Ergod. Th. & Dynam. Sys. (1982), 2, 383–396 Printed in Great Britain

Finitely-additive invariant measures on Euclidean spaces

G. A. MARGULIS

(Received 10 August 1981)

To the memory of V. M. Alexeyev

Abstract. It is shown that for $n \ge 3$ the Lebesgue measure is the unique finitelyadditive isometry-invariant measure on the ring of bounded Lebesgue measurable subsets of the *n*-dimensional Euclidean space.

Let β be the ring of bounded Lebesgue measurable sets in the *n*-dimensional real space \mathbb{R}^n or in \mathbb{S}^n , the *n*-dimensional unit sphere in \mathbb{R}^{n-1} , and let λ_n be the Lebesgue measure on β normalized by $\lambda_n(J^n) = 1$, where J = [0, 1), or by $\lambda_n(\mathbb{S}^n) = 1$ respectively. It is well known that λ_n is up to proportionality the unique countablyadditive isometry-invariant measure on β . In 1923, Banach (see [1]) studied the following question of Ruziewicz: is λ_n , up to proportionality, the unique finitelyadditive isometry-invariant (positive) measure on β . Banach gave a negative answer to this question for \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{S}^1 . But for \mathbb{R}^n , $n \ge 3$, or \mathbb{S}^n , $n \ge 2$, the Ruziewicz question was unanswered for a long time.

Let ν be a finitely-additive isometry-invariant measure on β and let L_{∞}^{0} be the space of bounded measurable functions on \mathbb{R}^{n} or on \mathbb{S}^{n} having a compact support. It is well known (see, for example, [11]) that, for \mathbb{R}^{n} , $n \ge 3$, or \mathbb{S}^{n} , $n \ge 2$, ν is absolutely continuous with respect to λ_{n} i.e. $\nu(X) = 0$ whenever $\lambda_{n}(X) = 0$, $X \in \beta$. Then ν determines (by the formulae

$$l(f) = \int f \, d\nu$$

an isometry-invariant linear positive $(l(f) \ge 0 \text{ if } f \ge 0)$ functional l on L_{∞}^{0} . Conversely, any isometry-invariant linear positive functional l on L_{∞}^{0} determines an isometry-invariant finitely-additive measure ν on β by the formula

$$\nu(X) = l(\chi(X)),$$

where $\chi(X)$ is the characteristic function of $X \in \beta$. Therefore, for \mathbb{R}^n , $n \ge 3$, or S^n , $n \ge 2$, the Ruziewicz question is equivalent to the following question:

(A) is any isometry-invariant linear positive functional l on L_{∞}^{0} proportional to the functional α_{n} given by

$$\alpha_n(f) = \int f \, d\lambda_n, \quad f \in L^0_\infty.$$

In [9] and [13] (independently and simultaneously), it was proved that, for S^n , $n \ge 4$, the answer to (A) is positive. The proof in both [9] and [13] is based on reducing (A) to a question on asymptotically invariant sets (see [2], [5], [11]) and on using Kazhdan's results on property (T).

In this paper, it is proved (see theorem 4) that, for \mathbb{R}^n , $n \ge 3$, the answer to the Ruziewicz question (and to the equivalent question (A)) is positive. The proof of theorem 4 is based, roughly speaking, on a reduction (by arguments of Namioka) to a question on almost invariant nets of locally integrable functions and on using methods of representation theory.

Thus the Ruziewicz question remains unanswered only for S^2 and S^3 .

1. Property (T) and almost invariant nets

Let *H* be a separable unimodular locally compact group. Let \tilde{H} (respectively \hat{H}) denote the set of unitary (respectively unitary irreducible) continuous representations of *H* in separable Hilbert spaces. Let μ_H be a Haar measure on *H* and let A(H) be the set of non-negative continuous functions *f* on *H* having a compact support such that

$$\int_{H} f \, d\mu_H = 1.$$

For any $U \in \tilde{H}$ and any μ_{H} -integrable function f on H, put

$$U(f) = \int_{H} f(h) U(h) \, d\mu_{H}(h).$$

Let L(U) denote the space of a representation U. For $f \in A(H)$ and $\varepsilon > 0$, put

$$V(\varepsilon, f) = \{ U \in \tilde{H} | \text{ there exists } x \in L(U), x \neq 0, \\ \text{ such that } \| U(f)x - x \| \le \varepsilon \|x\| \}.$$

Let T_0 be the one-dimensional trivial representation of H. One can introduce on \tilde{H} the standard topology (see [4], [6]) for which sets $\mathcal{V}(\varepsilon, f)$ form a basis of neighbourhoods of T_0 . We say that $U \in \tilde{H}$ is *close to* T_0 if T_0 belongs to the closure of $\{U\}$. According to Kazhdan (see [4], [6]), we say that H has property (T) if one of two following equivalent conditions is satisfied:

(I) there exists a neighbourhood \mathcal{V} of T_0 such that any $U \in \mathcal{V} \cap \hat{H}$ is equivalent to T_0 ;

(II) any representation $U \in \tilde{H}$ close to T_0 contains T_0 (i.e. there exists $x \in L(U)$, $x \neq 0$, such that U(H)x = x).

Let us give now a slight generalization of this definition.

DEFINITION 1. Let $B \subset H$. We say that the pair (H, B) has property (T) if one of two following equivalent conditions is satisfied:

(I') there exists a neighbourhood \mathcal{V} of T_0 such that any $U \in \mathcal{V} \cap \hat{H}$ is trivial on B

(i.e.
$$U(B)x = x$$
 for any $x \in L(U)$).

