Finitely-additive invariant measures on Euclidean spaces

G. A. MARGULIS

(Received 10 August 1981)

To the memory of V. M. Alexeyev

Abstract

It is shown that for $n \geq 3$ the Lebesgue measure is the unique finitelyadditive isometry-invariant measure on the ring of bounded Lebesgue measurable subsets of the n-dimensional Euclidean space.

Let β be the ring of bounded Lebesgue measurable sets in the n-dimensional real space R^{n} or in S^{n}, the n-dimensional unit sphere in R^{n-1}, and let λ_{n} be the Lebesgue measure on β normalized by $\lambda_{n}\left(J^{n}\right)=1$, where $J=[0,1)$, or by $\lambda_{n}\left(S^{n}\right)=1$ respectively. It is well known that λ_{n} is up to proportionality the unique countablyadditive isometry-invariant measure on β. In 1923, Banach (see [1]) studied the following question of Ruziewicz: is λ_{n}, up to proportionality, the unique finitelyadditive isometry-invariant (positive) measure on β. Banach gave a negative answer to this question for R^{1}, R^{2} and S^{1}. But for $R^{n}, n \geq 3$, or $S^{n}, n \geq 2$, the Ruziewicz question was unanswered for a long time.

Let ν be a finitely-additive isometry-invariant measure on β and let L_{∞}^{0} be the space of bounded measurable functions on R^{n} or on S^{n} having a compact support. It is well known (see, for example, [11]) that, for $R^{n}, n \geq 3$, or $S^{n}, n \geq 2, \nu$ is absolutely continuous with respect to λ_{n} i.e. $\nu(X)=0$ whenever $\lambda_{n}(X)=0, X \in \beta$. Then ν determines (by the formulae

$$
\left.l(f)=\int f d \nu\right)
$$

an isometry-invariant linear positive ($l(f) \geq 0$ if $f \geq 0$) functional l on L_{∞}^{0}. Conversely, any isometry-invariant linear positive functional l on L_{∞}^{0} determines an isometry-invariant fin'tely-additive measure ν on β by the formula

$$
\nu(\boldsymbol{X})=l(\chi(X))
$$

where $\chi(X)$ is the characteristic function of $X \in \beta$. Therefore, for $R^{n}, n \geq 3$, or S^{n}, $n \geq 2$, the Ruziewicz question is equivalent to the following question:
(A) is any isometry-invariant linear positive functional l on L_{∞}^{0} proportional to the functional α_{n} given by

$$
\alpha_{n}(f)=\int f d \lambda_{n}, \quad f \in L_{\infty}^{0} .
$$

In [9] and [13] (independently and simultaneously), it was proved that, for S^{n}, $n \geq 4$, the answer to (A) is positive. The proof in both [9] and [13] is based on reducing (A) to a question on asymptotically invariant sets (see [2], [5], [11]) and on using Kazhdan's results on property (T).

In this paper, it is proved (see theorem 4) that, for $R^{n}, n \geq 3$, the answer to the Ruziewicz question (and to the equivalent question (A)) is positive. The proof of theorem 4 is based, roughly speaking, on a reduction (by arguments of Namioka) to a question on almost invariant nets of locally integrable functions and on using methods of representation theory.

Thus the Ruziewicz question remains unanswered only for S^{2} and S^{3}.

1. Property (T) and almost invariant nets

Let H be a separable unimodular locally compact group. Let \tilde{H} (respectively \hat{H}) denote the set of unitary (respectively unitary irreducible) continuous representations of H in separable Hilbert spaces. Let μ_{H} be a Haar measure on H and let $A(H)$ be the set of non-negative continuous functions f on H having a compact support such that

$$
\int_{H} f d \mu_{H}=1
$$

For any $U \in \tilde{H}$ and any μ_{H}-integrable function f on H, put

$$
U(f)=\int_{H} f(h) U(h) d \mu_{H}(h)
$$

Let $L(U)$ denote the space of a representation U. For $f \in A(H)$ and $\varepsilon>0$, put

$$
\begin{aligned}
V(\varepsilon, f)= & \{U \in \tilde{H} \mid \text { there exists } x \in L(U), x \neq 0 \\
& \text { such that }\|U(f) x-x\|<\varepsilon\|x\|\} .
\end{aligned}
$$

Let T_{0} be the one-dimensional trivial representation of H. One can introduce on \tilde{H} the standard topology (see [4], [6]) for which sets $\mathscr{V}(\varepsilon, f)$ form a basis of neighbourhoods of T_{0}. We say that $U \in \tilde{H}$ is close to T_{0} if T_{0} belongs to the closure of $\{U\}$. According to Kazhdan (see [4], [6]), we say that H has property (T) if one of two following equivalent conditions is satisfied:
(I) there exists a neighbourhood \mathscr{V} of T_{0} such that any $U \in \mathscr{V} \cap \hat{H}$ is equivalent to T_{0};
(II) any representation $U \in \tilde{H}$ close to T_{0} contains T_{0} (i.e. there exists $x \in L(U)$, $x \neq 0$, such that $U(H) x=x)$.

Let us give now a slight generalization of this definition.
Definition 1. Let $B \subset H$. We say that the pair (H, B) has property (T) if one of two following equivalent conditions is satisfied:
(I') there exists a neighbourhood \mathscr{V} of T_{0} such that any $U \in \mathscr{V} \cap \hat{H}$ is trivial on B

$$
\text { (i.e. } \quad U(B) x=x \quad \text { for any } x \in L(U)) \text {. }
$$

(II') if $U \in \tilde{H}$ is close to T_{0}, then there exists $x \in L(U), x \neq 0$, such that

$$
U(B) x=x
$$

The equivalence of $\left(\mathrm{I}^{\prime}\right)$ and $\left(\mathrm{II}^{\prime}\right)$ can be proved in the same way as the equivalence of (I) and (II) was proved in [6] (by a decomposition of $U \in \tilde{H}$ into a continuous sum of irreducible representations).

