the imaginary part of the amplitude given in Eq. (B.2), corresponding to the
final state interactions, depends on the scalar operator and diverges at threshold, i.e., whens→ 4m2

π [15]. We now
consider what happens for the correlation function in a finite volume.

For illustration, let us start by neglecting the contribution of theη′ double pole by settingm0 = 0 andα = 0
(they are defined in Eq. (B.1)). For simplicity we also neglect the terms proportional tov1,2 (v1,2 are also defined
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in Eq. (B.1)). This is similar to the situation encountered in the partially quenched case where theη′ is heavy, but
unitarity is violated. In this case all thea(i)11 defined in Appendix D satisfya(i)11 = 0 and forE <mK <ms̄s only the
first line ofT q(t2) in Eq. (D.4) contributes

(9)T q(t2)= − E2

2f 2

[
− 2νt2
E2L3 +

(
− ν

3E3L3 ;− ν

6E3L3

)
+

(
z(0)

2E3L3 − z(1)

2π2EL

)]
.

The terms(. . . ; . . .) are the forward-time contributions (FTCs) respectively, for the two casest1 � t2 andt2 = t1.
The first term in Eq. (9) is the shift in the energy of the two-pion final state. This shift,

(10)�W = − ν

f 2L3

is different from that obtained from theππ → ππ correlation function in Eq. (7), which is

(11)�W = − ν

4f 2L3

(
8− m2

π

E2

)
.

The latter in fact is the same in the quenched and unquenched theories, since, at this order, it is given by a tree
diagram. Once the contribution from theη′ double pole is included, at this order there are quadratic and cubic terms
in t2 present inT q(t2), but not in theππ → ππ correlation function.

The second term in Eq. (9) should be cancelled when extracting the matrix element of the scalar operator by
dividing by the square root of theππ → ππ correlation function:

(12)
∣∣〈ππ |Sq |0〉V

∣∣ =
〈0|π+

−�q(t1)π
−
�q (t2)S

q(0)|0〉
√
Gππ→ππ (t1, t2)

,

since it is the finite volume correction to the sink operator used to annihilate the two pions. One can readily
verify that the cancellation does not occur, unlike in the unquenched theory. Thus the power corrections in 1/L to
|〈ππ |Sq |0〉V | are not those expected on the basis of the Lellouch–Lüscher formula.

3. Conclusion

In this Letter we have shown that the standard strategy for extracting the amplitude and the relative phase from
finite-volume calculations of correlation functions fails in the quenched theory forI = 0 two-pion final states.
We encounter the same problems when computing the matrix elements of the operators relevant for�I = 1/2
K → ππ transitions at one-loop order inχPT [10].

At present we do not know whether it might be possible to recover a modification of Watson’s theorem and
of the LL formula in finite volumes, which would allow for a consistent determination ofI = 0 two-pion matrix
elements beyond leading order in quenchedχPT. We are currently investigating the possibility of performing a
suitable analytic continuation in the numbers of flavours, using the replica method of Ref. [5] at one-loop order in
χPT.
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Appendix A. The scalar amplitude in full QCD

To fix the conventions we start by writing the chiral Lagrangian used in our calculations in the full QCD:

(A.1)Lstrong= f 2

8
tr
[(
∂µΣ

†)(∂µΣ) +Σ†χ + χ†Σ
]
,

where the decay constantf is normalized in such way thatfπ ∼ 132 MeV.
The one-loop matrix element of the scalar operator in full QCD in infinite volume is given by

(A.2)
〈
π−(�q)π+(−�q)∣∣S|0〉 ≡ − 8

f 2 [1+A∞] = − 8

f 2

[
1+ 1

(4πf )2
(Iz + Ia + Ib)

]
,

where

Iz = −2

3
m2
K log

(
m2
π

m2
K

)
+ 2

3

(
m2
K + 2m2

π

)
log

(
m2
π

µ2

)
,

Ia = −m
2
η

3
log

(
m2
η

µ2

)
− 5m2

π

3
log

(
m2
π

µ2

)
− 4m2

K

3
log

(
m2
K

µ2

)
,

Ib = (
m2
π − 2s

)
A(mπ)− sA(mK)− m2

π

3
A(mη)+

(
7

3
m2
π − 2s

)
log

(
m2
π

µ2

)
+

(
2

3
m2
K − s

)
log

(
m2
K

µ2

)

(A.3)− m2
π

3
log

(
m2
η

µ2

)
+

(
3s − 2

3
m2
π

)
.