(II') if $U \in \tilde{H}$ is close to T_0 , then there exists $x \in L(U)$, $x \neq 0$, such that

$$U(B)x = x$$

The equivalence of (I') and (II') can be proved in the same way as the equivalence of (I) and (II) was proved in [6] (by a decomposition of $U \in \tilde{H}$ into a continuous sum of irreducible representations).

Let us give now one further definition. We make the convention that 0/0 = 0.

DEFINITION 2. Let $U \in \tilde{H}$, $M \subset H$ and $\{x_{\alpha}\}$ be a net (generalized sequence) of elements of L(U). We say the net $\{x_{\alpha}\}$ is almost M-invariant if, for any compact set $K \subset H$,

$$\lim_{\alpha} \left[\sup_{h \in K \cap M} \frac{\|U(h)x_{\alpha} - x_{\alpha}\|}{\|x_{\alpha}\|} \right] = 0.$$

We say the net $\{x_{\alpha}\}$ is weakly almost M-invariant if, for any $h \in M$,

$$\lim_{\alpha} \frac{\|U(h)x_{\alpha}-x_{\alpha}\|}{\|x_{\alpha}\|} = 0.$$

THEOREM 1. Let $B \subset H$, Γ be a lattice in H (i.e. Γ be a discrete subgroup of H such that

$$\mu_H(\Gamma \setminus H) < \infty), \quad U \in \check{H} \quad and \quad \{x_\alpha\}$$

be a net of elements of L(U). Denote by S the closure of the set

$$B \cdot \Gamma \stackrel{\text{def}}{=} \{b\gamma | b \in B, \gamma \in \Gamma\}.$$

Let us assume that the pair (H, B) has property (T). If the net $\{x_{\alpha}\}$ is weakly almost Γ -invariant, then $\{x_{\alpha}\}$ is almost S-invariant.

Proof. Choose (see [3], chapter VII, § 2, exercise 12]) a Borel subset $Y \subset H$ with the following properties:

(a) Y is a fundamental domain for Γ i.e. $\Gamma \cdot Y = G$ and

$$(\gamma_1 Y) \cap (\gamma_2 Y) = \emptyset$$
 if $\gamma_1 \neq \gamma_2, \gamma_1, \gamma_2 \in \Gamma$;

(b) for any compact set $K \subset H$, the set

$$\{\gamma \in \Gamma | (\gamma Y) \cap K \neq \emptyset\}$$

is finite.

Let $\rho \in \tilde{H}$ be the representation of H induced in the sense of Mackey by the restriction of U to Γ . The space J of the representation ρ consists of measurable $j: H \rightarrow L(U)$ such that

$$||j||^2 = \int_Y ||j(h)||^2 d\mu_H(h) < \infty$$

and

$$j(\gamma h) = U(\gamma)j(h), \text{ for } \gamma \in \Gamma, h \in H.$$
 (1)

The scalar product $\langle \cdot, \cdot \rangle$ on J is introduced by

$$\langle j_1, j_2 \rangle = \int_Y \langle j_1(h), j_2(h) \rangle \, d\mu_H(h), \quad \text{for } j_1, j_2 \in J, \tag{2}$$

and the representation ρ is defined by

$$(\rho(h)j)(h_1) = j(h_1h), h, h_1 \in H, j \in J.$$
 (3)

Since the pair (H, B) has property (T), there exist $f \in A(H)$ and $\varepsilon > 0$ such that any $W \in \hat{H} \cap V(\varepsilon, f)$ is trivial on B. Now decompose the unitary representation ρ into a continuous sum of irreducible representations $\rho_z \in \hat{H}$. Let ρ_1 denote the continuous sum of ρ_z such that

$$\rho_z \in V(\varepsilon, f)$$

and let ρ_2 denote the continuous sum of ρ_z such that $\rho_z \notin V(\varepsilon, f)$. Then

$$\rho = \rho_1 \oplus \rho_2,$$

 ρ_1 is trivial on B and $\rho_2 \notin V(\varepsilon, f)$. Let P_r , r = 1, 2, denote the orthogonal projection of J onto $L(\rho_r)$. Since $\rho_2 \notin V(\varepsilon, f)$,

$$|\rho(f)j - j|| \ge \varepsilon ||P_2 h|| = \varepsilon \sqrt{||j||^2 - ||P_1 j||^2}$$
(4)

for any $j \in J$.

Let us give the following definition. Two nets $\{u_{\alpha}\}$ and $\{u'_{\alpha}\}$ of elements of a Banach space are called equivalent if

$$\lim_{\alpha} \frac{\|u_{\alpha}' - u_{\alpha}\|}{\|u_{\alpha}\|} = 0$$

Define $j_{\alpha} \in J$ by

$$j_{\alpha}(\gamma y) = U(\gamma) x_{\alpha}, \quad \gamma \in \Gamma, \quad y \in Y.$$
(5)

For $h \in H$, define $\gamma(h) \in \Gamma$ by the inclusion $h \in \gamma(h) Y$. Let $K \subset H$. In view of (1), (2), (3) and (5), we have

$$\sup_{h \in K} \|\rho(h)j_{\alpha} - j_{\alpha}\|^{2} = \sup_{h \in K} \int_{Y} \|j_{\alpha}(h_{1}h) - j_{\alpha}(h_{1})\|^{2} d\mu_{H}(h_{1})$$

$$= \sup_{h \in K} \int_{Y} \|U(\gamma(h_{1}h))x_{\alpha} - x_{\alpha}\|^{2} d\mu_{H}(h_{1})$$

$$\leq \int_{Y} (\sup_{h \in K} \|U(\gamma(h_{1}h))x_{\alpha} - x_{\alpha}\|^{2}) d\mu_{H}(h_{1}).$$
(6)