Let us give now one further definition. We make the convention that $0 / 0=0$.
Definition 2. Let $U \in \tilde{H}, M \subset H$ and $\left\{x_{\alpha}\right\}$ be a net (generalized sequence) of elements of $L(U)$. We say the net $\left\{x_{\alpha}\right\}$ is almost M-invariant if, for any compact set $K \subset H$,

$$
\lim _{\alpha}\left[\sup _{h \in K \cap M} \frac{\left\|U(h) x_{\alpha}-x_{\alpha}\right\|}{\left\|x_{\alpha}\right\|}\right]=0 .
$$

We say the net $\left\{x_{\alpha}\right\}$ is weakly almost M-invariant if, for any $h \in M$,

$$
\lim _{\alpha} \frac{\left\|U(h) x_{\alpha}-x_{\alpha}\right\|}{\left\|x_{\alpha}\right\|}=0
$$

Theorem 1. Let $B \subset H, \Gamma$ be a lattice in H (i.e. Γ be a discrete subgroup of H such that

$$
\left.\mu_{H}(\Gamma \backslash H)<\infty\right), \quad U \in \tilde{H} \quad \text { and } \quad\left\{x_{\alpha}\right\}
$$

be a net of elements of $L(U)$. Denote by S the closure of the set

$$
B \cdot \Gamma \stackrel{\text { def }}{=}\{b \gamma \mid b \in B, \gamma \in \Gamma\} .
$$

Let us assume that the pair (H, B) has property (T). If the net $\left\{x_{\alpha}\right\}$ is weakly almost Γ-invariant, then $\left\{x_{\alpha}\right\}$ is almost S-invariant.
Proof. Choose (see [3], chapter VII, § 2, exercise 12]) a Borel subset $Y \subset H$ with the following properties:
(a) Y is a fundamental domain for Γ i.e. $\Gamma \cdot Y=G$ and

$$
\left(\gamma_{1} Y\right) \cap\left(\gamma_{2} Y\right)=\varnothing \quad \text { if } \gamma_{1} \neq \gamma_{2}, \gamma_{1}, \gamma_{2} \in \Gamma
$$

(b) for any compact set $K \subset H$, the set

$$
\{\gamma \in \Gamma \mid(\gamma Y) \cap K \neq \varnothing\}
$$

is finite.
Let $\rho \in \tilde{H}$ be the representation of H induced in the sense of Mackey by the restriction of U to Γ. The space J of the representation ρ consists of measurable $j: H \rightarrow L(U)$ such that

$$
\|j\|^{2}=\int_{Y}\|j(h)\|^{2} d \mu_{H}(h)<\infty
$$

and

$$
\begin{equation*}
j(\gamma h)=U(\gamma) j(h), \quad \text { for } \gamma \in \Gamma, h \in H . \tag{1}
\end{equation*}
$$

The scalar product $\langle\cdot, \cdot\rangle$ on J is introduced by

$$
\begin{equation*}
\left\langle j_{1}, j_{2}\right\rangle=\int_{Y}\left\langle j_{1}(h), j_{2}(h)\right\rangle d \mu_{H}(h), \quad \text { for } j_{1}, j_{2} \in J, \tag{2}
\end{equation*}
$$

and the representation ρ is defined by

$$
\begin{equation*}
(\rho(h) j)\left(h_{1}\right)=j\left(h_{1} h\right), h, h_{1} \in H, j \in J \tag{3}
\end{equation*}
$$

Since the pair (H, B) has property (T), there exist $f \in A(H)$ and $\varepsilon>0$ such that any $W \in \hat{H} \cap V(\varepsilon, f)$ is trivial on B. Now decompose the unitary representation ρ into a continuous sum of irreducible representations $\rho_{z} \in \hat{H}$. Let ρ_{1} denote the continuous sum of ρ_{z} such that

$$
\rho_{z} \in V(\varepsilon, f)
$$

and let ρ_{2} denote the continuous sum of ρ_{z} such that $\rho_{z} \notin V(\varepsilon, f)$. Then

$$
\rho=\rho_{1} \oplus \rho_{2}
$$

ρ_{1} is trivial on B and $\rho_{2} \notin V(\varepsilon, f)$. Let $P_{r}, r=1,2$, denote the orthogonal projection of J onto $L\left(\rho_{r}\right)$. Since $\rho_{2} \notin V(\varepsilon, f)$,

$$
\begin{equation*}
\|\rho(f) j-j\| \geq \varepsilon\left\|P_{2} h\right\|=\varepsilon \sqrt{\|j\|^{2}-\left\|P_{1} j\right\|^{2}} \tag{4}
\end{equation*}
$$

for any $j \in J$.
Let us give the following definition. Two nets $\left\{u_{\alpha}\right\}$ and $\left\{u_{\alpha}^{\prime}\right\}$ of elements of a Banach space are called equivalent if

$$
\lim _{\alpha} \frac{\left\|u_{\alpha}^{\prime}-u_{\alpha}\right\|}{\left\|u_{\alpha}\right\|}=0
$$

Define $j_{\alpha} \in J$ by

$$
\begin{equation*}
j_{\alpha}(\gamma y)=U(\gamma) x_{\alpha}, \quad \gamma \in \Gamma, \quad y \in Y \tag{5}
\end{equation*}
$$

For $h \in H$, define $\gamma(h) \in \Gamma$ by the inclusion $h \in \gamma(h) Y$. Let $K \subset H$. In view of (1), (2), (3) and (5), we have

$$
\begin{align*}
\sup _{h \in K} \| \rho(h) j_{\alpha} & -j_{\alpha}\left\|^{2}=\sup _{h \in K} \int_{Y}\right\| j_{\alpha}\left(h_{1} h\right)-j_{\alpha}\left(h_{1}\right) \|^{2} d \mu_{H}\left(h_{1}\right) \\
& =\sup _{h \in K} \int_{Y}\left\|U\left(\gamma\left(h_{1} h\right)\right) x_{\alpha}-x_{\alpha}\right\|^{2} d \mu_{H}\left(h_{1}\right) \\
& \leq \int_{Y}\left(\sup _{h \in K}\left\|U\left(\gamma\left(h_{1} h\right)\right) x_{\alpha}-x_{\alpha}\right\|^{2}\right) d \mu_{H}\left(h_{1}\right) . \tag{6}
\end{align*}
$$