In the above expressionsµ is the renormalization scale,s = (pπ− + pπ+)2 is the square of the two-pion center of
mass energy and

(A.4)A(m)≡
√

1− 4
m2

s

(
log

(
1+ √

1− 4m2/s

1− √
1− 4m2/s

)
− iπθ

(
1− 4

m2

s

))
.

To the one-loop corrections listed in the above equations, we should add those proportional to the Gasser–
Leutwyler coefficients,Li [13], appearing at NLO in the strong interaction chiral Lagrangian. These effects,
combined withIz, are reabsorbed into the renormalization of the decay constant, leading to the replacement of
the factor 1/f 2 by 1/f 2

π in the matrix elements of the scalar operator. Since these terms do not affect the finite
volume corrections which are the object of the present study, we will not discuss them further here. Similarly
the matrix elements of the (higher-dimensional) counter-terms of the scalar density do not contribute to the finite
volume effects and will not be considered.

Thes-wave phase shift for theI = 0 two-pion state at one-loop inχPT is given by

(A.5)δ(s)= 2s −m2
π

16πf 2

√
1− 4

m2
π

s
.

For s � 4m2
π , we have Arg[〈π−(�q)π+(−�q)|S|0〉] = δ(s). Note that the amplitude remains finite at threshold, i.e.,

ass→ 4m2
π .
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Appendix B. The scalar amplitude in quenched QCD

In this appendix we discuss the matrix element of the scalar density in quenched QCD. The quenched chiral
Lagrangian used in our calculations is:

Lqstrong=
(
f 2

8
+ v1

2
Φ2

0

)
str

[(
∂µΣ

q†)(∂µΣq)] +
(
f 2

8
+ v2

2
Φ2

0

)
str

[
Σq†χ + χ†Σq

]
(B.1)−m2

0Φ
2
0 + α (∂µΦ0)

(
∂µΦ0

)
,

with the super-η′ field,Φ0 = f/2i str[logΣq ]/√6.
The one-loop matrix element of the scalar operator in the quenched theory, at infinite volume, is given by

(B.2)
〈
π+π−∣∣Sq |0〉 ≡ − 8

f 2

[
1+Aq∞

] = − 8

f 2

[
1+ 1

(4πf )2
(
I
q
z + Iqa + Iqb

)]
,

where

I
q
z = 0,

I
q
a = −2m2

π

3
log

(
m2
π

µ2

)
− m2

K

3
log

(
m2
K

µ2

)
− 2m2

0

3

[
1+ log

(
m2
π

µ2

)]
+ 2

3
αm2

π

[
1+ 2 log

(
m2
π

µ2

)]
,

I
q
b = s

(
3

2
−A(mπ)− 1

2
A(mK)

)
+

(
2

3
m2
π − s

)
log

(
m2
π

µ2

)
+

(
1

3
m2
K − s

2

)
log

(
m2
K

µ2

)

+ 2m2
π(v2 − v1)+ sv1

3

(
A(ms̄s)+ 2A(mπ)+ 2 log

(
m2
π

µ2

)
+ log

(
m2
s̄s

µ2

)
− 3

)

+m2
0

[
4m2

π

3(s − 4m2
π)
A(mπ)

]
+ α4m2

π

3

[
log

(
m2
π

µ2

)
− 1+ s − 5m2

π

s − 4m2
π

A(mπ)

]

+m4
0

[
m2
π

18(m2
K −m2

π)
2

(
A10 −A(ms̄s)

) − 8m2
π

9s(s − 4m2
π)

+ m2
π

9s(m2
K −m2

π )
log

(
m2
s̄s

m2
π

)

− m2
π [32m6

π + 16m4
K(2m

2
π − s)− 8m2

πs
2 + s3 − 32m2

Km
2
π(2m

2
π − s)]

18s(m2
K −m2

π)
2(s − 4m2

π)
2

A(mπ)

]

+ αm2
0

[
16m4

π

9s(s − 4m2
π)

+ m2
π

9(m2
K −m2

π )
2

(
m2
s̄sA(ms̄s)−m2

KA10
) − m

2
π (2m

2
K − s)

9s(m2
K −m2

π)
log

(
m2
s̄s

m2
π

)

+ m
2
π [8(m2

K −m2
π)

2(4m4
π + 2m2

πs − s2)+m2
πs(s − 4m2

π)
2]

9s(m2
K −m2

π)
2(s − 4m2

π)
2

A(mπ)

]

+ 2m2
π

3
α2

[
1− 4m4

π

3s(s − 4m2
π)