The property (b) of Y implies the set $\gamma(M \cdot K)$ is finite for any compact sets $K \subset H$ and $M \subset H$. On the other hand, the net $\{x_{\alpha}\}$ is weakly almost Γ -invariant. Therefore,

$$\lim_{\alpha} \sup_{h \in K, h_1 \in M} \frac{\|U(\gamma(h_1h))x_{\alpha} - x_{\alpha}\|}{\|x_{\alpha}\|} = 0$$

for any compact sets $K \subset H$ and $M \subset H$. On the other hand, as U is unitary then $\|U(\gamma(h_1h))x_{\alpha} - x_{\alpha}\| \leq 2\|x_{\alpha}\|$

for any $h, h_1 \in H$. Therefore, (6) implies the net $\{j_{\alpha}\}$ is almost *H*-invariant. On the other hand, as $f \in A(H)$ then

$$\|\rho(f)j_{\alpha}-j_{\alpha}\|\leq \sup_{h\in \operatorname{supp} f}\|\rho(h)j_{\alpha}-j_{\alpha}\|,$$

where supp f denotes as usual the (compact) support of f. Therefore, the nets $\{j_{\alpha}\}$ and $\{\rho(f)j_{\alpha}\}$ are equivalent. From this and (4) we conclude that the nets $\{j_{\alpha}\}$ and $\{P_1j_{\alpha}\}$ are equivalent.

Let us now fix a compact set $K \subset H$ containing e. For any $j \in J$, we have

$$\sup_{h \in K} \|(\rho(f)j)(h)\| = \sup_{h \in K} \left\| \int_{H} f(h_{1})j(hh_{1}) d\mu_{H}(h_{1}) \right\|$$

$$\leq \sup_{h \in K} \int_{H} f(h_{1}) \|j(hh_{1})\| d\mu_{H}(h_{1})$$

$$\leq (\sup_{h' \in H} f(h')) \cdot \int_{K \cdot \operatorname{supp} f} \|j(\tilde{h})\| d\mu_{H}(\tilde{h})$$

$$\leq (\sup_{h' \in H} f(h')) \cdot \sqrt{\mu_{H}(K \cdot \operatorname{supp} f)} \cdot \sqrt{\int_{K \cdot \operatorname{supp} f} \|j(\tilde{h})\|^{2}} d\mu_{H}(\tilde{h})$$
(7)

(the last inequality is implied by the Schwartz inequality). Since the set $K \cdot \text{supp } f$ is compact, it belongs to $M \cdot Y$ for some finite set $M \subset \Gamma$. Then in view of (2),

$$\int_{K \operatorname{supp} f} \|j(\tilde{h})\|^2 \, d\mu_H(\tilde{h}) \leq |M| \cdot \|j\|^2.$$

This inequality and (7) imply

$$\sup_{h \in K} \left\| (\rho(f)j)(h) \right\| \le C \|j\| \tag{8}$$

for any $j \in J$, where

$$C = (\sup_{h' \in H} f(h')) \cdot \sqrt{\mu_H(K \cdot \operatorname{supp} f)} \cdot \sqrt{|M|}.$$

Further, put

$$j'_{\alpha} = \rho(f) P_1 j_{\alpha} = P_1 \rho(f) j_{\alpha}.$$

Then in view of (8),

$$\sup_{h \in K} \|j'_{\alpha}(h) - (\rho(f)j_{\alpha})(h)\| \le C \|P_1j_{\alpha} - j_{\alpha}\|.$$
(9)

In view of (1), (3) and (5) we have

$$\sup_{h \in K} \|x_{\alpha} - (\rho(f)j_{\alpha})(h)\| = \sup_{h \in K} \left\| x_{\alpha} - \int_{H} f(h_{1})j_{\alpha}(hh_{1}) d\mu_{H}(h_{1}) \right\|$$
$$= \sup_{h \in K} \left\| \int_{H} f(h_{1})(x_{\alpha} - j_{\alpha}(hh_{1})) d\mu_{H}(h_{1}) \right\|$$
$$\leq \sup_{\tilde{h} \in K \cdot \text{supp} f} \|x_{\alpha} - j_{\alpha}(\tilde{h})\|$$
$$= \sup_{\gamma \in \gamma(K \cdot \text{supp} f)} \|x_{\alpha} - U(\gamma)x_{\alpha}\|.$$
(10)

As the nets $\{j_{\alpha}\}$ and $\{P_1 j_{\alpha}\}$ are equivalent, the set $\gamma(K \cdot \text{supp } f)$ is finite (in view of the property (b) of Y), the net $\{x_{\alpha}\}$ is weakly almost Γ -invariant, and

$$\|j_{\alpha}\| = \sqrt{\mu_H(Y)} \|x_{\alpha}\|,$$

we conclude from (9) and (10) that

$$\lim_{\alpha} \sup_{h \in K} \frac{\|j'_{\alpha}(h) - x_{\alpha}\|}{\|x_{\alpha}\|} = 0.$$
(11)