The property (b) of Y implies the set $\gamma(M \cdot K$) is finite for any compact sets $K \subset H$ and $M \subset H$. On the other hand, the net $\left\{x_{\alpha}\right\}$ is weakly almost Γ-invariant. Therefore,

$$
\lim _{\alpha} \sup _{h \in K, h_{1} \in M} \frac{\left\|U\left(\gamma\left(h_{1} h\right)\right) x_{\alpha}-x_{\alpha}\right\|}{\left\|x_{\alpha}\right\|}=0
$$

for any compact sets $K \subset H$ and $M \subset H$. On the other hand, as U is unitary then

$$
\left\|U\left(\gamma\left(h_{1} h\right)\right) x_{\alpha}-x_{\alpha}\right\| \leq 2\left\|x_{\alpha}\right\|
$$

for any $h, h_{1} \in H$. Therefore, (6) implies the net $\left\{j_{\alpha}\right\}$ is almost H-invariant. On the other hand, as $f \in A(H)$ then

$$
\left\|\rho(f) j_{\alpha}-j_{\alpha}\right\| \leq \sup _{h \in \operatorname{supp} f}\left\|\rho(h) j_{\alpha}-j_{\alpha}\right\|,
$$

where $\operatorname{supp} f$ denotes as usual the (compact) support of f. Therefore, the nets $\left\{j_{\alpha}\right\}$ and $\left\{\rho(f) j_{\alpha}\right\}$ are equivalent. From this and (4) we conclude that the nets $\left\{j_{\alpha}\right\}$ and $\left\{P_{1} j_{\alpha}\right\}$ are equivalent.

Let us now fix a compact set $K \subset H$ containing e. For any $j \in J$, we have

$$
\begin{align*}
\sup _{h \in K}\|(\rho(f) j)(h)\| & =\sup _{h \in K}\left\|\int_{H} f\left(h_{1}\right) j\left(h h_{1}\right) d \mu_{H}\left(h_{1}\right)\right\| \\
& \leq \sup _{h \in K} \int_{H} f\left(h_{1}\right)\left\|j\left(h h_{1}\right)\right\| d \mu_{H}\left(h_{1}\right) \\
& \leq\left(\sup _{h^{\prime} \in H} f\left(h^{\prime}\right)\right) \cdot \int_{K \cdot \operatorname{supp} f}\|j(\tilde{h})\| d \mu_{H}(\tilde{h}) \\
& \leq\left(\sup _{h^{\prime} \in H} f\left(h^{\prime}\right)\right) \cdot \sqrt{\mu_{H}(K \cdot \operatorname{supp} f)} \cdot \sqrt{\int_{K \cdot \operatorname{supp} f}\|j(\tilde{h})\|^{2} d \mu_{H}(\tilde{h})} \tag{7}
\end{align*}
$$

(the last inequality is implied by the Schwartz inequality). Since the set $K \cdot \operatorname{supp} f$ is compact, it belongs to $M \cdot Y$ for some finite set $M \subset \Gamma$. Then in view of (2),

$$
\int_{K \cdot \text { supp } f}\|j(\tilde{h})\|^{2} d \mu_{H}(\tilde{h}) \leq|M| \cdot\|j\|^{2}
$$

This inequality and (7) imply

$$
\begin{equation*}
\sup _{h \in K}\|(\rho(f) j)(h)\| \leq C\|j\| \tag{8}
\end{equation*}
$$

for any $j \in J$, where

$$
C=\left(\sup _{h^{\prime} \in H} f\left(h^{\prime}\right)\right) \cdot \sqrt{\mu_{H}(K \cdot \operatorname{supp} f)} \cdot \sqrt{|M|}
$$

Further, put

$$
j_{\alpha}^{\prime}=\rho(f) P_{1} j_{\alpha}=P_{1} \rho(f) j_{\alpha}
$$

Then in view of (8),

$$
\begin{equation*}
\sup _{h \in K}\left\|j_{\alpha}^{\prime}(h)-\left(\rho(f) j_{\alpha}\right)(h)\right\| \leq C\left\|P_{1} j_{\alpha}-j_{\alpha}\right\| . \tag{9}
\end{equation*}
$$

In view of (1), (3) and (5) we have

$$
\begin{align*}
\sup _{h \in K}\left\|x_{\alpha}-\left(\rho(f) j_{\alpha}\right)(h)\right\| & =\sup _{h \in K}\left\|x_{\alpha}-\int_{H} f\left(h_{1}\right) j_{\alpha}\left(h h_{1}\right) d \mu_{H}\left(h_{1}\right)\right\| \\
& =\sup _{h \in K}\left\|\int_{H} f\left(h_{1}\right)\left(x_{\alpha}-j_{\alpha}\left(h h_{1}\right)\right) d \mu_{H}\left(h_{1}\right)\right\| \\
& \leq \sup _{\dot{h \in K \cdot \operatorname{supp} f}}\left\|x_{\alpha}-j_{\alpha}(\tilde{h})\right\| \\
& =\sup _{\gamma \in \gamma(K \cdot \operatorname{supp} f)}\left\|x_{\alpha}-U(\gamma) x_{\alpha}\right\| . \tag{10}
\end{align*}
$$

As the nets $\left\{j_{\alpha}\right\}$ and $\left\{P_{1} j_{\alpha}\right\}$ are equivalent, the set $\gamma(K \cdot \operatorname{supp} f)$ is finite (in view of the property (b) of Y), the net $\left\{x_{\alpha}\right\}$ is weakly almost Γ-invariant, and

$$
\left\|j_{\alpha}\right\|=\sqrt{\mu_{H}(Y)}\left\|x_{\alpha}\right\|
$$

we conclude from (9) and (10) that

$$
\begin{equation*}
\lim _{\alpha} \sup _{h \in K} \frac{\left\|j_{\alpha}^{\prime}(h)-x_{\alpha}\right\|}{\left\|x_{\alpha}\right\|}=0 \tag{11}
\end{equation*}
$$