+ m2
s̄s

12(m2
K −m2

π)
2

(
m2
πA10 −m2

s̄sA(ms̄s)
)

− [8(m2
K −m2

π)
2(4m6

π + 22m4
πs − 10m2

πs
2 + s3)+m4

πs(s − 4m2
π)

2]
12s(m2

K −m2
π)

2(s − 4m2
π)

2
A(mπ)

− m
2
πm

2
s̄s + s(4m2

K − 5m2
π)

6s(m2
K −m2

π )
log

(
m2
π

µ2

)
− m2

s̄s (s −m2
π)

6s(m2
K −m2

π )
log

(
m2
s̄s

µ2

)]
,

with

m2
s̄s = 2m2

K −m2
π ,
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A10 =Λ log

(
1− 2

m2
K

s
+Λ

1− 2
m2
K

s
−Λ

)
− iπθ(√s − (ms̄s +mπ)

)
,

Λ=
√

1+ 4
m4
K

s2
+ 4
m4
π

s2
− 4
m2
K

s

(
1+ 2

m2
π

s

)
.

The imaginary part of the amplitude diverges at threshold, i.e., ass→ 4m2
π [14,15].

Appendix C. Finite-volume scalar correlation function in full QCD

In this appendix we give the complete one-loop expression of the finite-volume correlation function of the scalar
operator with two pion fields in the full theory:

(C.1)〈0|π+
−�q(t1)π

−
�q (t2)S(0)|0〉 = e−Et1

2E

e−Et2
2E

(
− 8

f 2

)[
1+ 1

(4πf )2
(Iz + Ia)+ Ib(t1, t2)

]
,

whereE = √�q 2 +m2
π . Since we are interested in finite volume corrections we give only the explicit expression

for Ib(t1, t2). We write

(C.2)Ib(t1, t2)= − E2

2f 2 [A00 +A11 +A22],
where

A00 = m2
π

6E2

1

L3

∑
�k

1

w2
0

{
1

2(E−w0)
− 1

2(E+w0)
− e2(E−w0)t2

(
1

2(E −w0)
+ 1

2w0

)

+ e2Et2−2w0t1

(
1

2w0
− 1

2(w0 +E)
)}
,

A11 = 1

L3

∑
�k

{
d+(w1)

2(E −w1)
− d−(w1)

2(E +w1)
− e2(E−w1)t2

(
d+(w1)

2(E −w1)
+ d0(w1)

2w1

)

+ e2Et2−2w1t1

(
d0(w1)

2w1
− d−(w1)

2(w1 +E)
)}
,

A22 = 1

L3

∑
�k

{
c+(w2)

2(E −w2)
− c−(w2)

2(E +w2)
− e2(E−w2)t2

(
c+(w2)

2(E −w2)
+ c0(w2)

2w2

)

+ e2Et2−2w2t1

(
c0(w2)

2w2
− c−(w2)

2(w2 +E)
)}
.

In the above expressions

w0 =
√

�k2 +m2
s̄s , w1 =

√
�k2 +m2

π , w2 =
√

�k2 +m2
K,

c±(w)= 2

3

E2 ±Ew+w2

E2w2 , c0(w)= 2

3

1

E2 , d±,0(w)= 2c±,0(w)− m2
π

2E2w2 .

Evaluating the sums, we find

(C.3)〈0|π+
−�q(t1)π

−
�q (t2)S(0)|0〉 = e−Et1

2E

e−Et2
2E

(
− 8

f 2

)[
1+ Re(A∞)+ T (t2)

]
,
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where, forE <mK <ms̄s ,

T (t2)= − E2

2f 2

[
− νt2

E2L3

(
4− m2

π

2E2

)
+

(
2− 3m2

π

4E2

)(
− ν

3E3L3
;− ν

6E3L3

)

(C.4)+
(
z(0)

E3L3

(
1− 3m2

π

8E2

)
− z(1)

π2EL

(
1− m2

π

8E2

))]

andν = ∑
�k:w=E . We have used

(C.5)z(s)=
∑

|�l|�=|�n|

1

(�l 2 − �n2)s
and �q = 2π

L
�n.

When we take the large-volume limit at fixed two-pion energy,W , we expect thatz(s) scales asL(2−2s) (and that
z(0)∼ −ν ∼ L2). Thus the finite volume corrections decrease as 1/L whenL→ ∞ [16].

The terms(. . . ; . . .) are the forward time contributions (FTCs) for the two casest1 � t2 andt2 = t1, respectively.
These are the terms which are reabsorbed by the sink when the matrix element is extracted (for a detailed discussion
see Section 4.1 of Ref. [4]).

