FINITELY GENERATED GROUPS, p-ADIC ANALYTIC GROUPS, AND POINCARÉ SERIES

MARCUS P. F. DU SAUTOY

INTRODUCTION

Igusa [I 1, I 2] was the first to exploit *p*-adic integration with respect to the Haar measure on \mathbf{Q}_p in the study of Poincaré series arising in number theory and developed a method using Hironaka's resolution of singularities to evaluate a limited class of such integrals. Denef [D 1, D 2] and, more recently, Denef and van den Dries [DvdD] have applied results from logic, profiting from the flexibility of the concept of definable, greatly to enlarge the class of integrals amenable to Igusa's method. In [DvdD] these results are employed to answer questions posed by Serre [S] and Oesterlé [O] concerning the rationality of various Poincaré series associated with the *p*-adic points of a closed analytic subset of \mathbf{Z}_p^m . In this note we apply these techniques to prove that various Poincaré series associated with finitely generated groups and *p*-adic analytic groups are rational in p^{-s} , extending results of [GSS].

RESULTS

Let G be a group and denote by $a_n(G)$ the number of subgroups of index n in G. We are interested in groups for which $a_n(G)$ is finite for every $n \in \mathbb{N}$. For each prime p, we can then associate the following Poincaré series with this arithmetical function:

(1)
$$\zeta_{G,p}(s) = \sum_{n=0}^{\infty} a_{p^n}(G) p^{-ns} = \sum_{H \in \mathbf{X}_p} |G : H|^{-s}$$

~~

where $\mathbf{X}_p = \{H \leq G : H \text{ has finite } p \text{-power index in } G \}.$

Received by the editors June 22, 1989 and, in revised form, November 18, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E20; Secondary 03C10, 11M41, 20E18, 20F99.

§1. p-Adic analytic groups

We consider firstly the case where G is a compact p-adic analytic group—that is, a compact topological group with the underlying structure of a p-adic analytic manifold with respect to which the group operations are analytic (see [Lz] and [DduSMS]). For such groups, $a_n(G)$ is finite for every n. We wish to announce the following:

Theorem 1. If G is a compact p-adic analytic group, then $\zeta_{G,p}(s)$ is rational in p^{-s} .

The philosophy behind the proof is to express our Poincaré series as a *p*-adic integral

(2)
$$\int_{M} |f(\mathbf{x})|^{s} |g(\mathbf{x})| |d\mathbf{x}|,$$

where $|d\mathbf{x}|$ is the normalized Haar measure on \mathbb{Z}_p^n and the functions $f, g: \mathbb{Z}_p^n \to \mathbb{Z}_p$ and the subset M are definable in the language describing the analytic theory of the *p*-adic numbers. We can then evaluate such definable integrals applying the techniques developed by Denef and van den Dries [DvdD] (which include quantifier elimination results for the analytic theory of \mathbb{Z}_p) to prove our theorem.

The translation from our Poincaré series to such a definable p-adic integral makes full use of Lazard's results on the close relationship between the structure of compact p-adic analytic groups and filtrations defined on such groups [Lz]. In answer to "Hilbert's 5th problem for p-adic analytic groups," Lazard has shown that a compact topological group has the structure of a p-adic analytic group if and only if there exists a normal subgroup G_1 of finite index in G which is p-saturable—that is, there exists a filtration on G_1

$$G_1 > G_2 > \cdots > G_i > \cdots$$

such that: (i) G_1 is a pro-*p* group with a fundamental system of neighborhoods of the identity given by $\{G_i: i \in \mathbb{N}\}$; (ii) for all $i \ge 1$, G_i/G_{i+1} is an elementary Abelian *p*-group of finite rank; and (iii) for all $i \ge 1$, the map $P_i: G_i/G_{i+1} \to G_{i+1}/G_{i+2}$ defined by $xG_{i+1} \to x^pG_{i+2}$ is an isomorphism of \mathbf{F}_p vector spaces.