Let \tilde{B} be a normal subgroup of H generated by B. Since ρ_{1} is trivial on B, it is also trivial on \tilde{B}. On the other hand

$$
j_{\alpha}^{\prime} \in L\left(\rho_{1}\right)
$$

Therefore for any $h \in H$, we have

$$
\begin{align*}
j_{\alpha}^{\prime}(\tilde{B} h)=j_{\alpha}^{\prime}(h \tilde{B}) & =\left(\rho(\tilde{B}) j_{\alpha}^{\prime}\right)(h) \\
& =\left(\rho_{1}(\tilde{B}) j_{\alpha}^{\prime}\right)(h)=j_{\alpha}^{\prime}(h) \tag{12}
\end{align*}
$$

The equalities (11) and (12) imply

$$
\begin{equation*}
\lim _{\alpha} \sup _{h \in \tilde{B} \cdot K} \frac{\left\|j_{\alpha}^{\prime}(h)-x_{\alpha}\right\|}{\left\|x_{\alpha}\right\|}=0 \tag{13}
\end{equation*}
$$

Since U is unitary, we get using (1) that

$$
\begin{align*}
\|U(\gamma) x-x\| & \leq\|U(\gamma) x-j(\gamma)\|+\|j(\gamma)-x\| \\
& =\|U(\gamma)(x-j(e))\|+\|j(\gamma)-x\| \\
& =\|j(e)-x\|+\|j(\gamma)-x\| \tag{14}
\end{align*}
$$

for any $\gamma \in \Gamma, x \in L(U)$ and $j \in J$. Using (13) and (14), we get

$$
\begin{equation*}
\lim _{\alpha} \sup _{\gamma \in(\bar{B} \cdot \boldsymbol{K}) \cap \Gamma} \frac{\left\|U(\gamma) x_{\alpha}-x_{\alpha}\right\|}{\left\|x_{\alpha}\right\|}=0 . \tag{15}
\end{equation*}
$$

As K is an arbitrary compact subset of H the representation U is continuous and $\tilde{B} \supset B$, then (15) implies the assertion of the theorem.

Lemma 1. Let K be a non-discrete locally compact field and let $H=S L_{2}(k) \propto B$ be a semi-direct product of $\mathrm{SL}_{2}(k)$ and a separable commutative locally compact group B (as usual $\mathrm{SL}_{2}(k)$ denotes the group of unimodular matrices of order 2 with coefficients in k). Consider the natural action of H on the character group B^{*} of B

$$
\left.(h \chi)(b)=\chi\left(h^{-1} b h\right), h \in H, \chi \in B^{*}, b \in B\right) .
$$

Let us assume that (I) any orbit under this action is locally closed, (II) the subgroup

$$
G_{\chi}=\left\{h \in \mathrm{SL}_{2}(k) \mid h \chi=\chi\right\}
$$

is commutative for any $\chi \in B^{*}, x \neq 0$. Then the pair (H, B) has property (T).
Proof. Let $U \in \hat{H}$ and suppose U is not trivial on B. Then in view of Mackey's results (see [8]), U is induced by an irreducible unitary representation ρ of a subgroup

$$
H_{\chi}=\{h \in H \mid h \chi=\chi\}, \chi \in B^{*}, \chi \neq 0 .
$$

On the other hand since G_{χ} is commutative, H_{χ} is solvable and, consequently, ρ belongs to the closure of the regular representation of H_{x}. Therefore, U belongs to the closure of the regular representation τ of H. Now it remains to note that (see [6]) the regular representation of $\mathrm{SL}_{2}(k)$ is not close to T_{0} and so τ is not close to T_{0}.
Remark. Some arguments of [6] were in fact used in the proof of lemma 1.

Let us prove now the following theorem using theorem 1 and lemma 1.
THEOREM 2. Let $n \geq 3, H_{n}$ be the group of isometries of the n-dimensional Euclidean space R^{n}, and let $B_{n} \subset H_{n}$ be the group of parallel translations of R^{n}. Then there exists a countable subgroup Γ of H_{n} with the following property: if $U \in \tilde{H}_{n}$ and $\left\{x_{\alpha}\right\}$ is a weakly almost Γ-invariant net of elements of $L(U)$, then $\left\{x_{\alpha}\right\}$ is almost B_{n} invariant.
Proof. For a commutative ring L with identity, denote by $O_{n}(L)$ the group of matrices of order n with coefficients in L which preserve the quadratic form $C=x_{1}^{2}+\cdots+x_{n}^{2}$ and put

$$
G_{n}(L)=\left\{\left(\begin{array}{cc}
A & B \\
0 & 1
\end{array}\right)\right\}, \quad F_{n}(L)=\left\{\left(\begin{array}{cc}
E & B \\
0 & 1
\end{array}\right)\right\}
$$

where $A \in O_{n}(L)$ and B is a column vector with coefficients in L. It is well known that there exists a topological isomorphism of groups $G_{n}(R)$ and H_{n} which maps $F_{n}(R)$ onto B_{n}. Therefore, one can replace H_{n} by $G_{n}(R)$ and B_{n} by $F_{n}(R)$ in the formulation of the theorem.

Let $Z(1 / 5)$ denote the subring of the field Q generated by $1 / 5$ and let Q_{5} denote the field of 5 -adic numbers. Put

$$
\Gamma=G_{n}(Z(1 / 5))
$$

The diagonal embedding of $Z(1 / 5)$ into $R \times Q_{5}$ induces the diagonal embedding of Γ into

$$
H \stackrel{\text { def }}{=} G_{n}(R) \times G_{n}\left(Q_{5}\right)
$$

Let us suppose we have proved that the pair $\left(G_{n}\left(Q_{5}\right), F_{n}\left(Q_{5}\right)\right)$ has property (T). Then the pair ($H, F_{n}\left(Q_{5}\right)$) also has property (T). (We think of the subgroup

$$
F_{n}\left(Q_{5}\right) \subset G_{n}\left(Q_{5}\right)
$$

as naturally embedded in H). On the other hand in view of the Borel reduction theorem (see [2]), Γ is a lattice in H. Therefore applying theorem 1 to the pair ($H, F_{n}\left(Q_{5}\right)$), the lattice Γ, the net $\left\{x_{\alpha}\right\}$, and the representation $U^{\prime}=p \cdot U$, where $p: H \rightarrow G_{n}(R)$ is the natural mapping, we get the net $\left\{x_{\alpha}\right\}$ is almost S-invariant, where S is the closure in $F_{n}(R)$ of $F_{n}(Z(1 / 5))$. On the other hand as $Z(1 / 5)$ is dense in R, then $S=F_{n}(R)$.