From the above equations we find

�W = − ν

4f 2L3

(
8− m2

π

E2

)
−→ − 7

4f 2L3
�⇒ a0 = 7mπ

16πf 2
,

√
LL= 1− E2

2f 2

[
ν

(EL)3

(
3m2

π

8E2
− 1

)
− z(1)

π2EL

(
1− m2

π

8E2

)]
−→ 1+ m2

π

16π2f 2

(
7z(1)

mπL
+ 5π2

(mπL)3

)
,

(C.6)FTCs= 1+
(

1− 3m2
π

8E2

)(
ν

3f 2EL3 ; ν

6f 2EL3

)
−→ 1+

(
5

24f 2mπL3 ; 5

48f 2mπL3

)
,

where the limits refer to the case with the two pions at rest. All these results are in agreement with expectations:
the energy shift in a finite volume is precisely the one predicted by the Lüscher quantization condition [6]; theLL

factor is in agreement with the general formula of Ref. [1] and the FTCs term will be cancelled when we divide the
correlation function by the square root of theππ → ππ correlator of Eq. (7).

Appendix D. Finite-volume scalar correlation function in quenched QCD

In this appendix we give the complete one-loop expression of the finite-volume correlation function for the
scalar operator with two pion fields in the quenched theory:

(D.1)〈0|π+
−�q(t1)π

−
�q (t2)S

q(0)|0〉 = e−Et1
2E

e−Et2
2E

(
− 8

f 2

)[
1+ 1

(4πf )2
(
I
q
z + Iqa

) + Iqb (t1, t2)
]
,

where

(D.2)I
q
b (t1, t2)= − E2

2f 2 [A00 +A10 +A11 +A22],
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with

A00 = a00
1

L3

∑
�k

1

w2
0

{
1

2(E −w0)
− 1

2(E +w0)
− e2(E−w0)t2

(
1

2(E −w0)
+ 1

2w0

)

+ e2Et2−2w0t1

(
1

2w0
− 1

2(w0 +E)
)}

+ 1

L3

∑
�k

1

w2
0

{
b

2(E −w0)
− b

2(E +w0)
− e2(E−w0)t2

(
b

2(E−w0)
+ b̃

2w0

)

+ e2Et2−2w0t1

(
b̃

2w0
− b

2(w0 +E)
)}
,

A10 = a10
1

L3

∑
�k

1

w0w1

{
1

2E −w0 −w1
− 1

2E +w0 +w1
− e(2E−w0−w1)t2

(
1

2E −w0 −w1
+ 1

w0 +w1

)

+ e2Et2−(w0+w1)t1

(
1

w0 +w1
− 1

w0 +w1 + 2E

)}
,

A11 = 1

L3

∑
�k

{
c+(w1)

2(E−w1)
− c−(w1)

2(E+w1)
− e2(E−w1)t2

(
c+(w1)

2(E −w1)
+ c0(w1)

2w1

)

+ e2Et2−2w1t1

(
c0(w1)

2w1
− c−(w1)

2(w1 +E)
)}

+ 2

L3

∑
�k

1

w2
1

{
b

2(E −w1)
− b

2(E +w1)
− e2(E−w1)t2

(
b

2(E−w1)
+ b̃

2w1

)

+ e2Et2−2w1t1

(
b̃

2w1
− b

2(w1 +E)
)}

+ 1

L3

∑
�k

a
(1)
11 (w)

E2

{
1

2(E−w1)
− 1

2(E+w1)
− e2(E−w1)t2

(
1

2(E −w1)
+ 1

2w1

)

+ e2Et2−2w1t1

(
1

2w1
− 1

2(w1 +E)
)}

+ 1

L3

∑
�k

a
(2)
11 (w)

E

{
1

[2(E−w1)]2 + 1

[2(E+w1)]2 − e2(E−w1)t2

(
1− [2(E−w1)]t2

[2(E−w1)]2 − 1+ [2w1]t2
[2w1]2

)

− e2Et2−2w1t1

(
1+ [2w1]t1

[2w1]2 − 1+ [2(w1 +E)]t1
[2(w1 +E)]2

)}

+ 1

L3

∑
�k
a
(3)
11 (w)

{
1

[2(E−w1)]3 − 1

[2(E+w1)]3

− e2(E−w1)t2

(
1− [2(E−w1)]t2 + [2(E−w1)]2t22/2

[2(E−w1)]3 + 1+ [2w1]t2 + [2w1]2t22/2
[2w1]3

)

+ e2Et2−2w1t1

(
1+ [2w1]t1 + [2w1]2t21/2

[2w1]3 − 1+ [2(w1 +E)]t1 + [2(w1 +E)]2t21/2
[2(w1 +E)]3

)}
,
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A22 = 1

2L3

∑
�k

{
c+(w2)

2(E −w2)
− c−(w2)

2(E +w2)
− e2(E−w2)t2

(
c+(w2)

2(E−w2)
+ c0(w2)

2w2

)

+ e2Et2−2w2t1

(
c0(w2)

2w2
− c−(w2)

2(w2 +E)
)}
.