A *p*-saturable group has the underlying structure of a pro-*p*, *p*-adic analytic group with a global coordinate system \mathbb{Z}_p^r given by *p*-adic powers of elements x_1, \ldots, x_r where x_1G_2, \ldots, x_rG_2 is an \mathbb{F}_p vector space basis for G_1/G_2 . We first prove Theorem 1 in the case where G is a p-saturable group. Recall that subgroups of finite index in a pro-p group have p-power index. The idea is to associate with every subgroup H of finite index in G, a subset M(H) of $r \times r$ matrices over \mathbb{Z}_p whose rows form coordinates for a good basis for H. Every subgroup of finite index in a compact p-adic analytic group is open. So, there exists m such that $H \ge G_m$. We define the concept of a good basis for H as a set of elements h_1, \ldots, h_r such that, for each $i = 1, \ldots, m$, if we let $v_j = h_j^{p^{e(i,j)}} \in H \cap G_i$ for $\omega(h_j) \le i$, where $e(i, j) = i - \omega(h_j)$ and $\omega(g) = n$ if $g \in G_n \setminus G_{n+1}$, then

 $\{v_i G_{i+1}: j \text{ such that } \omega(h_i) \leq i\}$

is an \mathbf{F}_p vector space basis for $(H \cap G_i)G_{i+1}/G_{i+1}$. The index of H in G is encoded in the measure of the subset M(H) and we identify functions $f, g: \mathbf{Z}_p^n \to \mathbf{Z}_p$ such that, for all subgroups H of finite index in G

$$|G : H|^{-s} = \int_{M(H)} |f(\mathbf{x})|^{s} |g(\mathbf{x})| |d\mathbf{x}|.$$

Summing over all subgroups of finite (necessarily *p*-power) index in *G*, we can express our Poincaré series $\zeta_{G,p}(s)$ as a *p*-adic integral of the form (2) where $M \subseteq \mathbb{Z}_p^{r^2}$ is the (disjoint) union of subsets M(H) for all $H \in \mathbb{X}_p$.

The problem now is to show that this integral is definable in the sense of [DvdD]. The set of r-tuples of elements of G which form a good basis for some subgroup of finite index in G is definable by a filtered group theoretic statement. We show how to translate such statements into statements about coordinates of elements of G definable now in the language describing the analytic theory of the p-adic numbers. Using this translation we can show that the subset M is definable. With regards to the functions f and g, we show that there exists a finite partition of $\mathbb{Z}_p^{r^2}$ into definable subsets such that, on each subset, f and g are defined by polynomial functions. Thus f and g are definable functions. We are then in a position to apply the techniques of [DvdD] to this definable integral and thus prove Theorem 1 in the case where G is a p-saturable group.

We extend this to a proof of Theorem 1 using the following ideas. Let G be a compact p-adic analytic group and G_1 a normal p-saturable subgroup of finite index in G. If H is subgroup of

p-power index in G, then it is determined by $H_1 = H \cap G_1$ and a transversal for H_1 in H. We associate with each H a subset N(H) consisting of coordinates both for a good basis for H_1 and coordinates for a transversal for H_1 in H. Extending our integral associated with the *p*-saturable group G_1 , we can express $\zeta_{G_n}(s)$ as a definable *p*-adic integral over the union of the subsets N(H). We can therefore apply [DvdD] to prove that our Poincaré series associated with the compact p-adic analytic group G is rational in p^{-s} .

§2. FINITELY GENERATED GROUPS

Theorem 1 has various corollaries for finitely generated groups. If Γ is a finitely generated group, then $a_n(\Gamma)$ is finite for all n. We can therefore consider the Poincaré series defined in (1). We consider first a variant of this Poincaré series. Define $a_n^{\triangleleft \triangleleft}(\Gamma)$ to be the number of subnormal subgroups of index n in Γ . For each prime p, we associate with the finitely generated group Γ , the following Poincaré series:

$$\zeta_{\Gamma,p}^{\triangleleft \triangleleft}(s) = \sum_{n=0}^{\infty} a_{p^n}^{\triangleleft \triangleleft}(\Gamma) p^{-ns} = \sum_{H \in \mathbf{Y}_p} |\Gamma : H|^{-s},$$

where $\mathbf{Y}_p = \{H \leq \Gamma : H \text{ is subnormal of } p \text{-power index in } \Gamma\}$. We say that $a_{p^n}(\Gamma)$ grows polynomially if there exists $c \in \mathbf{N}$ such that $a_{p^n}(\Gamma) \leq p^{nc}$ for all *n*. Similarly for $a_{p^n}^{\triangleleft \triangleleft}(\Gamma)$. We then have the following:

Theorem 2. Let Γ be a finitely generated group and p a prime. If $a_{p^n}^{\triangleleft \triangleleft}(\Gamma)$ grows polynomially, then $\zeta_{\Gamma,p}^{\triangleleft \triangleleft}(s)$ is rational in p^{-s} .