Let \tilde{B} be a normal subgroup of H generated by B. Since ρ_1 is trivial on B, it is also trivial on \tilde{B} . On the other hand

$$j'_{\alpha} \in L(\rho_1).$$

Therefore for any $h \in H$, we have

$$j'_{\alpha}(\tilde{B}h) = j'_{\alpha}(h\tilde{B}) = (\rho(\tilde{B})j'_{\alpha})(h)$$
$$= (\rho_1(\tilde{B})j'_{\alpha})(h) = j'_{\alpha}(h).$$
(12)

The equalities (11) and (12) imply

$$\lim_{\alpha} \sup_{h \in \hat{B} \times K} \frac{\|j'_{\alpha}(h) - x_{\alpha}\|}{\|x_{\alpha}\|} = 0.$$
(13)

Since U is unitary, we get using (1) that

$$\|U(\gamma)x - x\| \le \|U(\gamma)x - j(\gamma)\| + \|j(\gamma) - x\|$$

= $\|U(\gamma)(x - j(e))\| + \|j(\gamma) - x\|$
= $\|j(e) - x\| + \|j(\gamma) - x\|$ (14)

for any $\gamma \in \Gamma$, $x \in L(U)$ and $j \in J$. Using (13) and (14), we get

$$\lim_{\alpha} \sup_{\gamma \in (\vec{B} \cdot K) \cap \Gamma} \frac{\|U(\gamma)x_{\alpha} - x_{\alpha}\|}{\|x_{\alpha}\|} = 0.$$
(15)

As K is an arbitrary compact subset of H the representation U is continuous and $\tilde{B} \supset B$, then (15) implies the assertion of the theorem.

LEMMA 1. Let K be a non-discrete locally compact field and let $H = SL_2(k) \propto B$ be a semi-direct product of $SL_2(k)$ and a separable commutative locally compact group B (as usual $SL_2(k)$ denotes the group of unimodular matrices of order 2 with coefficients in k). Consider the natural action of H on the character group B* of B

$$(h\chi)(b) = \chi(h^{-1}bh), h \in H, \chi \in B^*, b \in B).$$

Let us assume that (I) any orbit under this action is locally closed, (II) the subgroup

$$G_{\chi} = \{h \in \mathrm{SL}_2(k) | h\chi = \chi\}$$

is commutative for any $\chi \in B^*$, $x \neq 0$. Then the pair(H, B) has property (T). Proof. Let $U \in \hat{H}$ and suppose U is not trivial on B. Then in view of Mackey's results (see [8]), U is induced by an irreducible unitary representation ρ of a subgroup

$$H_{\chi} = \{h \in H \mid h\chi = \chi\}, \chi \in B^*, \chi \neq 0.$$

On the other hand since G_{χ} is commutative, H_{χ} is solvable and, consequently, ρ belongs to the closure of the regular representation of H_{χ} . Therefore, U belongs to the closure of the regular representation τ of H. Now it remains to note that (see [6]) the regular representation of $SL_2(k)$ is not close to T_0 and so τ is not close to T_0 .

Remark. Some arguments of [6] were in fact used in the proof of lemma 1.

388

Let us prove now the following theorem using theorem 1 and lemma 1.

THEOREM 2. Let $n \ge 3$, H_n be the group of isometries of the n-dimensional Euclidean space \mathbb{R}^n , and let $B_n \subseteq H_n$ be the group of parallel translations of \mathbb{R}^n . Then there exists a countable subgroup Γ of H_n with the following property: if $U \in \tilde{H}_n$ and $\{x_\alpha\}$ is a weakly almost Γ -invariant net of elements of L(U), then $\{x_\alpha\}$ is almost B_n invariant.

Proof. For a commutative ring L with identity, denote by $O_n(L)$ the group of matrices of order n with coefficients in L which preserve the quadratic form $C = x_1^2 + \cdots + x_n^2$ and put

$$G_n(L) = \left\{ \begin{pmatrix} A & B \\ 0 & 1 \end{pmatrix} \right\}, \qquad F_n(L) = \left\{ \begin{pmatrix} E & B \\ 0 & 1 \end{pmatrix} \right\},$$

where $A \in O_n(L)$ and B is a column vector with coefficients in L. It is well known that there exists a topological isomorphism of groups $G_n(R)$ and H_n which maps $F_n(R)$ onto B_n . Therefore, one can replace H_n by $G_n(R)$ and B_n by $F_n(R)$ in the formulation of the theorem.

Let Z(1/5) denote the subring of the field Q generated by 1/5 and let Q_5 denote the field of 5-adic numbers. Put

$$\Gamma = G_n(Z(1/5)).$$

The diagonal embedding of Z(1/5) into $R \times Q_5$ induces the diagonal embedding of Γ into

$$H \stackrel{\text{def}}{=} G_n(R) \times G_n(Q_5).$$

Let us suppose we have proved that the pair $(G_n(Q_5), F_n(Q_5))$ has property (T). Then the pair $(H, F_n(Q_5))$ also has property (T). (We think of the subgroup

$$F_n(Q_5) \subset G_n(Q_5)$$

as naturally embedded in H). On the other hand in view of the Borel reduction theorem (see [2]), Γ is a lattice in H. Therefore applying theorem 1 to the pair $(H, F_n(Q_5))$, the lattice Γ , the net $\{x_\alpha\}$, and the representation $U' = p \cdot U$, where $p: H \rightarrow G_n(R)$ is the natural mapping, we get the net $\{x_\alpha\}$ is almost S-invariant, where S is the closure in $F_n(R)$ of $F_n(Z(1/5))$. On the other hand as Z(1/5) is dense in R, then $S = F_n(R)$.