Thus, it remains to prove that the pair $\left(G_{n}\left(Q_{5}\right), F_{n}\left(Q_{5}\right)\right)$ has property (T). For this we consider three cases: (1) $n \geq 5$; (2) $n=4$; (3) $n=3$.
Case (1). Let a representation $\rho \in G\left(Q_{5}\right)$ be close to T_{0}. As -1 is a square in Q_{5}, the Q_{5}-rank (i.e. the dimension of a maximal Q_{5}-split torus) of $O_{n}\left(Q_{5}\right)$ is equal to the integer part of $n / 2$ and, consequently, is not less than $[5 / 2]=2$. On the other hand if $n \neq 4$, then O_{n} is an absolutely (almost) simple algebraic group. Therefore in view of Kazhdan's results on property (T) (see [4], [6]), the group $O_{n}\left(Q_{s}\right)$ has property (T). Hence, there exists $x \in L(\rho), x \neq 0$, such that $\rho(P) x=x$, where

$$
P=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right)\right\}, \quad A \in O_{n}\left(Q_{5}\right)
$$

Let

$$
D=\left\{x \in Q_{S}^{n} \mid C(x)=0\right\}
$$

For any $d \in D$, one can find a matrix $A_{d} \in O_{n}\left(Q_{s}\right)$ such that

$$
\lim _{n \rightarrow+\infty} A_{d}^{n}(d)=0
$$

Then

$$
\lim _{n \rightarrow+\infty}\left(\begin{array}{cc}
A_{d} & 0 \tag{16}\\
0 & 1
\end{array}\right)^{n}\left(\begin{array}{cc}
1 & d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
A_{d} & 0 \\
0 & 1
\end{array}\right)^{-n}=E .
$$

Since $\rho(P) x=x$ and the representation ρ is continuous and unitary, (16) and the generalization of the Mautner lemma given by Prasad (see [10]) imply

$$
\rho\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right) x=x \quad \text { for any } d \in D
$$

On the other hand as -1 is a square in Q_{5}, then D generates Q_{5} as a group. Therefore, $\rho\left(F_{n}\left(Q_{5}\right)\right) x=x$.
Case (2). Let $\mathrm{i} \in Q_{5}$ such that $\mathrm{i}^{2}=-1$. For $A \in \mathrm{SL}_{2}\left(Q_{5}\right)$, put

$$
X_{\mathrm{A}}=\left(\begin{array}{cc}
E & \mathrm{i} E \\
E & -\mathrm{i} E
\end{array}\right)^{-1}\left(\begin{array}{cc}
A & 0 \\
0 & { }^{t} A^{-1}
\end{array}\right)\left(\begin{array}{cc}
E & \mathrm{i} E \\
E & -\mathrm{i} E
\end{array}\right)
$$

where ' A is the matrix transposed to A and E is the identity matrix of the second order. One can directly check that $X_{A} \in O_{4}\left(Q_{5}\right)$. Put

$$
M=\left\{\left(\begin{array}{cc}
X_{A} & 0 \\
0 & 1
\end{array}\right)\right\} \subset G_{4}\left(Q_{5}\right)
$$

Then applying lemma 1 , we obtain the pair $\left(M \cdot F_{4}\left(Q_{5}\right), F_{4}\left(Q_{5}\right)\right.$) and, consequently, the pair $\left(G_{4}\left(Q_{5}\right), F_{4}\left(Q_{5}\right)\right)$, has property (T).
Case (3). As -1 is a square in Q_{5}, then C can be reduced to the form $x_{1}^{2}+x_{2} x_{3}$. Then identifying a vector (x_{1}, x_{2}, x_{3}) with the matrix

$$
\left(\begin{array}{rr}
x_{1} & x_{2} \\
x_{3} & -x_{1}
\end{array}\right)
$$

and conjugating this matrix by $A \in \mathrm{SL}_{2}\left(Q_{5}\right)$, we get the homomorphism $\varphi: \mathrm{SL}_{2}\left(Q_{5}\right) \rightarrow O_{3}\left(Q_{5}\right)$. Now, we can define a semi-direct product

$$
T=\mathrm{SL}_{2}\left(Q_{5}\right) \propto F_{3}\left(Q_{5}\right)
$$

and a homomorphism

$$
\tilde{\varphi}: T \rightarrow G_{3}\left(Q_{5}\right)=O_{3}\left(Q_{5}\right) \propto F_{3}\left(Q_{5}\right)
$$

such that

$$
\tilde{\varphi} \mid \mathrm{SL}_{2}\left(Q_{5}\right)=\varphi \quad \text { and } \quad \tilde{\varphi} \mid F_{3}\left(Q_{5}\right)=I d
$$

Applying lemma 1 , we get the pair ($T, F_{3}\left(Q_{5}\right)$) and, consequently, the pair $\left(G_{3}\left(Q_{5}\right), F_{3}\left(Q_{5}\right)\right.$), has property (T).
2. Almost invariant nets of locally integrable functions and finitely-additive invariant measures
Let β be the ring of bounded Lebesgue measurable sets in R^{n}, and let λ_{n} be the Lebesgue measure on R^{n} normalized by

$$
\lambda_{n}\left(J^{n}\right)=1, \text { where } J=[0,1)
$$

Let L denote the space of locally integrable functions on R^{n}. If $X \in \beta, p \geq 1$ and $f^{p} \in L$, put

$$
\|f\|_{p, X}=\left(\int_{X}|f|^{p} d \lambda_{n}\right)^{1 / p}
$$

for $X \in \beta$ and $f \in L$, put

$$
X(f)=\int_{X} f d \lambda_{n}
$$

Put $P=\left\{f \in L \mid f \geq 0, J^{n}(f)=1\right\}$. Let H_{n} and B_{n} be the same as in the formulation of theorem 2. For $h \in H_{n}$ and $f \in L$, define $h f \in L$ by