There is a one-to-one correspondence between subnormal subgroups of finite *p*-power index in Γ and subgroups of finite index in the pro-p completion G of Γ . So $\zeta_{G,p}(s) = \zeta_{\Gamma,p}^{\triangleleft \triangleleft}(s)$. By Lubotzky and Mann's characterization of pro-p groups which have the underlying structure of a *p*-adic analytic group [LM], if $a_{n^n}(G) = a_{n^n}^{\triangleleft \triangleleft}(\Gamma)$ grows polynomially, then G is a p-adic analytic pro-p group. By Theorem 1, $\zeta_{\Gamma,p}^{\triangleleft \triangleleft}(s)$ is rational in p^{-s} .

We recall the definition of an *upper p-chief factor* of Γ —that is, a chief factor of some finite quotient of Γ whose order is divisible by p. We then have the following:

Theorem 3. Let Γ be a finitely generated group and p a prime such that the order of all p-chief factors of Γ is bounded. If $a_{n^n}(\Gamma)$ grows polynomially, then $\zeta_{\Gamma,p}(s)$ is rational in p^{-s} .

The bound on the order of p-chief factors in Γ implies that there exists a normal subgroup Γ_0 of finite index in Γ whose subgroups of p-power index are all subnormal. We construct a finite extension G of the pro-p completion of Γ_0 whose subgroups of finite index are in one-to-one correspondence with subgroups of p-power index in Γ . If $a_{p^n}(\Gamma)$ grows polynomially, then, by [LM], G is a finite extension of a p-adic analytic pro-p group. So G is a compact p-adic analytic group and by Theorem 1, $\zeta_{G,p}(s) = \zeta_{\Gamma,p}(s)$ is rational in p^{-s} .

Theorem 3 includes a large class of examples, some of which we collect together in the following corollary. We recall that the *upper p-rank* of Γ is the supremum of r(P) as P ranges over all *p*-subgroups of finite quotients of Γ , where r(P) is the rank of P.

Corollary 4. If Γ is a finitely generated group of finite upper prank, then $\zeta_{\Gamma,p}(s)$ is rational in p^{-s} .

This follows from a remark in [MS].

References

- [D 1] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), 1–23.
- [D 2] ____, On the evaluation of certain p-adic integrals, Seminaire de Théorie des Nombres, Paris 1983-4, Progr. Math. 59 (1985), 25–47.
- [DvdD] J. Denef and L. van den Dries, P-adic and real subanalytic sets, Ann. of Math. 128 (1988), 79-138.
- [DduSMS] J. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, *Analytic pro-p* groups, London Math. Society Lecture Notes (to appear).
- [GSS] F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), 185-223.
- [I 1] J.-I. Igusa, Complex powers and asymptotic expansions I, J. Reine Angew. Math. 268/269 (1974), 110-130.
- [I 2] ____, Some observations on higher degree characters, Amer. J. Math. 99 (1977), 393-417.
- [Lz] M. Lazard, Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Ètudes Sci. 26 (1965), 389-603.
- [LM] A. Lubotzky and A. Mann, On groups of polynomial subgroup growth, Invent. Math. (to appear).
- [MS] A. Mann and D. Segal, Uniform finiteness conditions in residually finite groups, Proc. London Math. Soc. (to appear).

- [O] J. Oesterlé, Réduction modulo p^n des sous-ensembles analytiques fermés de \mathbb{Z}_p^N , Invent. Math. **66** (1982), 325-341.
- [S] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Ètudes Sci. 54 (1981), 123-202.

MATHEMATICAL INSTITUTE, 24-29 ST. GILES, OXFORD, ENGLAND

Current address: School of Mathematical Sciences, Queen Mary and Westfield College, University of London, London E1 4N5, England

126