Thus, it remains to prove that the pair $(G_n(Q_5), F_n(Q_5))$ has property (T). For this we consider three cases: (1) $n \ge 5$; (2) n = 4; (3) n = 3.

Case (1). Let a representation $\rho \in G(Q_5)$ be close to T_0 . As -1 is a square in Q_5 , the Q_5 -rank (i.e. the dimension of a maximal Q_5 -split torus) of $O_n(Q_5)$ is equal to the integer part of n/2 and, consequently, is not less than [5/2] = 2. On the other hand if $n \neq 4$, then O_n is an absolutely (almost) simple algebraic group. Therefore in view of Kazhdan's results on property (T) (see [4], [6]), the group $O_n(Q_5)$ has property (T). Hence, there exists $x \in L(\rho)$, $x \neq 0$, such that $\rho(P)x = x$, where

$$P = \left\{ \begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix} \right\}, \qquad A \in O_n(Q_5).$$

G. A. Margulis

Let

390

$$D = \{x \in Q_5^n | C(x) = 0\}.$$

For any $d \in D$, one can find a matrix $A_d \in O_n(Q_5)$ such that

$$\lim_{n\to+\infty}A_d^n(d)=0.$$

Then

$$\lim_{n \to +\infty} {\binom{A_d \ 0}{0 \ 1}}^n {\binom{1 \ d}{0 \ 1}} {\binom{A_d \ 0}{0 \ 1}}^{-n} = E.$$
(16)

Since $\rho(P)x = x$ and the representation ρ is continuous and unitary, (16) and the generalization of the Mautner lemma given by Prasad (see [10]) imply

$$\rho \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} x = x \quad \text{for any } d \in D.$$

On the other hand as -1 is a square in Q_5 , then D generates Q_5 as a group. Therefore, $\rho(F_n(Q_5))x = x$.

Case (2). Let $i \in Q_5$ such that $i^2 = -1$. For $A \in SL_2(Q_5)$, put

$$X_{A} = \begin{pmatrix} E & \mathrm{i}E \\ E & -\mathrm{i}E \end{pmatrix}^{-1} \begin{pmatrix} A & 0 \\ 0 & {}^{t}A^{-1} \end{pmatrix} \begin{pmatrix} E & \mathrm{i}E \\ E & -\mathrm{i}E \end{pmatrix}.$$

where 'A is the matrix transposed to A and E is the identity matrix of the second order. One can directly check that $X_A \in O_4(Q_5)$. Put

$$M = \left\{ \begin{pmatrix} X_A & 0 \\ 0 & 1 \end{pmatrix} \right\} \subset G_4(Q_5).$$

Then applying lemma 1, we obtain the pair $(M \cdot F_4(Q_5), F_4(Q_5))$ and, consequently, the pair $(G_4(Q_5), F_4(Q_5))$, has property (T).

Case (3). As -1 is a square in Q_5 , then C can be reduced to the form $x_1^2 + x_2 x_3$. Then identifying a vector (x_1, x_2, x_3) with the matrix

$$\begin{pmatrix} x_1 & x_2 \\ x_3 & -x_1 \end{pmatrix}$$

and conjugating this matrix by $A \in SL_2(Q_5)$, we get the homomorphism $\varphi: SL_2(Q_5) \rightarrow O_3(Q_5)$. Now, we can define a semi-direct product

$$T = \operatorname{SL}_2(Q_5) \propto F_3(Q_5)$$

and a homomorphism

$$\tilde{\varphi}: T \to G_3(Q_5) = O_3(Q_5) \propto F_3(Q_5)$$

such that

$$\tilde{\varphi}|\mathrm{SL}_2(Q_5) = \varphi$$
 and $\tilde{\varphi}|F_3(Q_5) = Id$.

Applying lemma 1, we get the pair $(T, F_3(Q_5))$ and, consequently, the pair $(G_3(Q_5), F_3(Q_5))$, has property (T).

2. Almost invariant nets of locally integrable functions and finitely-additive invariant measures

Let β be the ring of bounded Lebesgue measurable sets in \mathbb{R}^n , and let λ_n be the Lebesgue measure on \mathbb{R}^n normalized by

$$\lambda_n(J^n) = 1$$
, where $J = [0, 1)$.

Let L denote the space of locally integrable functions on \mathbb{R}^n . If $X \in \beta$, $p \ge 1$ and $f^p \in L$, put

$$||f||_{p,X} = \left(\int_X |f|^p d\lambda_n\right)^{1/p};$$

for $X \in \beta$ and $f \in L$, put

$$X(f) = \int_X f \, d\lambda_n.$$

Put $P = \{f \in L | f \ge 0, J^n(f) = 1\}$. Let H_n and B_n be the same as in the formulation of theorem 2. For $h \in H_n$ and $f \in L$, define $hf \in L$ by

$$(hf)(x) = f(h^{-1}x), x \in \mathbb{R}^n.$$

THEOREM 3. Let $n \ge 3$ and $\{f_{\alpha}\}$ be a net of elements of P. Assume that

- (a) $\lim_{\alpha} |X(hf_{\alpha}) X(f_{\alpha})| = 0$ for any $h \in H_n$ and $X \in \beta$;
- (b) for any $X \in \beta$, there exists a limit

$$\lim_{\alpha} X(f_{\alpha}) \stackrel{\text{def}}{=} \nu(X).$$

Then $\nu(X) = \lambda_n(X)$ for any $X \in \beta$.