$$
(h f)(x)=f\left(h^{-1} x\right), x \in R^{n} .
$$

Theorem 3. Let $n \geq 3$ and $\left\{f_{\alpha}\right\}$ be a net of elements of P. Assume that
(a) $\lim _{\alpha}\left|X\left(h f_{\alpha}\right)-X\left(f_{\alpha}\right)\right|=0 \quad$ for any $h \in H_{n}$ and $X \in \beta$;
(b) for any $X \in \beta$, there exists a limit

$$
\lim _{\alpha} X\left(f_{\alpha}\right) \stackrel{\text { def }}{=} \nu(X)
$$

Then $\nu(X)=\lambda_{n}(X)$ for any $X \in \beta$.
Proof. Introduce on the linear space L the standard topology for which sets

$$
\left\{f \in L \mid\|f\|_{X}<\varepsilon\right\}, x \in \beta, \varepsilon>0
$$

form a basis of neighbourhoods of zero. Put $L_{h}=L$ and $R_{X}=R$ for $h \in H$ and $X \in \beta$ and consider the Tychonoff product

$$
M=\prod_{h \in H} L_{h} \times \prod_{X \in \beta} R_{X}
$$

The space M can be considered as the set of pairs (a, b), where $a: H \rightarrow L$ and $b: \beta \rightarrow R$ are arbitrary mappings. Define a linear mapping $T: L \rightarrow M$ by

$$
\begin{array}{cl}
T f=\left(T_{1} f, T_{2} f\right), & \left(T_{1} f\right)(h)=h f-f, \quad\left(T_{2} f\right)(X)=X(f), \\
& f \in L, h \in H, X \in \beta .
\end{array}
$$

As $L_{\infty}(Y, \mu)$ is the dual of $L_{1}(Y, \mu)$ for any space Y with a countably-additive finite measure μ, then the bounded measurable space L_{∞}^{0} having compact support functions on R^{n} is the dual of L. Therefore, the condition (a) implies the net $\left\{h f_{\alpha}-f_{\alpha}\right\}$ weakly converges to zero for any $h \in H$. From this and condition (b) we conclude that the weak closure of $T(P)$ in M contains $(0, \nu)$. On the other hand as the space M is locally convex and $T(P)$ is a convex set, the weak and strict closures of $T(P)$ coincide. Therefore, there exists a net $\left\{g_{\delta}\right\}$ of elements of P such
that, for any $h \in H$ and $X \in \beta$, we have

$$
\begin{equation*}
\lim _{\delta}\left\|h g_{\delta}-g_{\delta}\right\|_{1, X}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\delta} X\left(g_{\delta}\right)=\nu(X) \tag{2}
\end{equation*}
$$

Let $\Omega \subset B_{n}$ denote the subgroup of parallel translations by vectors with integer coefficients. Let $\Gamma \subset H_{n}$ be the countable subgroup defined in theorem 2 and let Γ^{\prime} be the subgroup generated by Γ and Ω. Let us fix now $X_{0} \in \beta$ and denote by N^{+} the set of positive integer numbers. As Γ^{\prime} is countable, the space R^{n} is σ-compact, and

$$
\|f\|_{1, X} \leq\|f\|_{1, X^{\prime}} \quad \text { if } X \subset X^{\prime}
$$

then, in view of (1) and (2), one can choose a countable subsequence $\left\{g_{m}\right\}, m \in N^{+}$, of the net $\left\{g_{\delta}\right\}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\gamma g_{m}-g_{m}\right\|_{1, X}=0 \tag{3}
\end{equation*}
$$

for any $\gamma \in \Gamma^{\prime}, X \in \beta$, and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} X_{0}\left(g_{m}\right)=\nu\left(X_{0}\right) \tag{4}
\end{equation*}
$$

Any point $x \in R^{n}$ is uniquely represented in the form

$$
x=\omega j, \omega \in \Omega, j \in J^{n}
$$

Define functions $\tilde{g}_{m} \in L$ by

$$
\tilde{g}_{m}(\omega j)=g_{m}(j), \omega \in \Omega, j \in J^{n}
$$

Then

$$
\left\|\tilde{g}_{m}-g_{m}\right\|_{1, \omega J^{n}}=\left\|\omega^{-1} g_{m}-g_{m}\right\|_{J^{n}}
$$

for any $m \in N^{+}$and $\omega \in \Omega$. On the other hand, any $X \in \beta$ can be covered by a finite number of sets of the type $\omega J^{n}, \omega \in \Omega$. Therefore, (3) implies

$$
\lim _{m \rightarrow \infty}\left\|\tilde{g}_{m}-g_{m}\right\|_{1, X}=0
$$

for any $X \in \beta$. On the other hand,

$$
\|\gamma f\|_{1, X}=\|f\|_{1, \gamma^{-1} \mathrm{X}} \quad \text { for any } f \in L
$$

Therefore, we can replace g_{m} by \tilde{g}_{m} in (3) and (4) and suppose

$$
\begin{equation*}
g_{m}(\omega x)=g_{m}(x) \tag{5}
\end{equation*}
$$

for any $m \in N^{+}, \omega \in \Omega, x \in R^{n}$.
Let $U(r)$ denote the ball in R^{n} centered at 0 of radius r. As Γ^{\prime} is countable, then, in view of (3), one can choose a sequence $\left\{r_{m}>0\right\}$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} r_{m}=\infty \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\gamma g_{m}-g_{m}\right\|_{1, U\left(r_{m}\right)}=0 \tag{7}
\end{equation*}
$$

for any $\gamma \in \Gamma^{\prime}$.