In the above equations

b= b̃− 2

3
v1, b̃= m2

π(v1 − v2)

3E2 ,

a00 = y[m2
0 − αm2

K(2− y)]2
36E2m2

K(1− y)2 , a10 = −y[m
2
0 − αm2

Ky][m2
0 − αm2

K(2− y)]
18E2m2

K(1− y)2 ,

a
(1)
11 (w1)= −m

2
0m

2
Ky

3w4
1

+ αm2
Ky(ym

2
K − 2w2

1)

3w4
1

+ m4
0y[w4

1 + 2m4
K(1− y)2] − 2αm2

0ym
2
K [(1− y)2(−4m2

Kw
2
1 + 2m4

Ky)+ yw4
1]

36m2
Kw

6
1(1− y)2

+ α2m4
Ky[2m2

Ky(1− y)2(−4w2
1 + ym2

K)+w4
1(8− 16y + 9y2)]

36m2
Kw

6
1(1− y)2 ,

a
(2)
11 (w1)= −ym

2
K[m2

0 − αm2
Ky][m2

0 − αm2
Ky + (2α − 3)w2

1]
9Ew5

1

,

a
(3)
11 (w1)= ym2

K [m2
0 − αm2

Ky]2
9E2w4

1

.

m0 andα are the parameters characterizing theη′ propagator [4]. Evaluating the sums, we obtain:

(D.3)〈0|π+
−�q(t1)π

−
�q (t2)S

q(0)|0〉 = e−Et1
2E

e−Et2
2E

(
− 8

f 2

)[
1+ Re

(
Aq∞

) + T q(t2)
]
,

where, forE �mK �ms̄s we have

T q(t2)= − E2

2f 2

[
− 2νt2
E2L3

+
(

− ν

3E3L3
;− ν

6E3L3

)
+

(
z(0)

2E3L3
− z(1)

2π2EL

)]

+
[
−2bνt2
E2L3 +

(
− νb̃

E3L3 ;− νb

2E3L3

)
+

(
3bz(0)

2E3L3 − bz(1)

2π2EL

)]

+ a(1)11 (E)

[
− νt2

E2L3 +
(

− ν

2E3L3 ;− ν

4E3L3

)
+

(
b
(1)
11 (E)

a
(1)
11 (E)

z(0)

4E3L3 − z(1)

4π2EL

)]

+ a(2)11 (E)

[
νt22/2

EL3 +
(
(1+ 2Et2)ν

4E3L3 ; (1+ 4Et)ν

16E3L3

)
+

(
c
(2)
11 (E)z(0)

16E3L3 + b
(2)
11 (E)z(1)

4π2EL
+ z(2)

16π4EL

)]

+ a(3)11 (E)

[
νt32/6

L3
+

(
− (1+ 2Et2 + 2E2t22)ν

8E3L3
;− (1+ 4Et + 8E2t2)ν

64E3L3

)

(D.4)+
(

111z(0)

64E3L3
− 3z(1)

8π2EL
+ 5z(2)

64π4
EL− z(3)

64π6
(EL)3

)]
,
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b
(1)
11 (E)= −7m2

0m
2
Ky

3E4 + αm2
Ky(7ym

2
K − 6E2)

3E4

+ m
4
0y[3E4 + 22m4

K(1− y)2] − 2αm2
0ym

2
K [(1− y)2(−28m2

KE
2 + 22m4

Ky)+ 3yE4]
36m2

KE
6(1− y)2

+ α
2m4

Ky[2m2
Ky(1− y)2(−28E2 + 11ym2

K)+ 3E4(8− 16y + 9y2)]
36m2

KE
6(1− y)2 ,

c
(2)
11 (E)=

17E2(2α− 3)+ 49m2
0 − 49yαm2

K

E2(2α− 3)+m2
0 − yαm2

K

,

b
(2)
11 (E)= −E

2(2α− 3)+ 2m2
0 − 2yαm2

K

E2(2α − 3)+m2
0 − yαm2

K

.
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