Proof. Introduce on the linear space L the standard topology for which sets

$$\{f \in L | ||f||_X < \varepsilon\}, x \in \beta, \varepsilon > 0,$$

form a basis of neighbourhoods of zero. Put $L_h = L$ and $R_X = R$ for $h \in H$ and $X \in \beta$ and consider the Tychonoff product

$$M = \prod_{h \in H} L_h \times \prod_{X \in \beta} R_X$$

The space M can be considered as the set of pairs (a, b), where $a: H \to L$ and $b: \beta \to R$ are arbitrary mappings. Define a linear mapping $T: L \to M$ by

$$Tf = (T_1f, T_2f), \quad (T_1f)(h) = hf - f, \quad (T_2f)(X) = X(f), f \in L, h \in H, X \in \beta.$$

As $L_{\infty}(Y, \mu)$ is the dual of $L_1(Y, \mu)$ for any space Y with a countably-additive finite measure μ , then the bounded measurable space L_{∞}^0 having compact support functions on \mathbb{R}^n is the dual of L. Therefore, the condition (a) implies the net $\{hf_{\alpha} - f_{\alpha}\}$ weakly converges to zero for any $h \in H$. From this and condition (b) we conclude that the weak closure of T(P) in M contains $(0, \nu)$. On the other hand as the space M is locally convex and T(P) is a convex set, the weak and strict closures of T(P) coincide. Therefore, there exists a net $\{g_{\delta}\}$ of elements of P such that, for any $h \in H$ and $X \in \beta$, we have

$$\lim_{\delta} \|hg_{\delta} - g_{\delta}\|_{1,X} = 0 \tag{1}$$

and

392

$$\lim_{\delta} X(g_{\delta}) = \nu(X). \tag{2}$$

Let $\Omega \subset B_n$ denote the subgroup of parallel translations by vectors with integer coefficients. Let $\Gamma \subset H_n$ be the countable subgroup defined in theorem 2 and let Γ' be the subgroup generated by Γ and Ω . Let us fix now $X_0 \in \beta$ and denote by N^+ the set of positive integer numbers. As Γ' is countable, the space \mathbb{R}^n is σ -compact, and

$$||f||_{1,X} \le ||f||_{1,X'}$$
 if $X \subset X'$

then, in view of (1) and (2), one can choose a countable subsequence $\{g_m\}, m \in N^+$, of the net $\{g_{\delta}\}$ such that

$$\lim_{m \to \infty} \|\gamma g_m - g_m\|_{1,X} = 0$$
(3)

for any $\gamma \in \Gamma'$, $X \in \beta$, and

$$\lim_{m \to \infty} X_0(g_m) = \nu(X_0). \tag{4}$$

Any point $x \in \mathbb{R}^n$ is uniquely represented in the form

$$x = \omega j, \omega \in \Omega, j \in J^n.$$

Define functions $\tilde{g}_m \in L$ by

$$\tilde{g}_m(\omega j) = g_m(j), \, \omega \in \Omega, \, j \in J^n.$$

Then

$$\|\tilde{g}_m - g_m\|_{1,\omega J^n} = \|\omega^{-1}g_m - g_m\|_{J^n}$$

for any $m \in N^+$ and $\omega \in \Omega$. On the other hand, any $X \in \beta$ can be covered by a finite number of sets of the type ωJ^n , $\omega \in \Omega$. Therefore, (3) implies

 $\lim_{m \to \infty} \|\tilde{g}_m - g_m\|_{1,X} = 0$

for any $X \in \beta$. On the other hand,

 $\|\gamma f\|_{1,X} = \|f\|_{1,\gamma^{-1}X}$ for any $f \in L$.

Therefore, we can replace g_m by \tilde{g}_m in (3) and (4) and suppose

$$g_m(\omega x) = g_m(x) \tag{5}$$

for any $m \in N^+$, $\omega \in \Omega$, $x \in \mathbb{R}^n$.

Let U(r) denote the ball in \mathbb{R}^n centered at 0 of radius r. As Γ' is countable, then, in view of (3), one can choose a sequence $\{r_m > 0\}$ such that

$$\lim_{m \to \infty} r_m = \infty \tag{6}$$

and

$$\lim_{m \to \infty} \|\gamma g_m - g_m\|_{1, U(r_m)} = 0$$
⁽⁷⁾

for any $\gamma \in \Gamma'$.

Let $\chi(V)$ denote the characteristic function of a set $V \subset \mathbb{R}^n$. Put

$$\chi_m = \chi(U(r_m)) \text{ and } \varphi_m = (g_m \chi_m)^{\frac{1}{2}} = g_m^{\frac{1}{2}} \chi_m.$$

Then, for any $m \in N^+$ and $h \in H_n$,

$$\begin{split} h\varphi_{m} - \varphi_{m} &= (hg^{\frac{1}{2}})(h\chi_{m}) - (g^{\frac{1}{2}}\chi_{m}) \\ &= ((hg^{\frac{1}{2}}) - g^{\frac{1}{2}})\chi_{m} + (hg^{\frac{1}{2}})(h\chi_{m} - \chi_{m}) \\ &= ((hg^{\frac{1}{2}} - g^{\frac{1}{2}})\chi(U(r_{m})) \\ &+ (hg^{\frac{1}{2}})[\chi(hU(r_{m}) - U(r_{m})) - \chi(U(r_{m}) - hU(r_{m}))] \end{split}$$

and, consequently,

$$|\|h\varphi_{m} - \varphi_{m}\|_{2,R^{n}} - \|hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}}\|_{2,U(r_{m})}| \leq \|hg_{m}^{\frac{1}{2}}\|_{2,hU(r_{m})\Delta U(r_{m})}$$

$$= \|g_{m}^{\frac{1}{2}}\|_{2,U(r_{m})\Delta h^{-1}U(r_{m})}.$$
(8)