Let $\chi(V)$ denote the characteristic function of a set $V \subset R^{n}$. Put

$$
\chi_{m}=\chi\left(U\left(r_{m}\right)\right) \text { and } \varphi_{m}=\left(g_{m} \chi_{m}\right)^{\frac{1}{2}}=g_{m}^{\frac{1}{2}} \chi_{m}
$$

Then, for any $m \in N^{+}$and $h \in H_{n}$,

$$
\begin{aligned}
h \varphi_{m}-\varphi_{m} & =\left(h g_{m}^{\frac{1}{2}}\right)\left(h \chi_{m}\right)-\left(g_{m}^{\frac{1}{2}} \chi_{m}\right) \\
& =\left(\left(h g_{m}^{\frac{1}{2}}\right)-g_{m}^{\frac{1}{2}}\right) \chi_{m}+\left(h g_{m}^{\frac{1}{2}}\right)\left(h \chi_{m}-\chi_{m}\right) \\
& =\left(\left(h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right) \chi\left(U\left(r_{m}\right)\right)\right. \\
& +\left(h g_{m}^{\frac{1}{2}}\right)\left[\chi\left(h U\left(r_{m}\right)-U\left(r_{m}\right)\right)-\chi\left(U\left(r_{m}\right)-h U\left(r_{m}\right)\right)\right]
\end{aligned}
$$

and, consequently,

$$
\begin{align*}
\left|\left\|h \varphi_{m}-\varphi_{m}\right\|_{2, R^{n}}-\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, U\left(r_{m}\right)}\right| & \leq\left\|h g_{m}^{\frac{1}{m}}\right\|_{2, h U\left(r_{m}\right) \Delta U\left(r_{m}\right)} \\
& =\left\|g_{m}^{\frac{1}{m}}\right\|_{2, U\left(r_{m}\right) \Delta h^{-1} U\left(r_{m}\right)} . \tag{8}
\end{align*}
$$

For $V \subset R^{n}$, put

$$
F(V)=\left\{\omega \in \Omega \mid \omega J^{n} \subset V\right\}
$$

and

$$
F^{\prime}(V)=\left\{\omega \in \Omega \mid \omega J^{n} \cap V \neq \varnothing\right\}
$$

Classical theorems on the number of integer points imply

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{|F(U(r))|}{\lambda_{n}(U(r))}=\lim _{r \rightarrow \infty} \frac{\left|F^{\prime}(U(r))\right|}{\lambda_{n}(U(r))}=1 \tag{9}
\end{equation*}
$$

It is clear that

$$
F^{\prime}\left(V_{1}-V_{2}\right) \subset F^{\prime}\left(V_{1}\right)-F\left(V_{2}\right)
$$

for any $V_{1}, V_{2} \subset R^{n}$. Therefore, (9) implies

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\left|F^{\prime}(U(r)-U(r-d))\right|}{\lambda_{n}(U(r))}=0 \tag{10}
\end{equation*}
$$

for any $d>0$.
The equality (5) and the inclusion $g_{m} \in \rho$ imply that

$$
\left\|g_{m}^{\frac{1}{2}}\right\|_{2, \omega J^{n}}=\left\|g_{m}^{\frac{1}{2}}\right\|_{2, J^{n}}=\left(\left\|g_{m}\right\|_{1, J^{n}}\right)^{\frac{1}{2}}=1
$$

for any $m \in N^{+}$and $\omega \in \Omega$. Therefore, for any $m \in N^{+}$and $X \in \beta$,

$$
\begin{equation*}
|F(X)| \leq\left\|g_{m}^{\frac{1}{2}}\right\|_{2, X} \leq\left|F^{\prime}(X)\right| \tag{11}
\end{equation*}
$$

For $h \in H_{n}$, denote by d_{h} the distance between 0 and $h(0)$. Then

$$
U(r) \Delta h^{-1} U(r) \subset U\left(r+d_{h}\right)-U\left(r-d_{h}\right)
$$

for any $r>0, h \in H_{n}$. Therefore, (6), (10) and (11) imply, for any $h \in H_{n}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left\|g_{m}^{\frac{1}{2}}\right\|_{2, U\left(r_{m}\right) \Delta h^{-1} U\left(r_{m}\right)}^{\lambda_{n}\left(U\left(r_{m}\right)\right)}=0 ~}{\text { and }} \tag{12}
\end{equation*}
$$

As $|a-b|^{2} \leq a^{2}-b^{2}$ for any $a, b>0$, then

$$
\left\|f_{1}^{\frac{1}{1}}-f_{2}^{\frac{1}{2}}\right\|_{2, x} \leq\left\|f_{1}-f_{2}\right\|_{1, X}^{\frac{1}{2}}
$$

for any $f_{1}, f_{2} \in L$ and $X \in \beta$. Therefore, (6), (7), (8) and (12) imply,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left\|\gamma \varphi_{m}-\varphi_{m}\right\|_{2, R^{n}}}{\lambda_{n}\left(U\left(r_{m}\right)\right)}=0 \tag{13}
\end{equation*}
$$

for any $\gamma \in \Gamma^{\prime}$. Further, in view of (11),

$$
\left\|\varphi_{m}\right\|_{2, R^{n}}=\left\|g_{m}^{\frac{1}{2}}\right\|_{2, U\left(r_{m}\right)} \geq\left|F\left(U\left(r_{m}\right)\right)\right| .
$$

From this and (9) we conclude that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\left\|\varphi_{m}\right\|_{2, R^{n}}}{\lambda_{n}\left(U\left(r_{m}\right)\right)}=1 \tag{14}
\end{equation*}
$$

The equalities (13) and (14) imply $\left\{\varphi_{m}\right\}$ is a weakly almost Γ^{\prime}-invariant sequence of elements of $L_{2}\left(R^{n}, \lambda_{n}\right)$. Therefore, in view of theorem $2,\left\{\varphi_{m}\right\}$ is almost B_{n} invariant. From this and (8), (12) and (14) we conclude that, for any compact set $K \subset B_{n}$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{h \in K} \frac{\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, U\left(r_{m}\right)}}{\lambda_{n}\left(U\left(r_{m}\right)\right)}=0 \tag{15}
\end{equation*}
$$