For $V \subset \mathbb{R}^n$, put

$$F(V) = \{ \omega \in \Omega | \omega J^n \subset V \}$$

and

$$F'(V) = \{ \omega \in \Omega | \omega J^n \cap V \neq \emptyset \}$$

Classical theorems on the number of integer points imply

$$\lim_{r \to \infty} \frac{|F(U(r))|}{\lambda_n(U(r))} = \lim_{r \to \infty} \frac{|F'(U(r))|}{\lambda_n(U(r))} = 1.$$
(9)

It is clear that

$$F'(V_1 - V_2) \subset F'(V_1) - F(V_2)$$

for any V_1 , $V_2 \subset \mathbb{R}^n$. Therefore, (9) implies

$$\lim_{r \to \infty} \frac{\left| F'(U(r) - U(r-d)) \right|}{\lambda_n(U(r))} = 0$$
(10)

for any d > 0.

The equality (5) and the inclusion $g_m \in \rho$ imply that

$$\|g_{m}^{\frac{1}{2}}\|_{2,\omega J^{n}} = \|g_{m}^{\frac{1}{2}}\|_{2,J^{n}} = (\|g_{m}\|_{1,J^{n}})^{\frac{1}{2}} = 1$$

for any $m \in N^+$ and $\omega \in \Omega$. Therefore, for any $m \in N^+$ and $X \in \beta$,

$$|F(X)| \le ||g_m^{\frac{1}{2}}||_{2,X} \le |F'(X)|.$$
(11)

For $h \in H_n$, denote by d_h the distance between 0 and h(0). Then

$$U(r)\Delta h^{-1}U(r) \subset U(r+d_h) - U(r-d_h)$$

for any r > 0, $h \in H_n$. Therefore, (6), (10) and (11) imply, for any $h \in H_n$,

$$\lim_{m \to \infty} \frac{\|g_{m}^{i}\|_{2, U(r_{m})\Delta h^{-1}U(r_{m})}}{\lambda_{n}(U(r_{m}))} = 0.$$
(12)

As $|a-b|^2 \le a^2 - b^2$ for any a, b > 0, then $\|f^{\frac{1}{2}} - f^{\frac{1}{4}}\|_{2} \le \|f_{2} - f^{\frac{1}{4}}\|_{2}$

$$\|f_1^{\frac{1}{2}} - f_2^{\frac{1}{2}}\|_{2,X} \le \|f_1 - f_2\|_{1,X}^{\frac{1}{2}}$$

for any $f_1, f_2 \in L$ and $X \in \beta$. Therefore, (6), (7), (8) and (12) imply,

$$\lim_{m \to \infty} \frac{\|\gamma \varphi_m - \varphi_m\|_{2, \mathcal{R}^n}}{\lambda_n(U(r_m))} = 0$$
(13)

for any $\gamma \in \Gamma'$. Further, in view of (11),

$$\|\varphi_m\|_{2,R^n} = \|g_m^{\frac{1}{2}}\|_{2,U(r_m)} \ge |F(U(r_m))|.$$

From this and (9) we conclude that

$$\lim_{m \to \infty} \frac{\|\varphi_m\|_{2,R^n}}{\lambda_n(U(r_m))} = 1.$$
 (14)

The equalities (13) and (14) imply $\{\varphi_m\}$ is a weakly almost Γ' -invariant sequence of elements of $L_2(\mathbb{R}^n, \lambda_n)$. Therefore, in view of theorem 2, $\{\varphi_m\}$ is almost B_n invariant. From this and (8), (12) and (14) we conclude that, for any compact set $K \subset B_n$,

$$\lim_{m \to \infty} \sup_{h \in K} \frac{\|hg_m^{\frac{1}{2}} - g_m^{\frac{1}{2}}\|_{2, U(r_m)}}{\lambda_n(U(r_m))} = 0.$$
(15)

It follows from (5) and the commutativity of B_n that

$$(hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}})(\omega x) = (hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}})(x)$$

for any $m \in N^+$, $h \in B_n$, $\omega \in \Omega$, $x \in \mathbb{R}^n$. Therefore,

$$\|hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}}\|_{2,\omega J^{n}} = \|hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}}\|_{2,J^{n}}$$

for any $m \in N^+$, $h \in B_n$. Hence,

$$\|hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}}\|_{2,X} \ge |F(X)| \|hg_{m}^{\frac{1}{2}} - g_{m}^{\frac{1}{2}}\|_{2,J^{n}}$$
(16)

for any $m \in N^+$, $h \in B_n$ and $X \in \beta$. It follows from (9), (15) and (16) that

$$\lim_{m \to \infty} \sup_{h \in K} \|hg_m^{\frac{1}{2}} - g_m^{\frac{1}{2}}\|_{2,J^n} = 0$$
(17)

for any compact set $K \subset B_n$.