It follows from (5) and the commutativity of B_{n} that

$$
\left(h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right)(\omega x)=\left(h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right)(x)
$$

for any $m \in N^{+}, h \in B_{n}, \omega \in \Omega, x \in R^{n}$. Therefore,

$$
\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, \omega J^{n}}=\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, J^{n}}
$$

for any $m \in N^{+}, h \in B_{n}$. Hence,

$$
\begin{equation*}
\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, X} \geqslant|F(X)|\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, J^{n}} \tag{16}
\end{equation*}
$$

for any $m \in N^{+}, h \in B_{n}$ and $X \in \beta$. It follows from (9), (15) and (16) that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{h \in K}\left\|h g_{m}^{\frac{1}{2}}-g_{m}^{\frac{1}{2}}\right\|_{2, s^{n}}=0 \tag{17}
\end{equation*}
$$

for any compact set $K \subset B_{n}$.
The Schwartz inequality implies that

$$
\left\|f_{1}-f_{2}\right\|_{1, X} \leq\left\|f_{1}^{\frac{1}{1}}-f_{2}^{\frac{1}{2}}\right\|_{2, X} \cdot\left(\left\|f_{1}^{\frac{1}{2}}\right\|_{2, X}+\left\|f_{2}^{\frac{1}{2}}\right\|_{2, X}\right)
$$

for any $f_{1}, f_{2} \in L$ and $X \in \beta$. On the other hand as any $x \in R^{n}$ is uniquely represented in the form $x=\omega j, \omega \in \Omega, j \in J^{n}$, then (5) and the inclusion $g_{m} \in P$ imply

$$
\left\|\boldsymbol{h} g_{m}^{\frac{1}{2}}\right\|_{2, J^{n}}=\left\|g_{m}^{\frac{1}{2}}\right\|_{2, h^{-1} J^{n}}=\left\|g_{m}^{\frac{1}{2}}\right\|_{2, J^{n}}=1
$$

for any $h \in H_{n}$ and $m \in N^{+}$. Therefore, (17) implies

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{h \in K}\left\|h g_{m}-g_{m}\right\|_{1, J^{n}}=0 \tag{18}
\end{equation*}
$$

for any compact set $K \subset B_{n}$. Identifying R^{n} and B_{n}, we get using (5), (18) and the inclusion $g_{m} \in P$ that

$$
\begin{align*}
\lim _{m \rightarrow \infty}\left\|g_{m}-1\right\|_{1, J^{n}} & =\lim _{m \rightarrow \infty}\left\|g_{m}-\int_{J^{n}}\left(h g_{m}\right) d \lambda_{n}(h)\right\|_{1, J^{n}} \\
& \leq \lim _{m \rightarrow \infty} \int_{J^{n}}\left\|g_{m}-h g_{m}\right\|_{1, J^{n}} d \lambda_{n}(h)=0 . \tag{19}
\end{align*}
$$

It follows from (19) and (5) that

$$
\lim _{m \rightarrow \infty}\left\|g_{m}-1\right\|_{1, x_{0}}=0
$$

and, consequently,

$$
\lim _{m \rightarrow \infty} X_{0}\left(g_{m}\right)=\lambda_{n}\left(X_{0}\right)
$$

From this and (4) we conclude that $\nu\left(X_{0}\right)=\lambda_{n}\left(X_{0}\right)$. The theorem has been proved.

Now, we can prove the main result of the paper.
Theorem 4. Let $n \geq 3$ and let ν be a finitely-additive H_{n}-invariant measure on β such that $\nu\left(J^{n}\right)=1$. Then $\nu=\lambda_{n}$.
Proof. As $n \geq 3$ then (see the beginning of the paper) ν is absolutely continuous with respect to λ_{n} and, consequently, ν determines H_{n}-invariant linear positive functional l on L_{∞}^{0} by

$$
l(f)=\int f d \nu, \quad f \in L_{\infty}^{0}
$$

As for any space Y with a countably-additive finite measure μ, the set

$$
\left\{f \in L_{1}(Y, \mu) \mid f \geq 0\right\}
$$

is dense in the weak* topology in the set of positive linear functionals on $L_{\infty}(Y, \mu)$, it follows that ρ is dense in weak* topology in the set of linear positive functionals b on L_{∞}^{0} such that $b\left(\chi\left(J^{n}\right)\right)=1$. Therefore, there exists a net $\left\{f_{\alpha}\right\}$ of elements of ρ such that

$$
\begin{equation*}
\lim _{\alpha} \int_{R^{n}} f_{\alpha} d \lambda_{n}=l(f) \tag{20}
\end{equation*}
$$

for any $f \in L_{\infty}^{0}$. It follows from (20) and the H_{n}-invariance of l that

$$
\lim _{\alpha}\left|X\left(h f_{\alpha}\right)-X\left(f_{\alpha}\right)\right|=0
$$

and

$$
\lim _{\alpha} X\left(f_{\alpha}\right)=\nu(X)
$$

for any $h \in H_{n}$ and $X \in \beta$. Therefore, in view of theorem 3, $\nu=\lambda_{n}$.

REFERENCES

[1] S. Banach. Sur le problème de la mesure. In S. Banach Oeuvres, vol. 1, Warsaw, 1967, pp. 318-322.
[2] A. Borel. Some finiteness properties of Adele groups over number fields. Publ. Math. I.H.E.S. 16 (1963), 1-30.
[3] N. Bourbaki. Éléments de mathematique, Première partie, Livre VI, Integration. Hermann: Paris.
[4] C. Delaroche \& A. Kirillov. Sur les relation entre l'espace d'une groupe et la structure de ses sous-groupes fermes. Séminaire Bourbaki, Exposé 343, 1968. Lecture Notes in Math. No. 180. Springer: Berlin-Heidelberg-New York, 1972.
[5] A. Del Junco \& J. Rosenblatt. Counter examples in ergodic theory and number theory. Math. Ann. 245 (1979) 185-197.
[6] D. Kazhdan. On a connection of the dual space of the group with the structure of its closed subgroups. Funct. Anal. Prilozhen 1 (1967) 71-74. (In Russian). (Math. Rev. 35 288.)
[7] V. Losert \& H. Rindler. Almost invariant sets. Bull. London Math. Soc. (To appear.)
[8] G. Mackey. Unitary representation of group extensions I. Acta Math. 99 (1958) 265-311.
[9] G. Margulis. Some remarks on invariant means. Mh. Math. 90 (1980) 233-235.
[10] G. Prasad. Triviality of certain automorphisms of sime-simple groups over local fields. Math. Ann. 218 219-227.
[11] J. Rosenblatt. Uniqueness of invariant means for measure-preserving transformations. Trans. Amer. Math. Soc. (To appear.)
[12] K. Schmidt. Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic actions. Preprint.
[13] D. Sullivan. For $n \geq 3$ there is only one finitely-additive rotationally-invariant measure on the n-sphere defined on all Lebesgue measurable sets. Bull. Amer. Math. Soc. 4 No. 1 (1980).