The Schwartz inequality implies that

$$\|f_1 - f_2\|_{1,X} \le \|f_1^{\frac{1}{2}} - f_2^{\frac{1}{2}}\|_{2,X} \cdot (\|f_1^{\frac{1}{2}}\|_{2,X} + \|f_2^{\frac{1}{2}}\|_{2,X})$$

for any $f_1, f_2 \in L$ and $X \in \beta$. On the other hand as any $x \in \mathbb{R}^n$ is uniquely represented in the form $x = \omega j, \omega \in \Omega, j \in J^n$, then (5) and the inclusion $g_m \in P$ imply

$$\|hg_{m}^{\frac{1}{2}}\|_{2,J^{n}} = \|g_{m}^{\frac{1}{2}}\|_{2,h^{-1}J^{n}} = \|g_{m}^{\frac{1}{2}}\|_{2,J^{n}} = 1$$

for any $h \in H_n$ and $m \in N^+$. Therefore, (17) implies

$$\lim_{m \to \infty} \sup_{h \in K} \|hg_m - g_m\|_{1,J^n} = 0$$
⁽¹⁸⁾

for any compact set $K \subset B_n$. Identifying \mathbb{R}^n and B_n , we get using (5), (18) and the inclusion $g_m \in \mathbb{P}$ that

$$\lim_{n \to \infty} \|g_m - 1\|_{1,J^n} = \lim_{m \to \infty} \|g_m - \int_{J^n} (hg_m) \, d\lambda_n(h)\|_{1,J^n}$$
$$\leq \lim_{m \to \infty} \int_{J^n} \|g_m - hg_m\|_{1,J^n} \, d\lambda_n(h) = 0.$$
(19)

It follows from (19) and (5) that

$$\lim_{m \to \infty} \|g_m - 1\|_{1, X_0} = 0$$

394

and, consequently,

$$\lim_{m\to\infty}X_0(g_m)=\lambda_n(X_0).$$

From this and (4) we conclude that $\nu(X_0) = \lambda_n(X_0)$. The theorem has been proved.

Now, we can prove the main result of the paper.

THEOREM 4. Let $n \ge 3$ and let ν be a finitely-additive H_n -invariant measure on β such that $\nu(J^n) = 1$. Then $\nu = \lambda_n$.

Proof. As $n \ge 3$ then (see the beginning of the paper) ν is absolutely continuous with respect to λ_n and, consequently, ν determines H_n -invariant linear positive functional l on L_{∞}^0 by

$$l(f) = \int f \, d\nu, \qquad f \in L^0_\infty.$$

As for any space Y with a countably-additive finite measure μ , the set

$$[f \in L_1(Y, \mu) | f \ge 0]$$

is dense in the weak* topology in the set of positive linear functionals on $L_{\infty}(Y, \mu)$, it follows that ρ is dense in weak* topology in the set of linear positive functionals b on L_{∞}^{0} such that $b(\chi(J^{n})) = 1$. Therefore, there exists a net $\{f_{\alpha}\}$ of elements of ρ such that

$$\lim_{\alpha} \int_{\mathbb{R}^n} f_{\alpha} \, d\lambda_n = l(f) \tag{20}$$

for any $f \in L^0_{\infty}$. It follows from (20) and the H_n -invariance of l that

$$\lim_{\alpha} |X(hf_{\alpha}) - X(f_{\alpha})| = 0$$

and

$$\lim X(f_\alpha) = \nu(X)$$

for any $h \in H_n$ and $X \in \beta$. Therefore, in view of theorem 3, $\nu = \lambda_n$.

REFERENCES

- [1] S. Banach. Sur le problème de la mesure. In S. Banach Oeuvres, vol. 1, Warsaw, 1967, pp. 318-322.
- [2] A. Borel. Some finiteness properties of Adele groups over number fields. *Publ. Math. I.H.E.S.* 16 (1963), 1–30.
- [3] N. Bourbaki. Éléments de mathematique, Première partie, Livre VI, Integration. Hermann: Paris.
- [4] C. Delaroche & A. Kirillov. Sur les relation entre l'espace d'une groupe et la structure de ses sous-groupes fermes. Séminaire Bourbaki, Exposé 343, 1968. Lecture Notes in Math. No. 180. Springer: Berlin-Heidelberg-New York, 1972.
- [5] A. Del Junco & J. Rosenblatt. Counter examples in ergodic theory and number theory. Math. Ann. 245 (1979) 185-197.
- [6] D. Kazhdan. On a connection of the dual space of the group with the structure of its closed subgroups. Funct. Anal. Prilozhen 1 (1967) 71-74. (In Russian). (Math. Rev. 35 288.)
- [7] V. Losert & H. Rindler. Almost invariant sets. Bull. London Math. Soc. (To appear.)
- [8] G. Mackey. Unitary representation of group extensions I. Acta Math. 99 (1958) 265-311.

G. A. Margulis

- [9] G. Margulis. Some remarks on invariant means. Mh. Math. 90 (1980) 233-235.
- [10] G. Prasad. Triviality of certain automorphisms of sime-simple groups over local fields. Math. Ann. 218 219-227.
- [11] J. Rosenblatt. Uniqueness of invariant means for measure-preserving transformations. Trans. Amer. Math. Soc. (To appear.)
- [12] K. Schmidt. Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic actions. Preprint.
- [13] D. Sullivan. For $n \ge 3$ there is only one finitely-additive rotationally-invariant measure on the *n*-sphere defined on all Lebesgue measurable sets. *Bull. Amer. Math. Soc.* 4 No. 1 (1980).

396